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6.1 INTRODUCTION 
Most natural phenomena are intrinsically nonlinear. Weather pattems and the turbu­
lent motion of fluids are everyday examples. Although we have explored some of the 
properties of nonlinear physical systems in Chapter 5, it is easier to introduce some of 
the important concepts in the context of ecology. Our goal will be to analyze the one­
dimensionai difference equation 

Xn+1 = 4rx" (1 - xn), (6.1) 

where x" is the ratio of the population in the nth generation to a reference population. 
We shall see that the dynamical properties of (6.1) are surprisingly intricate and have 
important implications for the development of a more general description of nonlinear 
phenomena. The significance of the behavior of (6.1) is indicated by the following 
quote from the ecologist Robert May: 

" ... Its ~tudy does not involve as much conceptual sophistication as does 
elementary calculus. Such study would greatly enrich the student's intuition 
about nonlinear systems. Not only in research but also in the everyday world 
of politics and economics we would all be better off if more people realized 
that simple nonlinear systems do not necessarily possess simple dynamical 
properties." 

The study of chaos is cun'ently very popular, but the phenomena is not new and has 
been of interest to astronomers and mathematicians for about one hundred years. Much 
of the current interest is due to the use of the computer as a tool for making empirical 
observations. We will use the computer in this spirit. 

6.2 A SIMPLE ONE·DIMENSIONAL MAP 
Many biological populations effectively consist of a single generation wah no overlap 
between successive generations. We might imagine an island with an insect population 
that breeds in the summer and leaves eggs that hatch the following spl;ng. Because the 
population growth occurs at discrete times, it is appropriate to model the population 
growth by difference equations rather than by differential equations. A simple model 
of density-independent growth that relates the popUlation in generation n + 1 to the, 
population in generation n is given by 

P,,+I =aP", (6.2) 

where PII is the population in generation nand a· is a constant. In the following, we 
assume that the time interval between generations is unity, and refer to n as the time. 

If a > I, each generation will be a times larger than the previous one. In this 
case (6.2) leads to geometrical growth and an unbounded population. Although the 
unbounded nature of geometrical growth is clear, it is remarkable that most of us do 
not integrate our understanding of geometrical growth into our everyday lives. Can a 
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bank pay 4% interest eachyem:indefinitely? Can the world's human population grow at 
a constant rate forever? ' 

It is natural to formulate a more realistic mgdel in which the population is bounded 
by the finite carrying capacity of its environment. A simple model of density-dependent 
growth is 

(6.3) 

Equation (6.3) is nonlinear due to the presence of the quadratic tem1 in PI!' The linear 
term represents the natural growth of the population;· the quadratic term represents a 
reduction of this natural growth caused, for example, by overcrowding or by the spread 
of disease. 

It is convenient to rescale the popUlation by letting PI! = (a / b )XI! and rewriting 
(6.3) as 

(6.4) 

The replacement of PI! by XI! changes the system of units used to define the various 
parameters. To write (6.4) in the form (6.1), we define the parameter r = a/4 and obtain 

(6.5) 

The rescaled form (6.5) has the desirable feature that its dynamics are determined 
by a single control parameter r. Note that if X/1 > 1, X I1+ I will be negative. To avoid 
this unphysical feature, we impose the conditions that X is restricted to the interval 
o < X < 1 and 0 < r < 1. - -=..- ....., 

Because the function f(x) defined in (6.5) transforms any point on the one-
dimel)sjpnal interval [0, 1] into another point in the same interval, the function f is 
called a one-dimensional map. The form of f(x) in (6.5) is known as the logistic map. 
The logistic map is a simple example of a dynamical system, that is, a &termlnIshc, 
mathematical prescription for finding the future state of a system. 

The sequence of values Xo, XI, X2, ... is called the trajectory or the orbit. To check 
your understanding, suppose tfiat the initial condition or seed is Xo = 0.5 and r = 0.2. 
Use a calculator to show that the trajectory is XI = 0.2, X2 = 0.128, X3 = 0.089293, ... 
In Fig. 6.1 the first thirty iterations of (6.5) are shown for two values of r .-- -

Program iterate_map computes the trajectory for the logistic map (6.5). The 
trajectory is listed in window 1 and plotted in window 2. 

PROGRAM iterate_map 
CALL set_up_windowsC#1,#2) 
DO 

CALL initialCx,r,#1,#2,flag$) 
CALL mapCx,r,#1,#2,flag$) 

LOOP until flag$ = "stop" 
END 

! iterate logistic map 
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Fig. 6.1 (a) Time series for r = 0.2 and Xo = 0.6. Note that the stable fixed point is 
x = O. (b) Time series for r = 0.7 and-'x'o'= 0,1. Note the initial transient 
behavior. The lines between tJle points are a guide to the eye. 

SUB initial(xO,r,#1,#2,~lag$) 
WINDOW #2 
INPUT prompt "growth parameter (0 < r <= 1) II. r 
LET xo = 0.3 
CLEAR 
BOX LINES 0,1000,0,1 
SET CURSOR 1,2 
PRINT lOr ="; r 
LET flag$ "" 

END S~B 

SUB set_up_windows(#1,#2) 
OPEN #1: screen 0,1,0,0.5 
OP~N #2: screen 0,1,0.5,1 
LET nmax = 1000 
LET margin = O.Ol*nmax 

text 
graphics 

SET WINDOW -margin,nmax+margin,-0.01,1.01 
END SUB 

SUB map(x,r,#1,#2,flag$) 
LET iterations = ° 
DO 

LET x = 4*r*x*(1 - x) ! iterate map 
LET iterations = iterations + 1 ! number of iterations 
WINDOW #1 
SET COLOR "black/white" 
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PRINT USING "#.######": x; 
! period doubling implies convenient to start new line 
! every 2-n iterations, where n = 2 or 3. 
IF mod(iterations,8) = 0 then PRINT ! new line 
WINDOW #2 
SET COLOR "red" 
PLOT iterations,x 
If key input then CALL change(#1,#2,flag$) 

LOOP until flag$ = "stop" or flag$ = "change" 
WINDOW #1 
PRINT 
PRINT "number of iterations "; iterations 

END SUB 

SUB change(#1,#2,flag$) 
GET KEY k 
IF (k = ord("c"» or (k = ord("C"» then 

LET flag$ = "change" 
SET COLOR "black/white" 

ELSE IF (k = ord("s"» or (k ord("S"» then 
LET flag$ = "stop" 

END IF 
END SUB 
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In Problems 6.1 and 6.3 we use Program map to explore the dynamical properties of 
the logistic map (6.5). The program uses the GET key statement so that the key 'c' can 
be pressed to chang~ the value of r and the key's' can be pressed to stop the program. 

Protiem 6.1 Exploration of period-doubling 

a. Explore the dynamical behavior of (6.5) with r = 0.24 for different values of 
Xo. Show that x = 0 is a stable fixed point. That is, for sufficiently small r, 
the iterated values of x converge to x = 0 independently of the value of Xo. If 
x represents the population of insects, describe the qualitative behavior of the 
population. 

b. Explore the dynamical behavior of (6.5) for r = 0.26, 0.5, 0.74, and 0.748. A 
fixed point is unstable if for almost all Xo near the fixed point, the trajectorIes 
diverge from it. Verify that x = 0 is an unstable fixed point for ~2~2~ Show 
that for the suggested values of r, the iterated values of x do not change after 
an initial transient: that is, the long time dynamical behavior is period 1. In 
Appendix 6A we show that for r < 3/4 and for Xo in the interval 0 < Xo < 
1, the trajectories approach the attractor at x = 1 - 1/ 4r. The set of initial 
points that iterate to the attracto'f is called the basin of the attractor. For the 
logistic map, the interval 0 < x < 1 is the"basin of attraction of the attractor 
x = 1 - 1/41'. 

,.---_. 
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c. Explore the dynamical properties of (6.5) for r = 2.152, 0}6, 0.8, and 0.862. 
For r = 0.752 and 0.862 approximately 1000 iterations are necessary to obtain 
convergent results. Show that if r is increased slightly beyond 0.75, x oscil­
lates between two values after an initial transie_~t Q~h<.lvior. Tliiit is, instead of 
astable cycle of period I corresponding to one fixed point, the system has a 
stable cycle of period 2. The value of r at which the single fixed point x* splits 
or b{furcates into two values XI* and X2* is r = bl = 3/4. The pair of x values, 
xJ* and X2*, form a stable affractor of period 2. 

d. Describe an ecological scenario of an insect population that exhibits dynami­
cal behavior similar to that observed in part (c). 

e. What are the stable attractors of (6.5) for r = 0.863 and 0.88? What is the 
cOlTesponding period? 

f. What are the stable attractors and corresponding periods for r = 0.89, 0.891, 
and 0.8922? 

Another way to determine the behavior of (6.5) is to plot the valu~s of x il~-! 
function of r {see Fig. 6.2). The iterated values of x are plotted after the initial transient 
behavior is discarded. Such a plot is generated by Program bifurcate. For each value 
of r, the first ntransient values of x are computed 'but not plotted. Then the next 
nplot values of x are plotted, with the first half in red and the second half in blue. This 
process is repeated for a new value of r until the desired range of r values is reached. 
A typical value of ntransient should be in the range of 100-1000 iterations. The 
magnitude of nplot should be at least as large as the longest period that you wish to 
observe. 

PROGRAM bifurcate 
! plot values of x for different values of r 
CALL initial(x,r,rmax,nvalues,dr,ntransient,nplot) 
FOR ir = ° to nvalues 

CALL output(x,r,ntransient,nplot) 
LET r = r + dr 

NEXT ir 
! maximum value of r done separately to avoid"r > 1 
CALL output(x,rmax,ntransient,nplot) 
END 

SUB initial(xO,rO,rmax,nvalues,dr,ntransient,nplot) 
INPUT prompt "initial value of control parameter r 
! important that r not be greater than 1 
INPUT prompt "maximum value of r = ": rmax 
! suggest dr <= 0.01 
INPUT prompt "incremental change of r = ": dr 

II. rO 

INPUT prompt "number of iterations not plotted = ": ntransient 
INPUT prompt "number of iterations plotted = ": nplot 
LET nvalues (rmax - rO)/dr ! number of r values plotted 
LET nvalues = int(nvalues) 
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Fig. 6.2 Bifurcation diagram of the logistic map. For each value of r, the iterated values of 
X/I are plotted after the first 1000 iterations are discarded. Note the transition from 
periodic to chaotic behavior and the natTOW windows of periodic behavior within 
the region of chaos. 

The final state or bifurcation diagram in Fig. 6.2 indicates that the period-doubling 
behavior ends at r ~ 0.892. This value of r is known very precisely and is given by L = 
roo = 0.892486417967 ... At r = roo, the sequence of period-doublings accumulate to 
a trajectory of infinite period. In Problem 6.3 we explore the behavior of the trajectories 
for r > roo. 

Problem 6.3 The chaotic regime 

a. For r > roo, two initial conditions that are very close to one another can yield 
very different trajectories after a small number of iterations. As an example, 
choose r = 0.91 and consider Xo = O.~ and 0.5001. How many iterations are 
necessary for the iterated values of x to differ by more than ten percent? What 
happens for r = 0.88 for the same choice of seeds? 

h. The accuracy of floating point numbers retained on a digital computer is fi­
nite. To test the effect of the finite accuracy of your computer, choose r = 0.91 
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LET xO = 0.5 
CLEAR 

initial value 

LET xmax = 1 maximum value of x 
LET mx = 0.05*xmax margin 
SET WINDOW rO-dr,rmax+dr,-mx,xmax + mx 
BOX LINES rO,rmax,O,l 

END SUB 

SUB output(x,r,ntransient,nplot) 
DECLARE DEF f 
SET COLOR "black/white" 
SET CURSOR 1,1 
PRINT " " . 
SET CURSOR 1,1 
PRINT "r ="; r 
FOR i = 1 to ntransient 

LET x = f(x,r) 
NEXT i 

SET COLOR "red" 
FOR i = 1 to 0.5*nplot 

LET x = f(x,r) 

erase previous output 

x values not plotted 

! show different x-values for given value of r 
PLOT r,x 

NEXT i 
! change color to see if values of x have converged 
SET COLOR "blue" 
FOR i = (0.5*nplot + 1) to nplot 

LET x = f(x,r) 
." .... J~LOT r, x 

NEXT i 

END SUB 

DEF f(x,r) 

Problem 6.2 Qualitative features of the logistic map 
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a. Use Program bifurcate to identify period 2, period 4, and period 8 behavior 
as in Fig. 6.2. It might be necessary to "zoom in" on a portion of the plot. How 
many period-doublings can you find? 

b. Change the scale so that you can follow the iterations of x from period 4 to 
period 16 behavior. How does the plot look on this scale in comparison to the 
original scale? 

c. Describe the shape of the trajectory near the bifurcations from period 2 -+ 
period 4, period 4 -+ 8, etc. These bifurcations are frequently called pitchfork 
bifurcations. 
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and Xo = 0.5 and compute the trajectory for 200 iterations. Then modify your 
program so that after each iteration, the operations x = xll0 followed by 
x = 10 * x are performed. This combination of operations truncates the last 
digit that your computer retains. A similar effect can be obtained by using the 
True BASIC truncate ex, n) function, which truncates the variable x to 11 

decimal places. Compute the trajectory again and compare your results. Do 
you find the same discrepancy for r < roo? 

c. What are the dynamical properties for r = 0.958? Can you find other windows 
of periodic behavior in the interval roo < I' < I? 

6.3 PERIOD-DOUBLING 

The results of the numerical experiments that we did in Section 6.2 have led us to 
adopt a new vocabulary to describe our observations and probably have convinced you 
that the dynamical properties of simple deterministic nonlinear systems can be quite 
complicated. 

To gain more insight into how the dynamical behavior depends on r, we introduce a 
simple graphical method for iterating (6.5). In Fig. 6.3, we show a graph of [(x) versus 
x for r = 0.7. A diagonal line corresponding- to y = x intersects the curve y = f(x) 
at the two fixed points x* = 0 and x* = 9/14 ~ 0.642857. If :\'0 is not one of the fixed 
points, we can find the trajectory in the following manner. Draw a vertical line from 
(x = Xo, y = 0) to the intersection with the curve y = f(x) at (xo. Yo = f(xo)). Next 
draw a horizontal line from (xo, Yo) to the intersection with the diagonal line at (:vo. )'0). 

On this diagonal line y = x, and hence the value of x at this intersection is the first 
iteration XI = Yo. The second iteration X2 can be found in the same way. From the point 
(XI, Yo), draw a vertical line to the intersection with the curve y = f(x). Keep y fixed at 
y = YI ~",f{XI)' and draw a horizontal line until it intersects the diagonal line; the value 
of x at this intersection is X2. Further iterations can be found by repeating this process. 

This graphical method is illustrated in Fig. 6.3 for r = 0.7 and Xo = 0.9. Ifwe begin 
with any Xo (except Xo = 0 and Xo = 1), continued iterations will converge to the fixed 
point x* ~ 0.642857. Repeat the procedure shown in Fig. 6.3 by hand and convince 
yoursdf that you understand the graphical solution of the iterated values of the map. 
For this value of r, the fixed point is stable (an attractor of period 1). Tn contrast, no 
matter how close Xo is to the fixed point at x = 0, the iterates diverge away from it, and 
this fixed point is unstable. 

How can we explain the qualitative difference between the fixed point at x = 0 
and x* = 0.642857 for r = 0.7? The local slope of the curve y = f(x) determines the 
distance moved horizontally each time f is iterated. A slope steeper than 45° leads to a 
value of x further away from its initial value. Hence, the criterion for the stability of 
a fixed point is that the magnitude of the slope at the fixed point must be less than 
45°. That is, if Idf(x)/dxlx=x* is less than unity, then x* is stable; conversely, if 
Idf (x) / dx Ix=x* is greater than unity, then x* is unstable. Inspection of f (x) in Fig. 6.3 
shows that x = 0 is unstable because the slope of f (x) at x = 0 is greater than unity. In 
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Fig. 6.3 Graphical representation of the iteration of the logistic 
map (6.5) with r = 0.7 and Xo = 0.9. Note that 
the graphical solution converges to the fixed point 
x* ~ 0.643. 

contrast, the magnitude of the slope of f (x) at x = x* is less than unity and the fixed 
point is stable. In Appendix 6A, we use similar analytical arguments to show that 

and 

x* = 0 is stable for 0 < r < 1/4 

1 . 
x* = 1 - - IS stable for 1/4 < r < 3/4. 

4r 

Thus for 0 < r < 3/4, the eventual behavior after many iterations is known. 

(6.6a) 

(6.6b) 

What happens if r is greater than 3/4? From our observations we have found 
that if r is slightly greater than 3/4, the fixed point of f becomes unstable and gives 
birth (bifurcates) to a cycle of period 2. Now x returns to the same value only 
after every second iteration, and the fixed points of f (f (x») are the attractors 
of f(x). In the following, we adopt the notation f(2)(x) = f(f(x»), and write 
f(I/)(x) for the nth iterate of f(x). (Do not confuse f(Il)(x) with the nth derivative 
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of I(x).) For example, the second iterate f(2)(x) is given by the fourth-order poly­
nomial: 

f(2)('1;;) = 16r2x(1 - x)[1 - 4rx(1 - x)] 

= 16r2x[ -4rx3 + 8rx 2 
- (1 + 4r)x + 1]. (6.7) 

What happens if we increase r still further? Eventually the magnitude of the slope 
of the fixed points of f(2)(x) exceeds unity and the fixed points of f(2)(x) become un­
stable. Now the cycle of f is period 4, and we can study the stability of the fixed points 
of the fourth iterate f(4)(x) = f(2)(f(2)(x)) = f(f(JU(x))). These fixed points also 
eventually bifurcate, and we are led to the phenomena of period-doubling as we ob­
served in Problem 6.2. 

Program graph_sol implements the graphical analysis of f(x). The nth order it­
erates are defined in DEF iCx, r , iterate) using recursion. (The quantity iterate 
is ], 2, and 4 for the functions f(x), f(2)(x), and f(4)(X) respectively.) Recursion is 
an idea that is simple once you understand it, but it can be difficult to grasp the idea 
initially. One way to understand how recursion works is to think of a stack, such as a 
stack of trays in a cafeteria. The first time a recursive function is called, the function 
is placed on the top of the stack. Each time the function calls itself, an exact copy of 
the function, with possibly different values of the input parameters, is placed on top of 
the stack. When a copy of the function is finished, this copy is popped off the top of 
the stack. To understand the function f (x, r, iterate), suppose we want to compute 
f (0.4,0.8,3). First we write f (0.4,0.8,3) on a piece of paper (see Fig. 6Aa). Fol­
low the statements within the function until another call to f (0.4,0.8, iterate) oc­
curs. In this case, the call is to f (0.4,0.8, i terate-l) which equals f (0.4,0.8,2). 
Write f(0.4,0.8,2) above iCO.4,0.8,3) (see Fig. 6Ab). When you come to the 

f(1) f(1) 

f(2) f(2) f(2) ...... f{2) 

! f(3) f(3) f(3) f(3) f(3) ...... f(3) ~ answer 

(a) (b) (c) (d) (e) (f) 

Fig. 6.4 Example of the calculation of f(0. 4,0.8,3) using the recursive 
function defined in Program graph_sol. The number in each box is 
the value of the variable iterate. The values of x == 0.4 and r = 0.8 
are not shown. The value off (x, r, 3) = 0.7842. 
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end of the definition of the function, write down the value of f that is actua1ly Tf'hITn"I1 

and remove the function from the stack by crossing it out (see Fig. 6.4d). This TPt'IlTnt>I 

va1ue for f equals y if iterate> 1, or it is the output of the function for iterate = 
Continue deleting copies of f as they are finished, until there are no copies left on 
paper. The final value of f is the value returned by the computer. Write a miniTITO'O'T",n 

that defines f (x, r , iterate) and prints the value of f (0.4,0 . 8 ,3) . Is the answer 
same as your hand calculation? 

PROGRAM graph_sol 
! graphical solution for trajectory of logistic map 
CALL initial(x,r,iterate) 
CALL draw_function(r,iterate) 
CALL trajectory(x,r,iterate) press any key to stop 
END 

SUB initial(xO,r,iterate) 
INPUT prompt "control parameter r = ": r 
INPUT prompt "initial value of x = ": xO 
INPUT prompt "iterate of f(x) = ": iterate 
CLEAR 
PRINT "r ="; r 

END SUB 

SUB draw_function(r,iterate) 
DECLARE DEF f 
LET nplot = 200 
LET delta = l/nplot 
LET margin = 0.1 

# of points at which function computed 

SET WINDOW -margin,l + margin,-margin,l + margin 
PLOT LINES: 0,0;1,1 draw diagonal line y = x 
PLOT LINES: 0,1;0,0;1,0 
PLOT 
SET COLOR "red" 
LET x = 0 
FOR i = 0 to nplot 

LET y = f(x,r,iterate) 
PLOT x,y; 
LET x = x + delta 

NEXT i 
END SUB 

SUB trajectory(x,r,iterate) 
DECLARE DEF f 
LET yO = 0 
LET xO = x 

SET COLOR "blue" 
DO 

LET Y = f(x,r,iterate) 

draw axes 
left pen 

PLOT LINES: xO,yO; xO,y; y,y 
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LET xO = Y 
LET yO = Y 
LET x = Y 

LOOP until key input 
GET KEY k 

END SUB 

DEF f(x,r,iterate) 
IF iterate > 1 then 

! f defined by recursive procedure 

LET Y = f(x,r,iterate - 1) 
LET f = 4*r*y*(1 - y) 

ELSE 
LET f = 4*r*x*(1 - x) 

END IF 
END DEF 

Problem 6.4 Qualitative properties of the fixed points 

a. Use Program graph_sol to show graphically that there is a single stable 
fixed point of lex) for r < 3/4. It would be instructive to insert a pause 
between each iteration of the map and to show the value of the slope at Yn = 
I (xll ) in a separate window. At what value of r does the absolute value of this 
slope exceed unity? Let b l denote the value of r at which the fixed point of 
I(x) bifurcates and becomes unstable. Verify that b l = 0.75. 

b. Describe the trajectory of I(x) for r = 0.785. What is the nature of the fixed 
point given by x = I - 1/4r? What is the nature of the trajectory if Xo = 
I - 1/4r? What is the peliod of I(x) for all other choices of xo? What are 
the numerical values of the two-point attractor? 

c. The function I(x) is symmetrical about x = 4 where I(x) is a maximum. 
What are the qualitative features of the second iterate 1(2) (x) = I (J (x») for 
r = 0.785? Is 1(2)(X) symmetrical about x = ~? For what value of x does 
1(2l(x) have a minimum? Iterate X,,+I = 1(2)(;,,) for r = 0.785 and find its 
two fixed points XI * and X2*. (Try Xo = 0.1 and Xo = 0.3.) Are the fixed points 
of j<2)(X) stable or unstable? How do these values of x\* and X2* compare 
with the values of the two-point attractor of f(x)? Verify that the slopes of 
1(2)(x) at x\* and X2* are equal. 

d. Verify the following properties of the fixed points of f(2)(x). As r is increased, 
the fixed points of f(2\x) move apart and the slope of f(2)(.\:) at the fixed 
points decreases. What is the value of r = Sz at which one of the two fixed 
points of f(2) equals ~? What is the value of the other fixed point? What is 
the slope of f(2)(.\") at~\: = 4? What is the slope at the other fixed point? As r 
is fUlther increased, the slopes at the fixed points become negative. Finally at 
r = bz ~ 0.8623, the slopes at the two fixed points of f(2l(x) equal -J, and 
the two fixed points of f(2) become unstable. (It can be shown that the exact 
value of bz is b2 = (1 + J6)/4.) 
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e. Show that for r slightly greater than b2, e.g., r = 0.S7, there are four stabl . 
fixed points of the function j(4)(X). What is the value of r = S3 when one 
the fixed points equals 4? What are the values of the three other fixed points 
r = S3? 

f. Estimate the value of r = b3 at which the four fixed points of j(4) beC:OTTle 
unstable. 

g. Choose r = S3 and estimate the number of iterations that are necessary for 
trajectory to converge to period 4 behavior. How does this number of i 
change when neighboring values of r are considered? Choose several values 
Xo so that your results do not depend on the initial conditions. 

Problem 6.5 Periodic windows in the chaotic regime 

a. If you look closely at the bifurcation diagram in Fig. 6.2, you will see that the 
region of chaotic behavior for r > roo is interrupted by intervals of periodic 
behavior. Magnify your bifurcation diagram so that you can look at the inter­
val 0.957107 ~ r ~ 0.960375, where a periodic trajectory of period 3 occurs .. 
(Period 3 behavior stmts at r = (l + .J8)/4.) What happens to the trajectory 
for slightly larger r, e.g., for r = 0.9604? 

b. Plot the map j(3)(x) versus x at r = 0.96, a value of r in the period 3 window. 
Draw the line y = x and determine the intersections with f(3)(x). (Use Pro- . 
gram graph_sol without calling SUB trajectory.) The stable fixed points 
satisfy the condition x* = f(3)(x*). Because f(3)(x) is an eighth-order poly- . 
nomial, there are eight solutions (including x = 1). Find the intersections of 
f(3)(x) with y = x and identify the three stable fixed points. What are the 
slopes of j(3)(x) at these points? Then decrease r to r = 0.957107, the (ap­
proximate) value of r below which the system is chaotic. Draw the line)' = x 
and determine the number of intersections with f(3)(x). Note that at this value 
of r, the curve y = f(3) (x) is tangent to the diagonal line at the three stable 
fixed points. For this reason, this type of transition is called a tangent bifurca­
tiol1. Note that there also is an unstable point at x ~ 0.76. 

c. Plot X,,+l = f(3)(x,,) versus n for r = 0.9571. a value of r just below the onset 
of petiod 3 behavior. How would you describe the behavior of the trajectory? 
This type of chaotic motion is an example of illtermil1ency. that is, nearly 
periodic behavior inten'upted by occasional irregular bursts. 

* d. Modify Program graph_sol so that you can study the graphical solution of 
X II +1 = f(3)(x ll ) for the same value of r as in part (c). That is, "zoom in" on 
the values of x near the stable fixed points that you found in PUtt (b) for ,. 
in the period 3 regime. Note the three narrow channels between the diagonal 
line y = x and the plot of P3) (x). The trajectory requires many iterations to 
squeeze through the channel. and we see period 3 behavior during this time. 
Eventually, the trajectory escapes from the channel and bounces around until 
it is sent into a channel at some unpredictable later time. 
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6.4 UNIVERSAL PROPERTIES AND SELF-SIMILARITY 
In Sections 6.2 and 6.3 we found that the trajectory of the logistic map has remarkable 
properties as a function of the control parameter r. In particular, we found a sequence 
of period-doublings accumulating to a chaotic trajectory of infinite period at r = roo. 
For most values of r > roo, we saw that the trajectory is very sensitive to the initial 
conditions. We also found "windows" of period 3, 6, 12, ... embedded in the broad 
regions of chaotic behavior. How typical is this type of behavior? In the following, 
we wilI find further numerical evidence that the general behavior of the logistic map 
is independent ofthe details ofthe fOlm (6.5) of f(x). 

You might have noticed that the range of r between successive bifurcations 
becomes smalIer as the period increases (see Table 6.1). For example, b2 - bl = 
0.112398, b3 - b2 = 0.023624, and b4 - b3 = 0.00508. A good guess is that the de­
crease in bk - bk-I is geometl;c, i.e., the ratio (bk - bk-d/(bk+1 - bk) is a constant. 
You can check that this ratio is not exactly constant, but converges to a constant with 
increasing k. This behavior suggests that the sequence of values of bk has a limit and 
follows a geometrical progression: 

bk ~ '-00 - constant o-k, (6.8) 

where 0 is known as the Feigenbaum number. From (6.8) it is easy to show that 0 is 
given by the ratio 

(6.9) 

Problem 6.6 Estimation of the Feigenbaum constant 

a. Plot Ok = (bk - bk- d / (bk+ I - bd versus k using the values of bk in Table 6.1 
and estimate the value of O. Are the number of decimal places given in 

k bk 

0.750000 
2 0.862372 
3 0.886023 
4 0.891 102 
5 0.892 190 
6 0.892423 
7 0.892473 
8 0.892484 

Table 6.1 Values of the control parameter bk for the onset of the kth bifurcation. Six decimal 
places are shown. 
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Table 6.l for bk sufficient for all the values of k shown? The best estimate 
of 8 is 

8 = 4.669201609102991 ... (6.10) 

The number of decimal places in (6.10) is shown to indicate that 8 is known 
precisely. Use (6.8) and (6.10) and the values of bk to estimate the value of foo. 

b. In Problem 6.4 we found that one of the four fixed points of f(4)(X) is at 
x* = :\- for f = S3 ~ 0.87464. We also found that the convergence to the fixed 
points-of 1(4) (x) is more rapid than at nearby values of r. In Appendix 6A we 
show that these superstable trajectories occur whenever one of the fixed points 
is at x = :\-. The values of r = Sm that give superstable trajectories of period 
2",-1 are much better defined than the points of bifurcation, r = bk. The rapid 
convergence to the final trajectories also gives better numerical estimates, and 
we always know one member of the trajectory, namely x = :\-. It is reasonable 
that 8 can be defined as in (6.9) with bk replaced by Sm. Use the values of 
Sl = 0.5, S2 ~ 0.809017, and S3 = 0.874640 to estimate 8. The numerical val­
ues of Sm are found in Project 6.1 by solving the equation f(m)(x = :\-) = :\­
numerically: the first eight values of s'" are listed in Table 6.2. --

We can associate another number with the series of pitchfork bifurcations. From 
Fig. 6.3 and Fig. 6.5 we see that each pitchfork bifurcation gives birth to "twins" with 
the new generation more densely packed than the previous generation. One measure 
of this density is the maximum distance Mk between the values of x describing the 
bifurcation (see Fig. 6.5). The disadvantage of using bk is that the transient behavior of 
the trajectory is very long at the boundary between two different periodic behaviors. A 
more convenient measure of the density is the quantity dk = Xk * - :\-, where Xk * is the 
value of the fixed point nearest to the fixed point x* = :\-. The first t~o values of dk are 
shown in Fig. 6.6 with ell ~ 0.3090 and d2 ~ -0.1 164.-The next value is d3 ~ 0.0460. 
Note that the fixed point nearest to x = ~ alternates from one side of x = ~ to the other. 
We define the quantity a by the ratio - -

a = Jim - -- . (
elk) 

k-.oo dk+1 
(6.11) 

The estimates a = 0.3090/0.1164 = 2.65 for k = 1 and a = 0.1164/0.0460 = 2.53 for 
k = 2 are consistent with the asymptotic limit a = 2.5029078750958928485 ... 

We now give qualitative arguments that suggest that the general behavior of the lo­
gistic map in the period-doubling regime is independent of the detailed form of f(.r). 
As we have seen, period-doubling is characterized by self-similarities. e.g., the period­
doublings look similar except for a change of scale. We can demonstrate these similar­
ities by comparing ftx) for r = SI = 0.5 for the superstable trajectory with period I 
to the function f(?l(x) for r = S2 ~ 0.809017 for the superstable trajectory of period 2 
(see Fig. 6.7). The function ftx. r = SI] has unstable fixed points at x = 0 and x = I 
and a stable fixed point at x = ~. Similarly the function f(2} (x. r = S2) has a stable 

fixed point at x = ~ and an unstable fixed point at x ~ 0.69098. Note the similar shape, 

1 
! 
~ 
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Fig. 6.5 The first few bifurcations of the logistic equation showing the scaling of the 
maximum distance Mk between the asymptotic values of x describing the 
bifurcation. 
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but different scale of the curves in the square box in part (a) and pm1 (b) of Fig. 6.7. 
This similarity is an example of scaling. That is, if we scale f(2) and change (renor­
mali:e) the value of r, we can compare f(2) to f. (See Chapter 13 for a discussion of 
scaling and renonnalization in another context.) 

Our graphical comparison is meant only to be suggestive. A precise approach 
shows that if we continue the comparison of the higher-order iterates, e.g .. f(4) (x) to 
f(2)(x), etc., the superposition of functions converges to a universal function that is 
independent of the form of the original function f(x). 

Problem 6.7 Further estimates of the exponents ex and 8 

a. Write a subroutine to lind the appropriate scaling factor and superimpose f 
and the rescaled form of P2) found in Fig. 6.7. 

b. Use arguments similar to those disclIssed in the text in Fig. 6.7 and compare 
the behavior of fH)(x. r = s:,j in the square about x = ~ with p21(X. r = 
.1'2) in its square abollt x = ~. The size of the squares are -determined by the 
unstable lixed point nearest to x = *. Find the appropriate seal ing factor and 
superimpose f(21 and the rescaled f(~rm of P4). 
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Fig. 6.6 The quantity dk is the distance from x* = 1/2 to the nearest element of the 
attract or of period 2k. It is convenient to use this quantity to determine the 
exponent 01. 

It is easy to modify your programs to consider other one-dimensional maps. In 
Problem 6.8 we consider several one-dimensional maps and determine if they also 
exhibit the period-doubling route to chaos. 

* Problem 6.8 Other one-dimensional maps 

Determine the qualitative properties of the one-dimensional maps: 

I(x) = xer(l-x) 

f(.>.:) = r sinnx. 

(6.12) 

(6.13) 

The map in (6.12) has been used by ecologists (cf. May) to study a population that 
is limited at high densities by the effect of epidemic disease. Although it is more 
complicated than (6.5). its advantage is that the population remains positive no 
matter what (positive) value is taken for the initial popuhltion. There are no restric­
tions on the maximum value of r. but if r becomes sufficiently large. x eventually 
becomes effectively zero. rendering the population extinct. What is the behavior of 
the time series of (6.12) for r = 1.5. 2, and 2.7'1 Describe the qualitative behavior 
of ftx). Does it have a maximum? 

~~ 
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Fig.6.7 Comparison of f(x. r) for r = SI with the second iterate f(Z)(x) for r = S2. (a) 
The function f (x. r = SI) has unstable fixed points at x = 0 and x = I and a 
stable fixed point at x = ~. (b) The function j<2)(x, r = SI) has a stable fixed 
point at x = ~. The unstable fixed point of fm(x) nearest to x = ~ occurs at 
x ~ O.6909S:where the curve f(2)(x) intersects the line)' = x. The" upper right­
hand corner of the square box in (b) is located at this point, and the center of the 
box is at (4. 4). Note that if we reflect this square about the point (~, ~), the 
shape of the reflected graph in the square box is nearly the same as it is in palt (a), 
but on a smaller scale. 

The sine map (6. 13) with 0 < r ::: I and 0 ::: x ::: I has no special significance, 
except that it is nonlinear. If time permits, estimate the value of 8 for both maps. 
What limits the accuracy of your determination of 8? 

The above qualitative arguments and numerical results suggest that the quantities 
01 and 8 are ullil'ersal. that is, independent of the detailed form of f(x). In contrast. the 
values of the accumulation point /'IX" and the constant in (6.8) depend on the detailed 
form of j(x). Feigenbaum has shown that the period-doubling route to chaos and the 
values of 8 and (1 are universal property of maps that have a quadratic maximum. i.e .. 

f'<X)\"=11I/ = 0 and j"(x)\.,'=11I/ < O. 
Why is the universality of period-doubling and the numbers 8 and 01 more than 

a curiosity? The reason is that because this behavior is independent of the details, 
there might exist realistic systems whose underlying dynamics yield the same behavior 
as the logistic map. Of course. most physical systems are described by differential 
rather than difference equations. Can these systems exhibit period-doubling behavior? 
Several workers (cf. Testa et al.) have constl1lcted nonlinear RLC circuits dliven by an 
oscillatory source voltage. The output voltage shows bifurcations. and the measured 
values of the exponents 8 and 01 are consistent with the predictions of the logistic map. 
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Of more general interest is the nature of turbulence in fluid systems. Consider a 
stream of water flowing past several obstacles. We know that at low flow speeds, the 
water flows past obstacles in a regular and time-independent fashion, called laminar 
flow. As the flow speed is increased (as measured by a dimensionless parameter caBed 
the Reynolds number), some swirls develop, but the motion is still time-independent. 
As the flow speed is increased still fUlther, the swirls break away and stalt moving 
downstream. The flow pattern as viewed from the bank becomes time-dependent. For 
still larger flow speeds, the flow pattern becomes very complex and looks random. We 
say that the flow pattern has made a transition from laminar flow to turbulent flow. 

This qualitative description of the transition to chaos in fluid systems is superfi­
cially similar to the description of the logistic map. Can fluid systems be analyzed in 
terms of the simple models of the type we have discussed here? In a few instances 
such as turbulent convection in a heated saucepan, period doubling and other types of 
transitions to turbulence have been observed. The type of theory and analysis we have 
discussed has suggested new concepts and approaches, and the study of turbulent flows 
is a subject of much current research. 

6.S MEASURING CHAOS 
How do we know if a system is chaotic? The most important characteristic of chaos is 
sensitivity to initial conditions. In Problem 6.3 for example, we found that the trajecto­
lies starting from Xo = 0.5 and Xo = 0.5001 for r = 0.91 become very different after a 
small number of iterations. Because computers only store floating numbers to a celtain 
number of digits, the implication of this result is that our numerical predictions of the 
trajectories are restricted to small time intervals. That is, sensitivity to initial conditions 
implies that even though the logistic map is deterministic, our ability to make numerical 
predictions is limited. 

How can we quantify this lack of predictably? In general, if we start two identi­
cal dynamical systems from different initial conditions, we expect that the difference 
between the trajectories will change as a function of II. In Fig. 6.8 we show a plot of 
the difference I t-xlIl versus II for the same conditions as in Problem 6.3a. We see that 
roughly speaking, In It-XIII is a linearly increasing function of n. This result indicates 
that the separation between the trajectories grows exponentially if the system is chaotic. 
This divergence of the trajectories can be described by the Lyapul/o\" exponent, which 
is defined by the relation: 

(6.14) 

where t-XII is the difference between the trajectories at time n. If the Lyapunov expo­
nent A is positive. then nearby trajectories diverge exponentially. Chaotic behavior is 
charactelized by exponential divergence of nearby trajectories. 

A naive way of measuring the Lyapunov exponent A is to nm the same dynamical 
system twice with slightly different initial conditions and measure the dilTerence of the 
trajectories as a function of 11. We used this method to generate Fig. 6.8. Because the 
rate of separation of the trajectories might depend on the choice of .to. a better method 
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Fig. 6.8 The evolution of the difference AX" between the trajectories of 
the logistic map at r = 0.91 for Xo = 0.5 and Xo = 0.5001. The 
separation between the two trajectories increases with 11, the 
number of iterations, if 11 is not too large. (Note that I AXil ~ 10-8 

and that the trend is not monotonic.) 
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would be to compute the rate of separation for many values of Xo. This method would 
be tedious, because we would have to fit the separation to (6.14) for each value of Xo 
and then determine an average value of A. 

A more important limitation of the naive method is that because the trajectory is 
restricted to the unit interval, the separation I AXil I ceases to increase when 11 becomes 
sufficiently large. However, to make the computation of A as accurate as possible, we 
would like to average over as many iterations as possible. Fortunately, there is a better 
procedure. To understand the procedure, we take the natural logarithm of both sides of 
(6.14) and write A as 

J IllXIl I A= -In -- . 
11 llxo 

(6.15) 

Because we want to use the data from the entire trajectory after the transient behavior 
has ended, we use the fact that 

llxll llxl llX2 llxll --=---_ ... ---
llxo llxo llxJ llxlI-J 

(6.16) 
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Hence, we can express A as 

1 II-I I toXi+1 I 
A=-I)n --. 

n ;=0 toXi 
(6.17) 

The form (6.17) implies that we can consider Xi for any i as the initial condition. 
We see from (6.17) that the problem of computing A has been reduced to finding 

the ratio toXi+ 11 Ilxi. Because we want to make the initial difference between the two .,.: ..•. 
trajectories as small as possible, we are interested in the limit toxi ~ O. The idea of 0 

the more sophisticated procedure is to compute the differential dXi from the equation 
of motion at the same time that the equation of motion is being iterated. We use the ~.~.~ 
logistic map as an example. The differential of (6.5) can be written as ~ 

dXi+1 , 
-- = f (Xi) = 4,.(1 - 2Xi)· 

dx; 
(6.18) 

We can consider Xi for any i as the initial condition and the ratio dXi+l/dxi as a 
measure of the rate of change of Xi. Hence, we can iterate the logistic map as before 
and use the values of Xi and the relation (6.18) to compute dXi+ddxi at each iteration. 
The Lyapunov exponent is given by 

III-I 

A = lim - "In 1!'(Xi) I ' 
11->00 11 ~ 

,=0 

(6.19) 

where we begin the sum in (6.19) after the transient behavior is completed. We have 
included explicitly the limit n ~ 00 in (6.19) to remind ourselves to choose 11 suffi­
ciently large. Note that this procedure weights the points on the attractor con-ectly, that 
is, if a particular region of the attractor is not visited often by the trajectory, it does not 
contribute much to the sum in (6.19). 

Problem 6.9 Lyapunov exponent for the logistic map 

a. Compute the Lyapunov exponent A for the logistic map using the naive ap­
proach. Choose,. = 0.91, Xu = 0.5, and toxo = 10-6, and plot In ItoxlI / toxol 
versus 11. What happens to In I toxlI / toxol for large 11? Estimate A for r = 0.91, 
r = 0.97, and r = 1.0. Does your estimate of A for each value of r depend 
significantly on your choice of Xu or toxo? 

h. Compute A using the algorithm discussed in the text for,. = 0.76 to ,. = 1.0 
in steps of to,. = 0.01. What is the sign of A if the system is not chaotic? Plot 
A versus,.. and explain your results in tem1S of behavior of the bifurcation 
diagram shown in Fig. 6.2. Compare your results for A with those shown in 
Fig. 6.9. How does the sign of A con-elate with the behavior of the system 
as seen in the bifurcation diagram? If A < 0, then the two trajectories con­
verge and the system is not chaotic. If A = 0, then the trajectories diverge 
algebraically, i.e., as a power of n. For what value of r is A a maximum? 

• 1 
I 
1 

I 
1 
~ 
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Fig. 6.9 The Lyapunov exponent calculated using the method in (6.19) as a function 
of the control parameter r. Compare the behavior of A to the bifurcation 
diagram in Fig. 6.2. Note that A <: 0 for r < 3/4 and approaches zero at a 
period doubling bifurcation. A negative spike corresponds to a superstable 
trajectory. The onset of chaos is visible near /' = 0.892, where A first 
becomes positive. For r > 0.892, A generally increases except for dips 
below zero whenever a peliodic window occurs. Note the large dip due 
to the period 3 window near r = 0.96. For each value of r. the first 1000 
iterations were discarded. and 105 values of In 1 f'<x,,) 1 were used to 
determine A. 
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C. In Problem 6.3b we saw that roundoff errors in the chaotic regime make the 
computation of individual trajectories meaningless. That is. if the system's 
behavior is chaotic, then small roundoff errors are amplified exponentially 
in time. and the actual numbers we compute for the trajectory stat1ing from 
a given initial value are not "real." Given this limitation. how meaningful 
is our computation of the Lyapunov exponent? Repeat your calculation of A 
for r = I by changing the roundoff error as you did in Problem 6.3b. Does 
your computed value of A change? We will encounter a similar question in 
Chapter 8 where we compute the trajectories of a system of many particles. 
The answer appears to be that although the trajectory we compute is not the 
one we thought we were trying to compute, the computed trajectol)1 is close 
to a possible trajectory of the system. Quantities such as A that are averaged 
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