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Preface

This volume contains a tutorial on the HOL system. It is one of four documents making

up the documentation for HOL:

(i) LOGIC: a formal description of the higher order logic implemented by the HOL

system.

(ii) TUTORIAL: a tutorial introduction to HOL, with case studies.

(iii) DESCRIPTION: a detailed user’s guide for the HOL system;

(iv) REFERENCE: the reference manual for HOL.

These four documents will be referred to by the short names (in small slanted capitals)

given above.

This document, TUTORIAL, is intended to be the first item read by new users of HOL.

It provides a self-study introduction to the structure and use of the system. The tutorial

is intended to give a ‘hands-on’ feel for the way HOL is used, but it does not systemati-

cally explain all the underlying principles (DESCRIPTION and LOGIC explain these). After

working through TUTORIAL the reader should be capable of using HOL for simple tasks,

and should also be in a position to consult the other documents.

Getting started

Chapter 1 explains how to get and install HOL. Once this is done, the potential HOL user

should become familiar with the following subjects:

1. The programming meta-language ML, and how to interact with it.

2. The formal logic supported by the HOL system (higher order logic) and its manip-

ulation via ML.

3. Forward proof and derived rules of inference.

4. Goal directed proof, tactics, and tacticals.
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iv Preface

Chapters 2 and 3 introduce these topics. Chapter 4 then develops an extended example—

Euclid’s proof of the infinitude of primes—to illustrate how HOL is used to prove theo-

rems.

Chapter 5 features another worked example: the specification and verification of a

simple sequential parity checker. The intention is to accomplish two things: (i) to

present another complete piece of work with HOL; and (ii) to give an idea of what it is

like to use the HOL system for a tricky proof. Chapter 6 is a more extensive example:

the proof of confluence for combinatory logic. Again, the aim is to present a complete

piece of non-trivial work.

Chapter 7 gives an example of implementing a proof tool of one’s own. This demon-

strates the programmability of HOL: the way in which technology for solving specific

problems can be implemented on top of the underlying kernel. With high-powered

tools to draw on, it is possible to write prototypes very quickly.

Chapter 8 briefly discusses some of the examples distributed with HOL in the examples

directory.

TUTORIAL has been kept short so that new users of HOL can get going as fast as possible.

Sometimes details have been simplified. It is recommended that as soon as a topic

in TUTORIAL has been digested, the relevant parts of DESCRIPTION and REFERENCE be

studied.
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Chapter 1

Getting and Installing HOL

This chapter describes how to get the HOL system and how to install it. It is generally

assumed that some sort of Unix system is being used, but the instructions that follow

should apply mutatis mutandis to other platforms. Unix is not a pre-requisite for using

the system. HOL may be run on PCs running Windows operating systems from Win-

dows NT onwards (i.e., Windows 2000 and Windows XP are also supported), as well as

Macintoshes running MacOS X.

1.1 Getting HOL

The HOL system can be downloaded from http://hol.sourceforge.net. The naming

scheme for HOL releases is 〈name〉-〈number〉; the release described here is Kananaskis-4.

1.2 The hol-info mailing list

The hol-info mailing list serves as a forum for discussing HOL and disseminating news

about it. If you wish to be on this list (which is recommended for all users of HOL), visit

http://lists.sourceforge.net/lists/listinfo/hol-info. This web-page can also

be used to unsubscribe from the mailing list.

1.3 Installing HOL

It is assumed that the HOL sources have been obtained and the tar file unpacked into

a directory hol.1 The contents of this directory are likely to change over time, but it

should contain the following:

1You may choose another name if you want; it is not important.
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2 Chapter 1. Getting and Installing HOL

Principal Files on the HOL Distribution Directory

File name Description File type

README Description of directory hol Text

COPYRIGHT A copyright notice Text

install.txt Installation instructions Text

tools Source code for building the system Directory

bin Directory for HOL executables Directory

sigobj Directory for ML object files Directory

src ML sources of HOL Directory

help Help files for HOL system Directory

examples Example source files Directory

The session in the box below shows a typical distribution directory. The HOL distribu-

tion has been placed on a PC running Linux in the directory /home/mn200/hol/.

All sessions in this documentation will be displayed in boxes with a number in the

top right hand corner. This number indicates whether the session is a new one (when

the number will be 1) or the continuation of a session started in an earlier box. Con-

secutively numbered boxes are assumed to be part of a single continuous session. The

Unix prompt for the sessions is $, so lines beginning with this prompt were typed by

the user. After entering the HOL system (see below), the user is prompted with - for

an expression or command of the HOL meta-language ML; lines beginning with this are

thus ML expressions or declarations. Lines not beginning with $ or - are system output.

Occasionally, system output will be replaced with a line containing ... when it is of

minimal interest. The meta-language ML is introduced in Chapter 2.

1$ pwd

/home/mn200/hol

$ ls -F

COPYRIGHT bin/ examples/ install.txt src/

README doc/ help/ sigobj/ tools/

Now you will need to rebuild HOL from the sources.2

Before beginning you must have a current version of Moscow ML. In particular, you

must have version 2.01. Moscow ML is available on the web from http://www.dina.

kvl.dk/~sestoft/mosml.html. When you have mosml installed, and are in the root

directory of the distribution, the next step is to run smart-configure:

2It is possible that pre-built systems may soon be available from the web-page mentioned above.
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2$ mosml < tools/smart-configure.sml

Moscow ML version 2.01 (January 2004)

Enter ‘quit();’ to quit.

-

HOL smart configuration.

Determining configuration parameters: OS mosmldir holdir

OS: linux

mosmldir: /home/mn200/mosml

holdir: /home/mn200/hol

dynlib_available: true

Configuration will begin with above values. If they are wrong

press Control-C.

Assuming you don’t interrupt the configuration process, this will build the Holmake

and build programs, and move them into the hol/bin directory. If something goes

wrong at this stage, consult Section 1.3.1 below.

The next step is to run the build program. This should result in a great deal of output

as all of the system code is compiled and the theories built. Eventually, a HOL system3

is produced in the bin/ directory.

3$ bin/build

...

...

Uploading files to /home/mn200/hol/sigobj

Hol built successfully.

$

1.3.1 Overriding smart-configure

If smart-configure is unable to guess correct values for the four parameters, mosmldir,

holdir. OS and dynlib available then you will need to create a file called config-override

in the root directory of the HOL distribution. In this file, specify the correct value for

the appropriate parameter by providing an ML binding for it. Each of the first three

variables must be given a string as a possible value, while dynlib available must be

either true or false. So, one might write

4val OS = "unix";

val holdir = "/local/scratch/myholdir";

val dynlib_available = false;

3Four HOL executables are produced: hol, hol.noquote, hol.bare and hol.bare.noquote. The first of these
will be used for most examples in the TUTORIAL.
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The config-override file need only provide values for those variables that need over-

riding.

With this file in place, the smart-configure program will use the values specified

there rather than those it attempts to calculate itself. The value given for the OS variable

must be one of "unix", "linux", "solaris", "macosx" or "winNT".4

In extreme circumstances it is possible to edit the file configure.sml yourself to set

configuration variables directly. At the top of this file three SML declarations are present,

but commented out. You will need to uncomment this section (remove the (* and

*) markers), and provide sensible values. The mosmldir value must be the name of

the directory containing the Moscow ML binaries (mosmlc, mosml, mosmllex etc). The

holdir value must be the name of the top-level directory listed in the first session above.

The OS value should be one of the strings specified in the accompanying comment. All

three strings must be enclosed in double quotes.

The next two values (CC and GNUMAKE) are needed for “optional” components of the

system. The first gives a string suitable for invoking the system’s C compiler, and the

second specifies a make program.

After editing, tools/configure.sml the lines above will look something like:

5$ more configure.sml

...

val mosmldir = "/home/mn200/mosml";

val holdir = "/home/mn200/hol";

val OS = "linux" (* Operating system; choices are:

"linux", "solaris", "unix", "winNT" *)

val CC = "gcc"; (* C compiler (for building quote filter) *)

val GNUMAKE = "gnumake"; (* for robdd library *)

...

$

Now, at either this level (in the tools directory) or at the level above, the configure.sml

script must be piped into the Moscow ML interpreter (called mosml).

4The string "winNT" is used for Microsoft Windows operating systems that are at least as recent as
Windows NT. This includes Windows XP and Windows 2000.
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6$ mosml < tools/configure.sml

Moscow ML version 2.01 (January 2004)

Enter ‘quit();’ to quit.

- > val mosmldir = "/home/mn200/mosml" : string

val holdir = "/home/mn200/hol" : string

val OS = "linux" : string

- > val CC = "gcc" : string

...

Beginning configuration.

- Making bin/Holmake.

...

Making bin/build.

- Making hol98-mode.el (for Emacs)

- Setting up the standard prelude.

- Setting up src/0/Globals.sml.

- Generating bin/hol.

- Generating bin/hol.noquote.

- Attempting to compile quote filter ... successful.

- Setting up the muddy library Makefile.

- Setting up the help Makefile.

-

Finished configuration!

-

$
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Chapter 2

Introduction to ML

This chapter is a brief introduction to the meta-language ML. The aim is just to give a

feel for what it is like to interact with the language. A more detailed introduction can

be found in numerous textbooks and web-pages; see for example the list of resources

on the MoscowML home-page1, or the comp.lang.ml FAQ2.

2.1 How to interact with ML

ML is an interactive programming language like Lisp. At top level one can evaluate

expressions and perform declarations. The former results in the expression’s value and

type being printed, the latter in a value being bound to a name.

A standard way to interact with ML is to configure the workstation screen so that

there are two windows:

(i) An editor window into which ML commands are initially typed and recorded.

(ii) A shell window (or non-Unix equivalent) which is used to evaluate the com-

mands.

A common way to achieve this is to work inside Emacs with a text window and a shell

window.

After typing a command into the edit (text) window it can be transferred to the shell

and evaluated in HOL by ‘cut-and-paste’. In Emacs this is done by copying the text into

a buffer and then ‘yanking’ it into the shell. The advantage of working via an editor is

that if the command has an error, then the text can simply be edited and used again;

it also records the commands in a file which can then be used again (via a batch load)

later. In Emacs, the shell window also records the session, including both input from the

user and the system’s response. The sessions in this tutorial were produced this way.

These sessions are split into segments displayed in boxes with a number in their top

right hand corner (to indicate their position in the complete session).

The interactions in these boxes should be understood as occurring in sequence. For

example, variable bindings made in earlier boxes are assumed to persist to later ones.

1http://www.dina.kvl.dk/~sestoft/mosml.html
2http://www.faqs.org/faqs/meta-lang-faq/

7



8 Chapter 2. Introduction to ML

To enter the HOL system one types hol or hol.noquote to Unix, possibly preceded by path

information if the HOL system’s bin directory is not in one’s path. The HOL system then

prints a sign-on message and puts one into ML. The ML prompt is -, so lines beginning

with - are typed by the user and other lines are the system’s responses.

Here, as elsewhere in the TUTORIAL, we will be assuming use of hol.

1$ bin/hol

-----------------------------------------------------------------

HOL-4 [Kananaskis 4 (built Fri Apr 12 15:34:35 2002)]

For introductory HOL help, type: help "hol";

-----------------------------------------------------------------

[loading theories and proof tools ************* ]

[closing file "/local/scratch/mn200/Work/hol98/tools/end-init-boss.sml"]

- 1 :: [2,3,4,5];

> val it = [1, 2, 3, 4, 5] : int list

The ML expression 1 :: [2,3,4,5] has the form e1 op e2 where e1 is the expression 1

(whose value is the integer 1), e2 is the expression [2,3,4,5] (whose value is a list of

four integers) and op is the infixed operator ‘::’ which is like Lisp’s cons function. Other

list processing functions include hd (car in Lisp), tl (cdr in Lisp) and null (null in Lisp).

The semicolon ‘;’ terminates a top-level phrase. The system’s response is shown on the

line starting with the > prompt. It consists of the value of the expression followed, after

a colon, by its type. The ML type checker infers the type of expressions using methods

invented by Robin Milner [8]. The type int list is the type of ‘lists of integers’; list is

a unary type operator. The type system of ML is very similar to the type system of the

HOL logic which is explained in Chapter 3.

The value of the last expression evaluated at top-level in ML is always remembered in

a variable called it.

2- val l = it;

> val l = [1, 2, 3, 4, 5] : int list

- tl l;

> val it = [2, 3, 4, 5] : int list

- hd it;

> val it = 2 : int

- tl(tl(tl(tl(tl l))));

> val it = [] : int list

Following standard λ-calculus usage, the application of a function f to an argument

x can be written without brackets as f x (although the more conventional f(x) is also
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allowed). The expression f x1 x2 · · · xn abbreviates the less intelligible expression

(· · ·((f x1)x2)· · ·)xn (function application is left associative).

Declarations have the form val x1=e1 and · · · and xn=en and result in the value of

each expression ei being bound to the name xi.

3- val l1 = [1,2,3] and l2 = ["a","b","c"];

> val l1 = [1, 2, 3] : int list

val l2 = ["a", "b", "c"] : string list

ML expressions like "a", "b", "foo" etc. are strings and have type string. Any sequence

of ASCII characters can be written between the quotes.3 The function explode splits a

string into a list of single characters, which are written like single character strings, with

a # character prepended.

4- explode "a b c";

> val it = [#"a", #" ", #"b", #" ", #"c"] : char list

An expression of the form (e1,e2) evaluates to a pair of the values of e1 and e2. If

e1 has type σ1 and e2 has type σ2 then (e1,e2) has type σ1*σ2. The first and second

components of a pair can be extracted with the ML functions #1 and #2 respectively.

If a tuple has more than two components, its n-th component can be extracted with a

function #n.

The values (1,2,3), (1,(2,3)) and ((1,2), 3) are all distinct and have types

int * int * int, int * (int * int) and (int * int) * int respectively.

5- val triple1 = (1,true,"abc");

> val triple1 = (1, true, "abc") : int * bool * string

- #2 triple1;

> val it = true : bool

- val triple2 = (1, (true, "abc"));

> val triple2 = (1, (true, "abc")) : int * (bool * string)

- #2 triple2;;

> val it = (true, "abc") : bool * string

The ML expressions true and false denote the two truth values of type bool.

ML types can contain the type variables ’a, ’b, ’c, etc. Such types are called polymor-

phic. A function with a polymorphic type should be thought of as possessing all the

types obtainable by replacing type variables by types. This is illustrated below with the

function zip.

Functions are defined with declarations of the form fun f v1 . . . vn = e where each vi

is either a variable or a pattern built out of variables.

The function zip, below, converts a pair of lists ([x1,. . .,xn], [y1,. . .,yn]) to a list of

pairs [(x1,y1),. . .,(xn,yn)].

3Newlines must be written as \n, and quotes as \".
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6- fun zip(l1,l2) =

if null l1 orelse null l2 then []

else (hd l1,hd l2) :: zip(tl l1,tl l2);

> val zip = fn : ’a list * ’b list -> (’a * ’b) list

- zip([1,2,3],["a","b","c"]);

> val it = [(1, "a"), (2, "b"), (3, "c")] : (int * string) list

Functions may be curried, i.e. take their arguments ‘one at a time’ instead of as a

tuple. This is illustrated with the function curried_zip below:

7- fun curried_zip l1 l2 = zip(l1,l2);

> val curried_zip = fn : ’a list -> ’b list -> (’a * ’b) list

- fun zip_num l2 = curried_zip [0,1,2] l2;

> val zip_num = fn : ’a list -> (int * ’a) list

- zip_num ["a","b","c"];

> val it = [(0, "a"), (1, "b"), (2, "c")] : (int * string) list

The evaluation of an expression either succeeds or fails. In the former case, the eval-

uation returns a value; in the latter case the evaluation is aborted and an exception is

raised. This exception passed to whatever invoked the evaluation. This context can

either propagate the failure (this is the default) or it can trap it. These two possibilities

are illustrated below. An exception trap is an expression of the form e1 handle _ => e2.

An expression of this form is evaluated by first evaluating e1. If the evaluation succeeds

(i.e. doesn’t fail) then the value of the whole expression is the value of e1. If the eval-

uation of e1 raises an exception, then the value of the whole is obtained by evaluating

e2.
4

8- 3 div 0;

! Uncaught exception:

! Div

- 3 div 0 handle _ => 0;

> val it = 0 : int

The sessions above are enough to give a feel for ML. In the next chapter, the logic

supported by the HOL system (higher order logic) will be introduced, together with the

tools in ML for manipulating it.

4This description of exception handling is actually a gross simplification of the way exceptions can be
handled in ML; consult a proper text for a better explanation.



Chapter 3

The HOL Logic

The HOL system supports higher order logic. This is a version of predicate calculus with

three main extensions:

• Variables can range over functions and predicates (hence ‘higher order’).

• The logic is typed.

• There is no separate syntactic category of formulae (terms of type bool fulfill that

role).

In this chapter, we will give a brief overview of the notation used to write expressions

of the HOL logic in ML, and also discuss standard HOL proof techniques. It is assumed

the reader is familiar with predicate logic. The syntax and semantics of the particular

logical system supported by HOL is described in detail in DESCRIPTION.

The table below summarizes a useful subset of the notation used in HOL.

Terms of the HOL Logic

Kind of term HOL notation Standard notation Description

Truth T > true

Falsity F ⊥ false

Negation ~t ¬t not t
Disjunction t1\/t2 t1 ∨ t2 t1 or t2
Conjunction t1/\t2 t1 ∧ t2 t1 and t2
Implication t1==>t2 t1 ⇒ t2 t1 implies t2
Equality t1=t2 t1 = t2 t1 equals t2
∀-quantification !x.t ∀x. t for all x : t
∃-quantification ?x.t ∃x. t for some x : t
ε-term @x.t εx. t an x such that: t
Conditional if t then t1 else t2 (t→ t1, t2) if t then t1 else t2

Terms of the HOL logic are represented in ML by an abstract type called term. They

are normally input between double back-quote marks. For example, the expression

11
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‘‘x /\ y ==> z‘‘ evaluates in ML to a term representing x∧y⇒z. Terms can be manip-

ulated by various built-in ML functions. For example, the ML function dest_imp with ML

type term -> term * term splits an implication into a pair of terms consisting of its an-

tecedent and consequent, and the ML function dest_conj of type term -> term * term

splits a conjunction into its two conjuncts. 1

1- ‘‘x /\ y ==> z‘‘;

> val it = ‘‘x /\ y ==> z‘‘ : term

- dest_imp it;

> val it = (‘‘x /\ y‘‘, ‘‘z‘‘) : term * term

- dest_conj(#1 it);

> val it = (‘‘x‘‘, ‘‘y‘‘) : term * term

Terms of the HOL logic are quite similar to ML expressions, and this can at first be

confusing. Indeed, terms of the logic have types similar to those of ML expressions. For

example, ‘‘(1,2)‘‘ is an ML expression with ML type term. The HOL type of this term is

num # num. By contrast, the ML expression (‘‘1‘‘, ‘‘2‘‘) has type term * term.

Syntax of HOL types The types of HOL terms form an ML type called hol_type. Ex-

pressions having the form ‘‘: · · · ‘‘ evaluate to logical types. The built-in function

type_of has ML type term->hol_type and returns the logical type of a term.

2- ‘‘(1,2)‘‘;

> val it = ‘‘(1,2)‘‘ : term

- type_of it;

> val it = ‘‘:num # num‘‘ : hol_type

- (‘‘1‘‘, ‘‘2‘‘);

> val it = (‘‘1‘‘, ‘‘2‘‘) : term * term

- type_of(#1 it);

> val it = ‘‘:num‘‘ : hol_type

To try to minimise confusion between the logical types of HOL terms and the ML types

of ML expressions, the former will be referred to as object language types and the latter

as meta-language types. For example, ‘‘(1,T)‘‘ is an ML expression that has meta-

language type term and evaluates to a term with object language type ‘‘:num#bool‘‘.

1All of the examples below assume that the user is running hol, the executable for which is in the
bin/ directory.
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3- ‘‘(1,T)‘‘;

> val it = ‘‘(1,T)‘‘ : term

- type_of it;

> val it = ‘‘:num # bool‘‘ : hol_type

Term constructors HOL terms can be input, as above, by using explicit quotation,

or they can be constructed by calling ML constructor functions. The function mk_var

constructs a variable from a string and a type. In the example below, three variables of

type bool are constructed. These are used later.

4- val x = mk_var("x", ‘‘:bool‘‘)

and y = mk_var("y", ‘‘:bool‘‘)

and z = mk_var("z", ‘‘:bool‘‘);

> val x = ‘‘x‘‘ : term

val y = ‘‘y‘‘ : term

val z = ‘‘z‘‘ : term

The constructors mk_conj and mk_imp construct conjunctions and implications respec-

tively. A large collection of term constructors and destructors is available for the core

theories in HOL.

5- val t = mk_imp(mk_conj(x,y),z);

> val t = ‘‘x /\ y ==> z‘‘ : term

Type checking There are actually only four different kinds of term in HOL: variables,

constants, function applications (‘‘t1 t2‘‘), and lambda abstractions (‘‘\x.t‘‘). More

complex terms, such as those we have already seen above, are just compositions of terms

from this simple set. In order to understand the behaviour of the quotation parser, it

is necessary to understand how the type checker infers types for the four basic term

categories.

Both variables and constants have a name and a type; the difference is that constants

cannot be bound by quantifiers, and their type is fixed when they are declared (see

below). When a quotation is entered into HOL, the type checking algorithm uses the

types of constants to infer the types of variables in the same quotation. For example, in

the following case, the HOL type checker used the known type bool->bool of boolean

negation (~) to deduce that the variable x must have type bool.

6- ‘‘~x‘‘;

val it = ‘‘~x‘‘ : term

In the next two cases, the type of x and y cannot be deduced. (The default ‘scope’

of type information for type checking is a single quotation, so a type in one quotation

cannot affect the type-checking of another. Thus x is not constrained to have the the

type bool in the second quotation.)
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7- ‘‘x‘‘;

<<HOL message: inventing new type variable names: ’a.>>

> val it = ‘‘x‘‘ : Term.term

- type_of it;

> val it = ‘‘:’a‘‘ : hol_type

- ‘‘(x,y)‘‘;

<<HOL message: inventing new type variable names: ’a, ’b.>>

> val it = ‘‘(x,y)‘‘ : term

- type_of it;

> val it = ‘‘:’a # ’b‘‘ : hol_type

If there is not enough contextually-determined type information to resolve the types

of all variables in a quotation, then the system will guess different type variables for all

the unconstrained variables.

Type constraints Alternatively, it is possible to explicitly indicate the required types

by using the notation ‘‘term:type‘‘, as illustrated below.

8- ‘‘x:num‘‘;

> val it = ‘‘x‘‘ : term

- type_of it;

> val it = ‘‘:num‘‘ : hol_type

Function application types An application (t1 t2) is well-typed if t1 is a function with

type τ1 → τ2 and t2 has type τ1. Contrarily, an application (t1 t2) is badly typed if t1 is

not a function:

9- ‘‘1 2‘‘;

Type inference failure: unable to infer a type for the application of

(1 :num)

to

(2 :num)

unification failure message: unify failed

! Uncaught exception:

! HOL_ERR

or if it is a function, but t2 is not in its domain:
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10- ‘‘~1‘‘;

Type inference failure: unable to infer a type for the application of

$~

to

(1 :num)

unification failure message: unify failed

! Uncaught exception:

! HOL_ERR

The dollar symbol in front of ~ indicates that the boolean negation constant has a

special syntactic status (in this case a non-standard precedence). Putting $ in front of

any symbol causes the parser to ignore any special syntactic status (like being an infix)

it might have.

11- ‘‘$==> t1 t2‘‘;

> val it = ‘‘t1 ==> t2‘‘ : term

- ‘‘$/\ t1 t2‘‘;

> val it = ‘‘t1 /\ t2‘‘ : term

Function types Functions have types of the form σ1->σ2, where σ1 and σ2 are the

types of the domain and range of the function, respectively.

12- type_of ‘‘$==>‘‘;

> val it = ‘‘:bool -> bool -> bool‘‘ : hol_type

- type_of ‘‘$+‘‘;

> val it = ‘‘:num -> num -> num‘‘ : hol_type

Both + and ==> are infixes, so their use in contexts where they are not being used as

such requires their prefixing by the $-sign. This is analogous to the way in which op is

used in ML. The session below illustrates the use of these constants as infixes; it also

illustrates object language versus meta-language types.

13- ‘‘(x + 1, t1 ==> t2)‘‘;

> val it = ‘‘(x + 1,t1 ==> t2)‘‘ : term

- type_of it;

> val it = ‘‘:num # bool‘‘ : hol_type

- (‘‘x=1‘‘, ‘‘t1==>t2‘‘);

> val it = (‘‘x = 1‘‘, ‘‘t1 ==> t2‘‘) : term * term

- (type_of (#1 it), type_of (#2 it));

> val it = (‘‘:bool‘‘, ‘‘:bool‘‘) : hol_type * hol_type
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Lambda-terms, or λ-terms, denote functions. The symbol ‘\’ is used as an ASCII ap-

proximation to λ. Thus ‘\x.t’ should be read as ‘λx. t’. For example, ‘‘\x. x+1‘‘ is a

term that denotes the function n 7→ n+1.

14- ‘‘\x. x + 1‘‘;

> val it = ‘‘\x. x + 1‘‘ : term

- type_of it;

> val it = ‘‘:num -> num‘‘ : hol_type

Other binding symbols in the logic are its two most important quantifiers: ! and
?, universal and existential quantifiers. For example, the logical statement that every
number is either even or odd might be phrased as

!n. (n MOD 2 = 1) \/ (n MOD 2 = 0)

while a version of Euclid’s result about the infinitude of primes is:

!n. ?p. prime p /\ p > n

Binding symbols such as these can be used over multiple symbols thus:

15- ‘‘\x y. (x, y * x)‘‘;

> val it = ‘‘\x y. (x,y * x)‘‘ : term

- type_of it;

> val it = ‘‘:num -> num -> num # num‘‘ : hol_type

- ‘‘!x y. x <= x + y‘‘;

> val it = ‘‘!x y. x <= x + y‘‘ : term

3.1 Proof in HOL

This section discusses the nature of proof in HOL. For a logician, one definition of a

formal proof is that it is a sequence, each of whose elements is either an axiom or

follows from earlier members of the sequence by a rule of inference. A theorem is the

last element of a proof.

Theorems are represented in HOL by values of an abstract type thm. The only way to

create theorems is by generating such a proof. In HOL, following LCF, this consists in

applying ML functions representing rules of inference to axioms or previously generated

theorems. The sequence of such applications directly corresponds to a logician’s proof.

There are five axioms of the HOL logic and eight primitive inference rules. The axioms

are bound to ML names. For example, the Law of Excluded Middle is bound to the ML

name BOOL_CASES_AX:

1- BOOL_CASES_AX;

> val it = |- !t. (t = T) \/ (t = F) : thm
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Theorems are printed with a preceding turnstile |- as illustrated above; the symbol

‘!’ is the universal quantifier ‘∀’. Rules of inference are ML functions that return values

of type thm. An example of a rule of inference is specialization (or ∀-elimination). In

standard ‘natural deduction’ notation this is:

Γ ` ∀x. t

Γ ` t[t′/x]

• t[t′/x] denotes the result of substituting t′ for free occurrences of x in t, with the

restriction that no free variables in t′ become bound after substitution.

This rule is represented in ML by a function SPEC,2 which takes as arguments a term

‘‘a‘‘ and a theorem |- !x.t[x] and returns the theorem |- t[a], the result of substitut-

ing a for x in t[x].

2- val Th1 = BOOL_CASES_AX;

> val Th1 = |- !t. (t = T) \/ (t = F) : thm

- val Th2 = SPEC ‘‘1 = 2‘‘ Th1;

> val Th2 = |- ((1 = 2) = T) \/ ((1 = 2) = F) : thm

This session consists of a proof of two steps: using an axiom and applying the rule

SPEC; it interactively performs the following proof:

1. ` ∀t. t = > ∨ t = ⊥ [Axiom BOOL_CASES_AX]

2. ` (1=2) = > ∨ (1=2) = ⊥ [Specializing line 1 to ‘1=2’]

If the argument to an ML function representing a rule of inference is of the wrong

kind, or violates a condition of the rule, then the application fails. For example, SPEC t th

will fail if th is not of the form |- !x. · · · or if it is of this form but the type of t is not

the same as the type of x, or if the free variable restriction is not met. When one of the

standard HOL_ERR exceptions is raised, more information about the failure can often be

gained by using the Raise function. 3

3- SPEC ‘‘1=2‘‘ Th2;

! Uncaught exception:

! HOL_ERR

- SPEC ‘‘1 = 2‘‘ Th2 handle e => Raise e;

Exception raised at Thm.SPEC:

! Uncaught exception:

! HOL_ERR

2SPEC is not a primitive rule of inference in the HOL logic, but is a derived rule. Derived rules are
described in Section 3.2.

3The Raise function passes on all of the exceptions it sees; it does not affect the semantics of the
computation at all. However, when passed a HOL_ERR exception, it prints out some useful information
before passing the exception on to the next level.
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However, as this session illustrates, the failure message does not always indicate the

exact reason for failure. Detailed failure conditions for rules of inference are given in

REFERENCE.

A proof in the HOL system is constructed by repeatedly applying inference rules to

axioms or to previously proved theorems. Since proofs may consist of millions of steps,

it is necessary to provide tools to make proof construction easier for the user. The proof

generating tools in the HOL system are just those of LCF, and are described later.

The general form of a theorem is t1, . . . , tn |- t, where t1, . . . , tn are boolean terms

called the assumptions and t is a boolean term called the conclusion. Such a theorem

asserts that if its assumptions are true then so is its conclusion. Its truth conditions

are thus the same as those for the single term (t1/\. . ./\tn)==>t. Theorems with no

assumptions are printed out in the form |- t.

The five axioms and eight primitive inference rules of the HOL logic are described

in detail in the document DESCRIPTION. Every value of type thm in the HOL system can

be obtained by repeatedly applying primitive inference rules to axioms. When the HOL

system is built, the eight primitive rules of inference are defined and the five axioms

are bound to their ML names, all other predefined theorems are proved using rules of

inference as the system is made.4 This is one of the reasons why building hol takes so

long.

In the rest of this section, the process of forward proof, which has just been sketched,

is described in more detail. In Section 3.3 goal directed proof is described, including the

important notions of tactics and tacticals, due to Robin Milner.

3.2 Forward proof

Three of the primitive inference rules of the HOL logic are ASSUME (assumption introduc-

tion), DISCH (discharging or assumption elimination) and MP (Modus Ponens). These

rules will be used to illustrate forward proof and the writing of derived rules.

The inference rule ASSUME generates theorems of the form t |- t. Note, however,

that the ML printer prints each assumption as a dot (but this default can be changed;

see below). The function dest_thm decomposes a theorem into a pair consisting of list

of assumptions and the conclusion.

4- val Th3 = ASSUME ‘‘t1==>t2‘‘;;

> val Th3 = [.] |- t1 ==> t2 : thm

- dest_thm Th3;

> val it = ([‘‘t1 ==> t2‘‘], ‘‘t1 ==> t2‘‘) : term list * term

4This is a slight over-simplification.
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A sort of dual to ASSUME is the primitive inference rule DISCH (discharging, assumption

elimination) which infers from a theorem of the form · · · t1 · · · |- t2 the new theorem

· · · · · · |- t1==>t2. DISCH takes as arguments the term to be discharged (i.e. t1) and the

theorem from whose assumptions it is to be discharged and returns the result of the

discharging. The following session illustrates this:

5- val Th4 = DISCH ‘‘t1==>t2‘‘ Th3;

> val Th4 = |- (t1 ==> t2) ==> t1 ==> t2 : thm

Note that the term being discharged need not be in the assumptions; in this case they

will be unchanged.

6- DISCH ‘‘1=2‘‘ Th3;

> val it = [.] |- (1 = 2) ==> t1 ==> t2 : thm

- dest_thm it;

> val it = ([‘‘t1 ==> t2‘‘], ‘‘(1 = 2) ==> t1 ==> t2‘‘) : term list * term

In HOL the rule MP of Modus Ponens is specified in conventional notation by:

Γ1 ` t1 ⇒ t2 Γ2 ` t1
Γ1 ∪ Γ2 ` t2

The ML function MP takes argument theorems of the form · · · |- t1 ==> t2 and · · · |- t1
and returns · · · |- t2. The next session illustrates the use of MP and also a common

error, namely not supplying the HOL logic type checker with enough information.

7- val Th5 = ASSUME ‘‘t1‘‘;

<<HOL message: inventing new type variable names: ’a.>>

! Uncaught exception:

! HOL_ERR

- val Th5 = ASSUME ‘‘t1‘‘ handle e => Raise e;

<<HOL message: inventing new type variable names: ’a.>>

Exception raised at Thm.ASSUME:

not a proposition

! Uncaught exception:

! HOL_ERR

- val Th5 = ASSUME ‘‘t1:bool‘‘;

> val Th5 = [.] |- t1 : thm

- val Th6 = MP Th3 Th5;

> val Th6 = [..] |- t2 : thm

The hypotheses of Th6 can be inspected with the ML function hyp, which returns the

list of assumptions of a theorem (the conclusion is returned by concl).
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8- hyp Th6;

> val it = [‘‘t1 ==> t2‘‘, ‘‘t1‘‘] : term list

HOL can be made to print out hypotheses of theorems explicitly by setting the global

flag show_assums to true.

9- show_assums := true;

> val it = () : unit

- Th5;

> val it = [t1] |- t1 : thm

- Th6;

> val it = [t1 ==> t2, t1] |- t2 : thm

Discharging Th6 twice establishes the theorem |- t1 ==> (t1==>t2) ==> t2.

10- val Th7 = DISCH ‘‘t1==>t2‘‘ Th6;

> val Th7 = [t1] |- (t1 ==> t2) ==> t2 : thm

- val Th8 = DISCH ‘‘t1:bool‘‘ Th7;

> val Th8 = |- t1 ==> (t1 ==> t2) ==> t2 : thm

The sequence of theorems: Th3, Th5, Th6, Th7, Th8 constitutes a proof in HOL of the

theorem |- t1 ==> (t1 ==> t2) ==> t2. In standard logical notation this proof could

be written:

1. t1 ⇒ t2 ` t1 ⇒ t2 [Assumption introduction]

2. t1 ` t1 [Assumption introduction]

3. t1 ⇒ t2, t1 ` t2 [Modus Ponens applied to lines 1 and 2]

4. t1 ` (t1 ⇒ t2) ⇒ t2 [Discharging the first assumption of line 3]

5. ` t1 ⇒ (t1 ⇒ t2) ⇒ t2 [Discharging the only assumption of line 4]

3.2.1 Derived rules

A proof from hypothesis th1, . . . , thn is a sequence each of whose elements is either an

axiom, or one of the hypotheses thi, or follows from earlier elements by a rule of infer-

ence.

For example, a proof of Γ, t′ ` t from the hypothesis Γ ` t is:

1. t′ ` t′ [Assumption introduction]

2. Γ ` t [Hypothesis]



3.2. Forward proof 21

3. Γ ` t′ ⇒ t [Discharge t′ from line 2]

4. Γ, t′ ` t [Modus Ponens applied to lines 3 and 1]

This proof works for any hypothesis of the form Γ ` t and any boolean term t′ and

shows that the result of adding an arbitrary hypothesis to a theorem is another theorem

(because the four lines above can be added to any proof of Γ ` t to get a proof of

Γ, t′ ` t).5 For example, the next session uses this proof to add the hypothesis ‘‘t3‘‘

to Th6.

11- val Th9 = ASSUME ‘‘t3:bool‘‘;

> val Th9 = [t3] |- t3 : thm

- val Th10 = DISCH ‘‘t3:bool‘‘ Th6;

> val Th10 = [t1 ==> t2, t1] |- t3 ==> t2 : thm

- val Th11 = MP Th10 Th9;

> val Th11 = [t1 ==> t2, t1, t3] |- t2 : thm

A derived rule is an ML procedure that generates a proof from given hypotheses each

time it is invoked. The hypotheses are the arguments of the rule. To illustrate this,

a rule, called ADD_ASSUM, will now be defined as an ML procedure that carries out the

proof above. In standard notation this would be described by:

Γ ` t

Γ, t′ ` t

The ML definition is:

12- fun ADD_ASSUM t th = let

val th9 = ASSUME t

val th10 = DISCH t th

in

MP th10 th9

end;

> val ADD_ASSUM = fn : term -> thm -> thm

- ADD_ASSUM ‘‘t3:bool‘‘ Th6;

> val it = [t1, t1 ==> t2, t3] |- t2 : thm

The body of ADD_ASSUM has been coded to mirror the proof done in session 10 above, so

as to show how an interactive proof can be generalized into a procedure. But ADD_ASSUM

can be written much more concisely as:

5This property of the logic is called monotonicity.
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13- fun ADD_ASSUM t th = MP (DISCH t th) (ASSUME t);

> val ADD_ASSUM = fn : term -> thm -> thm

- ADD_ASSUM ‘‘t3:bool‘‘ Th6;

val it = [t1 ==> t2, t1, t3] |- t2 : thm

Another example of a derived inference rule is UNDISCH; this moves the antecedent of

an implication to the assumptions.

Γ ` t1 ⇒ t2
Γ, t1 ` t2

An ML derived rule that implements this is:

14- fun UNDISCH th = MP th (ASSUME(#1(dest_imp(concl th))));

> val UNDISCH = fn : thm -> thm

- Th10;

> val it = [t1 ==> t2, t1] |- t3 ==> t2 : thm

- UNDISCH Th10;

> val it = [t1, t1 ==> t2, t3] |- t2 : thm

Each time UNDISCH Γ ` t1 ⇒ t2 is executed, the following proof is performed:

1. t1 ` t1 [Assumption introduction]

2. Γ ` t1 ⇒ t2 [Hypothesis]

3. Γ, t1 ` t2 [Modus Ponens applied to lines 2 and 1]

The rules ADD_ASSUM and UNDISCH are the first derived rules defined when the HOL

system is built. For a description of the main rules see the section on derived rules in

DESCRIPTION.

3.2.1.1 Rewriting

An interesting derived rule is REWRITE_RULE. This takes a list of equational theorems of

the form:

Γ ` (u1 = v1) ∧ (u2 = v2) ∧ . . . ∧ (un = vn)

and a theorem ∆ ` t and repeatedly replaces instances of ui in t by the corresponding

instance of vi until no further change occurs. The result is a theorem Γ ∪ ∆ ` t′

where t′ is the result of rewriting t in this way. The session below illustrates the use of

REWRITE_RULE. In it the list of equations is the value rewrite_list containing the pre-

proved theorems ADD_CLAUSES and MULT_CLAUSES. These theorems are from the theory
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arithmetic, so we must use a fully qualified name with the name of the theory as the

first component to refer to them. (Alternatively, we could, as in the Euclid example of

section 4, use open to bring declare all of the values in the theory at the top level.)

15- open arithmeticTheory;

...

- val rewrite_list = [ADD_CLAUSES,MULT_CLAUSES];

> val rewrite_list =

[ |- (0 + m = m) /\ (m + 0 = m) /\ (SUC m + n = SUC (m + n)) /\

(m + SUC n = SUC (m + n)),

|- !m n.

(0 * m = 0) /\ (m * 0 = 0) /\ (1 * m = m) /\ (m * 1 = m) /\

(SUC m * n = m * n + n) /\ (m * SUC n = m + m * n)]

: thm list

16- REWRITE_RULE rewrite_list (ASSUME ‘‘(m+0)<(1*n)+(SUC 0)‘‘);

> val it = [m + 0 < 1 * n + SUC 0] |- m < SUC n : thm

This can then be rewritten using another pre-proved theorem LESS_THM, this one from

the theory prim_rec:

17- REWRITE_RULE [prim_recTheory.LESS_THM] it;

> val it = [m + 0 < 1 * n + SUC 0] |- (m = n) \/ m < n : thm

REWRITE_RULE is not a primitive in HOL, but is a derived rule. It is inherited from

Cambridge LCF and was implemented by Larry Paulson (see his paper [10] for details).

In addition to the supplied equations, REWRITE_RULE has some built in standard simpli-

fications:

18- REWRITE_RULE [] (ASSUME ‘‘(T /\ x) \/ F ==> F‘‘);

> val it = [T /\ x \/ F ==> F] |- ~x : thm

There are elaborate facilities in HOL for producing customized rewriting tools which

scan through terms in user programmed orders; REWRITE_RULE is the tip of an iceberg,

see DESCRIPTION for more details.

3.3 Goal Oriented Proof: Tactics and Tacticals

The style of forward proof described in the previous section is unnatural and too ‘low

level’ for many applications. An important advance in proof generating methodology

was made by Robin Milner in the early 1970s when he invented the notion of tactics. A

tactic is a function that does two things.
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(i) Splits a ‘goal’ into ‘subgoals’.

(ii) Keeps track of the reason why solving the subgoals will solve the goal.

Consider, for example, the rule of ∧-introduction6 shown below:

Γ1 ` t1 Γ2 ` t2
Γ1 ∪ Γ2 ` t1 ∧ t2

In HOL, ∧-introduction is represented by the ML function CONJ:

CONJ (Γ1 ` t1) (Γ2 ` t2) → (Γ1 ∪ Γ2 ` t1 ∧ t2)

This is illustrated in the following new session (note that the session number has been

reset to 1:

1- show_assums := true;

val it = () : unit

- val Th1 = ASSUME ‘‘A:bool‘‘ and Th2 = ASSUME ‘‘B:bool‘‘;

> val Th1 = [A] |- A : thm

val Th2 = [B] |- B : thm

- val Th3 = CONJ Th1 Th2;

> val Th3 = [A, B] |- A /\ B : thm

Suppose the goal is to prove A ∧ B, then this rule says that it is sufficient to prove

the two subgoals A and B, because from ` A and ` B the theorem ` A ∧ B can be

deduced. Thus:

(i) To prove ` A ∧ B it is sufficient to prove ` A and ` B.

(ii) The justification for the reduction of the goal ` A ∧ B to the two subgoals

` A and ` B is the rule of ∧-introduction.

A goal in HOL is a pair ([t1;...;tn],t) of ML type term list * term. An achievement

of such a goal is a theorem t1,. . .,tn |- t. A tactic is an ML function that when applied

to a goal generates subgoals together with a justification function or validation, which

will be an ML derived inference rule, that can be used to infer an achievement of the

original goal from achievements of the subgoals.

If T is a tactic (i.e. an ML function of type goal -> (goal list * (thm list -> thm)))

and g is a goal, then applying T to g (i.e. evaluating the ML expression T g) will result

in an object which is a pair whose first component is a list of goals and whose second

component is a justification function, i.e. a value with ML type thm list -> thm.

6In higher order logic this is a derived rule; in first order logic it is usually primitive. In HOL the rule
is called CONJ and its derivation is given in DESCRIPTION.
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An example tactic is CONJ_TAC which implements (i) and (ii) above. For example,

consider the utterly trivial goal of showing T /\ T, where T is a constant that stands for

true:

2- val goal1 =([]:term list, ‘‘T /\ T‘‘);

> val goal1 = ([], ‘‘T /\ T‘‘) : term list * term

- CONJ_TAC goal1;

> val it =

([([], ‘‘T‘‘), ([], ‘‘T‘‘)], fn)

: (term list * term) list * (thm list -> thm)

- val (goal_list,just_fn) = it;

> val goal_list =

[([], ‘‘T‘‘), ([], ‘‘T‘‘)]

: (term list * term) list

val just_fn = fn : thm list -> thm

CONJ_TAC has produced a goal list consisting of two identical subgoals of just showing

([],"T"). Now, there is a preproved theorem in HOL, called TRUTH, that achieves this

goal:

3- TRUTH;

> val it = [] |- T : thm

Applying the justification function just_fn to a list of theorems achieving the goals in

goal_list results in a theorem achieving the original goal:

4- just_fn [TRUTH,TRUTH];

> val it = [] |- T /\ T : thm

Although this example is trivial, it does illustrate the essential idea of tactics. Note

that tactics are not special theorem-proving primitives; they are just ML functions. For

example, the definition of CONJ_TAC is simply:

fun CONJ_TAC (asl,w) = let

val (l,r) = dest_conj w

in

([(asl,l), (asl,r)], fn [th1,th2] => CONJ th1 th2)

end

The ML function dest_conj splits a conjunction into its two conjuncts: If (asl,‘‘t1/\t2‘‘)

is a goal, then CONJ_TAC splits it into the list of two subgoals (asl,t1) and (asl,t2). The

justification function, fn [th1,th2] => CONJ th1 th2 takes a list [th1,th2] of theorems

and applies the rule CONJ to th1 and th2.
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To summarize: if T is a tactic and g is a goal, then applying T to g will result in a pair

whose first component is a list of goals and whose second component is a justification

function, with ML type thm list -> thm.

Suppose T g = ([g1,. . .,gn],p). The idea is that g1 , . . . , gn are subgoals and p is

a ‘justification’ of the reduction of goal g to subgoals g1 , . . . , gn. Suppose further

that the subgoals g1 , . . . , gn have been solved. This would mean that theorems th1 ,

. . . , thn had been proved such that each thi (1 ≤ i ≤ n) ‘achieves’ the goal gi. The

justification p (produced by applying T to g) is an ML function which when applied to

the list [th1,. . .,thn] returns a theorem, th, which ‘achieves’ the original goal g. Thus p

is a function for converting a solution of the subgoals to a solution of the original goal.

If p does this successfully, then the tactic T is called valid. Invalid tactics cannot result

in the proof of invalid theorems; the worst they can do is result in insolvable goals or

unintended theorems being proved. If T were invalid and were used to reduce goal g

to subgoals g1 , . . . , gn, then effort might be spent proving theorems th1 , . . . , thn to

achieve the subgoals g1 , . . . , gn, only to find out after the work is done that this is a

blind alley because p[th1,. . .,thn] doesn’t achieve g (i.e. it fails, or else it achieves some

other goal).

A theorem achieves a goal if the assumptions of the theorem are included in the as-

sumptions of the goal and if the conclusion of the theorems is equal (up to the renaming

of bound variables) to the conclusion of the goal. More precisely, a theorem

t1, . . ., tm |- t

achieves a goal

([u1,. . .,un],u)

if and only if {t1, . . . , tm} is a subset of {u1, . . . , un} and t is equal to u (up to renaming

of bound variables). For example, the goal ([‘‘x=y‘‘, ‘‘y=z‘‘, ‘‘z=w‘‘], ‘‘x=z‘‘) is

achieved by the theorem [x=y, y=z] |- x=z (the assumption ‘‘z=w‘‘ is not needed).

A tactic solves a goal if it reduces the goal to the empty list of subgoals. Thus T

solves g if T g = ([],p). If this is the case and if T is valid, then p[] will evaluate to a

theorem achieving g. Thus if T solves g then the ML expression snd(T g)[] evaluates to

a theorem achieving g.

Tactics are specified using the following notation:

goal

goal1 goal2 · · · goaln

For example, a tactic called CONJ_TAC is described by
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t1 /\ t2

t1 t2

Thus CONJ_TAC reduces a goal of the form (Γ,‘‘t1/\t2‘‘) to subgoals (Γ,‘‘t1‘‘) and

(Γ,‘‘t2‘‘). The fact that the assumptions of the top-level goal are propagated un-

changed to the two subgoals is indicated by the absence of assumptions in the notation.

Another example is numLib.INDUCT_TAC, the tactic for doing mathematical induction

on the natural numbers:

!n.t[n]

t[0] {t[n]} t[SUC n]

INDUCT_TAC reduces a goal (Γ,‘‘!n.t[n]‘‘) to a basis subgoal (Γ,‘‘t[0]‘‘) and an

induction step subgoal (Γ ∪ {‘‘t[n]‘‘},‘‘t[SUC n]‘‘). The extra induction assumption

‘‘t[n]‘‘ is indicated in the tactic notation with set brackets.

5- numLib.INDUCT_TAC([], ‘‘!m n. m+n = n+m‘‘);

> val it =

([([], ‘‘!n. 0 + n = n + 0‘‘),

([‘‘!n. m + n = n + m‘‘], ‘‘!n. SUC m + n = n + SUC m‘‘)], fn)

: (term list * term) list * (thm list -> thm)

The first subgoal is the basis case and the second subgoal is the step case.

Tactics generally fail (in the ML sense, i.e. raise an exception) if they are applied to

inappropriate goals. For example, CONJ_TAC will fail if it is applied to a goal whose

conclusion is not a conjunction. Some tactics never fail, for example ALL_TAC

t

t

is the ‘identity tactic’; it reduces a goal (Γ,t) to the single subgoal (Γ,t)—i.e. it has no

effect. ALL_TAC is useful for writing complex tactics using tacticals.

3.3.1 Using tactics to prove theorems

Suppose goal g is to be solved. If g is simple it might be possible to immediately think

up a tactic, T say, which reduces it to the empty list of subgoals. If this is the case then

executing:

val (gl,p) = T g

will bind p to a function which when applied to the empty list of theorems yields a

theorem th achieving g. (The declaration above will also bind gl to the empty list of

goals.) Thus a theorem achieving g can be computed by executing:
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val th = p[]

This will be illustrated using REWRITE_TAC which takes a list of equations (empty in

the example that follows) and tries to prove a goal by rewriting with these equations

together with basic_rewrites:

6- val goal2 = ([]:term list, ‘‘T /\ x ==> x \/ (y /\ F)‘‘);

> val goal2 = ([], ‘‘T /\ x ==> x \/ y /\ F‘‘) : (term list * term)

- REWRITE_TAC [] goal2;

> val it = ([], fn) : (term list * term) list * (thm list -> thm)

- #2 it [];

> val it = [] |- T /\ x ==> x \/ y /\ F : thm

Proved theorems are usually stored in the current theory so that they can be used in

subsequent sessions.

The built-in function store_thm of ML type (string * term * tactic) -> thm facili-

tates the use of tactics: store_thm("foo",t,T) proves the goal ([],t) (i.e. the goal with

no assumptions and conclusion t) using tactic T and saves the resulting theorem with

name foo on the current theory.

If the theorem is not to be saved, the function prove of type (term * tactic) -> thm

can be used. Evaluating prove(t,T) proves the goal ([],t) using T and returns the

result without saving it. In both cases the evaluation fails if T does not solve the goal

([],t).

When conducting a proof that involves many subgoals and tactics, it is necessary to

keep track of all the justification functions and compose them in the correct order. While

this is feasible even in large proofs, it is tedious. HOL provides a package for building

and traversing the tree of subgoals, stacking the justification functions and applying

them properly; this package was originally implemented for LCF by Larry Paulson. Its

use is demonstrated in Chapter 4, and thoroughly documented in DESCRIPTION.

3.3.2 Tacticals

A tactical is an ML function that takes one or more tactics as arguments, possibly with

other arguments as well, and returns a tactic as its result. The various parameters

passed to tacticals are reflected in the various ML types that the built-in tacticals have.

Some important tacticals in the HOL system are listed below.

3.3.2.1 THENL : tactic -> tactic list -> tactic

If tactic T produces n subgoals and T1, . . . , Tn are tactics then T THENL [T1;. . .;Tn] is a

tactic which first applies T and then applies Ti to the ith subgoal produced by T . The

tactical THENL is useful if one wants to do different things to different subgoals.
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THENL can be illustrated by doing the proof of ` ∀m. m+ 0 = m in one step.

1- g ‘!m. m + 0 = m‘;

> val it =

Proof manager status: 1 proof.

1. Incomplete:

Initial goal:

!m. m + 0 = m

- e (INDUCT_TAC THENL [REWRITE_TAC[ADD], ASM_REWRITE_TAC[ADD]]);

OK..

> val it =

Initial goal proved.

|- !m. m + 0 = m

The compound tactic INDUCT_TAC THENL [REWRITE_TAC[ADD];ASM_REWRITE_TAC[ADD]] first

applies INDUCT_TAC and then applies REWRITE_TAC[ADD] to the first subgoal (the basis)

and ASM_REWRITE_TAC[ADD] to the second subgoal (the step).

The tactical THENL is useful for doing different things to different subgoals. The tactical

THEN can be used to apply the same tactic to all subgoals.

3.3.2.2 THEN : tactic -> tactic -> tactic

The tactical THEN is an ML infix. If T1 and T2 are tactics, then the ML expression

T1 THEN T2 evaluates to a tactic which first applies T1 and then applies T2 to all the

subgoals produced by T1.

In fact, ASM_REWRITE_TAC[ADD] will solve the basis as well as the step case of the

induction for ∀m. m + 0 = m, so there is an even simpler one-step proof than the one

above:

1- g ‘!m. m+0 = m‘;

> val it =

Proof manager status: 1 proof.

1. Incomplete:

Initial goal:

!m. m + 0 = m

- e(INDUCT_TAC THEN ASM_REWRITE_TAC[ADD]);

OK..

> val it =

Initial goal proved.

|- !m. m + 0 = m

This is typical: it is common to use a single tactic for several goals. Here, for example,

are the first four consequences of the definition ADD of addition that are pre-proved

when the built-in theory arithmetic HOL is made.



30 Chapter 3. The HOL Logic

val ADD_0 = prove (

‘‘!m. m + 0 = m‘‘,

INDUCT_TAC THEN ASM_REWRITE_TAC[ADD]);

val ADD_SUC = prove (

‘‘!m n. SUC(m + n) = m + SUC n‘‘,

INDUCT_TAC THEN ASM_REWRITE_TAC[ADD]);

val ADD_CLAUSES = prove (

‘‘(0 + m = m) /\

(m + 0 = m) /\

(SUC m + n = SUC(m + n)) /\

(m + SUC n = SUC(m + n))‘‘,

REWRITE_TAC[ADD, ADD_0, ADD_SUC]);

val ADD_COMM = prove (

‘‘!m n. m + n = n + m‘‘,

INDUCT_TAC THEN ASM_REWRITE_TAC[ADD_0, ADD, ADD_SUC]);

These proofs are performed when the HOL system is made and the theorems are saved

in the theory arithmetic. The complete list of proofs for this built-in theory can be

found in the file src/num/arithmeticScript.sml.

3.3.2.3 ORELSE : tactic -> tactic -> tactic

The tactical ORELSE is an ML infix. If T1 and T2 are tactics, then T1 ORELSE T2 evaluates

to a tactic which applies T1 unless that fails; if it fails, it applies T2. ORELSE is defined in

ML as a curried infix by7

(T1 ORELSE T2) g = T1 g handle _ => T2 g

3.3.2.4 REPEAT : tactic -> tactic

If T is a tactic then REPEAT T is a tactic which repeatedly applies T until it fails. This

can be illustrated in conjunction with GEN_TAC, which is specified by:

!x.t[x]

t[x′]

• Where x′ is a variant of x not free in the goal or the assumptions.

GEN_TAC strips off one quantifier; REPEAT GEN_TAC strips off all quantifiers:

7This is a minor simplification.
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2- g ‘!x y z. x+(y+z) = (x+y)+z‘;

> val it =

Proof manager status: 1 proof.

1. Incomplete:

Initial goal:

!x y z. x + (y + z) = x + y + z

- e GEN_TAC;

OK..

1 subgoal:

> val it =

!y z. x + (y + z) = x + y + z

- e (REPEAT GEN_TAC);

OK..

1 subgoal:

> val it =

x + (y + z) = x + y + z

3.3.3 Some tactics built into HOL

This section contains a summary of some of the tactics built into the HOL system (in-

cluding those already discussed). The tactics given here are those that are used in the

parity checking example.

Before beginning, note that the ML type thm_tactic abbreviates thm->tactic, and the

type conv8 abbreviates term->thm.

3.3.3.1 REWRITE TAC : thm list -> tactic

• Summary: REWRITE_TAC[th1,. . .,thn] simplifies the goal by rewriting it with the

explicitly given theorems th1, . . . , thn, and various built-in rewriting rules.

{t1, . . . , tm}t

{t1, . . . , tm}t
′

where t′ is obtained from t by rewriting with

1. th1, . . . , thn and

2. the standard rewrites held in the ML variable basic_rewrites.

• Uses: Simplifying goals using previously proved theorems.

• Other rewriting tactics:

8The type conv comes from Larry Paulson’s theory of conversions [10].
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1. ASM_REWRITE_TAC adds the assumptions of the goal to the list of theorems used

for rewriting.

2. PURE_REWRITE_TAC uses neither the assumptions nor the built-in rewrites.

3. RW_TAC of type simpLib.simpset -> thm list -> tactic. A simpset is a

special collection of rewriting theorems and other theorem-proving function-

ality. Values defined by HOL include bossLib.std_ss, which has basic knowl-

edge of the boolean connectives, bossLib.arith_ss which “knows” all about

arithmetic, and HOLSimps.list_ss, which includes theorems appropriate for

lists, pairs, and arithmetic. Additional theorems for rewriting can be added

using the second argument of RW_TAC.

3.3.3.2 CONJ TAC : tactic

• Summary: Splits a goal ‘‘t1/\t2‘‘ into two subgoals ‘‘t1‘‘ and ‘‘t2‘‘.

t1 /\ t2

t1 t2

• Uses: Solving conjunctive goals. CONJ_TAC is invoked by STRIP_TAC (see below).

3.3.3.3 EQ TAC : tactic

• Summary: EQ_TAC splits an equational goal into two implications (the ‘if-case’ and

the ‘only-if’ case):

u = v

u ==> v v ==> u

• Use: Proving logical equivalences, i.e. goals of the form “u=v” where u and v are

boolean terms.

3.3.3.4 DISCH TAC : tactic

• Summary: Moves the antecedent of an implicative goal into the assumptions.

u ==> v

{u}v

• Uses: Solving goals of the form ‘‘u ==> v‘‘ by assuming ‘‘u‘‘ and then solving

‘‘v‘‘. STRIP_TAC (see below) will invoke DISCH_TAC on implicative goals.
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3.3.3.5 GEN TAC : tactic

• Summary: Strips off one universal quantifier.

!x.t[x]

t[x′]

Where x′ is a variant of x not free in the goal or the assumptions.

• Uses: Solving universally quantified goals. REPEAT GEN_TAC strips off all universal

quantifiers and is often the first thing one does in a proof. STRIP_TAC (see below)

applies GEN_TAC to universally quantified goals.

3.3.3.6 PROVE TAC : thm list -> tactic

• Summary: Used to do first order reasoning, solving the goal completely if suc-

cessful, failing otherwise. Using the provided theorems and the assumptions of

the goal, PROVE_TAC does a search for possible proofs of the goal. Eventually fails

if the search fails to find a proof shorter than a reasonable depth.

• Uses: To finish a goal off when it is clear that it is a consequence of the assump-

tions and the provided theorems.

3.3.3.7 STRIP TAC : tactic

• Summary: Breaks a goal apart. STRIP_TAC removes one outer connective from the

goal, using CONJ_TAC, DISCH_TAC, GEN_TAC, etc. If the goal is t1/\· · ·/\tn ==> t then

STRIP_TAC makes each ti into a separate assumption.

• Uses: Useful for splitting a goal up into manageable pieces. Often the best thing

to do first is REPEAT STRIP_TAC.

3.3.3.8 ACCEPT TAC : thm -> tactic

• Summary: ACCEPT_TAC th is a tactic that solves any goal that is achieved by th.

• Use: Incorporating forward proofs, or theorems already proved, into goal directed

proofs. For example, one might reduce a goal g to subgoals g1, . . ., gn using a

tactic T and then prove theorems th1 , . . ., thn respectively achieving these goals

by forward proof. The tactic

T THENL[ACCEPT_TAC th1, . . . ,ACCEPT_TAC thn]
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would then solve g, where THENL is the tactical that applies the respective elements

of the tactic list to the subgoals produced by T.

3.3.3.9 ALL TAC : tactic

• Summary: Identity tactic for the tactical THEN (see DESCRIPTION).

• Uses:

1. Writing tacticals (see description of REPEAT in DESCRIPTION).

2. With THENL; for example, if tactic T produces two subgoals and we want to

apply T1 to the first one but to do nothing to the second, then the tactic to

use is T THENL[T1;ALL_TAC].

3.3.3.10 NO TAC : tactic

• Summary: Tactic that always fails.

• Uses: Writing tacticals.



Chapter 4

Example: Euclid’s Theorem

In this chapter, we prove in HOL that for every number, there is a prime number that

is larger, i.e., that the prime numbers form an infinite sequence. This proof has been

excerpted and adapted from a much larger example due to John Harrison, in which

he proved the n = 4 case of Fermat’s Last Theorem. The proof development will be

performed using the facilities of bossLib, one of HOL’s libraries, and is intended to

serve as an introduction to performing high-level interactive proofs in HOL. Many of the

details may be difficult to grasp for the novice reader; nonetheless, it is recommended

that the example be followed through in order to gain a true taste of using HOL to prove

non-trivial theorems.

Some tutorial descriptions of proof systems show the system performing amazing

feats of automated theorem proving. In this example, we will not take this approach;

instead, we try to show how one actually goes about the business of proving theorems

in HOL: when more than one way to prove something is possible, we will consider the

choices; when a difficulty rears its ugly head, we will attempt to explain how to fight

one’s way clear.

One ‘drives’ HOL by interacting with the ML top-level loop. In this interaction style,

ML function calls are made to bring in already-established logical context (usually via

load), to define new context (via Hol_datatype and Define from bossLib), and to

perform proofs using the goalstack interface, and the proof tools from bossLib (or if

they fail to do the job, from lower-level libraries).

First, we start the system, with the command <holdir>/bin/hol. Now, we “open” the

arithmetic theory, and specialize the rewriter provided by bossLib to a simplification

set that knows about arithmetic. The former means that all of the ML bindings from the

HOL theory of arithmetic are available at the top level. The latter is not necessary, but

is a convenient abbreviation and serves to make some of the proofs typeset more nicely.

1- open arithmeticTheory;

...

- val ARW_TAC = RW_TAC arith_ss;

> val ARW_TAC =

fn

: thm list -> term list * term ->

(term list * term) list * (thm list -> thm)

35
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The ML type of ARW_TAC is thm list −→ tactic. When ARW_TAC is applied to a list of

theorems, the theorems will be added to arith_ss as rewrite rules. We will see that

ARW_TAC is fairly knowledgeable about arithmetic.1

We now begin the formalization. In order to define the concept of prime number, we

first need to define the divisibility relation:

2- val divides = Define ‘divides a b = ?x. b = a * x‘;

Definition has been stored under "divides_def".

> val divides = |- !a b. divides a b = ?x. b = a * x : thm

The definition is added to the current theory with the name divides_def, and also

returned from the invocation of Define. We take advantage of this and make an ML

binding of the name divides to the definition. In the usual way of interacting with

HOL, such an ML binding is made for each definition and (useful) proved theorem:

the ML environment is thus being used as a convenient place to hold definitions and

theorems for later reference in the session.

We want to treat divides as a (right associative) infix:

3- set_fixity "divides" (Infixr 450);

Now we can define the property of a number being prime: a number p is prime if and

only if it is not equal to 1 and it has no divisors other than 1 and itself:

4- val prime =

Define ‘prime p = ~(p=1) /\ !x. x divides p ==> (x=1) \/ (x=p)‘;

Definition has been stored under "prime_def".

> val prime =

|- !p. prime p = ~(p = 1) /\ !x. x divides p ==> (x = 1) \/ (x = p)

: thm

That concludes the definitions to be made. Now we “just” have to prove that there are

an infinite number of primes. If we were coming to this problem fresh, then we would

have to go through a not-well-understood and often tremendously difficult process of

finding the right lemmas required to prove our target theorem.2 Fortunately, we are

working from a detailed and accurate source and can devote ourselves to the far simpler

problem of explaining how to prove the required theorems.

The development will illustrate that there is often more than one way to tackle a HOL

proof, even if one has only a single (informal) proof in mind. We often find the proof

using ARW_TAC to unwind definitions and perform basic simplifications, i.e., to reduce

1Linear arithmetic especially: purely universal statements involving the operators SUC, +, −, numeric
literals, <, ≤, >, ≥, =, and multiplication by numeric literals.

2This is of course a general problem in doing any kind of proof.
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the goal to its essence. Sometimes this proves the goal immediately. Often however,

we are left with a goal that requires some study before one realizes what lemmas are

needed to conclude the proof. Once these lemmas have been proven (or located in

ancestor theories), PROVE_TAC can be invoked with them, with the expectation that it

will find the right instantiations needed to finish the proof. (These two operations do

not suffice to perform all proofs; in particular, our development will also need case

analysis and induction.)

This raises the following question: how does one find the right lemmas to use? This is

quite a problem, especially when the number of theorems in ancestor theories is large.

There are are couple of possibilities: the help system can be used to look up definitions

and theorems, as well as proof procedures; for example, an invocation of

help "arithmeticTheory"

will display all the definitions and theorems that have been stored in the theory of

arithmetic. However, the complete name of the item being searched for must be known

before the help system is useful. Alternatively, the functions in DB are often easier to

use. DB.match allows the use of first order patterns to look for the relevant items, while

DB.find will use fragments of names as keys with which to lookup information.

Once a proof of a proposition has been found, it is customary, although not necessary,

to embark on a process of revision, in which the original sequence of tactics is composed

into a single tactic. Sometimes the resulting tactic is much shorter, and more aestheti-

cally pleasing in some sense. Some users spend a fair bit of time polishing these tactics,

although there doesn’t seem much real benefit in doing so, since they are ad hoc proof

recipes, one for each theorem. In the following, we will show how this is done in a few

cases.

4.1 Divisibility

We start by proving a number of theorems about the divides relation. We will see that

each of these initial theorems can be proved with a single invocation of PROVE_TAC. Both

ARW_TAC and PROVE_TAC are quite powerful reasoners, and the choice of a reasoner in a

particular situation is a matter of experience. The major reason that PROVE_TAC works

so well is that divides is defined by means of an existential quantifier, and PROVE_TAC is

quite good at automatically instantiating existentials in the course of proof. For a simple

example, consider proving ∀x. x divides 0. A new proposition to be proved is entered

to the proof manager via “g”, which starts a fresh goalstack:
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5- g ‘!x. x divides 0‘;

> val it =

Proof manager status: 1 proof.

1. Incomplete:

Initial goal:

!x. x divides 0

: proofs

The proof manager tells us that it has only one proof to manage, and echoes the given

goal. Now we expand the definition of divides. Notice that α-conversion takes place

in order to keep distinct the x of the goal and the x in the definition of divides:

6- e (ARW_TAC [divides]);

OK..

1 subgoal:

> val it =

?x’. (x = 0) \/ (x’ = 0)

It is of course quite easy to instantiate the existential quantifier by hand.

7- e (EXISTS_TAC ‘‘0‘‘);

OK..

1 subgoal:

> val it =

(x = 0) \/ (0 = 0)

Then a simplification step finishes the proof.

8- e (ARW_TAC []);

OK..

Goal proved.

|- (x = 0) \/ (0 = 0)

Goal proved.

|- ?x’. (x = 0) \/ (x’ = 0)

> val it =

Initial goal proved.

|- !x. x divides 0

What just happened here? The application of ARW_TAC to the goal decomposed it to

an empty list of subgoals; in other words the goal was proved by ARW_TAC. Once a

goal has been proved, it is popped off the goalstack, prettyprinted to the output, and

the theorem becomes available for use by the level of the stack. When all the sub-goals

required by that level are proven, the corresponding goal at that level can be proven too.
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This ‘unwinding’ process continues until the stack is empty, or until it hits a goal with

more than one remaining unproved subgoal. This process may be hard to visualize,3

but that doesn’t matter, since the goalstack was expressly written to allow the user to

ignore such details.

If the three interactions are joined together with THEN to form a single tactic, we can

try the proof again from the beginning (using the restart function) and this time it will

take just one step:

9- restart();

> ...

- e (ARW_TAC [divides] THEN EXISTS_TAC ‘‘0‘‘ THEN ARW_TAC[]);

OK..

> val it =

Initial goal proved.

|- !x. x divides 0

We have seen one way to prove the theorem. However, as mentioned earlier, there is

another: one can let PROVE_TAC expand the definition of divides and find the required

instantiation for x’ from the theorem MULT_CLAUSES.4

10- restart();

> ...

- e (PROVE_TAC [divides, MULT_CLAUSES]);

OK..

Meson search level: .....

> val it =

Initial goal proved.

|- !x. x divides 0

In any case, having done our proof inside the goalstack package, we now want to have

access to the theorem value that we have proved. We use the top_thm function to do

this, and then use drop to dispose of the stack:

11- val DIVIDES_0 = top_thm();

> val DIVIDES_0 = |- !x. x divides 0 : thm

- drop();

OK..

> val it = There are currently no proofs. : proofs

3Perhaps since we have used a stack to implement what is notionally a tree!
4You might like to try typing MULT_CLAUSES into the interactive loop to see exactly what it states.
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We have used PROVE_TAC in this way to prove the following collection of theorems

about divides. As mentioned previously, the theorems supplied to PROVE_TAC in the

following proofs did not (usually) come from thin air: in most cases some exploratory

work with ARW_TAC was done to open up definitions and see what lemmas would be

required by PROVE_TAC.

(DIVIDES 0) !x. x divides 0

PROVE_TAC [divides, MULT_CLAUSES]

(DIVIDES ZERO) !x. 0 divides x = (x = 0)

PROVE_TAC [divides, MULT_CLAUSES]

(DIVIDES ONE) !x. x divides 1 = (x = 1)

PROVE_TAC [divides, MULT_CLAUSES, MULT_EQ_1]

(DIVIDES REFL) !x. x divides x

PROVE_TAC [divides, MULT_CLAUSES]

(DIVIDES TRANS) !a b c. a divides b /\ b divides c ==> a divides c

PROVE_TAC [divides, MULT_ASSOC]

(DIVIDES ADD) !d a b. d divides a /\ d divides b ==> d divides (a+b)

PROVE_TAC [divides,LEFT_ADD_DISTRIB]

(DIVIDES SUB) !d a b. d divides a /\ d divides b ==> d divides (a-b)

PROVE_TAC [divides, LEFT_SUB_DISTRIB]

(DIVIDES ADDL) !d a b. d divides a /\ d divides (a+b) ==> d divides b

PROVE_TAC [ADD_SUB, ADD_SYM, DIVIDES_SUB]

(DIVIDES LMUL) !d a x. d divides a ==> d divides (x * a)

PROVE_TAC [divides, MULT_ASSOC, MULT_SYM]

(DIVIDES RMUL) !d a x. d divides a ==> d divides (a * x)

PROVE_TAC [MULT_SYM, DIVIDES_LMUL]

We’ll assume that the above proofs have been performed, and that the appropriate ML

names have been given to all of the theorems. Now we encounter a lemma about

divisibility that doesn’t succumb to a single invocation of PROVE_TAC:

(DIVIDES LE) !m n. m divides n ==> m <= n \/ (n = 0)

ARW_TAC [divides]

THEN Cases_on ‘x‘

THEN ARW_TAC [MULT_CLAUSES]

Let’s see how this is proved. The easiest way to start is to simplify with the definition of

divides:
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12- g ‘!m n . m divides n ==> m <= n \/ (n = 0)‘;

> ...

- e (ARW_TAC [divides]);

1 subgoal:

> val it =

m <= m * x \/ (m * x = 0)

Considering the goal, we basically have three choices: (1) find a collection of lemmas

that together imply the goal and use PROVE_TAC; (2) do a case split on m; or (3) do

a case split on x. The first doesn’t seem simple, because the goal doesn’t really fit in

the ‘shape’ of any pre-proved theorem(s) that the author knows about. Although option

(2) will be rejected in the end, let’s try it anyway. To perform the case split, we use

Cases_on, which stands for “find the given term in the goal and do a case split on the

possible means of building it out of datatype constructors”. Since the occurrence of m

in the goal has type num, the cases considered will be whether m is 0 or a successor.

13- e (Cases_on ‘m‘);

OK..

2 subgoals:

> val it =

SUC n <= SUC n * x \/ (SUC n * x = 0)

0 <= 0 * x \/ (0 * x = 0)

The first subgoal (the last one printed) is trivial:

14- e (ARW_TAC []);

OK..

Goal proved.

...

Remaining subgoals:

> val it =

SUC n <= SUC n * x \/ (SUC n * x = 0)

Let’s try ARW_TAC again:

15- e (ARW_TAC []);

OK..

1 subgoal:

> val it =

SUC n <= SUC n * x \/ (x = 0)
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The right disjunct has been simplified; however, the left disjunct has failed to expand

the definition of multiplication in the expression SUC n ∗ x, which would have been

convenient. Why not, when arith_ss and hence ARW_TAC is supposed to be expert in

arithmetic? The answer is that the recursive clauses for addition and multiplication

are not in arith_ss because uncontrolled application of them by the rewriter seems, in

general, to make some proofs more complicated, rather than simpler. OK, so let’s add

in the definition of multiplication. This uncovers a new problem: how to locate this

definition. The function

DB.match : string list -> term

-> ((string * string) * (thm * class)) list

is often helpful for such tasks. It takes a list of theory names, and a pattern, and looks

in the list of theories for any theorem, definition, or axiom that has an instance of the

pattern as a subterm. If the list of theory names is empty, then all loaded theories are

included in the search. Let’s look in the theory of arithmetic for the subterm to be

rewritten.

16- DB.match ["arithmetic"] ‘‘SUC n * x‘‘;

> val it =

[(("arithmetic", "FACT"),

(|- (FACT 0 = 1) /\ !n. FACT (SUC n) = SUC n * FACT n, Def)),

(("arithmetic", "LESS_MULT_MONO"),

(|- !m i n. SUC n * m < SUC n * i = m < i, Thm)),

(("arithmetic", "MULT"),

(|- (!n. 0 * n = 0) /\ !m n. SUC m * n = m * n + n, Def)),

(("arithmetic", "MULT_CLAUSES"),

(|- !m n.

(0 * m = 0) /\ (m * 0 = 0) /\ (1 * m = m) /\ (m * 1 = m) /\

(SUC m * n = m * n + n) /\ (m * SUC n = m + m * n), Thm)),

(("arithmetic", "MULT_LESS_EQ_SUC"),

(|- !m n p. m <= n = SUC p * m <= SUC p * n, Thm)),

(("arithmetic", "MULT_MONO_EQ"),

(|- !m i n. (SUC n * m = SUC n * i) = m = i, Thm)),

(("arithmetic", "ODD_OR_EVEN"),

(|- !n. ?m. (n = SUC (SUC 0) * m) \/ (n = SUC (SUC 0) * m + 1), Thm))]

: ...

For some, this returns slightly too much information; however, we can focus the

search by stipulating that the pattern look like a rewrite rule:
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17- DB.match [] ‘‘SUC n * x = M‘‘;

> val it =

[(("arithmetic", "MULT"),

(|- (!n. 0 * n = 0) /\ !m n. SUC m * n = m * n + n, Def)),

(("arithmetic", "MULT_CLAUSES"),

(|- !m n.

(0 * m = 0) /\ (m * 0 = 0) /\ (1 * m = m) /\ (m * 1 = m) /\

(SUC m * n = m * n + n) /\ (m * SUC n = m + m * n), Thm)),

(("arithmetic", "MULT_MONO_EQ"),

(|- !m i n. (SUC n * m = SUC n * i) = m = i, Thm))] : ...

Either arithmeticTheory.MULT or arithmeticTheory.MULT_CLAUSES would be accept-

able; we choose the latter.

18- e (ARW_TAC [MULT_CLAUSES]);

OK..

1 subgoal:

> val it =

SUC n <= x + n * x \/ (x = 0)

Now we see that, in order to make progress in the proof, we will have to do a case split

on x anyway, and that we should have split on it originally. Hence we backup. We will

have to backup (undo) four times:

19- b();

> val it =

SUC n <= SUC n * x \/ (x = 0)

- b();

> val it =

SUC n <= SUC n * x \/ (SUC n * x = 0)

- b();

> val it =

SUC n <= SUC n * x \/ (SUC n * x = 0)

0 <= 0 * x \/ (0 * x = 0)

- b();

> val it =

m <= m * x \/ (m * x = 0)

Now we can go forward and do case analysis on x. We will also make a compound

tactic invocation, since we already know that we’ll have to invoke ARW_TAC in both

branches of the case split. This can be done using THEN. When t1 THEN t2 is applied
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to a goal g, first t1 is applied to g, giving a list of new subgoals, then t2 is applied to

each member of the list. All goals resulting from these applications of t2 are gathered

together and returned.

20- e (Cases_on ‘x‘ THEN ARW_TAC [MULT_CLAUSES]);

OK..

Goal proved.

|- m <= m * x \/ (m * x = 0)

> val it =

Initial goal proved.

|- !m n. m divides n ==> m <= n \/ (n = 0)

That was easy! Obviously making a case split on x was the right choice. The process of

finding the proof has now finished, and all that remains is for the proof to be packaged

up into the single tactic we saw above. Rather than use top_thm and the goalstack, we

can bypass it and use the store_thm function. This function takes a string, a term and

a tactic and applies the tactic to the term to get a theorem, and then stores the theorem

in the current theory under the given name.

21- val DIVIDES_LE = store_thm (

"DIVIDES_LE",

‘‘!m n. m divides n ==> m <= n \/ (n = 0)‘‘,

ARW_TAC [divides]

THEN Cases_on ‘x‘

THEN ARW_TAC [MULT_CLAUSES]);

> val DIVIDES_LE = |- !m n. m divides n ==> m <= n \/ (n = 0) : thm

Storing theorems in our script record of the session in this style (rather than with the

goalstack) results in a more concise script, and also makes it easier to turn our script

into a theory file, as we do in section 4.5.

4.1.1 Divisibility and factorial

The next lemma, DIVIDES FACT, says that every number greater than 0 and less-than-or-

equal-to n divides the factorial of n. Factorial is found at arithmeticTheory.FACT and

has been defined by primitive recursion:

(FACT) (FACT 0 = 1) /\

(!n. FACT (SUC n) = SUC n * FACT n)

A polished proof of DIVIDES FACT is the following5:

5This and subsequent proofs use the theorems proved on page 40, which we’ve assumed are now part
of the ML environment.
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(DIVIDES FACT) !m n. 0 < m /\ m <= n ==> m divides (FACT n)

ARW_TAC [LESS_EQ_EXISTS]

THEN Induct_on ‘p‘

THEN ARW_TAC [FACT,ADD_CLAUSES]

THENL [Cases_on ‘m‘, ALL_TAC]

THEN PROVE_TAC [FACT, DECIDE ‘‘!x. ~(x < x)‘‘,

DIVIDES_RMUL, DIVIDES_LMUL, DIVIDES_REFL]

We will examine this proof in detail, so we should first attempt to understand why

the theorem is true. What’s the underlying intuition? Suppose 0 < m ≤ n, and so

FACT n = 1 ∗ · · · ∗m ∗ · · · ∗ n. To show m divides (FACT n) means exhibiting a q such

that q ∗ m = FACT n. Thus q = FACT n ÷ m. If we were to take this approach to

the proof, we would end up having to find and apply lemmas about ÷. This seems to

take us a little out of our way; isn’t there a proof that doesn’t use division? Well yes,

we can prove the theorem by induction on n − m: in the base case, we will have to

prove n divides (FACT n), which ought to be easy; in the inductive case, the inductive

hypothesis seems like it should give us what we need. This strategy for the inductive

case is a bit vague, because we are trying to mentally picture a slightly complicated

formula, but we can rely on the system to accurately calculate the cases of the induction

for us. If the inductive case turns out to be not what we expect, we will have to re-think

our approach.

22- g ‘!m n. 0 < m /\ m <= n ==> m divides (FACT n)‘;

> val it =

Proof manager status: 1 proof.

1. Incomplete:

Initial goal:

!m n. 0 < m /\ m <= n ==> m divides FACT n

Instead of directly inducting on n −m, we will induct on a witness variable, obtained

by use of the theorem LESS_EQ_EXISTS.

23- LESS_EQ_EXISTS;

> val it = |- !m n. m <= n = (?p. n = m + p) : thm

- e (ARW_TAC [LESS_EQ_EXISTS]);

OK..

1 subgoal:

> val it =

m divides FACT (m + p)

------------------------------------

0 < m

Now we induct on p:
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24- e (Induct_on ‘p‘);

OK..

2 subgoals:

> val it =

m divides FACT (m + SUC p)

------------------------------------

0. 0 < m

1. m divides FACT (m + p)

m divides FACT (m + 0)

------------------------------------

0 < m

The first goal can obviously be simplified:

25- e (ARW_TAC []);

OK..

1 subgoal:

> val it =

m divides FACT m

------------------------------------

0 < m

Now we can do a case analysis on m: if it is 0, we have a trivial goal; if it is a suc-

cessor, then we can use the definition of FACT and the theorems DIVIDES_RMUL and

DIVIDES_REFL.

26- e (Cases_on ‘m‘);

OK..

2 subgoals:

> val it =

SUC n divides FACT (SUC n)

------------------------------------

0 < SUC n

0 divides FACT 0

------------------------------------

0 < 0

Here the first sub-goal goal has an assumption that is false. We can demonstrate

this to the system by using the DECIDE function to prove a simple fact about arithmetic

(namely, that no number x is less than itself), and then passing the resulting theorem

to PROVE_TAC, which can combine this with the contradictory assumption.6

6Note how the interactive system prints out the proved theorem with [.] before the turnstile. This
notation indicates that a theorem has an assumption (the false 0 < 0 in this case).
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27- e (PROVE_TAC [DECIDE ‘‘!x. ~(x < x)‘‘]);

OK..

Meson search level: ..

Goal proved.

[.] |- 0 divides FACT 0

Remaining subgoals:

> val it =

SUC n divides FACT (SUC n)

------------------------------------

0 < SUC n

Using the theorems identified above, this, the second sub-goal, can be proved with

ARW_TAC.

28- e (ARW_TAC [FACT, DIVIDES_RMUL, DIVIDES_REFL]);

OK..

Goal proved. ...

Remaining subgoals:

> val it =

m divides FACT (m + SUC p)

------------------------------------

0. 0 < m

1. m divides FACT (m + p)

Note that this last step (the invocation of ARW_TAC) could also have been accomplished

with PROVE_TAC:

29- b();

> ...

- e (PROVE_TAC [FACT, DIVIDES_RMUL, DIVIDES_REFL]);

OK..

Goal proved. ...

Now we have finished the base case of the induction and can move to the step case. An

obvious thing to try is simplification with the definitions of addition and factorial:
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30- e (ARW_TAC [FACT, ADD_CLAUSES]);

OK..

1 subgoal:

> val it =

m divides SUC (m + p) * FACT (m + p)

------------------------------------

0. 0 < m

1. m divides FACT (m + p)

And now, by DIVIDES_LMUL and the inductive hypothesis, we are done:

31- e (PROVE_TAC [DIVIDES_LMUL]);

OK..

Meson search level: ...

Goal proved.

...

> val it =

Initial goal proved.

|- !m n. 0 < m /\ m <= n ==> m divides FACT n

We have finished the search for the proof, and now turn to the task of making a single

tactic out of the sequence of tactic invocations we have just made. We assume that the

sequence of invocations has been kept track of in a file or a text editor buffer. We would

thus have something like the following:

e (ARW_TAC [LESS_EQ_EXISTS]);

e (Induct_on ‘p‘);

(*1*)

e (ARW_TAC []);

e (Cases_on ‘m‘);

(*1.1*)

e (PROVE_TAC [DECIDE ‘‘!x. ~(x < x)‘‘]);

(*1.2*)

e (ARW_TAC [FACT, DIVIDES_RMUL, DIVIDES_REFL]);

(*2*)

e (ARW_TAC [FACT, ADD_CLAUSES]);

e (PROVE_TAC [DIVIDES_LMUL]);

We have added a numbering scheme to keep track of the branches in the proof. We

can stitch the above directly into the following compound tactic:

ARW_TAC [LESS_EQ_EXISTS]

THEN Induct_on ‘p‘

THENL [ARW_TAC [] THEN Cases_on ‘m‘

THENL [PROVE_TAC [DECIDE ‘‘!x. ~(x < x)‘‘],

ARW_TAC [FACT, DIVIDES_RMUL, DIVIDES_REFL]],

ARW_TAC [FACT, ADD_CLAUSES] THEN PROVE_TAC [DIVIDES_LMUL]]
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This can be tested to see that we have made no errors:

32- restart();

> ...

- e (ARW_TAC [LESS_EQ_EXISTS]

THEN Induct_on ‘p‘

THENL [ARW_TAC [] THEN Cases_on ‘m‘

THENL [PROVE_TAC [DECIDE ‘‘!x. ~(x < x)‘‘],

ARW_TAC [FACT, DIVIDES_RMUL, DIVIDES_REFL]],

ARW_TAC [FACT, ADD_CLAUSES] THEN PROVE_TAC [DIVIDES_LMUL]]);

OK..

Meson search level: ...

Meson search level: ..

> val it =

Initial goal proved.

|- !m n. 0 < m /\ m <= n ==> m divides FACT n

For many users, this would be the end of dealing with this proof: the tactic can now

be packaged into an invocation of prove7 or store_thm and that would be the end of it.

However, another class of user would notice that this tactic could be shortened.

To start, both arms of the induction start with an invocation of ARW_TAC, and the

semantics of THEN allow us to merge the occurrences of ARW_TAC above the THENL. The

recast tactic is

ARW_TAC [LESS_EQ_EXISTS]

THEN Induct_on ‘p‘

THEN ARW_TAC [FACT, ADD_CLAUSES]

THENL [Cases_on ‘m‘

THENL [PROVE_TAC [DECIDE ‘‘!x. ~(x < x)‘‘],

ARW_TAC [FACT, DIVIDES_RMUL, DIVIDES_REFL]],

PROVE_TAC [DIVIDES_LMUL]]

(Of course, when a tactic has been revised, it should be tested to see if it still proves the

goal!) Now recall that the use of ARW_TAC in the base case could be replaced by a call

to PROVE_TAC. Thus it seems possible to merge the two sub-cases of the base case into a

single invocation of PROVE_TAC:

ARW_TAC [LESS_EQ_EXISTS]

THEN Induct_on ‘p‘

THEN ARW_TAC [FACT, ADD_CLAUSES]

THENL [Cases_on ‘m‘

THEN PROVE_TAC [DECIDE ‘‘!x. ~(x < x)‘‘,

FACT, DIVIDES_RMUL, DIVIDES_REFL],

PROVE_TAC [DIVIDES_LMUL]]

7The prove function takes a term and a tactic and attempts to prove the term using the supplied tactic.
It returns the proved theorem if the tactic succeeds. It doesn’t save the theorem to the developing theory.
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Finally, pushing this dubious revisionism nearly to its limit, we’d like there to be only

a single invocation of PROVE_TAC to finish the proof off. The semantics of THEN and

ALL_TAC come to our rescue: we will split on the construction of m in the base case, as

in the current incarnation of the tactic, but we will let the inductive case pass unaltered

through the THENL. This is achieved by using ALL_TAC, which is a tactic that acts as an

identity function on the goal.

ARW_TAC [LESS_EQ_EXISTS]

THEN Induct_on ‘p‘

THEN ARW_TAC [FACT, ADD_CLAUSES]

THENL [Cases_on ‘m‘, ALL_TAC]

THEN PROVE_TAC [DECIDE ‘‘!x. ~(x < x)‘‘, FACT,

DIVIDES_RMUL, DIVIDES_REFL, DIVIDES_LMUL]

The result is that there will be three subgoals emerging from the THENL: the two

sub-cases in the base case and the unaltered step case. Each is proved with a call to

PROVE_TAC. We have now finished our exercise in tactic polishing.

4.1.2 Divisibility and factorial (again!)

In the previous proof, we made an initial simplification step in order to expose a variable

upon which to induct. However, the proof is really by induction on n − m. Can we

express this directly? The answer is a qualified yes: the induction can be naturally

stated, but it leads to somewhat less natural goals.

33- restart();

- e (Induct_on ‘n - m‘);

OK..

2 subgoals:

> val it =

!n m. (SUC v = n - m) ==> 0 < m /\ m <= n ==> m divides FACT n

------------------------------------

!n m. (v = n - m) ==> 0 < m /\ m <= n ==> m divides FACT n

!n m. (0 = n - m) ==> 0 < m /\ m <= n ==> m divides FACT n

This is slighly hard to read, so we use STRIP_TAC and REPEAT to move the antecedents

of the goals to the assumptions. Use of THEN ensures that the tactic gets applied in both

branches of the induction.
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34- b();

...

- e (Induct_on ‘n - m‘ THEN REPEAT STRIP_TAC);

OK..

2 subgoals:

> val it =

m divides FACT n

------------------------------------

0. !n m. (v = n - m) ==> 0 < m /\ m <= n ==> m divides FACT n

1. SUC v = n - m

2. 0 < m

3. m <= n

m divides FACT n

------------------------------------

0. 0 = n - m

1. 0 < m

2. m <= n

Looking at the first goal, we reason that if 0 = n −m and m ≤ n, then m = n. We can

prove this fact, and add it to the hypotheses by use of the infix operator “by”:

35- e (‘m = n‘ by DECIDE_TAC);

OK..

1 subgoal:

> val it =

m divides FACT n

------------------------------------

0. 0 = n - m

1. 0 < m

2. m <= n

3. m = n

We can now use ARW_TAC to propagate the newly derived equality throughout the

goal.

36- e (ARW_TAC []);

OK..

1 subgoal:

> val it =

m divides FACT m

------------------------------------

0. 0 = m - m

1. 0 < m

2. m <= m
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At this point in the previous proof we did a case analysis on m. However, we already

have the hypothesis that m is positive. Thus we know that m is the successor of some

number k. We might wish to assert this fact with an invocation of “by” as follows:

‘?k. m = SUC k‘ by <tactic>

But what is the tactic? If we try DECIDE_TAC, it will fail since it doesn’t handle existential

statements. An application of ARW_TAC will also prove to be unsatisfactory. What to do?

When such situations occur, it is often best to start a new proof for the required

lemma. This can be done simply by invoking “g” again. A new goalstack will be created

and stacked upon the current one8 and an overview of the extant proof attempts will be

printed:

37- g ‘!m. 0 < m ==> ?k. m = SUC k‘;

> val it =

Proof manager status: 2 proofs.

2. Incomplete:

Initial goal:

!m n. 0 < m /\ m <= n ==> m divides FACT n

Current goal:

m divides FACT m

------------------------------------

0. 0 = m - m

1. 0 < m

2. m <= m

1. Incomplete:

Initial goal:

!m. 0 < m ==> ?k. m = SUC k

Our new goal can be proved quite quickly. Once we have proved it, we can bind it to an

ML name and use it in the previous proof, by some sleight of hand with the “before”9

function.

8This stacking of proof attempts (goalstacks) is different than the stacking of goals and justifications
inside a particular goalstack.

9An infix version of the K combinator, defined by fun (x before y) = x.
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38- e (Cases THEN ARW_TAC []);

OK..

> val it =

Initial goal proved.

|- !m. 0 < m ==> ?k. m = SUC k

- val lem = top_thm() before drop();

OK..

> val lem = |- !m. 0 < m ==> ?k. m = SUC k : thm

Now we can return to the main thread of the proof. The state of the current sub-goal

of the proof can be displayed using the function “p”.

39- p ();

> val it =

m divides FACT m

------------------------------------

0. 0 = m - m

1. 0 < m

2. m <= m

Now we can use lem in the proof. Somewhat opportunistically, we will tack on the

invocation used in the earlier proof at (roughly) the same point, hoping that it will

solve the goal:

40- e (‘?k. m = SUC k‘ by

PROVE_TAC [lem] THEN ARW_TAC [FACT, DIVIDES_RMUL, DIVIDES_REFL]);

OK..

Meson search level: ...

Goal proved. ...

Remaining subgoals:

> val it =

m divides FACT n

------------------------------------

0. !n m. (v = n - m) ==> 0 < m /\ m <= n ==> m divides FACT n

1. SUC v = n - m

2. 0 < m

3. m <= n

It does! That takes care of the base case. For the induction step, things look a bit more

difficult than in the earlier proof. However, we can make progress by realizing that the

hypotheses imply that 0 < n and so, again by lem, we can transform n into a successor,

thus enabling the unfolding of FACT, as in the previous proof:
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41- e (‘0 < n‘ by DECIDE_TAC THEN ‘?k. n = SUC k‘ by PROVE_TAC [lem]);

OK..

Meson search level: ...

1 subgoal:

> val it =

m divides FACT n

------------------------------------

0. !n m. (v = n - m) ==> 0 < m /\ m <= n ==> m divides FACT n

1. SUC v = n - m

2. 0 < m

3. m <= n

4. 0 < n

5. n = SUC k

The proof now finishes in much the same manner as the previous one:

42- e (ARW_TAC [FACT, DIVIDES_LMUL]);

OK..

Goal proved. ...

> val it =

Initial goal proved.

|- !m n. 0 < m /\ m <= n ==> m divides FACT n

We leave the details of stitching the proof together to the interested reader.

4.2 Primality

Now we move on to establish some facts about the primality of the first few numbers: 0

and 1 are not prime, but 2 is. Also, all primes are positive. These are all quite simple to

prove.

(NOT PRIME 0) ~prime 0

ARW_TAC [prime,DIVIDES_0]

(NOT PRIME 1) ~prime 1

ARW_TAC [prime]

(PRIME 2) prime 2

ARW_TAC [prime]

THEN PROVE_TAC [DIVIDES_LE, DIVIDES_ZERO,

DECIDE ‘‘~(2=1)‘‘, DECIDE ‘‘~(2=0)‘‘,

DECIDE ‘‘x <= 2 = (x=0) \/ (x=1) \/ (x=2)‘‘]

(PRIME POS) !p. prime p ==> 0<p

Cases THEN ARW_TAC[NOT_PRIME_0]
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4.3 Existence of prime factors

Now we are in position to prove a more substantial lemma: every number other than 1

has a prime factor. The proof proceeds by a complete induction on n. Complete induction

is necessary since a prime factor won’t be the predecessor. After induction, the proof

splits into cases on whether n is prime or not. The first case (n is prime) is trivial. In the

second case, there must be an x that divides n, and x is not 1 or n. By DIVIDES LE, n = 0

or x ≤ n. If n = 0, then 2 is a prime that divides 0. On the other hand, if x ≤ n, there

are two cases: if x < n then we can use the inductive hypothesis and by transitivity of

divides we are done; otherwise, x = n and then we have a contradiction with the fact

that x is not 1 or n. The polished tactic is the following:

(PRIME FACTOR) !n. ~(n = 1) ==> ?p. prime p /\ p divides n

completeInduct_on ‘n‘

THEN ARW_TAC []

THEN Cases ‘prime n‘ THENL

[PROVE_TAC [DIVIDES_REFL],

‘?x. x divides n /\ ~(x=1) /\ ~(x=n)‘

by PROVE_TAC[prime]

THEN PROVE_TAC [LESS_OR_EQ, PRIME_2,

DIVIDES_LE,DIVIDES_TRANS,DIVIDES_0]]

We start by invoking complete induction. This gives us an inductive hypothesis that

holds at every number m strictly smaller than n:

43- g ‘!n. ~(n = 1) ==> ?p. prime p /\ p divides n‘;

- e (completeInduct_on ‘n‘);

OK..

1 subgoal:

> val it =

~(n = 1) ==> ?p. prime p /\ p divides n

------------------------------------

!m. m < n ==> ~(m = 1) ==> ?p. prime p /\ p divides m

We can move the antecedent to the hypotheses and make our case split. Notice that the

term given to Cases_on need not occur in the goal:
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44- e (ARW_TAC [] THEN Cases_on ‘prime n‘);

OK..

2 subgoals:

> val it =

?p. prime p /\ p divides n

------------------------------------

0. !m. m < n ==> ~(m = 1) ==> ?p. prime p /\ p divides m

1. ~(n = 1)

2. ~prime n

?p. prime p /\ p divides n

------------------------------------

0. !m. m < n ==> ~(m = 1) ==> ?p. prime p /\ p divides m

1. ~(n = 1)

2. prime n

As mentioned, the first case is proved with the reflexivity of divisibility:

45- e (PROVE_TAC [DIVIDES_REFL]);

OK..

Meson search level: ...

Goal proved. ...

In the second case, we can get a divisor of n that isn’t 1 or n (since n is not prime):

46- e (‘?x. x divides n /\ ~(x=1) /\ ~(x=n)‘ by PROVE_TAC [prime]);

OK..

Meson search level: ............

1 subgoal:

> val it =

?p. prime p /\ p divides n

------------------------------------

0. !m. m < n ==> ~(m = 1) ==> ?p. prime p /\ p divides m

1. ~(n = 1)

2. ~prime n

3. x divides n

4. ~(x = 1)

5. ~(x = n)

At this point, the polished tactic simply invokes PROVE_TAC with a collection of theorems.

We will attempt a more detailed exposition. Given the hypotheses, and by DIVIDES LE,

we can assert x < n ∨ n = 0 and thus split the proof into two cases:
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47- e (‘x < n \/ (n=0)‘ by PROVE_TAC [DIVIDES_LE,LESS_OR_EQ]);

OK..

Meson search level: ......

2 subgoals:

> val it =

?p. prime p /\ p divides n

------------------------------------

0. !m. m < n ==> ~(m = 1) ==> ?p. prime p /\ p divides m

1. ~(n = 1)

2. ~prime n

3. x divides n

4. ~(x = 1)

5. ~(x = n)

6. n = 0

?p. prime p /\ p divides n

------------------------------------

0. !m. m < n ==> ~(m = 1) ==> ?p. prime p /\ p divides m

1. ~(n = 1)

2. ~prime n

3. x divides n

4. ~(x = 1)

5. ~(x = n)

6. x < n

In the first subgoal, we can see that the antecedents of the inductive hypothesis are met

and so x has a prime divisor. We can then use the transitivity of divisibility to get the

fact that this divisor of x is also a divisor of n, thus finishing this branch of the proof:

48- e (PROVE_TAC [DIVIDES_TRANS]);

OK..

Meson search level: .........

Goal proved.

The remaining goal can be clarified by simplification:
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49- e (ARW_TAC []);

OK..

1 subgoal:

> val it =

?p. prime p /\ p divides 0

------------------------------------

0. !m. m < 0 ==> ~(m = 1) ==> ?p. prime p /\ p divides m

1. ~(0 = 1)

2. ~prime 0

3. x divides 0

4. ~(x = 1)

5. ~(x = 0)

- DIVIDES_0;

> val it = |- !x. x divides 0 : thm

- e (ARW_TAC [it]);

OK..

1 subgoal:

> val it =

?p. prime p

------------------------------------

0. !m. m < 0 ==> ~(m = 1) ==> ?p. prime p /\ p divides m

1. ~(0 = 1)

2. ~prime 0

3. x divides 0

4. ~(x = 1)

5. ~(x = 0)

The two steps of exploratory simplification have led us to a state where all we have to

do is exhibit a prime. And we already have one to hand:

50- e (PROVE_TAC [PRIME_2]);

OK..

Meson search level: ..

Goal proved. ...

> val it =

Initial goal proved.

|- !n. ~(n = 1) ==> ?p. prime p /\ p divides n

Again, work now needs to be done to compose and perhaps polish a single tactic from

the individual proof steps, but we will not describe it. Instead we move forward, because

our ultimate goal is in reach.
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4.4 Euclid’s theorem

Theorem. Every number has a prime greater than it.

Informal proof.

Suppose the opposite; then there’s an n such that all p greater than n are not prime.

Consider FACT(n) + 1: it’s not equal to 1 so, by PRIME FACTOR, there’s a prime p that

divides it. Note that p also divides FACT(n) because p ≤ n. By DIVIDES ADDL, we have

p = 1. But then p is not prime, which is a contradiction.

End of proof.

A HOL rendition of the proof may be given as follows:

(EUCLID) !n. ?p. n < p /\ prime p

SPOSE_NOT_THEN STRIP_ASSUME_TAC

THEN MP_TAC (SPEC ‘‘FACT n + 1‘‘ PRIME_FACTOR)

THEN ARW_TAC [FACT_LESS, DECIDE ‘‘~(x=0) = 0<x‘‘]

THEN PROVE_TAC [NOT_PRIME_1, NOT_LESS, PRIME_POS,

DIVIDES_FACT, DIVIDES_ADDL, DIVIDES_ONE]

Let’s prise this apart and look at it in some detail. A proof by contradiction can be started

by using the bossLib function SPOSE_NOT_THEN. With it, one assumes the negation of

the current goal and then uses that in an attempt to prove falsity (F). The assumed

negation ¬(∀n. ∃p. n < p ∧ prime p) is simplified a bit into ∃n. ∀p. n < p ⊃ ¬ prime p

and then is passed to the tactic STRIP_ASSUME_TAC. This moves its argument to the

assumption list of the goal after eliminating the existential quantification on n.

51- g ‘!n. ?p. n < p /\ prime p‘;

- e (SPOSE_NOT_THEN STRIP_ASSUME_TAC);

OK..

1 subgoal:

> val it =

F

------------------------------------

!p. n < p ==> ~prime p

Thus we have the hypothesis that all p beyond a certain unspecified n are not prime,

and our task is to show that this cannot be. At this point we take advantage of Euclid’s

great inspiration and we build an explicit term from n. In the informal proof we are

asked to ‘consider’ the term FACT n+ 1.10 This term will have certain properties (i.e., it

has a prime factor) that lead to contradiction. Question: how do we ‘consider’ this term

in the formal HOL proof? Answer: by instantiating a lemma with it and bringing the

lemma into the proof. The lemma and its instantiation are:11

10The HOL parser thinks FACT n + 1 is equivalent to (FACT n) + 1.
11The function SPEC implements the rule of universal specialization.
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52- PRIME_FACTOR;

> val it = |- !n. ~(n = 1) ==> (?p. prime p /\ p divides n) : thm

- val th = SPEC ‘‘FACT n + 1‘‘ PRIME_FACTOR;

> val th =

|- ~(FACT n + 1 = 1) ==> (?p. prime p /\ p divides FACT n + 1)

It is evident that the antecedent of th can be eliminated. In HOL, one could do this in a

so-called forward proof style (by proving ` ¬(FACT n+ 1 = 1) and then applying modus

ponens, the result of which can then be used in the proof), or one could bring th into

the proof and simplify it in situ. We choose the latter approach.

53- e (MP_TAC (SPEC ‘‘FACT n + 1‘‘ PRIME_FACTOR));

OK..

1 subgoal:

> val it =

(~(FACT n + 1 = 1) ==> ?p. prime p /\ p divides FACT n + 1) ==> F

------------------------------------

!p. n < p ==> ~prime p

The invocation MP_TAC (`M) applied to a goal (∆, g) returns the goal (∆,M ⊃ g). Now

we simplify:

54- e (ARW_TAC []);

OK..

2 subgoals:

> val it =

~(p divides FACT n + 1)

------------------------------------

0. !p. n < p ==> ~prime p

1. prime p

~(FACT n = 0)

------------------------------------

!p. n < p ==> ~prime p

We recall that zero is less than every factorial, a fact found in arithmeticTheory under

the name FACT_LESS. Thus we can solve the top goal by simplification:

55- e (ARW_TAC [FACT_LESS, DECIDE ‘‘!x. ~(x=0) = 0 < x‘‘]);

OK..

Goal proved. ...

Notice the ‘on-the-fly’ use of DECIDE to provide an ad hoc rewrite. Looking at the re-

maining goal, one might think that our aim, to prove falsity, has been lost. But this
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is not so: a goal ¬M is equivalent to M ⊃ F. We can quickly proceed to show that

p divides (FACT n), and thus that p = 1, hence that p is not prime, at which point we

are done. This can all be packaged into a single invocation of PROVE_TAC:

56- e (PROVE_TAC [PRIME_POS, NOT_LESS, DIVIDES_FACT,

DIVIDES_ADDL, DIVIDES_ONE, NOT_PRIME_1]);

OK..

Meson search level: ............

Goal proved.

[..] |- ~(p divides FACT n + 1)

Goal proved.

[.]

|- (~(FACT n + 1 = 1) ==> ?p. prime p /\ p divides FACT n + 1) ==> F

Goal proved.

[.] |- F

> val it =

Initial goal proved.

|- !n. ?p. n < p /\ prime p

Euclid’s theorem is now proved, and we can rest. However, this presentation of the final

proof will be unsatisfactory to some, because the proof is completely hidden in the invo-

cation of the automated reasoner. Well then, let’s try another proof, this time employing

the so-called ‘assertional’ style. When used uniformly, this can allow a readable linear

presentation that mirrors the informal proof. The following proves Euclid’s theorem in

the assertional style. We think it is fairly readable, certainly much more so than the

standard tactic proof just given.12

(AGAIN) !n. ?p. n < p /\ prime p

CCONTR_TAC THEN

‘?n. !p. n < p ==> ~prime p‘ by PROVE_TAC [] THEN

‘~(FACT n + 1 = 1)‘ by ARW_TAC [FACT_LESS,

DECIDE‘‘~(x=0)=0<x‘‘] THEN

‘?p. prime p /\

p divides (FACT n + 1)‘ by PROVE_TAC [PRIME_FACTOR] THEN

‘0 < p‘ by PROVE_TAC [PRIME_POS] THEN

‘p <= n‘ by PROVE_TAC [NOT_LESS] THEN

‘p divides FACT n‘ by PROVE_TAC [DIVIDES_FACT] THEN

‘p divides 1‘ by PROVE_TAC [DIVIDES_ADDL] THEN

‘p = 1‘ by PROVE_TAC [DIVIDES_ONE] THEN

‘~prime p‘ by PROVE_TAC [NOT_PRIME_1] THEN

PROVE_TAC []

12Note that CCONTR TAC, which is used to start the proof, initiates a proof by contradiction by negating
the goal and placing it on the hypotheses, leaving F as the new goal.
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4.5 Turning the script into a theory

Having proved our result, we probably want to package it up in a way that makes it

available to future sessions, but which doesn’t require us to go all through the theorem-

proving effort again. Even having a complete script from which it would be possible to

cut-and-paste is an error-prone solution.

In order to do this we need to create a file with the name xScript.sml, where x is

the name of the theory we wish to export. This file then needs to be compiled. In fact,

we really do use the Moscow ML compiler, carefully augmented with the appropriate

logical context. However, the language accepted by the compiler is not quite the same

as that accepted by the interactive system, so we will need to do a little work to massage

the original script into the correct form.

We’ll give an illustration of converting to a form that can be compiled using the script

<holdir>/examples/euclid.sml

as our base-line. This file is already close to being in the right form. It has all of the

proofs of the theorems in “sewn-up” form so that when run, it does not involve the

goal-stack at all. In its given form, it can be run as input to hol thus:

1$ cd examples/

$ ../bin/hol < euclid.sml

...

> val EUCLID = |- !n. ?p. n < p /\ prime p : thm

...

> val EUCLID_AGAIN = |- !n. ?p. n < p /\ prime p : thm

-

However, we now want to create a euclidTheory that we can load in other interactive

sessions. So, our first step is to create a file euclidScript.sml, and to copy the body of

euclid.sml into it.

The first non-comment line opens arithmeticTheory. However, when writing for the

compiler, we need to explicitly mention the other HOL modules that we depend on. We

must add

open HolKernel boolLib Parse bossLib

The next line that poses a difficulty is

set_fixity "divides" (Infixr 450);

While it is legitimate to type expressions directly into the interactive system, the com-

piler requires that every top-level phrase be a declaration. We satisfy this requirement
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by altering this line into a “do nothing” declaration that does not record the result of

the expression:

val _ = set_fixity "divides" (Infixr 450)

The only extra changes are to bracket the rest of the script file text with calls to new_theory

and export_theory. So, before the definition of divides, we add:

val _ = new_theory "euclid";

and at the end of the file:

val _ = export_theory();

Now, we can compile the script we have created using the Holmake tool. To keep

things a little tidier, we first move our script into a new directory.

2$ mkdir euclid

$ mv euclidScript.sml euclid

$ cd euclid

$ ../../bin/Holmake

Analysing euclidScript.sml

Trying to create directory .HOLMK for dependency files

Compiling euclidScript.sml

Linking euclidScript.uo to produce theory-builder executable

<<HOL message: Created theory "euclid".>>

Definition has been stored under "divides_def".

Definition has been stored under "prime_def".

Meson search level: .....

Meson search level: .................

...

Exporting theory "euclid" ... done.

Analysing euclidTheory.sml

Analysing euclidTheory.sig

Compiling euclidTheory.sig

Compiling euclidTheory.sml

Now we have created four new files, various forms of euclidTheory with four differ-

ent suffixes. Only euclidTheory.sig is really suitable for human consumption. While

still in the euclid directory that we created, we can demonstrate:
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3$ ../../bin/hol

[...]

[closing file "/local/scratch/mn200/Work/hol98/tools/end-init-boss.sml"]

- load "euclidTheory";

> val it = () : unit

- open euclidTheory;

> type thm = thm

val DIVIDES_TRANS =

|- !a b c. a divides b / b divides c ==> a divides c

: thm

...

val DIVIDES_REFL = |- !x. x divides x : thm

val DIVIDES_0 = |- !x. x divides 0 : thm

4.6 Summary

The reader has now seen an interesting theorem proved, in great detail, in HOL. The

discussion illustrated the high-level tools provided in bossLib and touched on issues

including tool selection, undo, ‘tactic polishing’, exploratory simplification, and the

‘forking-off’ of new proof attempts. We also attempted to give a flavour of the thought

processes a user would employ. Following is a more-or-less random collection of other

observations.

• Even though the proof of Euclid’s theorem is short and easy to understand when

presented informally, a perhaps surprising amount of support development was

required to set the stage for Euclid’s classic argument.

• The proof support offered by bossLib (RW_TAC, PROVE_TAC, DECIDE_TAC, DECIDE,

Cases_on, Induct_on, and the “by” construct) was nearly complete for this exam-

ple: it was rarely necessary to resort to lower-level tactics.

• Simplification is a workhorse tactic; even when an automated reasoner like PROVE_TAC

is used, its application has often been set up by some exploratory simplifications.

It therefore pays to become familiar with the strengths and weaknesses of the

simplifier.

• A common problem with interactive proof systems is dealing with hypotheses. Of-

ten PROVE_TAC and the “by” construct allow the use of hypotheses without directly

resorting to indexing into them (or naming them, which amounts to the same

thing). This is desirable, since the hypotheses are notionally a set, and moreover,

experience has shown that profligate indexing into hypotheses results in hard-to-

maintain proof scripts. However, it can be clumsy to work with a large set of

hypotheses, in which case the following approaches may be useful.
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One can directly refer to hypotheses by using UNDISCH_TAC (makes the designated

hypothesis the antecedent to the goal), ASSUM_LIST (gives the entire hypothesis

list to a tactic), POP_ASSUM (gives the top hypothesis to a tactic), and PAT_ASSUM

(gives the first matching hypothesis to a tactic). (See the REFERENCE for further

details on all of these.) The numbers attached to hypotheses by the proof manager

could likely be used to access hypotheses (it would be quite simple to write such

a tactic). However, starting a new proof is sometimes the most clarifying thing to

do.

In some cases, it is useful to be able to delete a hypothesis. This can be accom-

plished by passing the hypothesis to a tactic that ignores it. For example, to discard

the top hypothesis, one could invoke POP_ASSUM (K ALL_TAC).

• In the example, we didn’t use the more advanced features of bossLib, largely

because they do not, as yet, provide much more functionality than the simple

sequencing of simplification, decision procedures, and automated first order rea-

soning. The THEN tactical has thus served as an adequate replacement. In the

future, these entrypoints should become more powerful.

• It is almost always necessary to have an idea of the informal proof in order to

be successful when doing a formal proof. However, all too often the following

strategy is adopted by novices: (1) rewrite the goal with a few relevant definitions,

and then (2) rely on the syntax of the resulting goal to guide subsequent tactic

selection. Such an approach constitutes a clear case of the tail wagging the dog,

and is a poor strategy to adopt. Insight into the high-level structure of the proof is

one of the most important factors in successful verification exercises.

The author has noticed that many of the most successful verification experts work

using a sheet of paper to keep track of the main steps that need to be made.

Perhaps looking away to the paper helps break the mesmerizing effect of the com-

puter screen.

On the other hand, one of the advantages of having a mechanized logic is that the

machine can be used as a formal expression calculator, and thus the user can use

it to quickly and accurately explore various proof possibilities.

• High powered tools like PROVE_TAC, DECIDE_TAC, and RW_TAC are the principal way

of advancing a proof in bossLib. In many cases, they do exactly what is desired,

or even manage to surprise the user with their power. In the formalization of

Euclid’s theorem, the tools performed fairly well. However, sometimes they are

overly aggressive, or they simply flounder. In such cases, more specialized proof

tools need to be used, or even written, and hence the support underlying bossLib

must eventually be learned.
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• Having a good knowledge of the available lemmas, and where they are located, is

an essential part of being successful. Often powerful tools can replace lemmas in a

restricted domain, but in general, one has to know what has already been proved.

We have found that the entrypoints in DB help in quickly finding lemmas.
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Example: a Simple Parity Checker

This chapter consists of a worked example: the specification and verification of a simple

sequential parity checker. The intention is to accomplish two things:

(i) To present a complete piece of work with HOL.

(ii) To give a flavour of what it is like to use the HOL system for a tricky proof.

Concerning (ii), note that although the theorems proved are, in fact, rather simple,

the way they are proved illustrates the kind of intricate ‘proof engineering’ that is typ-

ical. The proofs could be done more elegantly, but presenting them that way would

defeat the purpose of illustrating various features of HOL. It is hoped that the small

example here will give the reader a feel for what it is like to do a big one.

Readers who are not interested in hardware verification should be able to learn some-

thing about the HOL system even if they do not wish to penetrate the details of the

parity-checking example used here. The specification and verification of a slightly more

complex parity checker is set as an exercise (a solution is provided).

5.1 Introduction

This case study is supported by three files in the HOL distribution directory. These files

are:

examples/parity/PARITY.sml

examples/parity/RESET_REG.sml

examples/parity/RESET_PARITY.sml

The file PARITY.sml contains the HOL sessions in this chapter; the files RESET_REG.sml

and RESET_PARITY.sml contain the solutions to the exercises described in Section 5.5.

The goal of the case study is to illustrate detailed ‘proof hacking’ on a small and fairly

simple example.

The sessions of this example comprise the specification and verification of a device

that computes the parity of a sequence of bits. More specifically, a detailed verification

is given of a device with an input in, an output out and the specification that the nth

67
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output on out is T if and only if there have been an even number of T’s input on in. A the-

ory named PARITY is constructed; this contains the specification and verification of the

device. All the ML input in the boxes below can be found in the file parity/PARITY.sml.

It is suggested that the reader interactively input this to get a ‘hands on’ feel for the

example.

5.2 Specification

The first step is to start up the HOL system. We again use <holdir>/bin/hol. The ML

prompt is -, so lines beginning with - are typed by the user and other lines are the

system’s response.

To specify the device, a primitive recursive function PARITY is defined so that for n > 0,

PARITY nf is true if the number of T’s in the sequence f(1), . . . , f(n) is even.

1- val PARITY_def = Define‘

(PARITY 0 f = T) /\

(PARITY(SUC n) f = if f(SUC n) then ~(PARITY n f) else PARITY n f)‘;

Definition has been stored under "PARITY_def".

> val PARITY_def =

|- (!f. PARITY 0 f = T) /\

!n f. PARITY (SUC n) f =

(if f (SUC n) then ~PARITY n f else PARITY n f)

: thm

The effect of our call to Define is to store the definition of PARITY on the current the-

ory with name PARITY_def and to bind the defining theorem to the ML variable with

the same name. Notice that there are two name spaces being written into: the names

of constants in theories and the names of variables in ML. The user is generally free to

manage these names however he or she wishes (subject to the various lexical require-

ments), but a common convention is (as here) to give the definition of a constant CON

the name CON_def in the theory and also in ML. Another commonly-used convention is

to use just CON for the theory and ML name of the definition of a constant CON. Unfortu-

nately, the HOL system does not use a uniform convention, but users are recommended

to adopt one. In this case Define has made one of the choices for us, but there are other

scenarios where we have to choose the name used in the theory file.

The specification of the parity checking device can now be given as:

!t. out t = PARITY t inp

It is intuitively clear that this specification will be satisfied if the signal1 functions inp

and out satisfy2:

1Signals are modelled as functions from numbers, representing times, to booleans.
2We’d like to use in as one of our variable names, but this is a reserved word for let-expressions.
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out(0) = T

and

!t. out(t+1) = (if inp(t+1) then ~(out t) else out t)

This can be verified formally in HOL by proving the following lemma:

!inp out.

(out 0 = T) /\ (!t. out(SUC t) = (if inp(SUC t) then ~(out t) else out t))

==>

(!t. out t = PARITY t inp)

The proof of this is done by Mathematical Induction and, although trivial, is a good

illustration of how such proofs are done. The lemma is proved interactively using HOL’s

subgoal package. The proof is started by putting the goal to be proved on a goal stack

using the function g which takes a goal as argument.

2- g ‘!inp out.

(out 0 = T) /\

(!t. out(SUC t) = (if inp(SUC t) then ~(out t) else out t)) ==>

(!t. out t = PARITY t inp)‘;

> val it =

Proof manager status: 1 proof.

1. Incomplete:

Initial goal:

!inp out.

(out 0 = T) /\

(!t. out (SUC t) = (if inp (SUC t) then ~out t else out t)) ==>

!t. out t = PARITY t inp

The subgoal package prints out the goal on the top of the goal stack. The top goal is

expanded by stripping off the universal quantifier (with GEN_TAC) and then making the

two conjuncts of the antecedent of the implication into assumptions of the goal (with

STRIP_TAC). The ML function expand takes a tactic and applies it to the top goal; the

resulting subgoals are pushed on to the goal stack. The message ‘OK..’ is printed out

just before the tactic is applied. The resulting subgoal is then printed.

3- expand(REPEAT GEN_TAC THEN STRIP_TAC);

OK..

1 subgoal:

> val it =

!t. out t = PARITY t inp

------------------------------------

0. out 0 = T

1. !t. out (SUC t) = (if inp (SUC t) then ~out t else out t)
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Next induction on t is done using Induct, which does induction on the outermost uni-

versally quantified variable.

4- expand Induct;

OK..

2 subgoals:

> val it =

out (SUC t) = PARITY (SUC t) inp

------------------------------------

0. out 0 = T

1. !t. out (SUC t) = (if inp (SUC t) then ~out t else out t)

2. out t = PARITY t inp

out 0 = PARITY 0 inp

------------------------------------

0. out 0 = T

1. !t. out (SUC t) = (if inp (SUC t) then ~out t else out t)

The assumptions of the two subgoals are shown numbered underneath the horizontal

lines of hyphens. The last goal printed is the one on the top of the stack, which is the

basis case. This is solved by rewriting with its assumptions and the definition of PARITY.

5- expand(ASM_REWRITE_TAC[PARITY_def]);

OK..

Goal proved.

[.] |- out 0 = PARITY 0 inp

Remaining subgoals:

> val it =

out (SUC t) = PARITY (SUC t) inp

------------------------------------

0. out 0 = T

1. !t. out (SUC t) = (if inp (SUC t) then ~out t else out t)

2. out t = PARITY t inp

The top goal is proved, so the system pops it from the goal stack (and puts the proved

theorem on a stack of theorems). The new top goal is the step case of the induction.

This goal is also solved by rewriting.
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6- expand(ASM_REWRITE_TAC[PARITY_def]);

OK..

Goal proved.

[..] |- out (SUC t) = PARITY (SUC t) inp

Goal proved.

[..] |- !t. out t = PARITY t inp

> val it =

Initial goal proved.

|- !inp out.

(out 0 = T) /\

(!t. out (SUC t) = (if inp (SUC t) then ~out t else out t)) ==>

!t. out t = PARITY t inp

The goal is proved, i.e. the empty list of subgoals is produced. The system now applies

the justification functions produced by the tactics to the lists of theorems achieving the

subgoals (starting with the empty list). These theorems are printed out in the order in

which they are generated (note that assumptions of theorems are printed as dots).

The ML function

top_thm : unit -> thm

returns the theorem just proved (i.e. on the top of the theorem stack) in the current

theory, and we bind this to the ML name UNIQUENESS_LEMMA.

7- val UNIQUENESS_LEMMA = top_thm();

> val UNIQUENESS_LEMMA =

|- !inp out.

(out 0 = T) /\

(!t. out (SUC t) = (if inp (SUC t) then ~out t else out t)) ==>

!t. out t = PARITY t inp

: thm

5.3 Implementation

The lemma just proved suggests that the parity checker can be implemented by hold-

ing the parity value in a register and then complementing the contents of the register

whenever T is input. To make the implementation more interesting, it will be assumed

that registers ‘power up’ storing F. Thus the output at time 0 cannot be taken directly

from a register, because the output of the parity checker at time 0 is specified to be T.

Another tricky thing to notice is that if t>0, then the output of the parity checker at time

t is a function of the input at time t. Thus there must be a combinational path from the

input to the output.
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The schematic diagram below shows the design of a device that is intended to imple-

ment this specification. (The leftmost input to MUX is the selector.) This works by storing

the parity of the sequence input so far in the lower of the two registers. Each time T is

input at in, this stored value is complemented. Registers are assumed to ‘power up’ in a

state in which they are storing F. The second register (connected to ONE) initially outputs

F and then outputs T forever. Its role is just to ensure that the device works during the

first cycle by connecting the output out to the device ONE via the lower multiplexer. For

all subsequent cycles out is connected to l3 and so either carries the stored parity value

(if the current input is F) or the complement of this value (if the current input is T).

NOT

MUXONE

REG

MUX

REG

in

out

l1 l2

l3 l4

l5

•

•

•

The devices making up this schematic will be modelled with predicates [5]. For ex-

ample, the predicate ONE is true of a signal out if for all times t the value of out is

T.
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8- val ONE_def = Define ‘ONE(out:num->bool) = !t. out t = T‘;

Definition stored under "ONE_def".

> val ONE_def = |- !out. ONE out = !t. out t = T : thm

Note that, as discussed above, ‘ONE_def’ is used both as an ML variable and as the name

of the definition in the theory. Note also how ‘:num->bool’ has been added to resolve

type ambiguities; without this (or some other type information) the typechecker would

not be able to infer that t is to have type num.

The binary predicate NOT is true of a pair of signals (inp,out) if the value of out is

always the negation of the value of inp. Inverters are thus modelled as having no delay.

This is appropriate for a register-transfer level model, but not at a lower level.

9- val NOT_def = Define‘NOT(inp, out:num->bool) = !t. out t = ~(inp t)‘;

Definition stored under "NOT_def".

> val NOT_def = |- !inp out. NOT (inp,out) = !t. out t = ~inp t : Thm.thm

The final combinational device needed is a multiplexer. This is a ‘hardware conditional’;

the input sw selects which of the other two inputs are to be connected to the output out.

10- val MUX_def = Define‘

MUX(sw,in1,in2,out:num->bool) =

!t. out t = if sw t then in1 t else in2 t‘;

Definition stored under "MUX_def".

> val MUX_def =

|- !sw in1 in2 out.

MUX (sw,in1,in2,out) = !t. out t = (if sw t then in1 t else in2 t)

: thm

The remaining devices in the schematic are registers. These are unit-delay elements;

the values output at time t+1 are the values input at the preceding time t, except at

time 0 when the register outputs F.3

11- val REG_def =

Define ‘REG(inp,out:num->bool) =

!t. out t = if (t=0) then F else inp(t-1)‘;

Definition stored under "REG_def".

> val REG_def =

|- !inp out. REG (inp,out) = !t. out t =

(if t = 0 then F else inp (t - 1))

: thm

The schematic diagram above can be represented as a predicate by conjoining the

relations holding between the various signals and then existentially quantifying the

internal lines. This technique is explained elsewhere (e.g. see [3, 5]).

3Time 0 represents when the device is switched on.
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12- val PARITY_IMP_def = Define

‘PARITY_IMP(inp,out) =

?l1 l2 l3 l4 l5.

NOT(l2,l1) /\ MUX(inp,l1,l2,l3) /\ REG(out,l2) /\

ONE l4 /\ REG(l4,l5) /\ MUX(l5,l3,l4,out)‘;

Definition stored under "PARITY_IMP_def".

> val PARITY_IMP_def =

|- !inp out.

PARITY_IMP (inp,out) =

?l1 l2 l3 l4 l5.

NOT (l2,l1) /\ MUX (inp,l1,l2,l3) /\ REG (out,l2) /\ ONE l4 /\

REG (l4,l5) /\ MUX (l5,l3,l4,out)

: thm

5.4 Verification

The following theorem will eventually be proved:

|- !inp out. PARITY_IMP(inp,out) ==> (!t. out t = PARITY t inp)

This states that if inp and out are related as in the schematic diagram (i.e. as in the

definition of PARITY_IMP), then the pair of signals (inp,out) satisfies the specification.

First, the following lemma is proved; the correctness of the parity checker follows

from this and UNIQUENESS_LEMMA by the transitivity of ==>.

13- g ‘!inp out.

PARITY_IMP(inp,out) ==>

(out 0 = T) /\

!t. out(SUC t) = if inp(SUC t) then ~(out t) else out t‘;

> val it =

Proof manager status: 2 proofs.

2. Completed: ...

1. Incomplete:

Initial goal:

!inp out.

PARITY_IMP (inp,out) ==>

(out 0 = T) /\

!t. out (SUC t) = (if inp (SUC t) then ~out t else out t)

The first step in proving this goal is to rewrite with definitions followed by a decom-

position of the resulting goal using STRIP_TAC. The rewriting tactic PURE_REWRITE_TAC is

used; this does no built-in simplifications, only the ones explicitly given in the list of the-

orems supplied as an argument. One of the built-in simplifications used by REWRITE_TAC

is |- (x = T) = x. PURE_REWRITE_TAC is used to prevent rewriting with this being done.



5.4. Verification 75

14- expand(PURE_REWRITE_TAC

[PARITY_IMP_def, ONE_def, NOT_def, MUX_def, REG_def] THEN

REPEAT STRIP_TAC);

OK..

2 subgoals:

> val it =

out (SUC t) = (if inp (SUC t) then ~out t else out t)

------------------------------------

0. !t. l1 t = ~l2 t

1. !t. l3 t = (if inp t then l1 t else l2 t)

2. !t. l2 t = (if t = 0 then F else out (t - 1))

3. !t. l4 t = T

4. !t. l5 t = (if t = 0 then F else l4 (t - 1))

5. !t. out t = (if l5 t then l3 t else l4 t)

out 0 = T

------------------------------------

0. !t. l1 t = ~l2 t

1. !t. l3 t = (if inp t then l1 t else l2 t)

2. !t. l2 t = (if t = 0 then F else out (t - 1))

3. !t. l4 t = T

4. !t. l5 t = (if t = 0 then F else l4 (t - 1))

5. !t. out t = (if l5 t then l3 t else l4 t)

The top goal is the one printed last; its conclusion is out 0 = T and its assumptions

are equations relating the values on the lines in the circuit. The natural next step would

be to expand the top goal by rewriting with the assumptions. However, if this were

done the system would go into an infinite loop because the equations for out, l2 and

l3 are mutually recursive. Instead we use the first-order reasoner PROVE_TAC to do the

work:

15- expand(PROVE_TAC []);

OK..

Meson search level: .....

Goal proved.

[......] |- out 0 = T

Remaining subgoals:

> val it =

out (SUC t) = (if inp (SUC t) then ~out t else out t)

------------------------------------

0. !t. l1 t = ~l2 t

1. !t. l3 t = (if inp t then l1 t else l2 t)

2. !t. l2 t = (if t = 0 then F else out (t - 1))

3. !t. l4 t = T

4. !t. l5 t = (if t = 0 then F else l4 (t - 1))

5. !t. out t = (if l5 t then l3 t else l4 t)
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The first of the two subgoals is proved. Inspecting the remaining goal it can be seen

that it will be solved if its left hand side, out(SUC t), is expanded using the assumption:

!t. out t = if l5 t then l3 t else l4 t

However, if this assumption is used for rewriting, then all the subterms of the form

out t will also be expanded. To prevent this, we really want to rewrite with a formula

that is specifically about out (SUC t). We want to somehow pull the assumption that

we do have out of the list and rewrite with a specialised version of it. We can do just this

using PAT_ASSUM. This tactic is of type term -> thm -> tactic. It selects an assumption

that is of the form given by its term argument, and passes it to the second argument, a

function which expects a theorem and returns a tactic. Here it is in action:

16- e (PAT_ASSUM ‘‘!t. out t = X t‘‘

(fn th => REWRITE_TAC [SPEC ‘‘SUC t‘‘ th]));

<<HOL message: inventing new type variable names: ’a, ’b.>>

OK..

1 subgoal:

> val it =

(if l5 (SUC t) then l3 (SUC t) else l4 (SUC t)) =

(if inp (SUC t) then ~out t else out t)

------------------------------------

0. !t. l1 t = ~l2 t

1. !t. l3 t = (if inp t then l1 t else l2 t)

2. !t. l2 t = (if t = 0 then F else out (t - 1))

3. !t. l4 t = T

4. !t. l5 t = (if t = 0 then F else l4 (t - 1))

The pattern used here exploited something called higher order matching. The actual

assumption that was taken off the assumption stack did not have a RHS that looked like

the application of a function (X in the pattern) to the t parameter, but the RHS could

nonetheless be seen as equal to the application of some function to the t parameter. In

fact, the value that matched X was ‘‘\x. if l5 x then l3 x else l4 x‘‘.

Inspecting the goal above, it can be seen that the next step is to unwind the equations

for the remaining lines of the circuit. We do this using the arith_ss simpset that comes

with bossLib to help with the arithmetic embodied by the subtractions and SUC terms.
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17- e (RW_TAC arith_ss []);

OK..

Goal proved.

[.....]

|- (if l5 (SUC t) then l3 (SUC t) else l4 (SUC t)) =

(if inp (SUC t) then ~out t else out t)

Goal proved.

[......] |- out (SUC t) = (if inp (SUC t) then ~out t else out t)

> val it =

Initial goal proved.

|- !inp out.

PARITY_IMP (inp,out) ==>

(out 0 = T) /\

!t. out (SUC t) = (if inp (SUC t) then ~out t else out t)

The theorem just proved is named PARITY_LEMMA and saved in the current theory.

18- val PARITY_LEMMA = top_thm ();

> val PARITY_LEMMA =

|- !inp out.

PARITY_IMP (inp,out) ==>

(out 0 = T) /\

!t. out (SUC t) = (if inp (SUC t) then ~out t else out t)

PARITY_LEMMA could have been proved in one step with a single compound tactic. Our

initial goal can be expanded with a single tactic corresponding to the sequence of tactics

that were used interactively:

19- restart()

> ...

- e (PURE_REWRITE_TAC [PARITY_IMP_def, ONE_def, NOT_def,

MUX_def, REG_def] THEN

REPEAT STRIP_TAC THENL [

PROVE_TAC [],

PAT_ASSUM ‘‘!t. out t = X t‘‘

(fn th => REWRITE_TAC [SPEC ‘‘SUC t‘‘ th]) THEN

RW_TAC arith_ss []

]);

<<HOL message: inventing new type variable names: ’a, ’b.>>

OK..

Meson search level: .....

> val it =

Initial goal proved.

|- !inp out.

PARITY_IMP (inp,out) ==>

(out 0 = T) /\

!t. out (SUC t) = (if inp (SUC t) then ~out t else out t)
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Armed with PARITY_LEMMA, the final theorem is easily proved. This will be done in one

step using the ML function prove.

20- val PARITY_CORRECT = prove(

‘‘!inp out. PARITY_IMP(inp,out) ==> (!t. out t = PARITY t inp)‘‘,

REPEAT STRIP_TAC THEN MATCH_MP_TAC UNIQUENESS_LEMMA THEN

MATCH_MP_TAC PARITY_LEMMA THEN ASM_REWRITE_TAC []);

> val PARITY_CORRECT =

|- !inp out. PARITY_IMP (inp,out) ==> !t. out t = PARITY t inp

This completes the proof of the parity checking device.

5.5 Exercises

Two exercises are given in this section: Exercise 1 is straightforward, but Exercise 2

is quite tricky and might take a beginner several days to solve. The solutions to these

exercises should be in the files:

hol/examples/parity/RESET_REG.sml

hol/examples/parity/RESET_PARITY.sml

5.5.1 Exercise 1

Using only the devices ONE, NOT, MUX and REG defined in Section 5.3, design and verify a

register RESET_REG with an input in, reset line reset, output out and behaviour specified

as follows.

• If reset is T at time t, then the value at out at time t is also T.

• If reset is T at time t or t+1, then the value output at out at time t+1 is T, otherwise

it is equal to the value input at time t on inp.

This is formalized in HOL by the definition:

RESET_REG(reset,inp,out) =

(!t. reset t ==> (out t = T)) /\

(!t. out(t+1) = ((reset t \/ reset(t+1)) => T | inp t))

Note that this specification is only partial; it doesn’t specify the output at time 0 in the

case that there is no reset.

The solution to the exercise should be a definition of a predicate RESET_REG_IMP as

an existential quantification of a conjunction of applications of ONE, NOT, MUX and REG to

suitable line names,4 together with a proof of:

RESET_REG_IMP(reset,inp,out) ==> RESET_REG(reset,inp,out)

4i.e. a definition of the same form as that of PARITY IMP on page 74.
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5.5.2 Exercise 2

1. Formally specify a resetable parity checker that has two boolean inputs reset and

inp, and one boolean output out with the following behaviour:

The value at out is T if and only if there have been an even number of Ts

input at inp since the last time that T was input at reset.

2. Design an implementation of this specification built using only the devices ONE,

NOT, MUX and REG defined in Section 5.3.

3. Verify the correctness of your implementation in HOL.
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Chapter 6

Example: Combinatory Logic

6.1 Introduction

This small case study is a formalisation of (variable-free) combinatory logic. This logic is

of foundational importance in theoretical computer science, and has a very rich theory.

The example builds principally on a development done by Tom Melham. The complete

script for the development is available as clScript.sml in the examples/ind def direc-

tory of the distribution. It is self-contained and so includes the answers to the exercises

set at the end of this document.

6.2 The type of combinators

The first thing we need to do is define the type of combinators. There are just two of

these, K and S, but we also need to be able to combine them, and for this we need to

introduce the notion of application. For lack of a better ASCII symbol, we will use the

hash (#) to represent this in the logic:

1- Hol_datatype ‘cl = K | S | # of cl => cl‘;

> val it = () : unit

We also want the # to be an infix, so we set its fixity to be a tight left-associative infix:

2- set_fixity "#" (Infixl 1100);

> val it = () : unit

Finally, there’s one last piece of book-keeping to be done for our new type. The datatype

package defines the constructors in theorems of their own, and the name of the theorem

stored to disk is the same as the name of the constructor. SML doesn’t allow # to be

an identifier so we must change the name of the theorem. We do this with the function

set MLname. The first parameter to the function is the old name, and the second is the

new name.

3- set_MLname "#" "HASH";

> val it = () : unit

81
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6.3 Combinator reductions

Combinatory logic is the study of how values of this type can evolve given various rules

describing how they change. Therefore, our next step is to define the reductions that

combinators can undergo. There are two basic rules:

K x y → x
S f g x → (fx)(gx)

Here, in our description outside of HOL, we use juxtaposition instead of the #. Further,

juxtaposition is also left-associative, so that K x y should be read as K # x # y which is

in turn (K # x) # y.

Given a term in the logic, we want these reductions to be able to fire at any point, not

just at the top level, so we need two further congruence rules:

x → x′

x y → x′ y

y → y′

x y → x y′

In HOL, we can capture this relation with an inductive definition. First we set our arrow

symbol up as an infix to make everything that bit prettier:

4- set_fixity "-->" (Infix(NONASSOC, 510));

> val it = () : unit

(By choosing to make our arrow symbol non-associative, we make it a parse error

to write x --> y --> z. It would be nice to be able to write this and have it mean

x --> y /\ y --> z, but this is not presently possible with the HOL parser.)

Our next step is to actually define the relation. The function for doing this returns

three separate theorems, so we bind each separately:
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5val (redn_rules, redn_ind, redn_cases) =

Hol_reln

‘(!x y f. x --> y ==> f # x --> f # y) /\

(!f g x. f --> g ==> f # x --> g # x) /\

(!x y. K # x # y --> x) /\

(!f g x. S # f # g # x --> (f # x) # (g # x))‘;

> val redn_rules =

|- (!x y f. x --> y ==> f # x --> f # y) /\

(!f g x. f --> g ==> f # x --> g # x) /\

(!x y. K # x # y --> x) /\

!f g x. S # f # g # x --> f # x # (g # x) : thm

val redn_ind =

|- !-->’.

(!x y f. -->’ x y ==> -->’ (f # x) (f # y)) /\

(!f g x. -->’ f g ==> -->’ (f # x) (g # x)) /\

(!x y. -->’ (K # x # y) x) /\

(!f g x. -->’ (S # f # g # x) (f # x # (g # x))) ==>

!a0 a1. a0 --> a1 ==> -->’ a0 a1 : thm

val redn_cases =

|- !a0 a1.

a0 --> a1 =

(?x y f. (a0 = f # x) /\ (a1 = f # y) /\ x --> y) \/

(?f g x. (a0 = f # x) /\ (a1 = g # x) /\ f --> g) \/

(?y. a0 = K # a1 # y) \/

?f g x. (a0 = S # f # g # x) /\ (a1 = f # x # (g # x))

: thm

The induction theorem redn ind looks a little strange because the induction predicate is

given the name -->’. We can change the name to make things prettier with the function

RENAME VARS CONV, a conversion:

6- val redn_ind = CONV_RULE (RENAME_VARS_CONV ["P"]) redn_ind;

> val redn_ind =

|- !P.

(!x y f. P x y ==> P (f # x) (f # y)) /\

(!f g x. P f g ==> P (f # x) (g # x)) /\

(!x y. P (K # x # y) x) /\

(!f g x. P (S # f # g # x) (f # x # (g # x))) ==>

!a0 a1. a0 --> a1 ==> P a0 a1 : thm

In addition to proving these three theorems for us, the inductive definitions package

has also saved them to disk. Unfortunately, it does so in a way that generates names

that will be unacceptable. Only experience tells you this at this stage, but when (if) we

later export and compile the theory we will get nasty errors. So, we need to set the ML

names for the theorem defining the constant --> and for the theorems that have been

given the names --> rules, --> ind and --> cases.1

1Normally, --> would be a fine name for an ML identifier, but the problem here is that when the
theory is compiled, the identifier --> is already declared as an infix. Names like --> rules are always
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7- app (uncurry set_MLname) [

("-->", "redn"), ("-->_rules", "redn_rules"),

("-->_ind", "redn_ind"), ("-->_cases", "redn_cases")

];

> val it = () : unit

Now, using our theorem redn rules we can demonstrate single steps of our reduction

relation:

8- PROVE [redn_rules] ‘‘S # (K # x # x) --> S # x‘‘;

Meson search level: ...

> val it = |- S # (K # x # x) --> S # x : thm

The system we have just defined is as powerful as the λ-calculus, Turing machines, and

all the other standard models of computation.

One useful result about the combinatory logic is that it is confluent. Consider the

term S z (K K) (K y x). It can make two reductions, to S z (K K) y and also to

(z (K y x)) (K K (K y x)). Do these two choices of reduction mean that from this point

on the terms have two completely separate histories? Roughly speaking, to be confluent

means that the answer to this question is no.

6.4 Transitive closure and confluence

A notion crucial to that of confluence is that of transitive closure. We have defined

a system that evolves by specifying how an algebraic value can evolve into possible

successor values in one step. The natural next question is to ask for a characterisation

of evolution over one or more steps of the → relation.

In fact, we will define a relation that holds between two values if the second can be

reached from the first in zero or more steps. This is the reflexive, transitive closure of our

original relation. However, rather than tie our new definition to our original relation,

we will develop this notion independently and prove a variety of results that are true of

any system, not just our system of combinatory logic.

So, we begin our abstract digression with another inductive definition. Our new

constant is RTC, such that RTC R x y is true if it is possible to get from x to y with zero

or more “steps” of the R relation. (The standard notation for RTC R is R∗.) We can

express this idea with just two rules. The first

RTC R x x

says that it’s always possible to get from x to x in zero or more steps. The second

R x y RTC R y z

RTC R x z

bad because they attempt to mix symbolic and alpha-numeric characters.
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says that if you can take a single step from x to y, and then take zero or more steps

to get y to z, then it’s possible to take zero or more steps to get between x and z. The

realisation of these rules in HOL is again straightforward.

(As it happens, RTC is already a defined constant in the context we’re working in

(it is found in relationTheory), so we’ll hide it from view before we begin. We thus

avoid messages telling us that we are inputting ambiguous terms. The ambiguities

would always be resolved in the favour of more recent definition, but the warnings are

annoying.)

9val _ = hide "RTC";

val (RTC_rules, RTC_ind, RTC_cases) =

Hol_reln ‘

(!x. RTC R x x) /\

(!x y z. R x y /\ RTC R y z ==> RTC R x z)‘;

<<HOL message: inventing new type variable names: ’a>>

> val RTC_rules =

|- !R. (!x. RTC R x x) /\

!x y z. R x y /\ RTC R y z ==> RTC R x z : thm

val RTC_ind =

|- !R RTC’.

(!x. RTC’ x x) /\

(!x y z. R x y /\ RTC’ y z ==> RTC’ x z) ==>

!a0 a1. RTC R a0 a1 ==> RTC’ a0 a1 : thm

val RTC_cases =

|- !R a0 a1. RTC R a0 a1 = (a1 = a0) \/

?y. R a0 y /\ RTC R y a1 : thm

Now let us go back to the notion of confluence. We want this to mean something like:

“though a system may take different paths in the short-term, those two paths can always

end up in the same place”. This suggests that we define confluent thus:

10- val confluent_def = Define

‘confluent R =

!x y z. RTC R x y /\ RTC R x z ==>

?u. RTC R y u /\ RTC R z u‘;

This property states of R that we can “complete the diamond”; if we have

x

y z

∗ ∗

then there must be a u such that

x

y z

u

∗ ∗

∗ ∗
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One nice property of confluent relations is that from any one starting point they pro-

duce no more than one normal form, where a normal form is a value from which no

further steps can be taken.

11- val normform_def = Define‘normform R x = !y. ~(R x y)‘;

<<HOL message: inventing new type variable names: ’a, ’b>>

Definition has been stored under "normform_def".

> val normform_def = |- !R x. normform R x = !y. ~R x y : thm

In other words, a system has an R-normal form at x if there are no connections via R

to any other values. (We could have written ~?y. R x y as our RHS for the definition

above.)

We can now prove the following:

12- g ‘!R. confluent R ==>

!x y z.

RTC R x y /\ normform R y /\

RTC R x z /\ normform R z ==> (y = z)‘;

<<HOL message: inventing new type variable names: ’a>>

> val it =

Proof manager status: 1 proof.

1. Incomplete:

Initial goal:

!R.

confluent R ==>

!x y z.

RTC R x y /\ normform R y /\

RTC R x z /\ normform R z ==> (y = z)

We rewrite with the definition of confluence:

13- e (RW_TAC std_ss [confluent_def]);

OK..

1 subgoal:

> val it =

y = z

------------------------------------

0. !x y z. RTC R x y /\ RTC R x z ==>

?u. RTC R y u /\ RTC R z u

1. RTC R x y

2. normform R y

3. RTC R x z

4. normform R z

Our confluence property is now assumption 0, and we can use it to infer that there is a

u at the base of the diamond:
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14- e (‘?u. RTC R y u /\ RTC R z u‘ by PROVE_TAC []);

OK..

Meson search level: .........

1 subgoal:

> val it =

y = z

------------------------------------

0. !x y z. RTC R x y /\ RTC R x z ==>

?u. RTC R y u /\ RTC R z u

1. RTC R x y

2. normform R y

3. RTC R x z

4. normform R z

5. RTC R y u

6. RTC R z u

So, from y we can take zero or more steps to get to u and similarly from z. But, we also

know that we’re at an R-normal form at both y and z. We can’t take any steps at all

from these values. We can conclude both that u = y and u = z, and this in turn means

that y = z, which is our goal. So we can finish with

15- e (PROVE_TAC [normform_def, RTC_cases]);

OK..

Meson search level: ..........

Goal proved. [...]

> val it =

Initial goal proved.

|- !R.

confluent R ==>

!x y z.

RTC R x y /\ normform R y /\

RTC R x z /\ normform R z ==> (y = z)

Packaged up so as to remove the sub-goal package commands, we can prove and save

the theorem for future use by:

16val confluent_normforms_unique = store_thm(

"confluent_normforms_unique",

‘‘!R. confluent R ==>

!x y z. RTC R x y /\ normform R y /\

RTC R x z /\ normform R z ==> (y = z)‘‘,

RW_TAC std_ss [confluent_def] THEN

‘?u. RTC R y u /\ RTC R z u‘ by PROVE_TAC [] THEN

PROVE_TAC [normform_def, RTC_cases]);

· · · � · · ·

Clearly confluence is a nice property for a system to have. The question is how we

might manage to prove it. Let’s start by defining the diamond property that we used in

the definition of confluence.
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17- val diamond_def = Define

‘diamond R = !x y z. R x y /\ R x z ==>

?u. R y u /\ R z u‘;

<<HOL message: inventing new type variable names: ’a>>

Definition has been stored under "diamond_def".

> val diamond_def =

|- !R.

diamond R = !x y z. R x y /\ R x z ==>

?u. R y u /\ R z u

: thm

Now we clearly have that confluence of a relation is equivalent to the reflexive, transi-

tive closure of that relation having the diamond property.

18val confluent_diamond_RTC = store_thm(

"confluent_diamond_RTC",

‘‘!R. confluent R = diamond (RTC R)‘‘,

RW_TAC std_ss [confluent_def, diamond_def]);

So far so good. How then do we show the diamond property for RTC R? The answer

that leaps to mind is to hope that if the original relation has the diamond property, then

maybe the reflexive and transitive closure will too. The theorem we want is

diamond R ⊃ diamond (RTC R)

Graphically, this is hoping that from

x

y z

u

we will be able to conclude

x

y z

u

p q

r

where the dashed lines indicate that these steps (from x to p, for example) are using

RTC R. The presence of two instances of RTC R is an indication that this proof will
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require two inductions. With the first we will prove

x

y z

u

p

r

In other words, we want to show that if we take one step in one direction (to z) and

many steps in another (to p), then the diamond property for R will guarantee us the

existence of r, to which will we be able to take many steps from both p and z.

We take some care to state the goal so that after stripping away the outermost as-

sumption (that R has the diamond property), it will match the induction principle for

RTC.2

19- g ‘!R. diamond R ==>

!x p. RTC R x p ==>

!z. R x z ==>

?u. RTC R p u /\ RTC R z u‘;

<<HOL message: inventing new type variable names: ’a>>

> val it =

Proof manager status: 1 proof.

1. Incomplete:

Initial goal:

!R.

diamond R ==>

!x p. RTC R x p ==> !z. R x z ==>

?u. RTC R p u /\ RTC R z u

First, we strip away the diamond property assumption (two things need to be stripped:

the outermost universal quantifier and the antecedent of the implication):

20- e (GEN_TAC THEN STRIP_TAC);

OK..

1 subgoal:

> val it =

!x p. RTC R x p ==> !z. R x z ==> ?u. RTC R p u /\ RTC R z u

------------------------------------

diamond R

Now we can use the induction principle. We use the higher-order backward chaining

rule, HO MATCH MP TAC, which takes a theorem of the form ` P ⊃ Q, tries to instantiate

2In this and subsequent proofs using the sub-goal package, we will present the proof manager as if
the goal to be proved is the first ever on this stack. In other words, we have done a dropn 1; after every
successful proof to remove the evidence of the old goal. In practice, there is no harm in leaving these
goals on the proof manager’s stack.
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it to make it ` P ′ ⊃ Q′, such that Q′ is the same as the goal to be proved, and then

requires the user to prove P ′.

21- e (HO_MATCH_MP_TAC RTC_ind);

OK..

1 subgoal:

> val it =

(!x z. R x z ==> ?u. RTC R x u /\ RTC R z u) /\

!x y z.

R x y /\ (!z’. R y z’ ==> ?u. RTC R z u /\ RTC R z’ u) ==>

!z’. R x z’ ==> ?u. RTC R z u /\ RTC R z’ u

------------------------------------

diamond R

Let’s strip the goal as much as possible with the aim of making what remains to be

proved easier to see:

22- e (REPEAT STRIP_TAC);

OK..

2 subgoals:

> val it =

?u. RTC R z u /\ RTC R z’ u

------------------------------------

0. diamond R

1. R x y

2. !z’. R y z’ ==> ?u. RTC R z u /\ RTC R z’ u

3. R x z’

?u. RTC R x u /\ RTC R z u

------------------------------------

0. diamond R

1. R x z

This first goal is easy. It corresponds to the case where the many steps from x to p are

actually no steps at all, and p and x are actually the same place. In the other direction,

x has taken one step to z, and we need to find somewhere reachable in zero or more

steps from both x and z. Given what we know so far, the only candidate is z itself. In

fact, we don’t even need to provide this witness explicitly. PROVE TAC will find it for us,

as long as we tell it what the rules governing RTC are:
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23- e (PROVE_TAC [RTC_rules]);

OK..

Meson search level: .....

Goal proved. [...]

Remaining subgoals:

> val it =

?u. RTC R z u /\ RTC R z’ u

------------------------------------

0. diamond R

1. R x y

2. !z’. R y z’ ==> ?u. RTC R z u /\ RTC R z’ u

3. R x z’

And what of this remaining goal? Assumptions one and three between them are the top

of an R-diamond. Let’s use the fact that we have the diamond property for R and infer

that there exists a v to which y and z ′ can both take single steps:

24- e (‘?v. R y v /\ R z’ v‘ by PROVE_TAC [diamond_def]);

OK..

Meson search level: ............

1 subgoal:

> val it =

?u. RTC R z u /\ RTC R z’ u

------------------------------------

0. diamond R

1. R x y

2. !z’. R y z’ ==> ?u. RTC R z u /\ RTC R z’ u

3. R x z’

4. R y v

5. R z’ v

Now we can apply our induction hypothesis (assumption 2) to complete the long, lop-

sided strip of the diamond. We will conclude that there is a u such that RTC R z u and

RTC R v u. We actually need a u such that RTC R z ′ u, but because there is a single

R-step between z′ and v we have that as well. All we need to provide PROVE TAC is the

rules for RTC:

25- e (PROVE_TAC [RTC_rules]);

OK..

Meson search level: .......

Goal proved. [...]

> val it =

Initial goal proved.

|- !R.

diamond R ==> !x p. RTC R x p ==>

!z. R x z ==> ?u. RTC R p u /\ RTC R z u
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Again we can (and should) package up the lemma, avoiding the sub-goal package com-

mands:

26val R_RTC_diamond = store_thm(

"R_RTC_diamond",

‘‘!R. diamond R ==>

!x p. RTC R x p ==>

!z. R x z ==>

?u. RTC R p u /\ RTC R z u‘‘,

GEN_TAC THEN STRIP_TAC THEN HO_MATCH_MP_TAC RTC_ind THEN

REPEAT STRIP_TAC THENL [

PROVE_TAC [RTC_rules],

‘?v. R y v /\ R z’ v‘ by PROVE_TAC [diamond_def] THEN

PROVE_TAC [RTC_rules]

]);

· · · � · · ·

Now we can move on to proving that if R has the diamond property, so too does

RTC R. We want to prove this by induction again. It’s very tempting to state the goal as

the obvious

diamond R ⊃ diamond (RTC R)

but doing so will actually make it harder to apply the induction principle when the time

is right. Better to start out with a statement of the goal that is very near in form to the

induction princple. So, we manually expand the meaning of diamond and state our next

goal thus:

27- g ‘!R. diamond R ==> !x y. RTC R x y ==>

!z. RTC R x z ==>

?u. RTC R y u /\ RTC R z u‘;

<<HOL message: inventing new type variable names: ’a>>

> val it =

Proof manager status: 1 proof.

1. Incomplete:

Initial goal:

!R.

diamond R ==>

!x y. RTC R x y ==> !z. RTC R x z ==>

?u. RTC R y u /\ RTC R z u

Again we strip the diamond property assumption, apply the induction principle, and

strip repeatedly:
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28- e (GEN_TAC THEN STRIP_TAC THEN HO_MATCH_MP_TAC RTC_ind THEN

REPEAT STRIP_TAC);

OK..

2 subgoals:

> val it =

?u. RTC R z u /\ RTC R z’ u

------------------------------------

0. diamond R

1. R x y

2. !z’. RTC R y z’ ==> ?u. RTC R z u /\ RTC R z’ u

3. RTC R x z’

?u. RTC R x u /\ RTC R z u

------------------------------------

0. diamond R

1. RTC R x z

The first goal is again an easy one, corresponding to the case where the trip from x to y

has been one of no steps whatsoever.

29- e (PROVE_TAC [RTC_rules]);

OK..

Meson search level: ...

Goal proved. [...]

Remaining subgoals:

> val it =

?u. RTC R z u /\ RTC R z’ u

------------------------------------

0. diamond R

1. R x y

2. !z’. RTC R y z’ ==> ?u. RTC R z u /\ RTC R z’ u

3. RTC R x z’

This goal is very similar to the one we saw earlier. We have the top of a (“lop-sided”)

diamond in assumptions 1 and 3, so we can infer the existence of a common destination

for y and z′:
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30- e (‘?v. RTC R y v /\ RTC R z’ v‘

by PROVE_TAC [R_RTC_diamond]);

OK..

Meson search level: ............

1 subgoal:

> val it =

?u. RTC R z u /\ RTC R z’ u

------------------------------------

0. diamond R

1. R x y

2. !z’. RTC R y z’ ==> ?u. RTC R z u /\ RTC R z’ u

3. RTC R x z’

4. RTC R y v

5. RTC R z’ v

At this point in the last proof we were able to finish it all off by just appealing to the

rules for RTC. This time it is not quite so straightforward. When we use the induction

hypothesis (assumption 2), we can conclude that there is a u to which both z and v can

connect in zero or more steps, but in order to show that this u is reachable from z ′, we

need to be able to conclude RTC R z′ u when we know that RTC R z′ v (assumption

5 above) and RTC R v u (our consequence of the inductive hypothesis). We leave the

proof of this general result as an exercise, and here assume that it is already proved as

the theorem RTC RTC.

31- e (PROVE_TAC [RTC_rules, RTC_RTC]);

Meson search level: .......

Goal proved. [...]

> val it =

Initial goal proved.

|- !R.

diamond R ==>

!x y. RTC R x y ==> !z. RTC R x z ==>

?u. RTC R y u /\ RTC R z u

We can package this result up as a lemma and then prove the prettier version directly:
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32val diamond_RTC_lemma = prove(

‘‘!R.

diamond R ==>

!x y. RTC R x y ==> !z. RTC R x z ==>

?u. RTC R y u /\ RTC R z u‘‘,

GEN_TAC THEN STRIP_TAC THEN HO_MATCH_MP_TAC RTC_ind THEN

REPEAT STRIP_TAC THENL [

PROVE_TAC [RTC_rules],

‘?v. RTC R y v /\ RTC R z’ v‘

by PROVE_TAC [R_RTC_diamond] THEN

PROVE_TAC [RTC_RTC, RTC_rules]

]);

val diamond_RTC = store_thm(

"diamond_RTC",

‘‘!R. diamond R ==> diamond (RTC R)‘‘,

PROVE_TAC [diamond_def,diamond_RTC_lemma]);

6.5 Back to combinators

Now, we are in a position to return to the real object of study and prove confluence for

combinatory logic. We have done an abstract development and established that

diamond R ⊃ diamond (RTC R)
∧

diamond (RTC R) ≡ confluent R

(We have also established a couple of other useful results along the way.)

Sadly, it just isn’t the case that →, our one-step relation for combinators, has the

diamond property. A counter-example is K S (K K K). Its possible evolution can be

described graphically:

K S (K K K)

S K S K

S

If we had the diamond property, it should be possible to find a common destination

for K S K and S. However, S doesn’t admit any reductions whatsoever, so there isn’t a

common destination.3

This is a problem. We are going to have to take another approach. We will define

another reduction strategy (parallel reduction), and prove that its reflexive, transitive

closure is actually the same relation as our original’s reflexive and transitive closure.

3In fact our counter-example is more complicated than necessary. The fact that K S K has a reduction
to the normal form S also acts as a counter-example. Can you see why?
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Then we will also show that parallel reduction has the diamond property. This will

establish that its reflexive, transitive closure has it too. Then, because they are the same

relation, we will have that the reflexive, transitive closure of our original relation has

the diamond property, and therefore, our original relation will be confluent.

6.5.1 Parallel reduction

Our new relation allows for any number of reductions to occur in parallel. We use the

-||-> symbol to indicate parallel reduction because of its own parallel lines:

33- set_fixity "-||->" (Infix(NONASSOC, 510));

> val it = () : unit

Then we can define parallel reduction itself. The rules look very similar to those for →.

The difference is that we allow the reflexive transition, and say that an application of

x u can be transformed to y v if there are transformations taking x to y and u to v. This

is why we must have reflexivity incidentally. Without it, a term like (K x y) K couldn’t

reduce because while the LHS of the application (K x y) can reduce, its RHS (K) can’t.
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34- val (predn_rules, predn_ind, predn_cases) =

Hol_reln

‘(!x. x -||-> x) /\

(!x y u v. x -||-> y /\ u -||-> v

==>

x # u -||-> y # v) /\

(!x y. K # x # y -||-> x) /\

(!f g x. S # f # g # x -||-> (f # x) # (g # x))‘;

> val predn_rules =

|- (!x. x -||-> x) /\

(!x y u v. x -||-> y /\ u -||-> v ==> x # u -||-> y # v) /\

(!x y. K # x # y -||-> x) /\

!f g x. S # f # g # x -||-> f # x # (g # x) : thm

val predn_ind =

|- !-||->’.

(!x. -||->’ x x) /\

(!x y u v. -||->’ x y /\ -||->’ u v ==>

-||->’ (x # u) (y # v)) /\

(!x y. -||->’ (K # x # y) x) /\

(!f g x. -||->’ (S # f # g # x) (f # x # (g # x))) ==>

!a0 a1. a0 -||-> a1 ==> -||->’ a0 a1 : thm

val predn_cases =

|- !a0 a1.

a0 -||-> a1 =

(a1 = a0) \/

(?x y u v. (a0 = x # u) /\ (a1 = y # v) /\

x -||-> y /\ u -||-> v) \/

(?y. a0 = K # a1 # y) \/

?f g x. (a0 = S # f # g # x) /\ (a1 = f # x # (g # x))

: thm

We again have an induction principle that looks bizarre because of the choice of variable

name, so we rename the bound variables.

35- val predn_ind =

CONV_RULE (RENAME_VARS_CONV ["P"]) predn_ind;

> val predn_ind =

|- !P.

(!x. P x x) /\

(!x y u v. P x y /\ P u v ==> P (x # u) (y # v)) /\

(!x y. P (K # x # y) x) /\

(!f g x. P (S # f # g # x) (f # x # (g # x))) ==>

!a0 a1. a0 -||-> a1 ==> P a0 a1 : thm

Again, we have to change the names that the inductive definitions package has chosen

for our theorems:
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36- app (uncurry set_MLname) [

("-||->_rules", "predn_rules"), ("-||->_ind", "predn_ind"),

("-||->_cases", "predn_cases")

];

> val it = () : unit

6.5.2 Using RTC

Now we can define the reflexive and transitive closures of our two relations. We will use

ASCII symbols for both that consist of the original symbol followed by an asterisk. Note

also how, in defining the two relations, we have to use the $ character to “escape” the

symbols’ usual fixities. This is exactly analogous to the way in which ML’s op keyword is

used. Finally, because we are defining a constant whose name is symbolic, we have to

use xDefine rather than Define. This is because the latter function likes to try and guess

an appropriate name for the definitions that it stores to disk. With symbolic names it

doesn’t know how to do this. The first parameter to xDefine is an alpha-numeric “stem”

which provides the name to use.

37- set_fixity "-->*" (Infix(NONASSOC, 510));

> val it = () : unit

- val RTCredn_def = xDefine "RTCredn" ‘$-->* = RTC $-->‘;

Definition has been stored under "RTCredn_def".

> val RTCredn_def = |- $-->* = RTC $--> : thm

We do exactly the same thing for the reflexive and transitive closure of our parallel

reduction.

38- set_fixity "-||->*" (Infix(NONASSOC, 510));

> val it = () : unit

- val RTCpredn_def = xDefine "RTCpredn" ‘$-||->* = RTC $-||->‘;

Definition has been stored under "RTCpredn_def".

> val RTCpredn_def = |- $-||->* = RTC $-||-> : thm

Finally, before doing some real proof, let’s generate specialised versions of the RTC

theorems for our new constants. This is a straightforward process; we just specialise

the R in those theorems with --> and -||-> and then rewrite with the two defining

equations above in the RHS-LHS orientation. This will replace instances of RTC R with

our new constants.
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39- val RTCredn_rules =

REWRITE_RULE [SYM RTCredn_def] (Q.ISPEC ‘$-->‘ RTC_rules)

val RTCredn_ind =

REWRITE_RULE [SYM RTCredn_def] (Q.ISPEC ‘$-->‘ RTC_ind)

val RTCpredn_rules =

REWRITE_RULE [SYM RTCpredn_def] (Q.ISPEC ‘$-||->‘ RTC_rules)

val RTCpredn_ind =

REWRITE_RULE [SYM RTCpredn_def] (Q.ISPEC ‘$-||->‘ RTC_ind);

> val RTCredn_rules =

|- (!x. x -->* x) /\

!x y z. x --> y /\ y -->* z ==> x -->* z : thm

val RTCredn_ind =

|- !RTC’.

(!x. RTC’ x x) /\

(!x y z. x --> y /\ RTC’ y z ==> RTC’ x z) ==>

!a0 a1. a0 -->* a1 ==> RTC’ a0 a1 : thm

val RTCpredn_rules =

|- (!x. x -||->* x) /\

!x y z. x -||-> y /\ y -||->* z ==> x -||->* z : thm

val RTCpredn_ind =

|- !RTC’.

(!x. RTC’ x x) /\

(!x y z. x -||-> y /\ RTC’ y z ==> RTC’ x z) ==>

!a0 a1. a0 -||->* a1 ==> RTC’ a0 a1 : thm

Incidentally, in conjunction with PROVE we can now automatically demonstrate rela-

tively long chains of reductions:

40- PROVE [RTCredn_rules, redn_rules] ‘‘S # K # K # x -->* x‘‘;

Meson search level: ......

> val it = |- S # K # K # x -->* x : thm

- PROVE [RTCredn_rules, redn_rules]

‘‘S # (S # (K # S) # K) # (S # K # K) # f # x -->*

f # (f # x)‘‘;

Meson search level: ...........................

> val it = |- S # (S # (K # S) # K) # (S # K # K) # f # x -->*

f # (f # x) : thm

(The latter sequence is seven reductions long.)

6.5.3 Proving the RTCs are the same

We start with the easier direction, and show that everything in RTC → is in RTC −||→.

Because RTC is monotone (which fact is left to the reader to prove), we can reduce this

to showing that x→ y ⊃ x−||→ y.

Our goal:
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41- g ‘!x y. x -->* y ==> x -||->* y‘;

> val it =

Proof manager status: 1 proof.

1. Incomplete:

Initial goal:

!x y. x -->* y ==> x -||->* y

Now we rewrite with the definitions of our two symbols to expose the fact that they are

reflexive, transitive closures:

42- e (SIMP_TAC std_ss [RTCredn_def, RTCpredn_def]);

OK..

1 subgoal:

> val it =

!x y. RTC $--> x y ==> RTC $-||-> x y

We back-chain using our monotonicity result:

43- e (HO_MATCH_MP_TAC RTC_monotone);

OK..

1 subgoal:

> val it =

!x y. x --> y ==> x -||-> y

Now we can induct over the rules for →:

44- e (HO_MATCH_MP_TAC redn_ind);

OK..

1 subgoal:

> val it =

(!x y f. x -||-> y ==> f # x -||-> f # y) /\

(!f g x. f -||-> g ==> f # x -||-> g # x) /\

(!x y. K # x # y -||-> x) /\

!f g x. S # f # g # x -||-> f # x # (g # x)

We could split the 4-way conjunction apart into four goals, but there is no real need. It

is quite clear that each follows immediately from the rules for parallel reduction.

45- e (PROVE_TAC [predn_rules]);

OK..

Meson search level: ............

Goal proved. [...]

> val it =

Initial goal proved.

|- !x y. x -->* y ==> x -||->* y : goalstack

Packaged into a tidy little sub-goal-package-free parcel, our proof is
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46val RTCredn_RTCpredn = store_thm(

"RTCredn_RTCpredn",

‘‘!x y. x -->* y ==> x -||->* y‘‘,

SIMP_TAC std_ss [RTCredn_def, RTCpredn_def] THEN

HO_MATCH_MP_TAC RTC_monotone THEN

HO_MATCH_MP_TAC redn_ind THEN

PROVE_TAC [predn_rules]);

· · · � · · ·

Our next proof is in the other direction. It should be clear that we will not just be

able to appeal to the monotonicity of RTC this time; one step of the parallel reduction

relation can not be mirrored with one step of the original reduction relation. It’s clear

that mirroring one step of the parallel reduction relation might take many steps of the

original relation. Let’s prove that then:

47- g ‘!x y. x -||-> y ==> x -->* y‘;

> val it =

Proof manager status: 1 proof.

1. Incomplete:

Initial goal:

!x y. x -||-> y ==> x -->* y

This time our induction will be over the rules defining the parallel reduction relation.

48- e (HO_MATCH_MP_TAC predn_ind);

OK..

1 subgoal:

> val it =

(!x. x -->* x) /\

(!x y u v. x -->* y /\ u -->* v ==> x # u -->* y # v) /\

(!x y. K # x # y -->* x) /\

!f g x. S # f # g # x -->* f # x # (g # x)

There are four conjuncts here, and it should be clear that all but the second can be

proved immediately by appeal to the rules for the transitive closure and for → itself.

We could split apart the conjunctions and enter a THENL branch. However, we’d need to

repeat the same tactic three times to quickly close three of the four branches. Instead,

we use the TRY tactical to try applying the same tactic to all four branches. If our tactic

fails on branch #2, as we expect, TRY will protect us against this failure and let us

proceed.
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49e (REPEAT CONJ_TAC THEN

TRY (PROVE_TAC [RTCredn_rules, redn_rules]);

OK..

Meson search level: ....

Meson search level: ....

Meson search level: ...............................

Meson search level: ..

1 subgoal:

> val it =

!x y u v. x -->* y /\ u -->* v ==> x # u -->* y # v

Note that wrapping TRY around PROVE TAC is not always wise. It can often take PROVE TAC

an extremely long time to exhaust its search space, and then give up with a failure. Here,

“we got lucky”.

Anyway, what of this latest sub-goal? If we look at it for long enough, we should see

that it is another monotonicity fact. In this form, it’s not quite right for easy proof. Let’s

go away and prove RTCredn ap monotonic separately. (Another exercise!) Our new

theorem should state

50val RTCredn_ap_monotonic = store_thm(

"RTCredn_ap_monotonic",

‘‘!x y. x -->* y ==> !z. x # z -->* y # z /\ z # x -->* z # y‘‘,

...);

Now that we have this, our sub-goal is almost immediately provable. Using it, we know

that

x u→∗ y u
y u→∗ y v

All we need to do is “stitch together” the two transitions above and go from x u to y v.

We can do this by appealing to our earlier RTC RTC result and reminding PROVE TAC that

→∗ is really just RTC →.

51e (PROVE_TAC [RTCredn_def, RTC_RTC, RTCredn_ap_monotonic]);

OK..

Meson search level: .............................

Goal proved. [...]

> val it =

Initial goal proved.

|- !x y. x -||-> y ==> x -->* y : goalstack

Odds are that you found that this last step took noticably longer than previous invoca-

tions of PROVE TAC. This is because of the equality in the theorem RTCredn def. (Equal-

ity reasoning always slows PROVE TAC down.) Better performance is possible if you

instead prove an appropriately specialised version of RTC RTC and use this in place of

both RTC RTC and RTCredn def. Let’s go back and do this.
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52- b();

> val it =

!x y u v. x -->* y /\ u -->* v ==> x # u -->* y # v

We need our specialised version of RTC RTC.

53- val RTCredn_RTCredn = save_thm(

"RTCredn_RTCredn",

SIMP_RULE std_ss [SYM RTCredn_def] (Q.ISPEC ‘$-->‘ RTC_RTC));

> val RTCredn_RTCredn =

|- !x y z. x -->* y /\ y -->* z ==> x -->* z : thm

Now we can finish with:

54- e (PROVE_TAC [RTCredn_RTCredn, RTCredn_ap_monotonic])

OK..

Meson search level: .......

Goal proved.[...]

> val it =

Initial goal proved.

|- !x y. x -||-> y ==> x -->* y : goalstack

But given that we can finish off what we thought was an awkward branch with just

another application of PROVE TAC, we don’t need to use our fancy TRY-footwork at the

stage before. Instead, we can just merge the theorem lists passed to both invocations,

dispense with the REPEAT CONJ TAC and have a very short tactic proof indeed:

55val predn_RTCredn = store_thm(

"predn_RTCredn",

‘‘!x y. x -||-> y ==> x -->* y‘‘,

HO_MATCH_MP_TAC predn_ind THEN

PROVE_TAC [RTCredn_rules, redn_rules, RTCredn_RTCredn,

RTCredn_ap_monotonic]);

· · · � · · ·

Now it’s time to prove that if a number of parallel reduction steps are chained to-

gether, then we can mirror this with some number of steps using the original reduction

relation. Our goal:

56- g ‘!x y. x -||->* y ==> x -->* y‘;

> val it =

Proof manager status: 1 proof.

1. Incomplete:

Initial goal:

!x y. x -||->* y ==> x -->* y

We use the appropriate induction principle to get to:
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57- e (HO_MATCH_MP_TAC RTCpredn_ind);

OK..

1 subgoal:

> val it =

(!x. x -->* x) /\ !x y z. x -||-> y /\ y -->* z ==> x -->* z

This we can finish off in one step. The first conjunct is obvious, and in the second

the x -||-> y and our last result combine to tell us that x -->* y. Then this can be

chained together with the other assumption in the second conjunct and we’re done.

58- e (PROVE_TAC [RTCredn_rules, predn_RTCredn,

RTCredn_RTCredn]);

OK..

Meson search level: .......

Goal proved.[...]

> val it =

Initial goal proved.

|- !x y. x -||->* y ==> x -->* y : goalstack

Packaged up, this proof is:

59val RTCpredn_RTCredn = store_thm(

"RTCpredn_RTCredn",

‘‘!x y. x -||->* y ==> x -->* y‘‘,

HO_MATCH_MP_TAC RTCpredn_ind THEN

PROVE_TAC [predn_RTCredn, RTCredn_RTCredn, RTCredn_rules]);

· · · � · · ·

Our final act is to use what we have so far to conclude that →∗ and −||→∗

are equal.

We state our goal:

60- g ‘$-||->* = $-->*‘;

> val it =

Proof manager status: 1 proof.

1. Incomplete:

Initial goal:

$-||->* = $-->*

We want to now appeal to extensionality. This is best done with the conversion FUN EQ CONV,

thus:

61- e (CONV_TAC FUN_EQ_CONV);

OK..

1 subgoal:

> val it =

!c. $-||->* c = $-->* c

This is progress but both “arrows” need another argument. We repeat ourselves (getting

rid of extra universal quantifiers along the way):
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62- e (GEN_TAC THEN CONV_TAC FUN_EQ_CONV THEN GEN_TAC);

OK..

1 subgoal:

> val it =

c -||->* c’ = c -->* c’

(You might be wondering why it is our variables are suddenly c and c’. This is because

they are of type :cl, and the code that chooses the name thinks that it’s reasonable to

use variables named after the type.)

This goal is an easy consequence of our two earlier implications.

63- e (PROVE_TAC [RTCpredn_RTCredn, RTCredn_RTCpredn]);

OK..

Meson search level: ......

Goal proved. [...]

> val it =

Initial goal proved.

|- $-||->* = $-->* : goalstack

Packaged, the proof is:

64val RTCpredn_EQ_RTCredn = store_thm(

"RTCpredn_EQ_RTCredn",

‘‘$-||->* = $-->*‘‘,

CONV_TAC FUN_EQ_CONV THEN GEN_TAC THEN

CONV_TAC FUN_EQ_CONV THEN GEN_TAC THEN

PROVE_TAC [RTCpredn_RTCredn, RTCredn_RTCpredn]);

6.5.4 Proving a diamond property for parallel reduction

Now we just have one substantial proof to go. Before we can even begin, there are a

number of minor lemmas we will need to prove first. These are basically specialisations

of the theorem predn cases. We want exhaustive characterisations of the possibilities

when the following terms undergo a parallel reduction: x y, K, S, K x, S x, K x y, S x y

and S x y z.

To do this, we will write a little function that derives characterisations automatically:

65- fun characterise t = SIMP_RULE (srw_ss()) [] (SPEC t predn_cases);

> val characterise = fn : term -> thm

The characterise function specialises the theorem predn_cases with the input term,

and then simplifies. The srw_ss() simpset includes information about the injectivity

and disjointness of constructors and eliminates obvious impossibilities. For example,
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66- val K_predn = characterise ‘‘K‘‘;

<<HOL message: more than one resolution of overloading was possible>>

> val K_predn = |- !a1. K -||-> a1 = (a1 = K) : thm

- val S_predn = characterise ‘‘S‘‘;

<<HOL message: more than one resolution of overloading was possible>>

> val S_predn = |- !a1. S -||-> a1 = (a1 = S) : thm

Unfortunately, what we get back from other inputs is not so good:

67- val Sx_predn0 = characterise ‘‘S # x‘‘;

> val Sx_predn0 =

|- !a1.

S # x -||-> a1 =

(a1 = S # x) \/

?y v. (a1 = y # v) /\ S -||-> y /\ x -||-> v : thm

That first disjunct is redundant, as the following demonstrates:

68val Sx_predn = prove(

‘‘!x y. S # x -||-> y = ?z. (y = S # z) /\ (x -||-> z)‘‘,

REPEAT GEN_TAC THEN EQ_TAC THEN

RW_TAC std_ss [Sx_predn0, predn_rules, S_predn]);

Our characterise function will just have to help us in the proofs that follow.

69val Kx_predn = prove(

‘‘!x y. K # x -||-> y = ?z. (y = K # z) /\ (x -||-> z)‘‘,

REPEAT GEN_TAC THEN EQ_TAC THEN

RW_TAC std_ss [characterise ‘‘K # x‘‘, predn_rules, K_predn]);

What of K x y? A little thought demonstrates that there really must be two cases this

time.

70val Kxy_predn = prove(

‘‘!x y z.

K # x # y -||-> z =

(?u v. (z = K # u # v) /\ (x -||-> u) /\ (y -||-> v)) \/

(z = x)‘‘,

REPEAT GEN_TAC THEN EQ_TAC THEN

RW_TAC std_ss [characterise ‘‘K # x # y‘‘, predn_rules,

Kx_predn]);

By way of contrast, there is only one case for S x y because it is not yet a “redex” at the

top-level.

71val Sxy_predn = prove(

‘‘!x y z. S # x # y -||-> z =

?u v. (z = S # u # v) /\ (x -||-> u) /\ (y -||-> v)‘‘,

REPEAT GEN_TAC THEN EQ_TAC THEN

RW_TAC std_ss [characterise ‘‘S # x # y‘‘, predn_rules,

Sx_predn]);
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Next, the characterisation for S x y z:

72val Sxyz_predn = prove(

‘‘!w x y z. S # w # x # y -||-> z =

(?p q r. (z = S # p # q # r) /\

w -||-> p /\ x -||-> q /\ y -||-> r) \/

(z = (w # y) # (x # y))‘‘,

REPEAT GEN_TAC THEN EQ_TAC THEN

RW_TAC std_ss [characterise ‘‘S # w # x # y‘‘, predn_rules,

Sxy_predn]);

Last of all, we want a characterisation for x y. What characterise gives us this time

can’t be improved upon, for all that we might look upon the four disjunctions and

despair.

73- val x_ap_y_predn = characterise ‘‘x # y‘‘;

> val x_ap_y_predn =

|- !a1.

x # y -||-> a1 =

(a1 = x # y) \/

(?y’ v. (a1 = y’ # v) /\ x -||-> y’ /\ y -||-> v) \/

(x = K # a1) \/

?f g. (x = S # f # g) /\ (a1 = f # y # (g # y)) : thm

Our last preliminary before we begin is to derive what is known as the strong induction

principle for the inductive relation defining -||->. This gives us an induction principle

where the application case changes from

!x y u v. P x y /\ P u v ==> P (x # u) (y # v)

where we can only assume P x y and P u v in trying to prove the application case, to

the often more useful:

!x y u v.

x -||-> y /\ P x y /\ u -||-> v /\ P u v ==>

P (x # u) (y # v)

Deriving strong induction can be done automatically by the function

derive strong induction found in the IndDefRules module. It takes a pair of a list of

theorems and another theorem. The list of theorems consists of the rules of the relation

split up into individual conjuncts, and the second argument is the normal induction

principle.

Thus:
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74val predn_strong_ind =

IndDefRules.derive_strong_induction (CONJUNCTS predn_rules, predn_ind);

> val predn_strong_ind =

|- !P.

(!x. P x x) /\

(!x y u v.

x -||-> y /\ P x y /\ u -||-> v /\ P u v ==>

P (x # u) (y # v)) /\

(!x y. P (K # x # y) x) /\

(!f g x. P (S # f # g # x) (f # x # (g # x))) ==>

!a0 a1. a0 -||-> a1 ==> P a0 a1 : thm

· · · � · · ·

Now we are ready to prove the final goal. It is

75- g ‘!x y. x -||-> y ==>

!z. x -||-> z ==> ?u. y -||-> u /\ z -||-> u‘;

> val it =

Proof manager status: 1 proof.

1. Incomplete:

Initial goal:

!x y. x -||-> y ==> !z. x -||-> z ==>

?u. y -||-> u /\ z -||-> u

We now apply the strong induction principle and split the goal into its individual con-

juncts:

76- e (HO_MATCH_MP_TAC predn_strong_ind THEN REPEAT CONJ_TAC);

OK..

4 subgoals:

> val it =

!f g x z. S # f # g # x -||-> z ==>

?u. f # x # (g # x) -||-> u /\ z -||-> u

!x y z. K # x # y -||-> z ==> ?u. x -||-> u /\ z -||-> u

!x y u v.

x -||-> y /\

(!z. x -||-> z ==> ?u. y -||-> u /\ z -||-> u) /\

u -||-> v /\

(!z. u -||-> z ==> ?u. v -||-> u /\ z -||-> u) ==>

!z. x # u -||-> z ==> ?u. y # v -||-> u /\ z -||-> u

!x z. x -||-> z ==> ?u. x -||-> u /\ z -||-> u

The first goal is easily disposed of. The witness we would provide for this case is simply

z, but PROVE TAC will do the work for us:
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77- e (PROVE_TAC [predn_rules]);

OK..

Meson search level: ...

Goal proved. [...]

The next goal includes two instances of terms of the form x # y -||-> z. We can use

our x_ap_y_predn theorem here. However, if we rewrite indiscriminately with it, we

will really confuse the goal. We want to rewrite just the assumption, not the instance

underneath the existential quantifier. Starting everything by repeatedly stripping can’t

lead us too far astray.

78- e (REPEAT STRIP_TAC);

OK..

1 subgoal:

> val it =

?u. y # v -||-> u /\ z -||-> u

------------------------------------

0. x -||-> y

1. !z. x -||-> z ==> ?u. y -||-> u /\ z -||-> u

2. u -||-> v

3. !z. u -||-> z ==> ?u. v -||-> u /\ z -||-> u

4. x # u -||-> z

We need to split up assumption 4. We can get it out of the assumption list using the

Q.PAT ASSUM theorem-tactical. We will write

Q.PAT_ASSUM ‘x # y -||-> z‘

(STRIP_ASSUME_TAC o SIMP_RULE std_ss [x_ap_y_predn])

The quotation specifies the pattern that we want to match. The second argument spec-

ifies how we are going to transform the theorem. Reading the compositions from right

to left, first we will simplify with the x_ap_y_predn theorem and then we will assume

the result back into the assumptions, stripping disjunctions and existentials as we go.4

We already know that doing this is going to produce four new sub-goals (there were

four disjuncts in the x_ap_y_predn theorem). At least one of these should be trivial

because it will correspond to the case when the parallel reduction is just a “do noth-

ing” step. Let’s try eliminating the simple cases with a “speculative” call to PROVE TAC

wrapped inside a TRY. And before doing that, we should do some rewriting to make

sure that equalities in the assumptions are eliminated.

So:

4An alternative to using PAT ASSUM is to use by instead: you would have to state the four-way dis-
junction yourself, but the proof would be more “declarative” in style, and though wordier, might be more
maintainable.



110 Chapter 6. Example: Combinatory Logic

79- e (Q.PAT_ASSUM ‘x # y -||-> z‘

(STRIP_ASSUME_TAC o SIMP_RULE std_ss [x_ap_y_predn]) THEN

RW_TAC std_ss [] THEN

TRY (PROVE_TAC [predn_rules]));

OK..

Meson search level: ...............................

Meson search level: ...............................

Meson search level: ..................

Meson search level: .....

2 subgoals:

> val it =

?u’. y # v -||-> u’ /\ f # u # (g # u) -||-> u’

------------------------------------

0. S # f # g -||-> y

1. !z. S # f # g -||-> z ==> ?u. y -||-> u /\ z -||-> u

2. u -||-> v

3. !z. u -||-> z ==> ?u. v -||-> u /\ z -||-> u

?u. y # v -||-> u /\ z -||-> u

------------------------------------

0. K # z -||-> y

1. !z’. K # z -||-> z’ ==> ?u. y -||-> u /\ z’ -||-> u

2. u -||-> v

3. !z. u -||-> z ==> ?u. v -||-> u /\ z -||-> u

Brilliant! We’ve eliminated two of the four disjuncts already. Now our next goal features

a term K # z -||-> y in the assumptions. We have a theorem that pertains to just this

situation. But before applying it willy-nilly, let us try to figure out exactly what the

situation is. A diagram of the current situation might look like

K # z # u z

y # v ?u?

Our theorem tells us that y must actually be of the form K # w for some w, and that

there must be an arrow between z and w. Thus:
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80- e (‘?w. (y = K # w) /\ (z -||-> w)‘ by PROVE_TAC [Kx_predn]);

OK..

Meson search level: ......

1 subgoal:

> val it =

?u. y # v -||-> u /\ z -||-> u

------------------------------------

0. K # z -||-> y

1. !z’. K # z -||-> z’ ==> ?u. y -||-> u /\ z’ -||-> u

2. u -||-> v

3. !z. u -||-> z ==> ?u. v -||-> u /\ z -||-> u

4. y = K # w

5. z -||-> w

On inspection, it becomes clear that the u must be w. The first conjunct requires

K # w # v -||-> w, which we have because this is what Ks do, and the second conjunct

is already in the assumption list. Rewriting (eliminating that equality in the assumption

list first will make PROVE TAC’s job that much easier), and then first order reasoning will

solve this goal:

81- e (RW_TAC std_ss [] THEN PROVE_TAC [predn_rules]);

OK..

Meson search level: ...

Goal proved. [...]

Remaining subgoals:

> val it =

?u’. y # v -||-> u’ /\ f # u # (g # u) -||-> u’

------------------------------------

0. S # f # g -||-> y

1. !z. S # f # g -||-> z ==> ?u. y -||-> u /\ z -||-> u

2. u -||-> v

3. !z. u -||-> z ==> ?u. v -||-> u /\ z -||-> u

This case involving S is analogous. Here’s the tactic to apply:

82- e (‘?p q. (y = S # p # q) /\ (f -||-> p) /\ (g -||-> q)‘

by PROVE_TAC [Sxy_predn] THEN

RW_TAC std_ss [] THEN PROVE_TAC [predn_rules]);

OK..

Meson search level: ........

Meson search level: ...........

Goal proved.[...]

Remaining subgoals:

> val it =

!f g x z. S # f # g # x -||-> z ==>

?u. f # x # (g # x) -||-> u /\ z -||-> u

!x y z. K # x # y -||-> z ==> ?u. x -||-> u /\ z -||-> u
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This next goal features a K # x # y -||-> z term that we have a theorem for already.

And again, let’s speculatively use a call to PROVE TAC to eliminate the simple cases im-

mediately (Kxy_predn is a disjunct so we’ll get two sub-goals if we don’t eliminate any-

thing).

83- e (RW_TAC std_ss [Kxy_predn] THEN

TRY (PROVE_TAC [predn_rules]));

OK..

Meson search level: ..

Meson search level: ...

Goal proved. [...]

Remaining subgoals:

> val it =

!f g x z. S # f # g # x -||-> z ==>

?u. f # x # (g # x) -||-> u /\ z -||-> u

Better yet! We got both cases immediately, and have moved onto the last case. We can

try the same strategy.

84- e (RW_TAC std_ss [Sxyz_predn] THEN PROVE_TAC [predn_rules]);

OK..

Meson search level: ..

Meson search level: ...........

Goal proved.[...]

> val it =

Initial goal proved.

|- !x y. x -||-> y ==> !z. x -||-> z ==>

?u. y -||-> u /\ z -||-> u : goalstack

The final goal proof can be packaged into:



6.6. Exercises 113

85val predn_diamond_lemma = prove(

‘‘!x y. x -||-> y ==>

!z. x -||-> z ==> ?u. y -||-> u /\ z -||-> u‘‘,

HO_MATCH_MP_TAC predn_strong_ind THEN REPEAT CONJ_TAC THENL [

PROVE_TAC [predn_rules],

REPEAT STRIP_TAC THEN

Q.PAT_ASSUM ‘x # y -||-> z‘

(STRIP_ASSUME_TAC o SIMP_RULE std_ss [x_ap_y_predn]) THEN

RW_TAC std_ss [] THEN

TRY (PROVE_TAC [predn_rules]) THENL [

‘?w. (y = K # w) /\ (z -||-> w)‘ by PROVE_TAC [Kx_predn] THEN

RW_TAC std_ss [] THEN PROVE_TAC [predn_rules],

‘?p q. (y = S # p # q) /\ (f -||-> p) /\ (g -||-> q)‘ by

PROVE_TAC [Sxy_predn] THEN

RW_TAC std_ss [] THEN PROVE_TAC [predn_rules]

],

RW_TAC std_ss [Kxy_predn] THEN PROVE_TAC [predn_rules],

RW_TAC std_ss [Sxyz_predn] THEN PROVE_TAC [predn_rules]

]);

· · · � · · ·

We are on the home straight. The lemma can be turned into a statement involving

the diamond constant directly:

86val predn_diamond = store_thm(

"predn_diamond",

‘‘diamond $-||->‘‘,

PROVE_TAC [diamond_def, predn_diamond_lemma]);

And now we can prove that our original relation is confluent in similar fashion:

87val confluent_redn = store_thm(

"confluent_redn",

‘‘confluent $-->‘‘,

PROVE_TAC [predn_diamond, RTCpredn_def,

RTCredn_def, confluent_diamond_RTC,

RTCpredn_EQ_RTCredn, diamond_RTC]);

6.6 Exercises

If necessary, answers to the first three exercises can be found by examining the source

file in examples/ind def/clScript.sml.

1. Prove that

RTC R x y ∧ RTC R y z ⊃ RTC R x z
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You will need to prove the goal by induction, and will probably need to massage

it slightly first to get it to match the appropriate induction principle. Store the

theorem under the name RTC RTC.

2. Another induction. Show that

(∀x y. R1 x y ⊃ R2 x y) ⊃ (∀x y. RTC R1 x y ⊃ RTC R2 x y)

Call the resulting theorem RTC monotone.

3. Yet another RTC induction, but where R is no longer abstract, and is instead the

original reduction relation. Prove

x→∗ y ⊃ ∀z. x z →∗ y z ∧ z x→∗ z y

Call it RTCredn ap monotonic.

4. Come up with a counter-example for the following property:

(

∀x y z. R x y ∧ R x z ⊃
∃u. RTC R y u ∧ RTC R z u

)

⊃
diamond (RTC R)



Chapter 7

Proof Tools: Propositional Logic

Users of HOL can create their own theorem proving tools by combining predefined rules

and tactics. The ML type-discipline ensures that only logically sound methods can be

used to create values of type thm. In this chapter, a real example is described.

Two implementations of the tool are given to illustrate various styles of proof pro-

gramming. The first implementation is the obvious one, but is inefficient because of

the ‘brute force’ method used. The second implementation attempts to be a great deal

more intelligent. Extensions to the tools to allow more general applicability are also

discussed.

The problem to be solved is that of deciding the truth of a closed formula of proposi-

tional logic. Such a formula has the general form

ϕ ::= v | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ⇒ ϕ | ϕ = ϕ

formula ::= ∀~v. ϕ

where the variables v are all of boolean type, and where the universal quantification at

the outermost level captures all of the free variables.

7.1 Method 1: Truth Tables

The first method to be implemented is the brute force method of trying all possible

boolean combinations. This approach’s only real virtue is that it is exceptionally easy to

implement. First we will prove the motivating theorem:

val FORALL_BOOL = prove(

‘‘(!v. P v) = P T /\ P F‘‘,

SRW_TAC [][EQ_IMP_THM] THEN Cases_on ‘v‘ THEN SRW_TAC [][]);

The proof proceeds by splitting the goal into two halves, showing

(∀v. P (v)) ⇒ P (>) ∧ P (⊥)

(which goal is automatically shown by the simplifier), and

P (>) ∧ P (⊥) ⇒ P (v)

for an arbitrary boolean variable v. After case-splitting on v, the assumptions are then

enough to show the goal. (This theorem is actually already proved in the theory bool.)

The next, and final, step is to rewrite with this theorem:

115
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val tautDP = SIMP_CONV bool_ss [FORALL_BOOL]

This enables the following

1- tautDP ‘‘!p q. p /\ q /\ ~p‘‘;

> val it = |- (!p q. p /\ q /\ ~p) = F : thm

- tautDP ‘‘!p. p \/ ~p‘‘

> val it = |- (!p. p \/ ~p) = T : thm

and even the marginally more intimidating

2- time tautDP

‘‘!p q c a. ~(((~a \/ p /\ ~q \/ ~p /\ q) /\

(~(p /\ ~q \/ ~p /\ q) \/ a)) /\

(~c \/ p /\ q) /\ (~(p /\ q) \/ c)) \/

~(p /\ q) \/ c /\ ~a‘‘;

runtime: 0.147s, gctime: 0.012s, systime: 0.000s.

> val it =

|- (!p q c a.

~(((~a \/ p /\ ~q \/ ~p /\ q) /\ (~(p /\ ~q \/ ~p /\ q) \/ a)) /\

(~c \/ p /\ q) /\ (~(p /\ q) \/ c)) \/ ~(p /\ q) \/ c /\ ~a) =

T : thm

This is a dreadful algorithm for solving this problem. The system’s built-in function,

tautLib.TAUT_CONV solves the problem above ten times faster, even though it is also

using a truth-table technique.1 The only real merit in this solution is that it took one line

to write. This is a general illustration of the truth that HOL’s high-level tools, particularly

the simplifier, can provide fast prototypes for a variety of proof tasks.

7.2 Method 2: the DPLL Algorithm

The Davis-Putnam-Loveland-Logemann method [4] for deciding the satisfiability of

propositional formulas in CNF (Conjunctive Normal Form) is a powerful technique, still

used in state-of-the-art solvers today. If we strip the universal quantifiers from our input

formulas, our task can be seen as determining the validity of a propositional formula.

Testing the negation of such a formula for satisfiability is a test for validity: if the for-

mula’s negation is satisfiable, then it is not valid (the satisfying assignment will make

the original false); if the formula’s negation is unsatisfiable, then the formula is valid

(no assignment can make it false).

(The source code for this example is available in the file examples/dpll.sml.)

1The main difference is that TAUT_CONV simplifies the body of the universally quantified formula after
each case-split. Our function does all of the case-splits and then simplifies. The simplifier, which works
over a term top-down, can’t implement TAUT_CONV’s algorithm directly.
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Preliminaries

To begin, assume that we have code already to convert arbitrary formulas into CNF, and

to then decide the satisfiability of these formulas. Assume further that if the input to

the latter procedure is unsatisfiable, then it will return with a theorem of the form

` ϕ = F

or if it is satisfiable, then it will return a satisfying assignment, a map from variables to

booleans. This map will be a function from HOL variables to one of the HOL terms T or

F. Thus, we will assume

datatype result = Unsat of thm | Sat of term -> term

val toCNF : term -> thm

val DPLL : term -> result

(The theorem returned by toCNF will equate the input term to another in CNF.)

Before looking into implementing these functions, we will need to consider

• how to transform our inputs to suit the function; and

• how to use the outputs from the functions to produce our desired results

We are assuming our input is a universally quantified formula. Both the CNF and

DPLL procedures expect formulas without quantifiers. We also want to pass these pro-

cedures the negation of the original formula. Both of the required term manipulations

required can be done by functions found in the structure boolSyntax. (In general, im-

portant theories (such as bool) are accompanied by Syntax modules containing func-

tions for manipulating the term-forms associated with that theory.)

In this case we need the functions

strip_forall : term -> term list * term

mk_neg : term -> term

The function strip_forall strips a term of all its outermost universal quantifications,

returning the list of variables stripped and the body of the quantification. The function

mk_neg takes a term of type bool and returns the term corresponding to its negation.

Using these functions, it is easy to see how we will be able to take ∀~v. ϕ as input, and

pass the term ¬ϕ to the function toCNF. A more significant question is how to use the

results of these calls. The call to toCNF will return a theorem

` ¬ϕ = ϕ′

The formula ϕ′ is what will then be passed to DPLL. (We can extract it by using the

concl and rhs functions.) If DPLL returns the theorem ` ϕ′ = F, an application of TRANS

to this and the theorem displayed above will derive the formula ` ¬ϕ = F . In order to

derive the final result, we will need to turn this into ` ϕ. This is best done by proving a

bespoke theorem embodying the equality (there isn’t one such already in the system):
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val NEG_EQ_F = prove(‘‘(~p = F) = p‘‘, REWRITE_TAC []);

To turn ` ϕ into ` (∀~v. ϕ) = T, we will perform the following proof:

` ϕ

` ∀~v. ϕ
GENL(~v)

` (∀~v. ϕ) = T
EQT INTRO

The other possibility is that DPLL will return a satisfying assignment demonstrating that

ϕ′ is satisfiable. If this is the case, we want to show that ∀~v. ϕ is false. We can do this

by assuming this formula, and then specialising the universally quantified variables in

line with the provided map. In this way, it will be possible to produce the theorem

∀~v. ϕ ` ϕ[~v := satisfying assignment]

Because there are no free variables in ∀~v. ϕ, the substitution will produce a completely

ground boolean formula. This will straightforwardly rewrite to F (if the assignment

makes ¬ϕ true, it must make ϕ false). Turning φ ` F into ` φ = F is a matter of calling

DISCH and then rewriting with the built-in theorem IMP_F_EQ_F:

` ∀t. t⇒ F = (t = F)

Putting all of the above together, we can write our wrapper function, which we will

call DPLL_UNIV, with the UNIV suffix reminding us that the input must be universally

quantified.

fun DPLL_UNIV t = let

val (vs, phi) = strip_forall t

val cnf_eqn = toCNF (mk_neg phi)

val phi’ = rhs (concl cnf_eqn)

in

case DPLL phi’ of

Unsat phi’_eq_F => let

val negphi_eq_F = TRANS cnf_eqn phi’_eq_F

val phi_thm = CONV_RULE (REWR_CONV NEG_EQ_F) negphi_eq_F

in

EQT_INTRO (GENL vs phi_thm)

end

| Sat f => let

val t_assumed = ASSUME t

fun spec th =

spec (SPEC (f (#1 (dest_forall (concl th)))) th)

handle HOL_ERR _ => REWRITE_RULE [] th

in

CONV_RULE (REWR_CONV IMP_F_EQ_F) (DISCH t (spec t_assumed))

end

end
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The auxiliary function spec that is used in the second case relies on the fact that

dest_forall will raise a HOL_ERR exception if the term it is applied to is not universally

quantified. When spec’s argument is not universally quantified, this means that the

recursion has bottomed out, and all of the original formula’s universal variables have

been specialised. Then the resulting formula can be rewritten to false (REWRITE_RULE’s

built-in rewrites will handle all of the necessary cases).

The DPLL_UNIV function also uses REWR_CONV in two places. The REWR_CONV function

applies a single (first-order) rewrite at the top of a term. These uses of REWR_CONV are

done within calls to the CONV_RULE function. This lifts a conversion c (a function taking

a term t and producing a theorem ` t = t′), so that CONV_RULE c takes the theorem ` t

to ` t′.

7.2.1 Conversion to Conjunctive Normal Form

A formula in Conjunctive Normal Form is a conjunction of disjunctions of literals (either

variables, or negated variables). It is possible to convert formulas of the form we are

expecting into CNF by simply rewriting with the following theorems

¬(φ ∧ ψ) = ¬φ ∨ ¬ψ

¬(φ ∨ ψ) = ¬φ ∧ ¬ψ

φ ∨ (ψ ∧ ξ) = (φ ∨ ψ) ∧ (φ ∨ ξ)

(ψ ∧ ξ) ∨ φ = (φ ∨ ψ) ∧ (φ ∨ ξ)

φ⇒ ψ = ¬φ ∨ ψ

(φ = ψ) = (φ⇒ ψ) ∧ (ψ ⇒ φ)

Unfortunately, using these theorems as rewrites can result in an exponential increase in

the size of a formula. (Consider using them to convert an input in Disjunctive Normal

Form, a disjunction of conjunctions of literals, into CNF.)

A better approach is to convert to what is known as “definitional CNF”. HOL includes

functions to do this in the structure defCNF. Unfortunately, this approach adds extra,

existential, quantifiers to the formula. For example

3- defCNF.DEF_CNF_CONV ‘‘p \/ (q /\ r)‘‘;

> val it =

|- p \/ q /\ r =

?x. (x \/ ~q \/ ~r) /\ (r \/ ~x) /\ (q \/ ~x) /\ (p \/ x) : thm

Under the existentially-bound x, the code has produced a formula in CNF. With an ex-

ample this small, the formula is actually bigger than that produced by the näıve transla-

tion, but with more realistic examples, the difference quickly becomes significant. The

last example used with tautDP is 20 times bigger when translated näıvely than when

using defCNF, and the translation takes 150 times longer to perform.
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But what of these extra existentially quantified variables? In fact, we can ignore

the quantification when calling the core DPLL procedure. If we pass the unquantified

body to DPLL, we will either get back an unsatisfiable verdict of the form ` ϕ′ = F, or a

satisfying assignment for all of the free variables. If the latter occurs, the same satisfying

assignment will also satisfy the original. If the former, we will perform the following

proof

` ϕ′ = F

` ϕ′ ⇒ F

` ∀~x. ϕ′ ⇒ F

` (∃~x. ϕ′) ⇒ F

` (∃~x. ϕ′) = F

producing a theorem of the form expected by our wrapper function.

In fact, there is an alternative function in the defCNF API that we will use in pref-

erence to DEF_CNF_CONV. The problem with DEF_CNF_CONV is that it can produce a big

quantification, involving lots of variables. We will rather use DEF_CNF_VECTOR_CONV.

Instead of output of the form

` ϕ = (∃~x. ϕ′)

this second function produces

` ϕ = (∃(v : num → bool). ϕ′)

where the individual variables xi of the first formula are replaced by calls to the v

function v(i), and there is just one quantified variable, v. This variation will not affect

the operation of the proof sketched above. And as long as we don’t require literals to

be variables or their negations, but also allow them to be terms of the form v(i) and

¬v(i) as well, then the action of the DPLL procedure on the formula ϕ′ won’t be affected

either.

Unfortunately for uniformity, in simple cases, the definitional CNF conversion func-

tions may not result in any existential quantifications at all. This makes our implemen-

tation of DPLL somewhat more complicated. We calculate a body variable that will be

passed onto the CoreDPLL function, as well as a transform function that will transform

an unsatisfiability result into something of the desired form. If the result of conver-

sion to CNF produces an existential quantification, we use the proof sketched above.

Otherwise, the transformation can be the identity function, I:
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fun DPLL t = let

val (transform, body) = let

val (vector, body) = dest_exists t

fun transform body_eq_F = let

val body_imp_F = CONV_RULE (REWR_CONV (GSYM IMP_F_EQ_F)) body_eq_F

val fa_body_imp_F = GEN vector body_imp_F

val ex_body_imp_F = CONV_RULE FORALL_IMP_CONV fa_body_imp_F

in

CONV_RULE (REWR_CONV IMP_F_EQ_F) ex_body_imp_F

end

in

(transform, body)

end handle HOL_ERR _ => (I, t)

in

case CoreDPLL body of

Unsat body_eq_F => Unsat (transform body_eq_F)

| x => x

end

where we have still to implement the core DPLL procedure (called CoreDPLL above).

The above code uses REWR_CONV with the IMP_F_EQ_F theorem to affect two of the

proof’s transformations. The GSYM function is used to flip the orientation a theorem’s

top-level equalities. Finally, the FORALL_IMP_CONV conversion takes a term of the form

∀x. P (x) ⇒ Q

and returns the theorem

` (∀x. P (x) ⇒ Q) = ((∃x. P (x)) ⇒ Q)

7.2.2 The Core DPLL Procedure

The DPLL procedure can be seen as a slight variation on the basic “truth table” technique

we have already seen. As with that procedure, the core operation is a case-split on a

boolean variable. There are two significant differences though: DPLL can be seen as

a search for a satisfying assignment, so that if picking a variable to have a particular

value results in a satisfying assignment, we do not need to also check what happens

if the same variable is given the opposite truth-value. Secondly, DPLL takes some care

to pick good variables to split on. In particular, unit propagation is used to eliminate

variables that will not cause branching in the search-space.

Our implementation of the core DPLL procedure is a function that takes a term and

returns a value of type result: either a theorem equating the original term to false, or

a satisfying assignment (in the form of a function from terms to terms). As the DPLL

search for a satisfying assignment proceeds, an assignment is incrementally constructed.

This suggests that the recursive core of our function will need to take a term (the current
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formula) and a context (the current assignment) as parameters. The assignment can be

naturally represented as a set of equations, where each equation is either v = T or v = F.

This suggests that a natural representation for our program state is a theorem: the

hypotheses will represent the assignment, and the conclusion can be the current for-

mula. Of course, HOL theorems can’t just be wished into existence. In this case, we can

make everything sound by also assuming the initial formula. Thus, when we begin our

initial state will be φ ` φ. After splitting on variable v, we will generate two new states

φ, (v=T) ` φ1, and φ, (v=F) ` φ2, where the φi are the result of simplifying φ under the

additional assumption constraining v.

The easiest way to add an assumption to a theorem is to use the derived rule ADD_ASSUM.

But in this situation, we also want to simplify the conclusion of the theorem with the

same assumption. This means that it will be enough to rewrite with the theorem ψ ` ψ,

where ψ is the new assumption. The action of rewriting with such a theorem will cause

the new assumption to appear among the assumptions of the result.

The casesplit function is thus:

fun casesplit v th = let

val eqT = ASSUME (mk_eq(v, boolSyntax.T))

val eqF = ASSUME (mk_eq(v, boolSyntax.F))

in

(REWRITE_RULE [eqT] th, REWRITE_RULE [eqF] th)

end

A case-split can result in a formula that has been rewritten all the way to true or false.

These are the recursion’s base cases. If the formula has been rewritten to true, then we

have found a satisfying assignment, one that is now stored for us in the hypotheses of

the theorem itself. The following function, mk_satmap, extracts those hypotheses into a

finite-map, and then returns the lookup function for that finite-map:

fun mk_satmap th = let

val hyps = hypset th

fun foldthis (t,acc) = let

val (l,r) = dest_eq t

in

Binarymap.insert(acc,l,r)

end handle HOL_ERR _ => acc

val fmap = HOLset.foldl foldthis (Binarymap.mkDict Term.compare) hyps

in

Sat (fn v => Binarymap.find(fmap,v)

handle Binarymap.NotFound => boolSyntax.T)

end

The foldthis function above adds the equations that are stored as hypotheses into

the finite-map. The exception handler in foldthis is necessary because one of the

hypotheses will be the original formula. The exception handler in the function that looks



7.2. Method 2: the DPLL Algorithm 123

up variable bindings is necessary because a formula may be reduced to true without

every variable being assigned a value at all. In this case, it is irrelevant what value we

give to the variable, so we arbitrarily map such variables to T.

If the formula has been rewritten to false, then we can just return this theorem di-

rectly. Such a theorem is not quite in the right form for the external caller, which is

expecting an equation, so if the final result is of the form φ ` F, we will have to trans-

form this to ` φ = F.

The next question to address is what to do with the results of recursive calls. If a case-

split returns a satisfying assignment this can be returned unchanged. But if a recursive

call returns a theorem equating the input to false, more needs to be done. If this is

the first call, then the other branch needs to be checked. If this also returns that the

theorem is unsatisfiable, we will have two theorems:

φ0,∆, (v=T) ` F φ0,∆, (v=F) ` F

where φ0 is the original formula, ∆ is the rest of the current assignment, and v is the

variable on which a split has just been performed. To turn these two theorems into the

desired

φ0,∆ ` F

we will use the rule of inference DISJ_CASES:

Γ ` ψ ∨ ξ ∆1 ∪ {ψ} ` φ ∆2 ∪ {ξ} ` φ

Γ ∪ ∆1 ∪ ∆2 ` φ

and the theorem BOOL_CASES_AX:

` ∀t. (t = T) ∨ (t = F)

We can put these fragments together and write the top-level CoreDPLL function, in

Figure 7.1.

All that remains to be done is to figure out which variable to case-split on. The most

important variables to split on are those that appear in what are called “unit clauses”, a

clause containing just one literal. If there is a unit clause in a formula then it is of the

form

φ ∧ v ∧ φ′

or

φ ∧ ¬v ∧ φ′

In either situation, splitting on v will always result in a branch that evaluates directly to

false. We thus eliminate a variable without increasing the size of the problem. The pro-

cess of eliminating unit clauses is usually called “unit propagation”. Unit propagation
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fun CoreDPLL form = let

val initial_th = ASSUME form

fun recurse th = let

val c = concl th

in

if c = boolSyntax.T then

mk_satmap th

else if c = boolSyntax.F then

Unsat th

else let

val v = find_splitting_var c

val (l,r) = casesplit v th

in

case recurse l of

Unsat l_false => let

in

case recurse r of

Unsat r_false =>

Unsat (DISJ_CASES (SPEC v BOOL_CASES_AX) l_false r_false)

| x => x

end

| x => x

end

end

in

case (recurse initial_th) of

Unsat th => Unsat (CONV_RULE (REWR_CONV IMP_F_EQ_F) (DISCH form th))

| x => x

end

Figure 7.1: The core of the DPLL function
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is not usually thought of as a case-splitting operation, but doing it this way makes our

code simpler.

If a formula does not include a unit clause, then choice of the next variable to split on

is much more of a black art. Here we will implement a very simple choice: to split on

the variable that occurs most often. Our function find_splitting_var takes a formula

and returns the variable to split on.

fun find_splitting_var phi = let

fun recurse acc [] = getBiggest acc

| recurse acc (c::cs) = let

val ds = strip_disj c

in

case ds of

[lit] => (dest_neg lit handle HOL_ERR _ => lit)

| _ => recurse (count_vars ds acc) cs

end

in

recurse (Binarymap.mkDict Term.compare) (strip_conj phi)

end

This function works by handing a list of clauses to the inner recurse function. This

strips each clause apart in turn. If a clause has only one disjunct it is a unit-clause and

the variable can be returned directly. Otherwise, the variables in the clause are counted

and added to the accumulating map by count_vars, and the recursion can continue.

The count_vars function has the following implementation:

fun count_vars ds acc =

case ds of

[] => acc

| lit::lits => let

val v = dest_neg lit handle HOL_ERR _ => lit

in

case Binarymap.peek (acc, v) of

NONE => count_vars lits (Binarymap.insert(acc,v,1))

| SOME n => count_vars lits (Binarymap.insert(acc,v,n + 1))

end

The use of a binary tree to store variable data makes it efficient to update the data as

it is being collected. Extracting the variable with the largest count is then a linear scan

of the tree, which we can do with the foldl function:

fun getBiggest acc =

#1 (Binarymap.foldl(fn (v,cnt,a as (bestv,bestcnt)) =>

if cnt > bestcnt then (v,cnt) else a)

(boolSyntax.T, 0)

acc
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7.2.3 Performance

Once inputs get even a little beyond the clearly trivial, the function we have written (at

the top-level, DPLL_UNIV) performs considerably better than the truth table implemen-

tation. For example, the generalisation of the following term, with 29 variables, takes

wrapper two and a half minutes to demonstrate as a tautology:

(s0_0 = (x_0 = ~y_0)) /\ (c0_1 = x_0 /\ y_0) /\

(s0_1 = ((x_1 = ~y_1) = ~c0_1)) /\

(c0_2 = x_1 /\ y_1 \/ (x_1 \/ y_1) /\ c0_1) /\

(s0_2 = ((x_2 = ~y_2) = ~c0_2)) /\

(c0_3 = x_2 /\ y_2 \/ (x_2 \/ y_2) /\ c0_2) /\

(s1_0 = ~(x_0 = ~y_0)) /\ (c1_1 = x_0 /\ y_0 \/ x_0 \/ y_0) /\

(s1_1 = ((x_1 = ~y_1) = ~c1_1)) /\

(c1_2 = x_1 /\ y_1 \/ (x_1 \/ y_1) /\ c1_1) /\

(s1_2 = ((x_2 = ~y_2) = ~c1_2)) /\

(c1_3 = x_2 /\ y_2 \/ (x_2 \/ y_2) /\ c1_2) /\

(c_3 = ~c_0 /\ c0_3 \/ c_0 /\ c1_3) /\

(s_0 = ~c_0 /\ s0_0 \/ c_0 /\ s1_0) /\

(s_1 = ~c_0 /\ s0_1 \/ c_0 /\ s1_1) /\

(s_2 = ~c_0 /\ s0_2 \/ c_0 /\ s1_2) /\ ~c_0 /\

(s2_0 = (x_0 = ~y_0)) /\ (c2_1 = x_0 /\ y_0) /\

(s2_1 = ((x_1 = ~y_1) = ~c2_1)) /\

(c2_2 = x_1 /\ y_1 \/ (x_1 \/ y_1) /\ c2_1) /\

(s2_2 = ((x_2 = ~y_2) = ~c2_2)) /\

(c2_3 = x_2 /\ y_2 \/ (x_2 \/ y_2) /\ c2_2) ==>

(c_3 = c2_3) /\ (s_0 = s2_0) /\ (s_1 = s2_1) /\ (s_2 = s2_2)

The truth table implementation in tautLib takes over 100 times as long to prove the

tautology. (But if you want real speed, the SAT_TAUT_PROVE function in the HolSatLib

library does the above in less than a second, by using an external tool to generate the

proof of unsatisfiability, and then translating that proof back into HOL.)

7.3 Extending our Procedure’s Applicability

The function DPLL_UNIV requires its input to be universally quantified, with all free

variables bound, and for each literal to be a variable or the negation of a variable.

This makes DPLL_UNIV a little unfriendly when it comes to using it as part of the proof

of a goal. In this section, we will write one further “wrapper” layer to wrap around

DPLL_UNIV, producing a tool that can be applied to many more goals.

Relaxing the Quantification Requirement The first step is to allow formulas that are

not closed. In order to hand on a formula that is closed to DPLL_UNIV, we can simply

generalise over the formula’s free variables. If DPLL_UNIV then says that the new, ground
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formula is true, then so too will be the original. On the other hand, if DPLL_UNIV says

that the ground formula is false, then we can’t conclude anything further and will have

to raise an exception.

Code implementing this is shown below:

fun nonuniv_wrap t = let

val fvs = free_vars t

val gen_t = list_mk_forall(fvs, t)

val gen_t_eq = DPLL_UNIV gen_t

in

if rhs (concl gen_t_eq) = boolSyntax.T then let

val gen_th = EQT_ELIM gen_t_eq

in

EQT_INTRO (SPECL fvs gen_th)

end

else

raise mk_HOL_ERR "dpll" "nonuniv_wrap" "No conclusion"

end

Allowing Non-Literal Leaves We can do better than nonuniv_wrap: rather than quan-

tifying over just the free variables (which we have conveniently assumed will only be

boolean), we can turn any leaf part of the term that is not a variable or a negated vari-

able into a fresh variable. We first extract those boolean-valued leaves that are not the

constants true or false.

fun var_leaves acc t = let

val (l,r) = dest_conj t handle HOL_ERR _ =>

dest_disj t handle HOL_ERR _ =>

dest_imp t handle HOL_ERR _ =>

dest_bool_eq t

in

var_leaves (var_leaves acc l) r

end handle HOL_ERR _ =>

if type_of t <> bool then

raise mk_HOL_ERR "dpll" "var_leaves" "Term not boolean"

else if t = boolSyntax.T then acc

else if t = boolSyntax.F then acc

else HOLset.add(acc, t)

Note that we haven’t explicitly attempted to pull apart boolean negations (which one

might do with dest_neg). This is because dest_imp also destructs terms ~p, returning

p and F as the antecedent and conclusion. We have also used a function dest_bool_eq

designed to pull apart only those equalities which are over boolean values. Its definition

is
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fun dest_bool_eq t = let

val (l,r) = dest_eq t

val _ = type_of l = bool orelse

raise mk_HOL_ERR "dpll" "dest_bool_eq" "Eq not on bools"

in

(l,r)

end

Now we can finally write our final DPLL_TAUT function:

fun DPLL_TAUT tm =

let val (univs,tm’) = strip_forall tm

val insts = HOLset.listItems (var_leaves empty_tmset tm’)

val vars = map (fn t => genvar bool) insts

val theta = map2 (curry (op |->)) insts vars

val tm’’ = list_mk_forall (vars,subst theta tm’)

in

EQT_INTRO (GENL univs

(SPECL insts (EQT_ELIM (DPLL_UNIV tm’’))))

end

Note how this code first pulls off all external universal quantifications (with strip_forall),

and then re-generalises (with list_mk_forall). The calls to GENL and SPECL undo these

manipulations, but at the level of theorems. This produces a theorem equating the orig-

inal input to true. (If the input term is not an instance of a valid propositional formula,

the call to EQT_ELIM will raise an exception.)

Exercises

1. Extend the procedure so that it handles conditional expressions (both arms of the

terms must be of boolean type).
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More Examples

In addition to the examples already covered in this text, the HOL distribution comes

with a variety of instructive examples in the examples directory. There the following

examples (among others) are to be found:

autopilot.sml This example is a HOL rendition (by Mark Staples) of a PVS example

due to Ricky Butler of NASA. The example shows the use of the record-definition

package, as well as illustrating some aspects of the automation available in HOL.

bmark In this directory, there is a standard HOL benchmark: the proof of correctness of

a multiplier circuit, due to Mike Gordon.

euclid.sml This example is the same as that covered in Chapter 4: a proof of Euclid’s

theorem on the infinitude of the prime numbers, extracted and modified from a

much larger development due to John Harrison. It illustrates the automation of

HOL on a classic proof.

ind def This directory contains some examples of an inductive definition package in

action. Featured are an operational semantics for a small imperative programming

language, a small process algebra, and combinatory logic with its type system.

The files were originally developed by Tom Melham and Juanito Camilleri and are

extensively commented. The last is the basis for Chapter 6.

Most of the proofs in these theories can now be done much more easily by using

some of the recently developed proof tools, namely the simplifier and the first

order prover.

fol.sml This file illustrates John Harrison’s implementation of a model-elimination

style first order prover.

lambda This directory develops theories of a “de Bruijn” style lambda calculus, and also

a name-carrying version. (Both are untyped.) The development is a revision of

the proofs underlying the paper “5 Axioms of Alpha Conversion”, Andy Gordon and

Tom Melham, Proceedings of TPHOLs’96, Springer LNCS 1125.

parity This sub-directory contains the files used in the parity example of Chapter 5.
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MLsyntax This sub-directory contains an extended example of a facility for defining

mutually recursive types, due to Elsa Gunter of Bell Labs. In the example, the type

of abstract syntax for a small but not totally unrealistic subset of ML is defined,

along with a simple mutually recursive function over the syntax.

Thery.sml A very short example due to Laurent Thery, demonstrating a cute inductive

proof.

RSA This directory develops some of the mathematics underlying the RSA cryptography

scheme. The theories have been produced by Laurent Thery of INRIA Sophia-

Antipolis.
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