#ifndef _LINUX_SCHED_H
#define _LINUX_SCHED_H

#include <asm/param.h>    /* for HZ */

extern unsigned long event;

#include <linux/config.h>
#include <linux/binfmts.h>
#include <linux/threads.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/times.h>
#include <linux/timex.h>
#include <linux/rbtree.h>

#include <asm/system.h>
#include <asm/semaphore.h>
#include <asm/page.h>
#include <asm/ptrace.h>
#include <asm/mmu.h>

#include <linux/smp.h>
#include <linux/tty.h>
#include <linux/sem.h>
#include <linux/signal.h>
#include <linux/securebits.h>
#include <linux/fs_struct.h>

struct exec_domain;

/*
 * cloning flags:
 */
#define CSIGNAL        0x000000ff    /* signal mask to be sent at exit */
#define CLONE_VM    0x00000100    /* set if VM shared between processes */
#define CLONE_FS    0x00000200    /* set if fs info shared between processes */
#define CLONE_FILES    0x00000400    /* set if open files shared between processes */
#define CLONE_SIGHAND    0x00000800    /* set if signal handlers and blocked signals shared */
#define CLONE_PID    0x00001000    /* set if pid shared */
#define CLONE_PTRACE    0x00002000    /* set if we want to let tracing continue on the child too */
#define CLONE_VFORK    0x00004000    /* set if the parent wants the child to wake it up on mm_release */
#define CLONE_PARENT    0x00008000    /* set if we want to have the same parent as the cloner */
#define CLONE_THREAD    0x00010000    /* Same thread group? */
#define CLONE_NEWNS    0x00020000    /* New namespace group? */

#define CLONE_SIGNAL    (CLONE_SIGHAND | CLONE_THREAD)

/*
 * These are the constant used to fake the fixed-point load-average
 * counting. Some notes:
 *  - 11 bit fractions expand to 22 bits by the multiplies: this gives
 *    a load-average precision of 10 bits integer + 11 bits fractional
 *  - if you want to count load-averages more often, you need more
 *    precision, or rounding will get you. With 2-second counting freq,
 *    the EXP_n values would be 1981, 2034 and 2043 if still using only
 *    11 bit fractions.
 */
extern unsigned long avenrun[];        /* Load averages */

#define FSHIFT        11        /* nr of bits of precision */
#define FIXED_1        (1<<FSHIFT)    /* 1.0 as fixed-point */
#define LOAD_FREQ    (5*HZ)        /* 5 sec intervals */
#define EXP_1        1884        /* 1/exp(5sec/1min) as fixed-point */
#define EXP_5        2014        /* 1/exp(5sec/5min) */
#define EXP_15        2037        /* 1/exp(5sec/15min) */

#define CALC_LOAD(load,exp,n) \
    load *= exp; \
    load += n*(FIXED_1-exp); \
    load >>= FSHIFT;

#define CT_TO_SECS(x)    ((x) / HZ)
#define CT_TO_USECS(x)    (((x) % HZ) * 1000000/HZ)

extern int nr_running, nr_threads;
extern int last_pid;

#include <linux/fs.h>
#include <linux/time.h>
#include <linux/param.h>
#include <linux/resource.h>
#ifdef __KERNEL__
#include <linux/timer.h>
#endif

#include <asm/processor.h>

#define TASK_RUNNING        0
#define TASK_INTERRUPTIBLE    1
#define TASK_UNINTERRUPTIBLE    2
#define TASK_ZOMBIE        4
#define TASK_STOPPED        8

#define __set_task_state(tsk, state_value)        \
    do { (tsk)->state = (state_value); } while (0)
#ifdef CONFIG_SMP
#define set_task_state(tsk, state_value)        \
    set_mb((tsk)->state, (state_value))
#else
#define set_task_state(tsk, state_value)        \
    __set_task_state((tsk), (state_value))
#endif

#define __set_current_state(state_value)            \
    do { current->state = (state_value); } while (0)
#ifdef CONFIG_SMP
#define set_current_state(state_value)        \
    set_mb(current->state, (state_value))
#else
#define set_current_state(state_value)        \
    __set_current_state(state_value)
#endif

/*
 * Scheduling policies
 */
#define SCHED_OTHER        0
#define SCHED_FIFO        1
#define SCHED_RR        2

/*
 * This is an additional bit set when we want to
 * yield the CPU for one re-schedule..
 */
#define SCHED_YIELD        0x10

struct sched_param {
    int sched_priority;
};

struct completion;

#ifdef __KERNEL__

#include <linux/spinlock.h>

/*
 * This serializes "schedule()" and also protects
 * the run-queue from deletions/modifications (but
 * _adding_ to the beginning of the run-queue has
 * a separate lock).
 */
extern rwlock_t tasklist_lock;
extern spinlock_t runqueue_lock;
extern spinlock_t mmlist_lock;

extern void sched_init(void);
extern void init_idle(void);
extern void show_state(void);
extern void cpu_init (void);
extern void trap_init(void);
extern void update_process_times(int user);
extern void update_one_process(struct task_struct *p, unsigned long user,
                   unsigned long system, int cpu);

#define    MAX_SCHEDULE_TIMEOUT    LONG_MAX
extern signed long FASTCALL(schedule_timeout(signed long timeout));
asmlinkage void schedule(void);

extern int schedule_task(struct tq_struct *task);
extern void flush_scheduled_tasks(void);
extern int start_context_thread(void);
extern int current_is_keventd(void);

/*
 * The default fd array needs to be at least BITS_PER_LONG,
 * as this is the granularity returned by copy_fdset().
 */
#define NR_OPEN_DEFAULT BITS_PER_LONG

struct namespace;
/*
 * Open file table structure
 */
struct files_struct {
    atomic_t count;
    rwlock_t file_lock;    /* Protects all the below members.  Nests inside tsk->alloc_lock */
    int max_fds;
    int max_fdset;
    int next_fd;
    struct file ** fd;    /* current fd array */
    fd_set *close_on_exec;
    fd_set *open_fds;
    fd_set close_on_exec_init;
    fd_set open_fds_init;
    struct file * fd_array[NR_OPEN_DEFAULT];
};

#define INIT_FILES \
{                             \
    count:        ATOMIC_INIT(1),         \
    file_lock:    RW_LOCK_UNLOCKED,         \
    max_fds:    NR_OPEN_DEFAULT,         \
    max_fdset:    __FD_SETSIZE,             \
    next_fd:    0,                 \
    fd:        &init_files.fd_array[0],     \
    close_on_exec:    &init_files.close_on_exec_init, \
    open_fds:    &init_files.open_fds_init,     \
    close_on_exec_init: { { 0, } },         \
    open_fds_init:    { { 0, } },             \
    fd_array:    { NULL, }             \
}

/* Maximum number of active map areas.. This is a random (large) number */
#define DEFAULT_MAX_MAP_COUNT    (65536)

extern int max_map_count;

struct mm_struct {
    struct vm_area_struct * mmap;        /* list of VMAs */
    rb_root_t mm_rb;
    struct vm_area_struct * mmap_cache;    /* last find_vma result */
    pgd_t * pgd;
    atomic_t mm_users;            /* How many users with user space? */
    atomic_t mm_count;            /* How many references to "struct mm_struct" (users count as 1) */
    int map_count;                /* number of VMAs */
    struct rw_semaphore mmap_sem;
    spinlock_t page_table_lock;        /* Protects task page tables and mm->rss */

    struct list_head mmlist;        /* List of all active mm's.  These are globally strung
                         * together off init_mm.mmlist, and are protected
                         * by mmlist_lock
                         */

    unsigned long start_code, end_code, start_data, end_data;
    unsigned long start_brk, brk, start_stack;
    unsigned long arg_start, arg_end, env_start, env_end;
    unsigned long rss, total_vm, locked_vm;
    unsigned long def_flags;
    unsigned long cpu_vm_mask;
    unsigned long swap_address;

    unsigned dumpable:1;

    /* Architecture-specific MM context */
    mm_context_t context;
};

extern int mmlist_nr;

#define INIT_MM(name) \
{                             \
    mm_rb:        RB_ROOT,            \
    pgd:        swapper_pg_dir,         \
    mm_users:    ATOMIC_INIT(2),         \
    mm_count:    ATOMIC_INIT(1),         \
    mmap_sem:    __RWSEM_INITIALIZER(name.mmap_sem), \
    page_table_lock: SPIN_LOCK_UNLOCKED,         \
    mmlist:        LIST_HEAD_INIT(name.mmlist),    \
}

struct signal_struct {
    atomic_t        count;
    struct k_sigaction    action[_NSIG];
    spinlock_t        siglock;
};


#define INIT_SIGNALS {    \
    count:        ATOMIC_INIT(1),         \
    action:        { {{0,}}, },             \
    siglock:    SPIN_LOCK_UNLOCKED         \
}

/*
 * Some day this will be a full-fledged user tracking system..
 */
struct user_struct {
    atomic_t __count;    /* reference count */
    atomic_t processes;    /* How many processes does this user have? */
    atomic_t files;        /* How many open files does this user have? */

    /* Hash table maintenance information */
    struct user_struct *next, **pprev;
    uid_t uid;
};

#define get_current_user() ({                 \
    struct user_struct *__user = current->user;    \
    atomic_inc(&__user->__count);            \
    __user; })

extern struct user_struct root_user;
#define INIT_USER (&root_user)

struct task_struct {
    /*
     * offsets of these are hardcoded elsewhere - touch with care
     */
    volatile long state;    /* -1 unrunnable, 0 runnable, >0 stopped */
    unsigned long flags;    /* per process flags, defined below */
    int sigpending;
    mm_segment_t addr_limit;    /* thread address space:
                         0-0xBFFFFFFF for user-thead
                        0-0xFFFFFFFF for kernel-thread
                     */
    struct exec_domain *exec_domain;
    volatile long need_resched;
    unsigned long ptrace;

    int lock_depth;        /* Lock depth */

/*
 * offset 32 begins here on 32-bit platforms. We keep
 * all fields in a single cacheline that are needed for
 * the goodness() loop in schedule().
 */
    long counter;
    long nice;
    unsigned long policy;
    struct mm_struct *mm;
    int processor;
    /*
     * cpus_runnable is ~0 if the process is not running on any
     * CPU. It's (1 << cpu) if it's running on a CPU. This mask
     * is updated under the runqueue lock.
     *
     * To determine whether a process might run on a CPU, this
     * mask is AND-ed with cpus_allowed.
     */
    unsigned long cpus_runnable, cpus_allowed;
    /*
     * (only the 'next' pointer fits into the cacheline, but
     * that's just fine.)
     */
    struct list_head run_list;
    unsigned long sleep_time;

    struct task_struct *next_task, *prev_task;
    struct mm_struct *active_mm;
    struct list_head local_pages;
    unsigned int allocation_order, nr_local_pages;

/* task state */
    struct linux_binfmt *binfmt;
    int exit_code, exit_signal;
    int pdeath_signal;  /*  The signal sent when the parent dies  */
    /* ??? */
    unsigned long personality;
    int did_exec:1;
    pid_t pid;
    pid_t pgrp;
    pid_t tty_old_pgrp;
    pid_t session;
    pid_t tgid;
    /* boolean value for session group leader */
    int leader;
    /* 
     * pointers to (original) parent process, youngest child, younger sibling,
     * older sibling, respectively.  (p->father can be replaced with 
     * p->p_pptr->pid)
     */
    struct task_struct *p_opptr, *p_pptr, *p_cptr, *p_ysptr, *p_osptr;
    struct list_head thread_group;

    /* PID hash table linkage. */
    struct task_struct *pidhash_next;
    struct task_struct **pidhash_pprev;

    wait_queue_head_t wait_chldexit;    /* for wait4() */
    struct completion *vfork_done;        /* for vfork() */
    unsigned long rt_priority;
    unsigned long it_real_value, it_prof_value, it_virt_value;
    unsigned long it_real_incr, it_prof_incr, it_virt_incr;
    struct timer_list real_timer;
    struct tms times;
    unsigned long start_time;
    long per_cpu_utime[NR_CPUS], per_cpu_stime[NR_CPUS];
/* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
    unsigned long min_flt, maj_flt, nswap, cmin_flt, cmaj_flt, cnswap;
    int swappable:1;
/* process credentials */
    uid_t uid,euid,suid,fsuid;
    gid_t gid,egid,sgid,fsgid;
    int ngroups;
    gid_t    groups[NGROUPS];
    kernel_cap_t   cap_effective, cap_inheritable, cap_permitted;
    int keep_capabilities:1;
    struct user_struct *user;
/* limits */
    struct rlimit rlim[RLIM_NLIMITS];
    unsigned short used_math;
    char comm[16];
/* file system info */
    int link_count, total_link_count;
    struct tty_struct *tty; /* NULL if no tty */
    unsigned int locks; /* How many file locks are being held */
/* ipc stuff */
    struct sem_undo *semundo;
    struct sem_queue *semsleeping;
/* CPU-specific state of this task */
    struct thread_struct thread;
/* filesystem information */
    struct fs_struct *fs;
/* open file information */
    struct files_struct *files;
/* namespace */
    struct namespace *namespace;
/* signal handlers */
    spinlock_t sigmask_lock;    /* Protects signal and blocked */
    struct signal_struct *sig;

    sigset_t blocked;
    struct sigpending pending;

    unsigned long sas_ss_sp;
    size_t sas_ss_size;
    int (*notifier)(void *priv);
    void *notifier_data;
    sigset_t *notifier_mask;
    
/* Thread group tracking */
       u32 parent_exec_id;
       u32 self_exec_id;
/* Protection of (de-)allocation: mm, files, fs, tty */
    spinlock_t alloc_lock;

/* journalling filesystem info */
    void *journal_info;
};

/*
 * Per process flags
 */
#define PF_ALIGNWARN    0x00000001    /* Print alignment warning msgs */
                    /* Not implemented yet, only for 486*/
#define PF_STARTING    0x00000002    /* being created */
#define PF_EXITING    0x00000004    /* getting shut down */
#define PF_FORKNOEXEC    0x00000040    /* forked but didn't exec */
#define PF_SUPERPRIV    0x00000100    /* used super-user privileges */
#define PF_DUMPCORE    0x00000200    /* dumped core */
#define PF_SIGNALED    0x00000400    /* killed by a signal */
#define PF_MEMALLOC    0x00000800    /* Allocating memory */
#define PF_MEMDIE    0x00001000    /* Killed for out-of-memory */
#define PF_FREE_PAGES    0x00002000    /* per process page freeing */
#define PF_NOIO        0x00004000    /* avoid generating further I/O */

#define PF_USEDFPU    0x00100000    /* task used FPU this quantum (SMP) */

/*
 * Ptrace flags
 */

#define PT_PTRACED    0x00000001
#define PT_TRACESYS    0x00000002
#define PT_DTRACE    0x00000004    /* delayed trace (used on m68k, i386) */
#define PT_TRACESYSGOOD    0x00000008
#define PT_PTRACE_CAP    0x00000010    /* ptracer can follow suid-exec */

/*
 * Limit the stack by to some sane default: root can always
 * increase this limit if needed..  8MB seems reasonable.
 */
#define _STK_LIM    (8*1024*1024)

#define DEF_COUNTER    (10*HZ/100)    /* 100 ms time slice */
#define MAX_COUNTER    (20*HZ/100)
#define DEF_NICE    (0)

asmlinkage long sys_sched_yield(void);
#define yield()    sys_sched_yield()

/*
 * The default (Linux) execution domain.
 */
extern struct exec_domain    default_exec_domain;

/*
 *  INIT_TASK is used to set up the first task table, touch at
 * your own risk!. Base=0, limit=0x1fffff (=2MB)
 */
#define INIT_TASK(tsk)    \
{                                    \
    state:        0,                        \
    flags:        0,                        \
    sigpending:        0,                        \
    addr_limit:        KERNEL_DS,                    \
    exec_domain:    &default_exec_domain,                \
    lock_depth:        -1,                        \
    counter:        DEF_COUNTER,                    \
    nice:        DEF_NICE,                    \
    policy:        SCHED_OTHER,                    \
    mm:            NULL,                        \
    active_mm:        &init_mm,                    \
    cpus_runnable:    -1,                        \
    cpus_allowed:    -1,                        \
    run_list:        LIST_HEAD_INIT(tsk.run_list),            \
    next_task:        &tsk,                        \
    prev_task:        &tsk,                        \
    p_opptr:        &tsk,                        \
    p_pptr:        &tsk,                        \
    thread_group:    LIST_HEAD_INIT(tsk.thread_group),        \
    wait_chldexit:    __WAIT_QUEUE_HEAD_INITIALIZER(tsk.wait_chldexit),\
    real_timer:        {                        \
    function:        it_real_fn                \
    },                                    \
    cap_effective:    CAP_INIT_EFF_SET,                \
    cap_inheritable:    CAP_INIT_INH_SET,                \
    cap_permitted:    CAP_FULL_SET,                    \
    keep_capabilities:    0,                        \
    rlim:        INIT_RLIMITS,                    \
    user:        INIT_USER,                    \
    comm:        "swapper",                    \
    thread:        INIT_THREAD,                    \
    fs:            &init_fs,                    \
    files:        &init_files,                    \
    sigmask_lock:    SPIN_LOCK_UNLOCKED,                \
    sig:        &init_signals,                    \
    pending:        { NULL, &tsk.pending.head, {{0}}},        \
    blocked:        {{0}},                        \
    alloc_lock:        SPIN_LOCK_UNLOCKED,                \
    journal_info:    NULL,                        \
}


#ifndef INIT_TASK_SIZE
# define INIT_TASK_SIZE    2048*sizeof(long)
#endif

union task_union {
    struct task_struct task;
    unsigned long stack[INIT_TASK_SIZE/sizeof(long)];
};

extern union task_union init_task_union;

extern struct   mm_struct init_mm;
extern struct task_struct *init_tasks[NR_CPUS];

/* PID hashing. (shouldnt this be dynamic?) */
#define PIDHASH_SZ (4096 >> 2)
extern struct task_struct *pidhash[PIDHASH_SZ];

#define pid_hashfn(x)    ((((x) >> 8) ^ (x)) & (PIDHASH_SZ - 1))

static inline void hash_pid(struct task_struct *p)
{
    struct task_struct **htable = &pidhash[pid_hashfn(p->pid)];

    if((p->pidhash_next = *htable) != NULL)
        (*htable)->pidhash_pprev = &p->pidhash_next;
    *htable = p;
    p->pidhash_pprev = htable;
}

static inline void unhash_pid(struct task_struct *p)
{
    if(p->pidhash_next)
        p->pidhash_next->pidhash_pprev = p->pidhash_pprev;
    *p->pidhash_pprev = p->pidhash_next;
}

static inline struct task_struct *find_task_by_pid(int pid)
{
    struct task_struct *p, **htable = &pidhash[pid_hashfn(pid)];

    for(p = *htable; p && p->pid != pid; p = p->pidhash_next)
        ;

    return p;
}

#define task_has_cpu(tsk) ((tsk)->cpus_runnable != ~0UL)

static inline void task_set_cpu(struct task_struct *tsk, unsigned int cpu)
{
    tsk->processor = cpu;
    tsk->cpus_runnable = 1UL << cpu;
}

static inline void task_release_cpu(struct task_struct *tsk)
{
    tsk->cpus_runnable = ~0UL;
}

/* per-UID process charging. */
extern struct user_struct * alloc_uid(uid_t);
extern void free_uid(struct user_struct *);

#include <asm/current.h>

extern unsigned long volatile jiffies;
extern unsigned long itimer_ticks;
extern unsigned long itimer_next;
extern struct timeval xtime;
extern void do_timer(struct pt_regs *);

extern unsigned int * prof_buffer;
extern unsigned long prof_len;
extern unsigned long prof_shift;

#define CURRENT_TIME (xtime.tv_sec)

extern void FASTCALL(__wake_up(wait_queue_head_t *q, unsigned int mode, int nr));
extern void FASTCALL(__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr));
extern void FASTCALL(sleep_on(wait_queue_head_t *q));
extern long FASTCALL(sleep_on_timeout(wait_queue_head_t *q,
                      signed long timeout));
extern void FASTCALL(interruptible_sleep_on(wait_queue_head_t *q));
extern long FASTCALL(interruptible_sleep_on_timeout(wait_queue_head_t *q,
                            signed long timeout));
extern int FASTCALL(wake_up_process(struct task_struct * tsk));

#define wake_up(x)            __wake_up((x),TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE, 1)
#define wake_up_nr(x, nr)        __wake_up((x),TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE, nr)
#define wake_up_all(x)            __wake_up((x),TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE, 0)
#define wake_up_sync(x)            __wake_up_sync((x),TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE, 1)
#define wake_up_sync_nr(x, nr)        __wake_up_sync((x),TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE, nr)
#define wake_up_interruptible(x)    __wake_up((x),TASK_INTERRUPTIBLE, 1)
#define wake_up_interruptible_nr(x, nr)    __wake_up((x),TASK_INTERRUPTIBLE, nr)
#define wake_up_interruptible_all(x)    __wake_up((x),TASK_INTERRUPTIBLE, 0)
#define wake_up_interruptible_sync(x)    __wake_up_sync((x),TASK_INTERRUPTIBLE, 1)
#define wake_up_interruptible_sync_nr(x) __wake_up_sync((x),TASK_INTERRUPTIBLE,  nr)
asmlinkage long sys_wait4(pid_t pid,unsigned int * stat_addr, int options, struct rusage * ru);

extern int in_group_p(gid_t);
extern int in_egroup_p(gid_t);

extern void proc_caches_init(void);
extern void flush_signals(struct task_struct *);
extern void flush_signal_handlers(struct task_struct *);
extern void sig_exit(int, int, struct siginfo *);
extern int dequeue_signal(sigset_t *, siginfo_t *);
extern void block_all_signals(int (*notifier)(void *priv), void *priv,
                  sigset_t *mask);
extern void unblock_all_signals(void);
extern int send_sig_info(int, struct siginfo *, struct task_struct *);
extern int force_sig_info(int, struct siginfo *, struct task_struct *);
extern int kill_pg_info(int, struct siginfo *, pid_t);
extern int kill_sl_info(int, struct siginfo *, pid_t);
extern int kill_proc_info(int, struct siginfo *, pid_t);
extern void notify_parent(struct task_struct *, int);
extern void do_notify_parent(struct task_struct *, int);
extern void force_sig(int, struct task_struct *);
extern int send_sig(int, struct task_struct *, int);
extern int kill_pg(pid_t, int, int);
extern int kill_sl(pid_t, int, int);
extern int kill_proc(pid_t, int, int);
extern int do_sigaction(int, const struct k_sigaction *, struct k_sigaction *);
extern int do_sigaltstack(const stack_t *, stack_t *, unsigned long);

static inline int signal_pending(struct task_struct *p)
{
    return (p->sigpending != 0);
}

/*
 * Re-calculate pending state from the set of locally pending
 * signals, globally pending signals, and blocked signals.
 */
static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
{
    unsigned long ready;
    long i;

    switch (_NSIG_WORDS) {
    default:
        for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
            ready |= signal->sig[i] &~ blocked->sig[i];
        break;

    case 4: ready  = signal->sig[3] &~ blocked->sig[3];
        ready |= signal->sig[2] &~ blocked->sig[2];
        ready |= signal->sig[1] &~ blocked->sig[1];
        ready |= signal->sig[0] &~ blocked->sig[0];
        break;

    case 2: ready  = signal->sig[1] &~ blocked->sig[1];
        ready |= signal->sig[0] &~ blocked->sig[0];
        break;

    case 1: ready  = signal->sig[0] &~ blocked->sig[0];
    }
    return ready !=    0;
}

/* Reevaluate whether the task has signals pending delivery.
   This is required every time the blocked sigset_t changes.
   All callers should have t->sigmask_lock.  */

static inline void recalc_sigpending(struct task_struct *t)
{
    t->sigpending = has_pending_signals(&t->pending.signal, &t->blocked);
}

/* True if we are on the alternate signal stack.  */

static inline int on_sig_stack(unsigned long sp)
{
    return (sp - current->sas_ss_sp < current->sas_ss_size);
}

static inline int sas_ss_flags(unsigned long sp)
{
    return (current->sas_ss_size == 0 ? SS_DISABLE
        : on_sig_stack(sp) ? SS_ONSTACK : 0);
}

extern int request_irq(unsigned int,
               void (*handler)(int, void *, struct pt_regs *),
               unsigned long, const char *, void *);
extern void free_irq(unsigned int, void *);

/*
 * This has now become a routine instead of a macro, it sets a flag if
 * it returns true (to do BSD-style accounting where the process is flagged
 * if it uses root privs). The implication of this is that you should do
 * normal permissions checks first, and check suser() last.
 *
 * [Dec 1997 -- Chris Evans]
 * For correctness, the above considerations need to be extended to
 * fsuser(). This is done, along with moving fsuser() checks to be
 * last.
 *
 * These will be removed, but in the mean time, when the SECURE_NOROOT 
 * flag is set, uids don't grant privilege.
 */
static inline int suser(void)
{
    if (!issecure(SECURE_NOROOT) && current->euid == 0) { 
        current->flags |= PF_SUPERPRIV;
        return 1;
    }
    return 0;
}

static inline int fsuser(void)
{
    if (!issecure(SECURE_NOROOT) && current->fsuid == 0) {
        current->flags |= PF_SUPERPRIV;
        return 1;
    }
    return 0;
}

/*
 * capable() checks for a particular capability.  
 * New privilege checks should use this interface, rather than suser() or
 * fsuser(). See include/linux/capability.h for defined capabilities.
 */

static inline int capable(int cap)
{
#if 1 /* ok now */
    if (cap_raised(current->cap_effective, cap))
#else
    if (cap_is_fs_cap(cap) ? current->fsuid == 0 : current->euid == 0)
#endif
    {
        current->flags |= PF_SUPERPRIV;
        return 1;
    }
    return 0;
}

/*
 * Routines for handling mm_structs
 */
extern struct mm_struct * mm_alloc(void);

extern struct mm_struct * start_lazy_tlb(void);
extern void end_lazy_tlb(struct mm_struct *mm);

/* mmdrop drops the mm and the page tables */
extern inline void FASTCALL(__mmdrop(struct mm_struct *));
static inline void mmdrop(struct mm_struct * mm)
{
    if (atomic_dec_and_test(&mm->mm_count))
        __mmdrop(mm);
}

/* mmput gets rid of the mappings and all user-space */
extern void mmput(struct mm_struct *);
/* Remove the current tasks stale references to the old mm_struct */
extern void mm_release(void);

/*
 * Routines for handling the fd arrays
 */
extern struct file ** alloc_fd_array(int);
extern int expand_fd_array(struct files_struct *, int nr);
extern void free_fd_array(struct file **, int);

extern fd_set *alloc_fdset(int);
extern int expand_fdset(struct files_struct *, int nr);
extern void free_fdset(fd_set *, int);

extern int  copy_thread(int, unsigned long, unsigned long, unsigned long, struct task_struct *, struct pt_regs *);
extern void flush_thread(void);
extern void exit_thread(void);

extern void exit_mm(struct task_struct *);
extern void exit_files(struct task_struct *);
extern void exit_sighand(struct task_struct *);

extern void reparent_to_init(void);
extern void daemonize(void);

extern int do_execve(char *, char **, char **, struct pt_regs *);
extern int do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long);

extern void FASTCALL(add_wait_queue(wait_queue_head_t *q, wait_queue_t * wait));
extern void FASTCALL(add_wait_queue_exclusive(wait_queue_head_t *q, wait_queue_t * wait));
extern void FASTCALL(remove_wait_queue(wait_queue_head_t *q, wait_queue_t * wait));

#define __wait_event(wq, condition)                     \
do {                                    \
    wait_queue_t __wait;                        \
    init_waitqueue_entry(&__wait, current);                \
                                    \
    add_wait_queue(&wq, &__wait);                    \
    for (;;) {                            \
        set_current_state(TASK_UNINTERRUPTIBLE);        \
        if (condition)                        \
            break;                        \
        schedule();                        \
    }                                \
    current->state = TASK_RUNNING;                    \
    remove_wait_queue(&wq, &__wait);                \
} while (0)

#define wait_event(wq, condition)                     \
do {                                    \
    if (condition)                             \
        break;                            \
    __wait_event(wq, condition);                    \
} while (0)

#define __wait_event_interruptible(wq, condition, ret)            \
do {                                    \
    wait_queue_t __wait;                        \
    init_waitqueue_entry(&__wait, current);                \
                                    \
    add_wait_queue(&wq, &__wait);                    \
    for (;;) {                            \
        set_current_state(TASK_INTERRUPTIBLE);            \
        if (condition)                        \
            break;                        \
        if (!signal_pending(current)) {                \
            schedule();                    \
            continue;                    \
        }                            \
        ret = -ERESTARTSYS;                    \
        break;                            \
    }                                \
    current->state = TASK_RUNNING;                    \
    remove_wait_queue(&wq, &__wait);                \
} while (0)
    
#define wait_event_interruptible(wq, condition)                \
({                                    \
    int __ret = 0;                            \
    if (!(condition))                        \
        __wait_event_interruptible(wq, condition, __ret);    \
    __ret;                                \
})

#define REMOVE_LINKS(p) do { \
    (p)->next_task->prev_task = (p)->prev_task; \
    (p)->prev_task->next_task = (p)->next_task; \
    if ((p)->p_osptr) \
        (p)->p_osptr->p_ysptr = (p)->p_ysptr; \
    if ((p)->p_ysptr) \
        (p)->p_ysptr->p_osptr = (p)->p_osptr; \
    else \
        (p)->p_pptr->p_cptr = (p)->p_osptr; \
    } while (0)

#define SET_LINKS(p) do { \
    (p)->next_task = &init_task; \
    (p)->prev_task = init_task.prev_task; \
    init_task.prev_task->next_task = (p); \
    init_task.prev_task = (p); \
    (p)->p_ysptr = NULL; \
    if (((p)->p_osptr = (p)->p_pptr->p_cptr) != NULL) \
        (p)->p_osptr->p_ysptr = p; \
    (p)->p_pptr->p_cptr = p; \
    } while (0)

#define for_each_task(p) \
    for (p = &init_task ; (p = p->next_task) != &init_task ; )

#define for_each_thread(task) \
    for (task = next_thread(current) ; task != current ; task = next_thread(task))

#define next_thread(p) \
    list_entry((p)->thread_group.next, struct task_struct, thread_group)

#define thread_group_leader(p)    (p->pid == p->tgid)

static inline void del_from_runqueue(struct task_struct * p)
{
    nr_running--;
    p->sleep_time = jiffies;
    list_del(&p->run_list);
    p->run_list.next = NULL;
}

static inline int task_on_runqueue(struct task_struct *p)
{
    return (p->run_list.next != NULL);
}

static inline void unhash_process(struct task_struct *p)
{
    if (task_on_runqueue(p))
        out_of_line_bug();
    write_lock_irq(&tasklist_lock);
    nr_threads--;
    unhash_pid(p);
    REMOVE_LINKS(p);
    list_del(&p->thread_group);
    write_unlock_irq(&tasklist_lock);
}

/* Protects ->fs, ->files, ->mm, and synchronises with wait4().  Nests inside tasklist_lock */
static inline void task_lock(struct task_struct *p)
{
    spin_lock(&p->alloc_lock);
}

static inline void task_unlock(struct task_struct *p)
{
    spin_unlock(&p->alloc_lock);
}

/* write full pathname into buffer and return start of pathname */
static inline char * d_path(struct dentry *dentry, struct vfsmount *vfsmnt,
                char *buf, int buflen)
{
    char *res;
    struct vfsmount *rootmnt;
    struct dentry *root;
    read_lock(&current->fs->lock);
    rootmnt = mntget(current->fs->rootmnt);
    root = dget(current->fs->root);
    read_unlock(&current->fs->lock);
    spin_lock(&dcache_lock);
    res = __d_path(dentry, vfsmnt, root, rootmnt, buf, buflen);
    spin_unlock(&dcache_lock);
    dput(root);
    mntput(rootmnt);
    return res;
}

#endif /* __KERNEL__ */

#endif