Table of Contents

Python Machine Learning 2nd Ed.

Python Machine Learning Second Edition
Credits
About the Authors
About the Reviewers
www.PacktPub.com
eBooks, discount offers, and more
Why subscribe?
Customer Feedback
<u>Preface</u>
What this book covers
What you need for this book
Who this book is for
Conventions
Reader feedback
<u>Customer support</u>
Downloading the example code
Downloading the color images of this book
<u>Errata</u>
Piracy
Questions
1. Giving Computers the Ability to Learn from Data
Building intelligent machines to transform data into knowledge
The three different types of machine learning
Making predictions about the future with supervised learning
Classification for predicting class labels
Regression for predicting continuous outcomes
Solving interactive problems with reinforcement learning
Discovering hidden structures with unsupervised learning
Finding subgroups with clustering
Dimensionality reduction for data compression
Introduction to the basic terminology and notations
A roadmap for building machine learning systems
Preprocessing – getting data into shape
Training and selecting a predictive model

	Evaluating models and predicting unseen data instances
	Using Python for machine learning
	Installing Python and packages from the Python Package Index
	Using the Anaconda Python distribution and package manager
	Packages for scientific computing, data science, and machine learning
	Summary
<u>2.</u>	Training Simple Machine Learning Algorithms for Classification
	Artificial neurons – a brief glimpse into the early history of machine learning
	The formal definition of an artificial neuron
	The perceptron learning rule
	Implementing a perceptron learning algorithm in Python
	An object-oriented perceptron API
	Training a perceptron model on the Iris dataset
	Adaptive linear neurons and the convergence of learning
	Minimizing cost functions with gradient descent
	Implementing Adaline in Python
	Improving gradient descent through feature scaling
	Large-scale machine learning and stochastic gradient descent
	Summary
<u>3.</u>	A Tour of Machine Learning Classifiers Using scikit-learn
	Choosing a classification algorithm
	First steps with scikit-learn – training a perceptron
	Modeling class probabilities via logistic regression
	Logistic regression intuition and conditional probabilities
	Learning the weights of the logistic cost function
	Converting an Adaline implementation into an algorithm for logistic regression
	Training a logistic regression model with scikit-learn
	Tackling overfitting via regularization
	Maximum margin classification with support vector machines
	Maximum margin intuition
	Dealing with a nonlinearly separable case using slack variables
	Alternative implementations in scikit-learn
	Solving nonlinear problems using a kernel SVM
	Kernel methods for linearly inseparable data
	Using the kernel trick to find separating hyperplanes in high-dimensional space
	Decision tree learning
	Maximizing information gain – getting the most bang for your buck
	Building a decision tree

Combining multiple decision trees via random forests
K-nearest neighbors – a lazy learning algorithm
<u>Summary</u>
4. Building Good Training Sets – Data Preprocessing
Dealing with missing data
Identifying missing values in tabular data
Eliminating samples or features with missing values
Imputing missing values
Understanding the scikit-learn estimator API
Handling categorical data
Nominal and ordinal features
Creating an example dataset
Mapping ordinal features
Encoding class labels
Performing one-hot encoding on nominal features
Partitioning a dataset into separate training and test sets
Bringing features onto the same scale
Selecting meaningful features
L1 and L2 regularization as penalties against model complexity
A geometric interpretation of L2 regularization
Sparse solutions with L1 regularization
Sequential feature selection algorithms
Assessing feature importance with random forests
<u>Summary</u>
5. Compressing Data via Dimensionality Reduction
Unsupervised dimensionality reduction via principal component analysis
The main steps behind principal component analysis
Extracting the principal components step by step
Total and explained variance
Feature transformation
Principal component analysis in scikit-learn
Supervised data compression via linear discriminant analysis
Principal component analysis versus linear discriminant analysis
The inner workings of linear discriminant analysis
Computing the scatter matrices
Selecting linear discriminants for the new feature subspace
Projecting samples onto the new feature space
LDA via scikit-learn

<u>U</u> s	sing kernel principal component analysis for nonlinear mappings
	Kernel functions and the kernel trick
	Implementing a kernel principal component analysis in Python
	Example 1 – separating half-moon shapes
	Example 2 – separating concentric circles
	Projecting new data points
	Kernel principal component analysis in scikit-learn
<u>Su</u>	<u>ımmary</u>
<u>6. Le</u>	earning Best Practices for Model Evaluation and Hyperparameter Tuning
<u>St</u>	reamlining workflows with pipelines
	Loading the Breast Cancer Wisconsin dataset
	Combining transformers and estimators in a pipeline
<u>U</u> s	sing k-fold cross-validation to assess model performance
	The holdout method
	K-fold cross-validation
Do	ebugging algorithms with learning and validation curves
	Diagnosing bias and variance problems with learning curves
	Addressing over- and underfitting with validation curves
<u>Fi</u>	ne-tuning machine learning models via grid search
	Tuning hyperparameters via grid search
	Algorithm selection with nested cross-validation
Lo	poking at different performance evaluation metrics
	Reading a confusion matrix
	Optimizing the precision and recall of a classification model
	Plotting a receiver operating characteristic
	Scoring metrics for multiclass classification
Do	ealing with class imbalance
<u>Su</u>	<u>ımmary</u>
<u>7. Cc</u>	ombining Different Models for Ensemble Learning
Le	earning with ensembles
<u>C</u>	ombining classifiers via majority vote
	Implementing a simple majority vote classifier
	Using the majority voting principle to make predictions
	Evaluating and tuning the ensemble classifier
<u>Ba</u>	agging – building an ensemble of classifiers from bootstrap samples
	Bagging in a nutshell
	Applying bagging to classify samples in the Wine dataset
Le	everaging weak learners via adaptive boosting

	How boosting works
	Applying AdaBoost using scikit-learn
	Summary
<u>8.</u>	Applying Machine Learning to Sentiment Analysis
	Preparing the IMDb movie review data for text processing
	Obtaining the movie review dataset
	Preprocessing the movie dataset into more convenient format
	Introducing the bag-of-words model
	<u>Transforming words into feature vectors</u>
	Assessing word relevancy via term frequency-inverse document frequency
	Cleaning text data
	Processing documents into tokens
	Training a logistic regression model for document classification
	Working with bigger data — online algorithms and out-of-core learning
	Topic modeling with Latent Dirichlet Allocation
	Decomposing text documents with LDA
	LDA with scikit-learn
	Summary
<u>9.</u>	Embedding a Machine Learning Model into a Web Application
	Serializing fitted scikit-learn estimators
	Setting up an SQLite database for data storage
	Developing a web application with Flask
	Our first Flask web application
	Form validation and rendering
	Setting up the directory structure
	Implementing a macro using the Jinja2 templating engine
	Adding style via CSS
	Creating the result page
	Turning the movie review classifier into a web application
	<u>Files and folders – looking at the directory tree</u>
	Implementing the main application as app.py
	Setting up the review form
	Creating a results page template
	Deploying the web application to a public server
	Creating a PythonAnywhere account
	Uploading the movie classifier application
	Updating the movie classifier
	Summary

10. Predicting Continuous Target Variables with Regression Analysis
Introducing linear regression
Simple linear regression
Multiple linear regression
Exploring the Housing dataset
Loading the Housing dataset into a data frame
Visualizing the important characteristics of a dataset
Looking at relationships using a correlation matrix
Implementing an ordinary least squares linear regression model
Solving regression for regression parameters with gradient descent
Estimating coefficient of a regression model via scikit-learn
Fitting a robust regression model using RANSAC
Evaluating the performance of linear regression models
Using regularized methods for regression
Turning a linear regression model into a curve – polynomial regression
Adding polynomial terms using scikit-learn
Modeling nonlinear relationships in the Housing dataset
Dealing with nonlinear relationships using random forests
Decision tree regression
Random forest regression
Summary
11. Working with Unlabeled Data – Clustering Analysis
Grouping objects by similarity using k-means
K-means clustering using scikit-learn
A smarter way of placing the initial cluster centroids using k-means++
Hard versus soft clustering
Using the elbow method to find the optimal number of clusters
Quantifying the quality of clustering via silhouette plots
Organizing clusters as a hierarchical tree
Grouping clusters in bottom-up fashion
Performing hierarchical clustering on a distance matrix
Attaching dendrograms to a heat map
Applying agglomerative clustering via scikit-learn
Locating regions of high density via DBSCAN
<u>Summary</u>
12. Implementing a Multilayer Artificial Neural Network from Scratch
Modeling complex functions with artificial neural networks
Single-layer neural network recap

Introducing the multilayer neural network architecture
Activating a neural network via forward propagation
Classifying handwritten digits
Obtaining the MNIST dataset
Implementing a multilayer perceptron
Training an artificial neural network
Computing the logistic cost function
Developing your intuition for backpropagation
Training neural networks via backpropagation
About the convergence in neural networks
A few last words about the neural network implementation
Summary
13. Parallelizing Neural Network Training with TensorFlow
TensorFlow and training performance
What is TensorFlow?
How we will learn TensorFlow
First steps with TensorFlow
Working with array structures
Developing a simple model with the low-level TensorFlow API
Training neural networks efficiently with high-level TensorFlow APIs
Building multilayer neural networks using TensorFlow's Layers API
Developing a multilayer neural network with Keras
Choosing activation functions for multilayer networks
Logistic function recap
Estimating class probabilities in multiclass classification via the softmax
<u>function</u>
Broadening the output spectrum using a hyperbolic tangent
Rectified linear unit activation
Summary
14. Going Deeper – The Mechanics of TensorFlow
Key features of TensorFlow
TensorFlow ranks and tensors
How to get the rank and shape of a tensor
<u>Understanding TensorFlow's computation graphs</u>
<u>Placeholders in TensorFlow</u>
<u>Defining placeholders</u>
Feeding placeholders with data
Defining placeholders for data arrays with varying batchsizes

Variables in TensorFlow
<u>Defining variables</u>
Initializing variables
Variable scope
Reusing variables
Building a regression model
Executing objects in a TensorFlow graph using their names
Saving and restoring a model in TensorFlow
Transforming Tensors as multidimensional data arrays
Utilizing control flow mechanics in building graphs
Visualizing the graph with TensorBoard
Extending your TensorBoard experience
Summary
15. Classifying Images with Deep Convolutional Neural Networks
Building blocks of convolutional neural networks
Understanding CNNs and learning feature hierarchies
Performing discrete convolutions
Performing a discrete convolution in one dimension
The effect of zero-padding in a convolution
Determining the size of the convolution output
Performing a discrete convolution in 2D
Subsampling
Putting everything together to build a CNN
Working with multiple input or color channels
Regularizing a neural network with dropout
Implementing a deep convolutional neural network using TensorFlow
The multilayer CNN architecture
Loading and preprocessing the data
Implementing a CNN in the TensorFlow low-level API
Implementing a CNN in the TensorFlow Layers API
<u>Summary</u>
16. Modeling Sequential Data Using Recurrent Neural Networks
Introducing sequential data
Modeling sequential data – order matters
Representing sequences
The different categories of sequence modeling
RNNs for modeling sequences
Understanding the structure and flow of an RNN