
y y gy, y g
problems through cooperative behaviors based on multi-agent system. In the
system, each of the immune agents acts to assign a part of own tasks through
interactions and it is to produce an efficient scheduling solution by load sharing.
This algorithm is applied to `Standard Task Graph Set' problems to investigate
the validity, and the system behaviors are examined.

1 INTRODUCTION
Adaptive problem solving techniques, such as neural networks and genetic

algorithms, are based on information processing in biological organisms and
they are applied on many kinds of optimization problems. A biological immune
system is one of the adaptive systems and the studies are making advances
[1,3,4,5]. The biological immune system is widely recognized as one of the
adaptive biological system whose functions are to identify and to eliminate
foreign materials. Especially, it has important notions that carry out highly
parallel-distributed functions, for a design of multi-agent system.

In this paper, we propose an immune optimization, which is inspired by
immune cell-cooperation and immune tolerance, for meta-scheduling problems.
Meta-scheduling can be loosely defined as the act of locating and allocating
resources for a job on a parallel-distributed computing [7]. A meta-scheduling
system should make a collection of resources transparently available to the user
as if it were a single large system. The cell-cooperation is considered as a kind
of parallel-distributed system with role differentiations in biological immune
system, and the function offers beneficial notions for solving the problems. By
analogy, we constructed a system to solve the problems through cooperative
behaviors based on multi-agent system. In the system, each of the immune
agents acts to assign a part of own tasks through interactions and it is to perform
an efficient scheduling solution by a load sharing. The proposed algorithm
solves meta-scheduling problems through interactions between agents, and
between agents and environment by immune functions. There are two functions
in our algorithm: division-and-integration processing and immune tolerance.
The division-and-integration processing resolves precedence constraints, and the
immune tolerance performs a load sharing. Through implementation of such
functions, we could construct an adaptive algorithm that solves meta-scheduling

administers the resources in order to use them. The scheduling issues that
surround the creation of such a system is the focus of this section [10].

In this paper, we target at STG as a simplified meta-computer and job. STG
is a kind of benchmark for evaluation of multiprocessor scheduling algorithms
[11]. To efficiently execute programs in parallel on a multiprocessor
environment, a minimum execution time must be solved to determine the
assignment of tasks to the processors and the execution order of the tasks so that
the execution time is minimized [2]. The multiprocessor scheduling problem
treated in their project is to determine a non-preemptive schedule that minimizes
the execution time, or the schedule length, when a set of n computational tasks
having arbitrary precedence constraints and arbitrary processing time are
assigned to m processors of the same capability. These tasks are represented by a
directed acyclic graph (DAG) called a ``task graph'', as shown in figure 1.

Figure1. Illustration of job for multi-

processor scheduling problem in STG.
Figure2. Concept of immune cell-

cooperation.

3 DESIGN OF IMMUNE META-SCHEDULING SYSTEM
3.1 Analogy from biological immune system

We solve the meta-scheduling problems by means of agent-based
computing in the field of multi-agent system. The agents that introduced
immune functions decide a scheduling plan (processing order of tasks) through
communications between the agents. A purpose of this paper is obtaining a set

In order to apply the system to the meta scheduling problems, we choose
three functions, fragmentation, activation and elimination, in this issue, because
the functions are minimum components to perform as problem-solvers. We
construct an optimization algorithm based on a concept that (1) fragments a
problem, (2) solves the fragmented sub-problems by the specific sub-solutions,
and then (3) solves whole the problem through combination of these sub-
solutions. In other words, we use these functions (called division-and-
integration processing) to divide a job into tasks and assign the tasks to resolve
precedence constraints. In addition, we introduce an immune tolerance which is
a phenomenon that the immune system dosen't respond with one and/or some
specific antigens. By regarding the selection function of opponents as a decision
function, the tolerance function as a control mechanism is using for agent's
behavior arbitration in our algorithm.

3.3 Algorithm

The algorithm solves the problems through two searching ways, division-
and-integration processing and immune tolerance. The procedures of the
algorithm against a STG problem are described as below. In the procedures of
proposed method, Step1 is processed for initialization once for all. Each of
agents processes repeatedly from Step2 to Step4 for solving the problem.

[Step1. Definition of problems.] A Job and multiprocessor system as the problem

must be defined. A Job that consists of a set of tasks, is represented as directed
acyclic graph (DAG), and needs the number of tasks, processing time and a
task connection matrix (describes precedence constraints), see figure 1. As
definition of the multiprocessor system, it is described only the number of
processors according to STG. And then, all the agents are initialized for
begining following procedures. An agent exists in individual processor, and
determines tasks which should be processed by the processor through
communications between agents. In the initialization process, all the tasks are
assigned into each agent's queue at random.

[Step2. Calculation of objective function.] Each of agents calculates Timework and
Timefree as objective functions through performing as a current schedule.
 Timework
 Time is defined as a free time, that is no processing time.

 is defined as a processing time of assigned tasks.
free

In other words, a scheduling time for all the tasks equals to Timework + Timefree.

, g y p
preferentially. In case of a execution of the task is impossible, go to next
procedure, too.

3. Process a task in which the execution in other agent's queue is
possible.

A free agent tries to search the task by checking feasible tasks from other
agent's tasks. The agent finds out all the feasible tasks by communication
against other agent in the beginning. Then, the agent goes on to decide a
processing task as well as the previous heuristics, and finally, the
processing is started after the agent gets the target task from opponent
agent. In case of a execution of the task doesn't exist, the agent doesn't
work in this time step.

Each of agents continues processing of above procedures until agents finish
processing of all the tasks, that is, all the agent have a feasible scheduling plan.
In the manners, it is expected that each of agents produces feasible scheduling
plans and efficient sharing plans through two ways of resolving constraints and
load sharing.

4 EXPERIMENT
4.1 Definition of problem

To confirm the basic performance, we apply to a benchmark problem which
is described in the table 1 which is defined as `proto151.stg' on STG.

4.2 Results and prospects

Figure 3 shows obtained scheduling plans in the first time step 1 and 2. The
scheduling time for processing of all the tasks in the 1st time step is 119 that is
optimal schedule length according to STG. In the 1st time step, the precedence
constraints are resolved to obtain feasible plans by using division-and-
integration processing (Step4) because the initial plans of agents are made at
random. After the 1st time step, the transfers of a task from an overworked agent
to a workless agent are executed to achieve a load sharing by using immune
tolerance (Step3), and then Step4 is executed also. In the 2nd time step, the
maximum load is improving from 0.899160 to 0.789916, and differs of the plans
are showed in fig.4 with gray number. The plans in the 1st time step exist a bias
that the agents with small ID process many tasks, and the bias is improving so as
to be sharing evenly.

the real applications. For example in this results (figure 4), it is possible to use
the resources properly according to the situation of LAN, processors or tasks.

A transition of Timetask of agents is shown in figure 5. In the 1st time step,
the time of most workless agent(no.10) is only 30 for a set of tasks `15, 40, 74',
on the one hand, the time of most overwork agent(no.2) is 107 for a set of tasks
`6,19,18,34,42,41,57,53,67,73,78,81'. That is, the difference of the Timetask is 77.

In the opposite direction, the time step has the smallest difference is 15th
step, the most workless's time is 67, the most overwork's time is 90 and the
differ is 23. Such a solution will be a useful planning in case that the user
requires to minimize a recovery cost from any fault of processors.

Table 1. Characteristics of
proto151.stg.

the number of processors 10
the number of tasks 80
Predecessors
(max,ave,min,sum)

10, 3.74,
0, 303

Task processing time
(max,ave,min,sum)

12, 9.57,
 0, 775

Figure3. An example of load
sharing from the step1 to step2.

Figure4. Transition of max- and min-load. Figure5. Transition of Timetask.

p p p
optimizing of the whole problem by using the local interactions. Since our
algorithm can optimize division-of-labor problems, it can expect what is
functioned effectively as an optimization algorithm in multi-agent system.

In addition, the system can obtain multiple feasible optimal solutions,
namely, we think that it is possible to find some specified characteristics on the
problem by means of an identifying common denominators in the solutions. For
designing the identifying function, a concept of an immunological memory will
be informative and instructive mechanism. Such a scheduling system that learns
proper meta-knowledges as a key point of characteristics and produces well-
suited plans against the problems, will be a very useful scheduler. As future
works, we model and construct such a system to learn proper meta-knowledges.

The first author acknowledges the Grant-in-Aid for Scientific Research
(Grant-in-Aid for JSPS Fellows).

REFERENCES
H. Bersini and F. J. Varela, 1991, “The Immune Recruitment Mechanism : A Selective Evolutionary

Strategy,” Proc. of ICGA 91.
E. G. Coffman, 1976, “Computer and Job-shop Scheduling Theory,”. John Willey & Sons.
J.D. Farmer, N.H. Packard, A.A. Perelson, 1986, “The Immune system adaptation, and machine

learning,”Physica 22D, pp.187-204.
Forrest and A. S. Perelson, 1990, “Genetic Algorithm and the Immune System,” Proc. of PPSN 90,

pp.320-325.
Y. Ishida, and N. Adachi, 1996, “Active Noise Control by an Immune Algorithm,” Proc. ICEC 96,

pp.150-153.
Charles A. Janeway, Jr., Paul Travers ; with assistance of Simon Hunt, Mark Walport, 1997,

“Immunobiology : The Immune System in Health And Disease,”Garland Pub.
Larry Smarr and Charles E. Catlett, 1992, “Metacomputing,”Communications of the ACM, 35:45-52.
N. Toma, S. Endo, K. Yamada, H. Miyagi, 2000, “The Immune Distributed Competitive Problem

Solver Using MHC and Immune Network,” Proc. of The 2nd Joint International Workshop -
ORSJ Hokkaido Chapter and ASOR Queensland Branch -, pp82-89.

Quinn Snell, Mark Clement, David Jackson, and Chad Gregory , 2000, “The Performance Impact of
Advance Reservation Meta-Scheduling,”6th WORKSHOP ON JOB SCHEDULING
STRATEGIES FOR PARALLEL PROCESSING.

Kasahara Lab., Waseda Univ , http://www.kasahara.elec.waseda.ac.jp/schedule/

	1 INTRODUCTION
	2 STANDARD TASK GRAPH SET
	3 DESIGN OF IMMUNE META-SCHEDULING SYSTEM
	4 EXPERIMENT
	5 CONCLUSIONS
	REFERENCES

