SOME PROBABILITY
AND STATISTICS -
REVISION

»c{,
We have seen from Chapter 1 that in many uses of simulation, statisticians
need to simulate discrete and continuous random variables of different
kinds, and techniques for doing this are provided in Chapters 4 and 5. The
_aim of this chapter:is to specify what we mean by random variables, and
‘generally to provide revision of the material to be used later. N :
It 'will be assumeéd- that the reader is familiar with the axioms of
‘probability and the-ideas of independence, and conditional probability.
The ‘imaterial assumed:is covered in, for exariple, chapters 1-6 of ABC. In
the following we shail write Pr{4) for the probability of any event A. We
~ shall begin with general definitions, and then proceed to consider particular
' - importantcases. ' -

2.1 Random variables
Undetlying :all statistical investigations is the concept of. a random
-experiment, siich:as the tossing of a’coin k tiniies. The set of all possible
- ouitcomes torsut riment/is:called the.sample-space, introduced by
@& Meﬂfkr'nd;iﬁa_ur'n)',;and'we can formally define
ns-over the sample-space, about which it is
; “statements. Tn the simple model of a queue
: : 1 ,1he é:'h,éhjge'?‘i'ﬁfqggug'fsize'forms a random expcrimcpt.
' with just-two. possible outcomés, pamely, an arrival or a departure. With
' this random experiment we can associate a random variable, X, say, such
that X'= 4 1 if we'haveanarrival,and X = — 1 if we have a departure. The
model is isuc-h-'t<h§i1'l-;’i"‘"[’-f'1'.:'('X_ =+1)= p,and Pr(X = —1}=1—-p. In detail
- here; the samplé:space contains, just two outcomes, say @; and @,
_ ‘corfesponding:to arrivaland die:'_p?urc-,-rcspethe}y, and we can write the
random variable X -as’ X(w), s that X(w,)= +1 and X{w;)= —1.
However, we find it moreconvenient tosuppress the argument of X (w), and-

2.3 The probability density function Pty -

simply write the random variable as X in this example. We shall adopt the
now standard practice of using capital letters for random variables, and

small letters for values they may take. When a random variable X is

simulated n times then we obtain a succession of values: {x,, x,, ..., Xn},

each of which provides us with a realization of X.

Another random experiment results if we record the queue size in the
model of Exercise 1.4. From Section 1.6 we see that if p <4, then after a
long period of time since the start of the queueing system we can denote the
quecue size by a random variable, ¥, say, such that ¥ may take any non-
negative integral value, and Pr(Y = k) for k = 0 is as given in Section 1.6.

. T‘ :
s - Y.
2.2 The cumulative distribution function {c.d.f.) '

For any random variable X, the function F, given by F(x) = Pr (X<x .
is called the cumulative distribution function of X. We have .

lim F{x}=1; lim F(x)=0 .

x— o . x— —m

F(x})is a nondecreasing function of x, and F (x)is continuous from the right

(ie. if x > xo, lim F(x) = F(x,)).
XXy

The nature of F(x) determines the type of random variable in question,
and we shall normally specify random variables by defining their distri-
bution, which in turn provides us with F(x). If F(x}is a step function we say
that X is a discrete random variable, while if F(x) is a continuous function
of x then we say that X is a continuous random variable] Certain variables,
called mixed random variables, may be expressed in terms of both discrete
and continuous random variables, as is the case of the waiting-time
experienced by cars approaching traffic lights; with a certain probability
the lights are green, and the waiting-time may then be zero, but otherwise if
the lights are red the waiting-time may be described by a continucus
random variable. Mixed random variables aré easily dealt with and we shall

" not consider them further here. Examplps of many common.c.d.f’s are

given later,

[" 2.3 The probability density function (p.d.f.)

When F(x)is a continuous function of x, with a continuous first derivative,

- then f(xy = dF(x)/dx is called the probability .density_function of the

(continuous) random variable X. If F(x) is continuous but has a first
derivative that is not continuous at a finite number of points, then we can
still define the probability density function as above, but for uniqueness we
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set f(x) = 0, for instance, When d F (x)/dx does not exist; an example of _thls
is provided by the c.d.f. of the random variable ¥ of Exercise 2.25.
The p.d.f. has the following properties:

@ £ =0
@ | fdx=1

— o

di) Prla< X <b)=Pria< X < b)=Prla< X < b)= Pr{a < X< b)
=J Sie)de
EXAMPLE 2.1

Under what conditions on the constants o, 8, ycanthe followxng functionsbea

p.df2 e~=(f+yx) for - x=0
(xl—{

for x<0

We must venfy that g(x) is non-negative, and that f2_glx)dx=1Tfa< 0,
this integral cannot bé finite,-and so.we must have a 3o

Ly

* - By AS

j g(x)dx:--[ ‘“‘(ﬁ+yx)dx=—-+-—~i ¢

Thus we must have y = o2 —af = oz — f) resulting in the p.d.f. J
glx) = e”**(B 4 e(e — f)x) for x=0

1n order that g{x) = 0 for x = 0, we must have f =0, and o = f. Hence set
B =0xandy =ca*(1 —8), fore>0and 061

We sometimes abbreviate ‘probability density function’ to just ‘density’.

2.4 Joint, margiﬁal and conditional distributions

In the case of two random vatiables X andY we can define the joint c.d.f. by
F(x,y) = Pr(X < xandY < y), and then the univariate distributions of X and
Y are referred to as the marginal distributions. If
9> F(x, y}
fix, = W
is a continuous function, except possibly at a finite number of points, then
fix, y) is called the joint p.d.f. of X and ¥, and in this case the marginal p.d.£’s

are given by:
fx(x)= J‘ f(x! }’)dy ’
-m ____\

2.5 Expectation 1o

and
nm=f f@h&'

Herewe have adopted a notation we shall employ rcgularly, of subscripting the
pdf: of a random vanableewuh the. random_vanable itself; so that there should
be no. confuswn as“i¢ ‘which random, vanable ig bemg descnbed The’same:: |

approach is adoptéd’for ¢.d.£'s, and.also; somenmes for jo nt dlstnbutlons L

T The conditionalp.d.f. of the random. varlableY gwcn thé 1] dom varlablc X bt
may be written as j}l ¥l y'x) and.is defined by "J

qux()’l") =fx.r(x .‘r’)/fx(x if fx(x) > 0

For two independent contmuous random variables X and Y, with joint p.d.f
Sx.y(x, y), we have '

Jxx(%, ) =fxx)fi{y)  forany x and y

The above deﬁmtnons ofindependence and joint, marginal and conditional
p-df’s:have: stralghtforward analogues for discrete randomivariables./For

example the margmal dlstrlbutlon of ,3 dlscrcte random jvariable, X may, be .
gwen by: . <o ‘

- - : o he T
4 L !

JPr(X-x) EPr(X x,Y y)

'
RIS

T anl, u;

Furthermore, while we have only dlscussed the bivariate case, these definitions
may be extended in ‘a nitural- way to the case of more. than two random
variables, )

i

r 25 Expectation S e
The expeciation of a random variable X exists only if the defining sum or
integral converges absolutely. If X is'a contmuous;randorn variable we define
the expectation_ of X as:

é’[X] J- xf(x)dx if j |x]f(x)dx<oo

-where f (x) is thc p df. of X: Smnlarly, ifX'isa dlscrete random variable whxch
mayr take the values [x}, then ; C

6[x]= zxipr(x—xf ZlePr X=x}<o .

- The vatiance of a random vanable X is defined as

o Var(X)= HMJMW]
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r and the covariance between random variables X and Y is defined as

. Cov(X, Y)-—J[(X J[XJ)(Y Eive))

The: expectanon of a random viriable X.is frequently used as a measure of-
location- of the. dlstrlbutlon of X, while the variance provxdeska measurc of

spread of:the, dlstrlbutlon Independcnt random variables: have 2810 covan— C

ance, but in generaI ‘the converse is ot true. .
The correlation between random variables X a.nd Y 1s deﬁned as
patblansdnsis

Cov(X, I})
JVarX) vary] o -

Cort(X,Y) =

2 6 The geometnc hmomxal and negatwe—bmomlal dlstnbutlons

o

Consxder a suctession of 1ndependcnt expenments, such ds tosses ofa coin; at ‘
each of which either ‘success’ (which we could identify witli“licads’ iri the case '

of the coin) or ‘failure’ (*tails’ for the coin) occurs. This rudimentary succession:
of experiments, or trials, provides the framework for:three important discrete
distributions. :

" Let p = Pr(success) and + gq=1— pl:= lﬁg(féi_:lﬁre)

The simplest is the geometric distribution, which results if we let X B¢ the-
discrete random variable measuring the number of trials until the first success.
M

We have :.

Geometric distribution: ‘ ,
PrX=i=¢"'p for 1<i<o0”

and  Var(X) = 2]/p2 v

L, 8X1=1p Gl

Flgure 2.1(a) gives a bar-chart illustrating the. geometrxc dlsmbutlon for the
case p = 0.5. Figure 2. l(b) demonstrates the: rgsult of s;mulatmg such a

geometric random variable 100 times. S
The binomial distribution results if we fix a number of trials at n=l, say, and
—_— .

A

Figure2.1 (a) Bar-chart; 1llustratmg the geometnc d:stnbut:on with p = 0.5:(b) Bar-
chart illustrating the results from simulating a raridom variable with the distribution of
(a) 100 times, Here i is observed n, times, 7 > 1.
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2.9 The normal d:str:butwn ana' a central Iup:t theorem 23

TR TR

aresult whlchds,much used in Jater, chaptersrl_;or a U (0, 1) random variable X,

£[X]1=14; Var(X) = 1/12. Figure 2.4' iilhstrates theLU(O {1y ptobability’ .~

density functton and also a'histogram resultmg from a random:sample of 51ze
100 from this densny) ‘ .

" 29 The normal distribution-and a:central dimit theorem

A continuous random variable with a normal distribution,:and mean y and
variance ¢2 has the p.d.f.

Normal probability density function: .

f(x) J(2n) [ %( 61#)} .for. — o S,x< oo.

Early work on this diSt[‘lbUthn was by such pioneers as De Moivre, Laplace
and Gauss, towards:the end of the 18th century and at the start of the 19th
centurySThe normal distribution is socalled because of 1ts ?ommon ‘occurrence
in nature, which is due to central lirnit theorems’, which ‘state that,’
under appropriate conditions, when one adds a large number of random
variables, which may well not be normal, the resulting sum has an ap-
proximately normal distributionj A formal statement of the commonest
central limit theorem is that;

v if X,, X,,...; X, are independent, identically distributed random vari-
ables, with £[X,] = p and Var (X;) = ¢, then for any real x,

. i X;
e (522) -

where ®(x) is the c.d.f. of a normal random variable with zero mean and unit
variance, 3

For a more general central limit theorem, and historical background, see
Grimmett and Stirzaker {1982, p. 110).

[We shall use the notation N (i, 02), to denote the distribution of a normal
random variable with mean g and variance ¢2) The N {0, 1) case is frequently
called the standard normal, when the p.d.f. is denoted by ¢(x). Figure 2.5
iflustrates ¢(x) and also presents a histogram resulting from a random sample
of size 100 from this density.

Figure 2.4 (a) The U0, 1) probability density function. {b) Histogram summarizing
a random sample of size 100 from the density function of (a).

B T W AU =T TTOT S Y
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2.10 Exponentlal gamma, chl—square and Laplace dlsmbutmns

We say that'a contmuous random variable X has an;exponenna! dlstnbunon
with parameter 1 when we can write the p.d.f. as

—

- ‘Exponential probability-density. function: .

f(x)=42e > . for0< x< o,

#[X]=1y4 and  Var(X)= /A%

Some authors (see for example Barnett, 1965) call this the ‘negative exponen-
tial’ p.df. 3

[ The Poisson process, mentioned in Section 2.7, is often used to model the
occurrence of events in time. It predicts that N {
e~ At (;u)k

[

where A > 0 s the rate parameter for the model, and is equal to: lhe average i
number of events pet unit nme A .

Pr (k events in a time interval of length ¢) = for 0 S k<o

T

2.10

r 24-|

Exponential, gamma, chi-square and Laplace distributions 2>

214
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Figure 2.5 (a) The standard normal probabililjf density function,

)= J(z ) "P(

random sample of size 100 from the density function of {(a). A

xz

) over the range —3 < x < 3. (b) Histogram summarizing a

[ 1f 7'is 2 random variable denoting the time to the next event in the Poisson
process, measuring time from some arbitrary time origin, then

Pr (T = ¢} = Pr(no events in the time interval (0, t})
= e—iu
ie. ' fi)=4A4e 4% _1d
" and so times between events in a Poisson process have an exponential

distribution. _{
T If we form the sum

in which the X; are independent random variables, each with the above
exponential distribption, then (see Exercisé 2.6 and Example 2.6) § has a
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I count the number, X, of successes. This gives

Binomial distribution:

Pr(X = i) = ( )p‘q"“' for 0<i<n

F[X]=np and  Var(X)=npq

Figure 2.2(a) gives a bar—chart illustrating the binomial distribution for the
case p = 0.5 and n = 5. Figure 2.2(b) demonstrates the result of simulating
such a binomial random variable 100 times. We shall refer to such a random
variable as possessing a B(n, p) distribution, thus specifying the two
parameters,nand p. | T

A geometric random variable provides the waiting-time measured by the
number of trials until the first success. The random variable X which measures
the waiting-time until the nth success has a negative-binomial distribution,
When X = n+1, for i = 0, then the (n+i{jth trial results in success, and the
remaining (n —1) successes occur during the ﬁrst (n + i~ 1) trials, and we can
write

Negative-binomial distribution:

PI(X=n+i]=(n+:_1)p'q"' for 0<ifw

£{X]}=nfp and Var(X)=ng/p*

As is shown in Exercise 2.18, there is a simple relationship between the
binomial and the negative-binomial distributions.

2.7 The Poisson distribution

A random variable X with a Poisson distribution of parameter A is described as
follows:”

Poisson distribution:

-XA|
PriX == 3 for 0<i<w

E[X]=1 and Var(X)=

Figure 2.2 (a) Bar~chart illustrating the binomial distribution for the case n =3,
p = 0.5. (b} Bar-chart illustrating the results from simulating a random variable with
the distribution of {a) 100 times. Here i is observed n; times, 0 <i <5,
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Named after the French mathematician, S. D. Poisson, who derived the
distribution in 1837, the distribution had been obtained earlier by De Moivre.
The Poisson distribution is often useful as a description of data that result
when counts are made of the occurrence of events, such as the occurrence of
(telephone calls in fixed intervals of time, pr the numbers of plants within areas
of a fixed size. This is because the reallife processes giving rise to the data
approximate to a model called a Poisson process, which predicts a Poisson
distribution for the data. We shall discuss the Poisson process in detail in
Section 4.4.2.
" Figure 2.3{a) gives a bar-chart illustrating the Poisson distribution ford=235,
-and Fig. 2.3(b) describes the results of simulating such a Poisson random

variable 100 times. 1

T~ 2.8 The uniform distribution

The simplest continuous random variables have uni[ofm (sometimes called
rectangular) distributions. As we shall see later, uniform rand¢m variables
form the basis of most simulation investigations. A uniform random variable

over the range [a, b] has the p.d.L

Uniform p.d.f. over [a,b]:
1
(b—a)

fxy=0

fora<x<b

fx)=

forx<agandx>b

We shall frequently refer to this as the Ula, b) p.d.f, the most important case

being when a=0and b= 1.
The c.d.f. of a U(0, 1) random variable X is given by

for 0<u=x<l

F(u)———J‘u ldx=u

0
andso forany0<a<f=1,
Pr(aSX‘Sﬁ)=Pr(OSXEﬁ)—Pr{OﬁXﬁa)_'
=F(p)—F}= (-
A

Figure2.3 (a) Bar-chart illustrating the Poisson distribution for = 5. (b) Bar-chart
illustrating the results from simulating a random variable with the distribution of

(2) 100 times. Here i is observed n; times, for i 2 0,
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Ly

T gamma distribution with the p.d.f.
o

Gamma p}obability density function: - . - o
: Rl ] ) ‘ . _ — Ti1,1

e AR T e _ o = T z1)
f(x)r-——ra)—— fOI’ _JOS.xéoo-‘l o e : —-— (5,1}

TPy PR LR ars

€[X]%n/). ,and‘i’Vai:.(é()=rf/lz oy

We shall refér to siuch a gamma distribution by means of the notation’
['{n, A}. In this derivation, n is a positive integer, but in general gamma random. =~ -
variables have the above p.d.f. in-which the only restriction on riis n > 0. : !

Figure 2.6 presents an exponential p.d.f, and two gamma p.d.fs, and 2’
histogram summarizing a random sample of size 100 from the exponential
p.d.f .

17 A random variable with a I'{v/2,'3) distribition is said to have a chi-square
distribution with parameter v4For reasons which we shall not discuss here, the
T parameter v is usually referred to as the ‘degrees-of-freedom™ of the distri-'
bution}A random variable X with a T'(v/2, 1} distribution is also'said to have a
¥ distribution, with the p.d.f. . I

.

e s

LNSETA. Gy

——

-
o
-t

r Chi-square probability density function with v dégrees of fréedom:. '
. . 2y . . : f

B e—x;lxwl—l

= Tom

forx=0

S[X]=v and Var(X)=2v 24+
T The exponential and gamma distributions describe only nbn;ncgative '
random variables, but the exponential distribution forms the basis of the . 20
Laplace distribution, discovered by Laplace in 1774 and given below:

Lapiac_c probability density function: :
Pab! , A 7 . ]

f(x)=§e"35"| for — ¢t £x<x
. o

[X]=20 and Var (X) = 2/i? . : 4 ‘
i
Figure 2.6 (a) The T (1, 1) (i.e;; exponential), I' (2, 1) and (5, 1) probability density . l I — ’

. . S : 0
functions. (b) Histogram summarizing a random sample of size 100 from the . 00 05 10 15 20 25 30 35 40 ‘45 50 55 60
exponential density function of (a). : ) : D " 5 50 5 x
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Just as the geometric ahd negative-binomia! distributions describe waiting
times when time is measured in integer units, the exponential and gamma
distributions describe waiting times (in a Poisson process) when time is a
continuous quantity, and we shall return to this point again later.

2.11 Distributions of other continuous randem variables

Here we shall simply list the standard forms of the p.d.f. of a number of other
common continuous random variables to which we shall refer later.

A probability density function that has the same qualitative shape as the

normal p.d.f. is the logistic p.d.f., given in standard form below:

The standard logistic probability dénsity function:

e *
f(x).:.m for —o=x= @

£[X]=0 and  Var(X)=7/3
We shall later make use of the logistic c.d.f, which in standard form is
F{x)=(l+e™ 5! for —o<xSw

A unimodal symmetric p.d.f. with more weight in the tails than either the
normal or logistic is the Cauchy p.d.f., so called because of its appearance in a
paper by Cauchy in 1853. In its standard form the Cauchy p.d.f. is as follows:

The standard Cauchy probability density function:

1
f(x)=m for —0=xSw

Because of the large weight in the tails of this p.d.f.,a random variable with this
distribution does not possess a finite mean or variance.

Finally, we give below the p.d.f. of a random variable witha beta distribution
over [0, 1].

The beta probability density function over [0, 1]:
M1 —x)f '+ f)
T (B

flx)= 0 : for x < 0 and for x > 1

forb<x <

|

2.12  New random variables for old 29

T B

6[X]1=aflatp) and Var(X)=C gt 5 T

The beta distribution contains the uniform distribution as a special case:
« = f = 1. If the random variable X has this distribution; then such a beta
random variable will be said to have a B,(a, ) distribution.

Figures 2.7-2.9 provide examples of thiese p.d.f.’s together with histograms
summarizing random samples of size 100 from the respective p.d.f.’s

The logistic and Cauchy p.d.f.’s are given in standard, parameter-free form,
but we can simply introduce location and scale parameters_ﬁ_gnd arespectively
by mcans of the transformation¥ = aX + Q ‘This is an example of transform-
ing one random variable to- gwc a new.random variable, and we shall now
consider such transformations in a general setting. e

r

2,12 New random variables i'orold

Transforming, random variables is 2 common statistical - practlce and one
which is often utlhzed in simulation. The simplest transformation is the linear
transformatxon, Y = aX + 8. In the case of certain random variables, such as
uniform, logistic, normal and Cauchy, this transformation does not change the
distributional form, and merely changes the distribution parameters, while
in other cases the effect of this transformation is a little more compli-
cated.

In the case of single random variables, a general transformation isY = g(X),
for some function g. In such a case, if X is a. discrete random variable
then the distribution of ¥ may be obtained by simple enumeration,
using the distribution of X and. the form of g. Thus, for example, if Y = X?,
Pr(Y = i) = Pr(X = — ./i)+ Pr(X = ./i). Such enumeration is greatly sim-
phﬁed if g ¢ is a strictly monotonic function, so that in the last example, if X were
a non-negative random variable then we simply. have

Pr(Y = i) = Pr(X = ./i)

{"The simplification of the case when g is a strictly monotonic function applies
also to the case of the continuous random variables X. Two possible examples
are shown in Fig. 2.10.  {

For the case (a) illustrated in Fig. 2.10, the events {¥ < y} and {X < x} are
clearly equivalent, while for case (b) it is the events {¥ 2 y} and {X < x} that
are equivalent, so that

[ for case (a), F(y) = Pr(Y Ly =Pr(X <x)=F(x} } ‘@1
and for case (b), 1 —F(y) =Pr(¥Y = y) = Pr(X £ x) = F(x) )

A
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Figure 2.7 ({a) The standard logistic density function for |x| < 6. (b) Histogram
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i
1
i
1
1

X

0
—

{b)

Figure2.10 Hlustrations of y = g(x) where g is strictly monotonic, (a) increasing and

{b} decreasing.

leading naturally to:

ﬂm=ﬂﬂ%

-d
and fm=4m£

Two examﬁles of case (a) now follow.

i, . '

for case (a)
(2.2)
for case {b)
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EXAMPLE 2.2
y=x
fx(x)=2Je™** forx=0
le™ & e —iJfr
Sy = e 1)y

See Fig. 2,11 for the case 4 = 1.

EXAMPLE 23
y=Jx

fxxy=2Ae™™ forx=0
L)) =2iye= 4,

See Fig. 2,12 for the case A = 1.

We can see from Figs 2.11 and 2.12 how the two different transformations
have put different emphases over the range of x, resulting in the two different
forms for fy (y) shown. Thus in Fig. 2.12, ‘sm(all_’ values of x are transformed
into larger values of y (for 0 < x < 1,./x >-x), with the result that the mode of ™’
S(3) is to be found at y = /(1/24) > 0. However, in Fig. 2.11, for 0 < x <1,

x? < x, and the mode of f,{y) remains at 0.

The aim in the above has been to obtain f () as a function of y alone, and to
do this we have substituted x = g~ (3} Cases (a) and-(b) in Equation (2.2) are
both described by~ - S : i

CETT dx

s «jjy(y)=lfx(gf1(-}’)-}|a;

e,

ey

If g does not have @ contintious derivative, then strictly-(2.3) does not hold.
without a clear specification of what i§'ifiéant by dx/dy In practice, however, .. -
such cases are easily dealt with when they arise (see Exercise 2.25), since the..,
appropriate result'of Equation (2.1) always holdsigiving Fly) - =i o
The result of (2.3) is very uséful in'the simulation of random variables,as we ..
shall see later. 1t may be genéralized 16 the case of morethan one random,..,
variable, when the derivative of (2.3) becomes a Jacobian. Thus, for example, if

w = g(x, )
and ' L ‘ ’
£ =hix,y) o :
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—

1. . .
prowc‘le us with a one-to-one transformation from (x, y) to (w, 2), then the
Jacobian of the transformation is given by‘the determinant

ow

ow

ax E
J =

Ef dz

ox 6_y

;an?l it J ﬁ": 0 and all the partial derivatives involved are continuous, we can
-write the joint density of W and Z as:

fw,z(wa 7) =fx,y(x, J?)l J_‘I (2.4)

! As with the case of a single random variable, we express the right-hand side of
i (2.4) as a function of w.ggxd z only. It is sometimes useful to note that

“ ox x
S . gl @
dy . dy
w oz

It often occurs that we require the distribution of the random variable,”

A

; ina one-to-one transformation, so that (2.4) will give the joint density function

: W= g(X,Y). Introduction of some siitable function, Z = h(X,Y), may result . -. .-

¢ of Wand Z, from which we may then derive the required density of W as the

* marginal d_egsi;y:
FW) = [ Sy, o0, 2) dz

* (See Exercises 2.14 and 2.15 for examples)) We shall no i
i of the use of (24). . ) W t:.onsxdcr an examp le

: | ~

£

i EXAMPLE 2.4 - .
i Let N, and N, be infiepfandent N(0, 1) normal random variables. The bair
- (Ny, N,) defines a point In two dimensions, by Cartesian co-ordinates, The

; transformation, from Cattesian to polar ‘co-ordinates given, by
N, =Rcos®

e 1. f‘.zi":--i

‘ N, =Rsin® - . R
- Isone-to-one, and all the partial défivatives involved are continuous, so that we
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14 |

'
fylxl,

Phre
| i

may usc (2 4) to denve'the _|omt densnty functlon R and ® as’ follows:

SRR "“b‘ﬁ; an1 .

Tyl o 96 _¥lcos . -iwrsing e o
on,  Ony sin @ rcosf S
o

Thus fm(r 6) —cxp[— (n§+n§)]

- __ exp[ r2/2] for 0 <6 521:, os‘rs .

We thus see that R and © are independerit random variables, with fg(6) = 1/27,
i.e. @ is uniform over [0, 2], and f(r) = r exp [ —r?/2],i.e. (see Example 2.3),
R? has an, exponential distribution of parameter 3.
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y=ix

-

fr{y)- é

; Figure 212 ‘Ar. :llustranon of the transformation y= ./x and the densmes
T =eE fr())* 2ye v The shadcd regxons have the same area, '

L 2.13 Convolutions

We have seen earlier that a further common transformation is a linear
* combination of a number of independent random variabies. Againfin some
i cases the distributional form of the components of the sum is preserved, as
- occurs with Poisson, normal and Cauchy random variables, for example, while

in other cases the distributional form changes, as when a sum of independent
: exponentlal random vanables ‘has a gamma . dlsmbutlon as we havc seen
. abover:| v . : o ‘
: rThc sum of mutually lndependent random var:ablcs is calIed a conuo!ut:on

. lts distribution:'may be- evaluated by a convolutlon sum or mtegral as

i appmpnate as‘can be seen from.the two examples that now follow. ,J

'

r—XA MPLE 2.5
' Suppose X, hasa B(n,, p)distribution, X, ,hasa B (nz, p )d1strlbuuon and that

X, and X, are independent.
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LCtS;Xl'i‘er‘ e

.min(k,n,) . )
Pr(S=k)= 'Z P]:'(XI =;)P[(X2=k;1) 7
T i=0 - e i .
mintk.m} /', "i‘ '(:nz )."'-‘i‘ ‘ —k+i
= - l_ Yy —i . 1—p)"
;;o (i)p( pr A=)

min (k, n;} n n
k(] =k 1 2
= p*(L —p)ra+n '_;’ (E)(k_i)

" which can be shoern to equal:

k
Thus S has a B(n, + n,, p) distribution. g

. ("1“+"z)pk(1_p)n.+'ﬂz—* . _for 0<k< ntng

EXAMPLE 2.6 ' . ' ‘ .
Suppose X ; and X , are independent exponential random vanables,_ each w1th

the p.d.f. Ae™** for x = 0. i
Lﬂt S = X1 +Xz

S5 = jfx.(x)fx,(s—x) dx

£ .
— J- lze-ixe—zts—:] clx

0
= 22e ¥5 fors=0

ie. § has a T'(2, A) distribution.

The result of this last example was.anticipated in Section -2;.%0, and further
examples of convolutions are given in Exercises 2.5—2.8.‘An_:1fnp9rtant' and
often difficult feature in the evaluation of convolution sumsand mtf:gra_ls isthe
correct determination ‘of the admissible range for the convolution sum or

integral.

2,14 The chi-équare goodness-of-fit test

In the above figures illustrating d.is;rjbutions we can see the goqd qualitative
match between the shapes of distributions and the correspondm.g shapes of
histograms or bar-charts. For larger samples we would expect this match to
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improve. Whatever thesample size, however; we can ask whether the. match
between, say, probability density function and.histogram is good.enough. This -
is an important.question when it comes to testing a procedure for-simulating
random variables of a specific type.

Special tests exist for special distributions, and we shall encounter some of
these in Chapter 6; however, a test, due to K. Pearson, exists which may be
applied in any situation. When this test was established by Pearson in 1900 it
formed one of fhe cornerstones, of modern statistics. The test refers to a
situation in which, effectively, balls are being placed independently in.one of m
boxes. For any distribution we can divide up the range of the random variable
into m disjoint intervals, observe how many of the simulated values (which now
correspond to the balls) fall into each of the intervals (the boxes), and compare
the observed numbers of values in each interval with the numbers we would
expect. We then compute -the statistic,

' m 2
Xz — z (Ol _Eu)
. i=1 E;
where we have used O, and E, to denote respectively the observed drid expected
numbers of values in the'ith intérval. If the random variables ar¢ indéed from
the desired distribution theén the X?'statistic has, asymptotically, a chi-square
distribution on an appropriate number of degrees of freedom. The rule for
computing the degrees of freedom is

degrees of freedom = number of intervals — 1 —number of parameters,
' suitably. estimated, if any

This test is useful becausg of its universal applicability, but simply because it
may be applied in general it tends not to be very powerful at detecting
departures from what one expects. A further problem with this test is that the
chi-square result only holds for ‘large’ expected values. Although in many cases
this may simply mean that we should ensure E; > 5, for all i, we may well have

- to make a judicious choice of intervals for this to be the case. For further

discussion, see .Everitt (1977, p. 40), and Fienberg (1980, p. 172), The
distribution of X2 when cell values aré small is discussed by Fienberg; this case
may be investigated by simulation, and an illustration is given in Section 9.4.1.
We shall use this test in Chapter 6 {see also Exercise 2.24).

*2.15 Multivariate distributions

In the last section we encountered the simplest of all multivariate distributions,
the multinomial distribution, which results ‘when we throw n balls- in-
dependently into m boxes, with p; = Pr (balllands in the ithbox),forl £i<m

-—and Z:'"= 1 pi= 1
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Here we have a family of random variables, {X;, 1.< i< m}, where X;
denotes the number of balls-falling into-the ith box;and-so 2:; , Xi=n.The
joint distribution of these:random- variables'is given below:: ‘

Multinomial distribution: .

'Pr(xi=x,,1_si5m)=(x o
L2 *23 = -3y 2 m/ i=1

i=1.

m m
‘where 3 x;=nand 3, p;=1
=1 '

i

Here

( n : n!
=—
XysXayeowyXn xx,t ... x,!

the multinomial coefficient.
- . An important continuous multivariate distribution is the multivariate

_normal distribution, also.called the multi-normal ;(iigtrilfﬁtii)n. In its bivariate
_form the multivariate normal density function is i

Bivariate normal probability density function: ‘
_ 1 o 1- x — i VP
s e | S

)t

for —0 < x;, %, €00 ..

"'Here p is the c&;‘orrgliat_i::m betweeri’ the ‘two randori’ Variables; Fig: 2.13
" illustrates two possible forrns for § (x, , x;). Thé p-variaté density function has
the following form: = ' : ' S

p-variate multivariate normal probaijility denéfty function:
$(x) = (2m) P2|Z| " exp (3 (x -y T71 (x — 1))

L for —o<x; <00, 1 SiZp

notation used: N(u, Z) -

Here p is the mean vector, (x — jt) is the transpose (row vector) of the colimn
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vector (x—p), and I is the variance/covariance matrix, ie. L = {o;, 1 <1,
j = p},in which g, 415 the covariance between the component random v;riablcs
X;and X;. Thus o, is the variance of X, for 1 <i < p.

It can readily be shown (see, &.g., Morrison, 1976, p. 90, and cf. Exercise 2.16)
that if ¥ = AX and X has the N{u, ) distribution, where A is a nonsingular

p X p matrix, then Y has the N (Ap, AZA’) distribution.

*2.16 ,Generating functions

The material of this section is not used extensively in the remainder of the
book, and many readers may prefer to move on to Section 2.17.

I_t is often convenient to know the forms of generating functions of random
variables. For any random variable X, we define the moment generating
function (m.g.f) as '

M (6) = 6e¥]

for an appropriate range of the dummy variable, 8. Not all random varjables
have m.g.i:.’s: the Cauchy distribution provides a well-known example.
‘However, if M,(8) exists for 2 nontrivial interval for 6, then the m.gf

$la, %)
0167

I T 71 7
o
—
o
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Figure 2.13  Tllustration of the bivariate normal density function for, the cases

@ py=p=0, o,=0,=1 p=0
(b) &, = p2 =0, o,=0,=1, P#O-S

charactetizes the random variable. An alternative generating function is the

probability generating function, defined by
G(z)= €[z X]

M.g.f's for some of the distributions considered earlier in this chapter are

given in Table 2.1
For the distributions of Table 2.1, the m.g.f. may be used to check the values

of means and variances given carlier, since
M'(0)=&[X], and M*(0)=&[X?],

illustrating why the m.g.f. is so-named.

A glance at the m.g.f's of Table 2.1 shows that binomipl,megati?é-binorhia_l '
and gamma random variables.can be expressed as convolutions of identically -

AT
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Table 2.1, Common distributions and,associated moment generating functions

Distribution _‘ .

';m.g.i'. o

geometric: Pr(X =) =4"1p

b;inomial: Binpr Pr(X =i) = (?)P’gf": :

negative-binomial: Pr (X = n4-i)

NI
=", T

i

pe’(1—qe®) !, for ge® <1

 (g+pey

p"e""(} —ge® )", for ge < 1

i v

Poisson: Pr{X =1i) = ¢ m ei(a‘-h

. e L l'_xl
normal: N(O, 1y £(x) = 5= S

: \,/(7-7‘)
e;xponentiai: Jix)= e A for 6 < 1
. S A-0
. —lxlnxn—l 1 : "

gamma: [(n, A): f(x) = e—eo—

' f().. o (1-9) ‘for6<lh:

d_}stributed random variables. We see why this is so as follows:

=

s Let . 8=

1

= (e 5 )

i=1

= é’[ ﬁ exp (GX{)]

i=1

and if the {X;} are mutually independent, then

M(6) = ;H &lexp0X)] = T Mx,©).
- - . =1 R i=1
Furthermore, if the {X:} have the common m.g.f., My (0), say, then

Mg(0) = (MO (2.5)

Th_us, for example, a random variable X with the ["(n, 1) distribution can be
written as ‘

E,

1=

X=

u

1
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where the E, arc independent, identically distributed eéXpohential random
variables with parameter A (cf. Exercise 2.6).

Moment generating functions may also be defined for m _|omtly d1str1buted'

random variables' X, X5, ..., X, as follows:

Mx(ﬂ) '="£|: H exp{B;X‘)] L

Thus for the multinomial dlstnbuuon of Section 2.15, we have the multivariate
moment generating function

Mx(e) = ( z Piexpei) s

i=1

while the multivariate normal'distribution of Section 2.15 has the multivariate

m.g.f.
x(8) =exp (@'p+36'ZH)

A bivariate Poisson distribution which we shall encounter fater is simply
defined by its m.g.fi: \
My(8) = exp[4; (" -1+ 4, (eﬂz—1)+13(e9 +ﬂz—1)] (2.6)

We shall conclude this section with two examples which COmplement work
earlier in the chapter and illustrate further the utility of generating functions.

EXAMPLE 2.7 Proof of a central limir theorem _
A B(n, p) random variable I¥ can be written as a convolution:

W= X

where & [X;] = p and Var (X;) = pq, where g =1 -p.

_ (Wnp)
Let §, N . _
W —np)8
then MS'(G) =& [cxp ((—\/—-(—-r%;)—)-)] :
T
where ' ¢ = é.}/ \/ (npq)

and so by (2.5), as the {X ,-} are independent,
MS (8 Y(('b Where Y= (Xi —p]
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From the above, &[Y] = 0 and £ [¥2] = pq, and so

2

& L 8 "
=1 +—+h1gher order terms in | —
2n ' Jn
and by a result similar to that of Exercise 2.22, |
} Mg (6) - exp (92/2] as n— co
Thus asn— oo the m.g.f. of S, — the m: g f.of an N (0, l)xandom variable, and

so the distribution of S, — N (0, 1)/ A s:rmlar limiting operat:on applied to the
multmomxal distribution results in the- multwanate normal dlstnbutlon

2 n
Mg @ = ( 1 +¢—I£+ higher order terms in q&)

EXAMPLE 28 Derwmg the Poassan distribution fram the memmI
distribution
IfW bhas a B(n, p) dlstnbutxon, then

MW(B) (1 ~p+pey

‘ Now let us keep np = 4, say, fixed, while we let n —» oo (and consequently
p—0).

ﬁlow My, (0) = ( I+ l(_e"n—_l))

andasn— o0, My (6)—>exp[A(e’—1)], (see Exercise 2.22)

ie. the m.g.f. of a Poisson random variable with parameter 1. Hence under this
limiting operation the distribution of W tends to this Poisson form.

+ It is possible to derive the exponential and gamma distributions by similar
limiting processes applied, respectively, to the geometric and negative-
binomial distributions {see Exercise 2.23). This, approach may be used to
prowde an heuristic proof that the rules of the Poisson process result in a
predicted Poisson distribution (see Parzen, 1960, p. 253).

2.17 Discussion and further reading

While we have dichotomized random variables as usually discrete or
continuous, we have not mentioned, for instance, that most discrete random
variables simply ‘take integer values. Furthermore; the continuous random
variables ‘we have considered are, formally, absolutely continuous:random
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variables. Such discussion is not necessary for the material to follow, butit may’
be found in books such as Blake (1979) and Parzen (1960). Additional’ dlscrcte
and continuous distributions will arise throughout the book.

In this chapter we have presented only the fip of a very large icebérg. Much
more detail can be found in, for example, Haight (1967), Johnson and Kotz
(1969, 1970a, 1970b and 1972), Kendall and Stuart {1961} and Ord.(1972).
Mardia (1970) considers families of bwanate d1str1but10ns, while Douglas
(1980) describes the interesting distributions which cin result from special
‘combinations of distributions such as the binomial and Poisson. Cramér
{1954} discusses and proves different forms of central limit theorems, and
Bailey (1964}, Cox and Miller {1965) and Feller (1957) provide the niecessary
background to the Poisson process. Apostol (1963) is a good reference for the
full transformation-of-variable theory, which is also well described by, Blake.
(1979). Further discussion of the chi-square goodness-of—ﬁt test is provided by
Cochran (1952) and Craddotk and Flood (1970), whose small-sample study is
the subject of Séction’ 941 A more ‘leisurely introduction to some of- the
material of this chapter is provnded by Folks'(1981), and Cox and Smith (1967}
provide a good 1ntroductlon to the mathematical theory of qucues, relevatfit to
Exercises 2.26-2. 28 ‘ : "

‘2:18 Exercises and complements
(a) Transforming random variables |
2.1 Derive the densitjr function of the random variable
X = —log U, where U is U{0, 1)

2.2 Consider the effect of the transformation ¥ = aX . where a is a fixed
constant, and X is, e.g., an exponentlal norinal, gamma, or Poisson
random variable.

/Zf'a Show that if X has the distribution of Exerg:lsc 2.1, andW =yX' then
W has a Welbull distribution with p.d.f.

o) = % W exp [ — (@]

for0<@<co, f>0, y>0.
O\/ 2.4  Find the distribution of ¥ = N2, where N isan N {0, 1) random variable.

25 VY, Y,...,Y, are all mutually independent N{O, i] random
variables, show by induction -or otherwise, that Z7_, Y# has the x?
distribution. :

26 1IfY,,Y,, ...,Y,are dall mutually independent exponential random

*2.7

a>'2.8

29

@210

*2.11

212

*2.13

0. 12,14
*2,15

“a2.16
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variables;with p.d.f. de™%.for A > 0, y.2.0, show, by induction, and

using the convolution integral, that Z{. 1 ¥; has the ['(n, 2) distribution. .

If ¥y, Y3,....,7, are all mutually mdependent Cauchy random
variables wlth p.df, (m{l+yH)~Y, ‘dérive the' distribution of
1Rz, 7.

X,Y are lndepcndent random variables. Fmd the dxstnbutlon of X.+Y -

when:
(a) X Y are N(yl, o), N(uz, crz) rcspectlvely I |

@(b) X,Y are Poisson, with. .parameters A, , respcctxvely

{c} X,Y are cxponentlal w1th parameters A, x, rcspectwcly
If X, Y are as in Exercme 2.8(b), find ’
P{X =r|X+Y=n) 0<r<n

If X and Y are 1ndependent random variables, find the distribution of
Z = max(X,Y) in terms of the c.df’s of X and Y., =

Xy, X3,..., X, are independent random variables with the distri-
bution of Exercxse 2.1, Prove that the following random variables have
the same d:strabutlon

Y=max(X,, X;,..., X}

X B
} .,zle't“f"* +2{—"-.

Random variables ¥, and Y, have the exponential p.d.f, e forx = 0.

Let X, =Y, Ir’2 and X, =Y, +Y,. Find the joint distribution of
(Xl LB Xz)

Let X,, X, be two mdependent and 1dentlcally distributed non-
negative continuous random variables. Find the ‘joint probablhty
density function of min(X 1 X3} and X —X,|. Deduce that these
two new. random variables are independent if and only if X,
and X, have an exponential dlstrlbuuon. In such a case, evaluate
Pr(X, +X2 <3 min(X,, X,) < 3b), where b is constant.

Random variables X, Y are independently distributed as ¥3_ and X3,
respectively. Show that the new random variables, S = X +Y and
T = X/(X +Y)are independent, and T has a beta, B, (g, b) distribution.

If Ny, N;, N3, N, areindependent N (0, 1) random variables, show that )

(@) X = |N1 N; + N3 N, has the exponential p.d.f, e~ for x = 0.

‘(b) C N, 1/N; has the Cauchy distribution of Exermsc 2 7

Xisa p-d:menswnal column vector ' with the multlvanate -N (D, I)

Rl Sy Lo B A

T,

e
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distribution, in which 0 denotes a p-variate zero vector and I is the
p x p ~ideéntity matrix.- I Z = AX +p, ~where: A is .an arbitrary
p x p matrix, and p is an arbitrary p-dimensional column vector, show
that Z. has the Ny, AA') 'dlstrlbunon o

(b) Manipulation of random vanables, and questions arlsmg
from the chapter ' .

*2.17

*2.18

*2.19

*2.20

*2.21

*2.22

*2.23

Two independent Poisson processes have parameters 4; and 4,. Find
and identify the distributicm of the mimber of everits in the first process
which occur before the first evenl in the second process. ° ' -

Random vanab]es X and Y have the relaled dlstrlbuuons

Pr(Y=k)=(n+m)(1 B 0"tm=%  for <k <n+m

”+‘;‘C_1 for k20 - .

Here n, m are positive integers, and 0 < # <1, so that ¥.is binomial,
and X is negative-binomial. By finding the- coefficient of z
(L+z)"* /(1 +z)"* =% for 0 < i < m, or otherwise, show that

Pr(X < m) = Pr(¥ = n).

Use a central limit theorem approach to show that

Pr(X=k)=( )9“(1—9)" -

Show that a random variable with the negative- bmomlal drstnbutron
has the moment generatmg functlon

M,(0)=p 6""(1 —qe")'

Show that a random yanable with the gamma I"(n, J.) dlstnbutron has
the moment generatmg functlon

SR .
_(A 8) ,forﬂ.<l.

Show that lim (1+ ) = e~

A bl ¢

Suppose X is a random variable with a geometric drstnbutzon of
parameter p. LetY. = aX Ifa—.0and p = Om sucha way thatl = afpis
a constant, show that the distribution of ¥ fends to'that of a random
variable with:an'exponential distribution. with parameter/A~", '

2.24

2,25

i
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Use the chi-square goodness-of-fit test to compare the observed and
expected values in the intervals: (0, 0.1), (0.1, 0.2), etc., for the example of
Fig. 24, arising:from the U0, 1} distribution. The grouped data
frequencies are, in increasing order: 8, 8, 14, 12,11, 11 12, 6, 12, 6.

X is'a‘’random variable with the exponentlal pd.f, e”* for x = 0. We
deﬁne Y as f‘ollows

for 0 X<,
for X=1,
Obtain the distribution of ¥.

Y=x
Y=2X-1

(e) Quest:ons on mode]lmg, conrmumg Exerclses 1 4 1.6 and 1.7

72 26

2,27

The simple queue of Exercxse 1 4 measured time in mtegral units. More
realistically, times between, arnva]s, and service times, would be con-
tinuous quantities, sometimes modelled by random _variables with
exponential distributions. Observe a real-life queue,ata. post-ofﬁce for
example, make a record of inter-arrival and service times and illustrate
these by means of histograms. What underlying distributions might
seem appropriate?

{continuation) The BASIC ‘p'rograr'n' given below simulates what is
called an M/M/I queue {see e.g, Gross and Harris, 1974, p. 8). In this
queue, inter-arrival times are independent random variables with le~**
exponential density function, and service times are independent
random variables with e ~#* exponential density function. There is just
one server and Af(A+ p) plays the r8le of p in Exercise 1.4. Run this
program for cases:d = p, 4 > pand A < p, and comment on the results.

NOTE that the statements 100, 150 and 190 below simulate a U(0, 1)
random variable. The method used by the computer is described in the

ekt chapter. The function of statements 110 arid 160 should be clear from

the solutions to Exercises 2.1 and 2.2. An explanation’ of why this
program does in fact simulate an M/M/1 queue is given in Section 8.3.1.

10 REM THIS PROGRAM SIMULATES AN M/M /17 QUEUE, STARTING EMPTY
20 REM AS INPUT YOU MUST PROVIDE ARRIVAL AND DEPARTURE RATES
.30 REM NOTE THAT THERE IS NO TERMINATION RULE IN THIS PROGRAH
40 PRINT “TYPE LAMBDA AND MU, IN THAT ORDER *

50 INPUTLM
60 LETS= L+M

70 LETI=

80 PRINT "QUEUE SIZE...
90 RANDOM

100 LETU = RND

110 LETE = (-LOG ]22

120 REM.E ]S THE IME TQ-FIRST ARRIVAL AT AN EMPTY QUEUE

..AFTER TIME"
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130 LET-Q =1
140 PRINT Q.E
150 LET U = RND
150 KEMETS Teroe N :
EXT EVENT, IE., ARRIVAL OR DEPARTURE
180 REM WE MUST NOW FIND THE TYRE OF THAT BVENT ~ 8|
190 LET U = RND
200 IFU >1THEN 250 - .
210 REM THUS WE HAVE AN ARRIVAL
220 LET Q=G+l - .
230 - PRINT QE  i7 -t -
240 GOTO.150
250 REM THUS WE HAVE A DEPARTURE
260 LETQ = Q-1
270 PRINT QF
280 IFQ =0 THEN 100
290 GOTo
300 END

(continuation) We have seen that exponential distributions result
from Poisson processes, and we can consider the parameters A and uof
Exercise 2.27 to be rate parameters in Poisson processes for arrivals and
departures, respectively. In some cases it may seem realistic forct-and g
each to be functions of the current queue size, n, say: For example, if 1,

.= 2/(n+ 1yand p = 1, we have 51mple ‘discouragement’ queue, with an
arrival rate- which decreases with- increasing queue size. Modify the -
~ BASIC program of Exercise 2.27 in order to simulate this discourage-

ment queue, and compare the behaviour of this queue with.that of the
M/M/1 queue with A = 2, 4 = 3. We shall contmue dlscussmn of these
queues in Chapters 7 and 8.

P
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GENERATING UNIFORM
RANDOM VARIABLES |

3.1 Uses of umform random numbers

Iz Random digits are used widely in staustlcs for example in the generatlon of
random samples (see Barnett, 1974, p. 22), or in the allocation of treatments in
statistical éxperiméntsj(see Cox, 1958, p. 72). More generally still, uniform
random numbers and digits are needed for the conduct of lotteries, such as'the
national premium bond lottery of the United Kingdom (see Thompson, 1959).

A further use for random digits is given in the following example.

l/E-XA-M PLE3.1
The randomized response.technique

" In conducting surveys of individuals’ activities it may be of interest to ask a
question which could be embarrassing to the interviewee; possible examples
include'questions relating to car-driving offences, sex, tax-evasion and the.use
of drugs. Let us denote the embarrassing question by E, and suppose, for the
population in question, we know the frequency, p, of positive response to some
other, non-embarrassing, question, N, say. We can now proceed by presenting
the interviewee with both questions N and E, and a random digit simulator,
producing 0 with probability py,and producing 1 with probability 1 — p,. The
interviewee is then instructed to answer N if the random digit is 0, say, and to
answer E if the random digit-is 1. The interviewer does not see the random
dlglt From e]ementary probablhty’theory (see ABC, p.85) «-

Pr(response.= Yes) = Pr(responsc = _Yes]questlon is N )po

+ Pr{response = Yes|question is E)(1 —p,)

Knowing p, and Pr(responsc = Yes|question is N), and estimating
. Pr{response —-}ch) from the survey, enables one to estlmate Pr(response
= Yes|quesnon is E). This illustration is an axample of a randomlzed-

st ]
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rrcsponsc technique (RRT),|and for further examples and discussion, see
Campbell and Joiner (1973) and Exercises 3.1-34,

Uniferm random numbers are clearly generally useful. Furthermore, in
Chapters 4 and 5 we shall®see; that[l—f_\;e have a supply!of U (0,\1) random
variables, we can simulate any random variable; discrete or contmuous by
suitably manipulating these U (0, I):random. variables. [5:¢ v 0T 2

Initially, therefore, we must consider how we can simulate uniform random
variables, the building-blocks of simulation, and that is the subject of this
chapter. We start by indicating the relationships between discrete and
continuous uniform random variables.

3.2 Contmuous and dlscrete umform random variables

¥

IfUisa U0, 1) random vanab]e and we mtroduce a dlscrete random vanable
D such that - o g

D= iif. and only:if { < ]0U < 1+1 fon: i=0,l 2,-'.".‘. .9 .1
then’ - PrD=i=Pri<10U<i+1) '

- 1
1

T Y T T
=10 ori=0,1,2,...,9:.

The random variable D thus provides equi-probable (uniform) random digits.
Conversely, if we write a U(0, 1) random variable, U, in decimal form,

U=.3} D[k)lO ko
ckElooo - ..

““Then mtu1tlvely we would expect D(k) to’ be a umform random dlglt for each
L k = 1 : .

'ie-' Lo Pr(D(k) = i) = Lo
Pl o 0 T S0

PR

for0<1<10
R | )

ndk>l

-ThlS and further;results are provcd by Yakow:tz (1977 pp 29—31} We see,
therefore, that U/(0, 1y¥random variables can readlly give,us uniform random
digits, while given a means of s:mulatmg randorn digits we can combine them
to glve U0, 1) “variables to whatever accuracy is ‘required.

+3.3 Dice and machines

, The sxmplest random number generators are coms ‘dice and bags of coloured
“balls; the very ‘bread-and-biitter of éxérdisés in elementary ‘probability theory.

i
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]_Thus in the RRT example above, the interviewee could be given a well-shaken
bag of balls, a proportion p, of which are white, with the remainder being
black. Without lookxng, the 1nterv1ewee then selects a ball ‘from the bag, and
answers question N if the ball chiosen is white, and answers quéstion E if the
ball chosen is black. Similar physical devices are sometimes used in lotteries,
and games of chance such as bingo and ‘roulettey Certain countries such as
Australia, Canada, France and West Germany televise, once a week, the
operation of a complex physical device for selecting winning lottery numbers.
West (1955} provides an analysis of the results of a lottery carried out in
Rhodesia. :

The random digits we usually need are uniform over the 0-9 range, and such
digits can be obtained by suitably manipulating simple devices such as coins, as

~.in the followmg example: o .

l EXAM PLE 3.2 .
A fair.coin is tossed-four times. If we rccord a head as 0 and a taxl as I, then the

result of the experiment.is four.digits, abcd, wrltten in ordcr €. g, 01 10 Wecan

. interpret abcd as the number, (a x 23)+ (b x 22+ (¢ x2)+d so that 0110 is

- interpreted as 6. If the.resulting number js-greater, than 9.we reject it and start
* again. If-the resulting number is in the 0-9 range thcn 1t is a realization of a’

*-" uniformly distributed random digit over that rang ‘J(Based on part of an A-
- level question,.Oxford, 1978.)

We can see this simply by enumcratmg the possible outcomes to the
experiment:

Outcome -Resulting number
0000 0
1000 8
0100 4
0010 2
0001 1
1100 12
1010 10
1001 9
0110 6
0101 5
0011 3
1110 14
1101 13
1011 11
0111 7
1111 15




54 ' Generatmg Umform Random Variables

F/ We are just using the coin to srmulate the binary form of the digits 0-15. This
method therefore does give rise to uniform random digits over 0-9, but it is
rather wasteful, as resulting numbers are rejected 3/8 of the time. ’_‘\

o Manipulations of this kind are avoided" “by the direct use of simple dice to
produce 0-9 uniform random digits. Unfortupately, a ‘regular 10-sided figure
does not exist, but one can use icosahedral dice (giving regular 20-sided
figures), each digit 0-9 appearing separately on two different faces, Further
possibilities include rolling a regular 10-faced cylinde1, or throwing a 10-faced
di-pyramid, with each face bemg an isosceles triangle of some fixed size. These
srmple devices are illustrated in Fig. 3.1 B '

Figure 3.1 (a) Three icosahedral dice. Note the need to distinguish between 6 and ¢
{b} A reguiar, 10-faced cylmder {c) Three 10-faced di- -pyramids, - with truncated
isosceles triangles of the same size as faces. Note that the two pyramids are so attached
that when the body is at rest a face is uppermost.

—
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IBecause of the general demand for random digits, tables, such as those of

- Appendix gjare now wrde]y available. A sequence of random digits.can be

obtained by readmg the table by rows, by columns, or by any other rule. The
first table of this kind was produced by Tippett in' 1927, and it was regarded as
a ‘godsend’ byithe statisticians of the day (Daniels, 1982). .

In using phiysical devices such as dice to simulate random dlgrts one is
reversmg the customary model/reality relationshipjAs described in Chapter 1,
one usually takes a real-life’situation, and builds & model of it.TH THere we start
with a model, such as a uniform random digit, seek a real-life mechanism to
correspond to. that model,{and then take observatrons from the real-life
mechanism. There is always a discrepancy between model and reality —coins
may not be fair (see, e.g, Kerrich,. 1946), Idice may be biased, and so
on -~ therefore the numbers produced by physical devices are tested to ensure
that. no drastic non- randomness is present. This is simply a form of quality
control of random numbers and onge applies only a finite subset of the infinity
of tests that are possible. We shall return to the subject of testmg of numbersin in |
Chapter 6.

Any process in nature that is thought to be random may be used to try to
simulate umform randorh numbers, Kendall and Babbington-Smith (1939a)

- used arotating disk with ten uniform segments, which was stopped at random.

Tippett (1925) used digits read from tables of logarithms. ERNIE, the
computer used for selec:tmg wmnmg premium:bonds in the. British national
lottery, 'usés the electronic “noise’ of neon tubes:fThe digits of Table 3. 1 were

. oblained from readmg the last three digits of successive numbers. from.the
‘ Canterbury reglon 'telephonie diréctory.\(Cf.:Section 6.7-and Exercise, 6.8. The
'_relatwe frequenelcs‘ of+-these digits are considered mlExample 6.1}

Student (1908a) drew samples from a set of physical measurements taken on
criminals, ‘as described in Section 1.5. In his case we have an.illustration of
sampling from a non-uniform population, (approximately normal in this case),
and’similarly exponential and Poisson random variables may be simulated
directly if one can observe-a process. in: nature 'which provides a good
approximation to a Poisson process (see Section 4. 4.2).

. [Dice and machinesare 1mpraet1cal for all but the srnallest simulations,Wwhich
are now in any case likely to be conducted with the aid of readily available
tables (see for mstance Neave, 1981, and Murdoch and-Barnes, 1974).[Large-
scale simulations are usually conductéd using compute@nd early computers

" were equipped with, built-in random-number generators of the physrml kind,
'~ using-tandom electronic features, as in . ERNIE. Tocher (1975 chapter 5)

providésmany examples here, and even circuit dlagrams M ore recently, Isida
(1982) presented a:compact physical ranclom-number generator based on the
noise of a Zener diode} The modern equwalent of this can be found in certain

 hand-calculators, which: have an RND button for srmulatlng U (0 1) random
'.varlab].es A ‘problem . w1th all physical devices js the danger that they may
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Table 3.1 = Digits from telephone numbers

874 580 . 873 824 564 663

478 658 540 561 360 - 082

661 839 996 Co261 1 052 © 938

334 420 356 571 081 866

_ 569 166 045 091 961 610

{a) 471 378 936- . 569 107 022
- 9i6 865 961 838 303 826

665 014 . 148 764 276 638

504 776 237 682 634 207

659 654 774 217 " 609 684

423 213 43 002 - 960 273

183" 059 . 563 - .39 252 - 955

202 410 . 451 887 467 427

"By . -207 483 . 809 265. 117 891
061 , 658 145 950 135 495
716 232 955 771 747 " 699

693 757 952 053 659 . 459

991 876 091 . 431 316 283

499 - 223 743 .. 037 891 729

' 611 998 650 527 2073 665

5

" become unreliable, thr0ugh changes to the dewcc in time; thus dice, for
‘instance, could become unevenly worn, resulting in bias, rf'requent chccks of
the genérated numbers should therefore be. carried out.

* The modein approach to large-scale simulation is quite ( dlffcrent from that
of this section, and it'avoids-the need for:such frequent chcckmg by producing
a sequence of numbers that can be shown mathematically to possess cerlain
"desirable features. This approach, which is also not without its drawbacks is
described in: the next section. ’

’ r3 4 Psendo-randem numbers
The digits of Table 3. 2 superficially have the appearance of thé dlglts of Table
. 3.1, but they have been generated in a blatantly non- random fashion, from the

- r tecursion formula

. ‘H,,; = fractional part of (z + u,,)s_ ;t"of nz0 (3.1)
" where ug is some specified number in the range 0 < uq < 1. ug is, rather graphi-
cally, termed the ‘seed”. Kno’Wledgc of the formula of (3.1) provides one with
complete knowledge of the sequence-of numbers resulting in Table 3.2, but in
many applncatmns one may find these digits as suitable as those; say, of Table
3.1, and much more easily generated on a calculator or computer.. Formula
(3.1) can be hkened to a ‘black box’ which takes the place of a physical black-
box such as a dié. Rectirsion formulae are most suitable for use on computers

A
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l Table 3.2 Digits from the recursion of Equation (3:1].

254 TLo032 329 233 252 444
794 807 600 974 - 884 .. 454
797 354 440 855 159 290
162 053 737 489 953 381
051 091 224, 843 075 513
703 740 .55 750 070 002
301 810 503 392 © 970 915
690 642 767 038 - - 140 051
962 283 420 . - 435 835 150
574 - 108 551 564 209 788
810 657 491 939 365 537
612 514 020 950 567 239
119 - 863 638 032 062 491
966 619 460 553 850%. - .. 096
L2585 550 872 019 601 - 282
T 474 943 141 486 022 v/
013 589 023 454 681 "854 -
489 857 : 712 412 307 910 -
826 3057 - 7535 610 . 885 458
346 008 309.: 763 - - 850 300

Each triple is obtamed from the ﬁrsf three decimal places of the u;, when (3.1) was

operated using- a- 32-b1t computer and floating-poinit ;arithmetic. Successive

. ‘numbers were oblamcd moving from left to nght across the rows, and down the |
s table:’ . .

and calculators, fand f'urtherrnore the propernes o[' the numbers they produce
can be investigated mathematically. If thetesulting numbers satisfyavariety of
tests, then becausc of the deterrp msuc;»nature of a, Jtecurs:on' formula,
additional apphcatlon of these tests’at:a-la 'r.=stage is not nccessary, as there is
no: danget'oﬁ bias creeping. ifito the blach:box w:th the yrogress of time. |
nﬁ some applications it may bc 'requlred to re-fiif a“simulation using the
samefFandom numbers as on a ‘previous run. Such a requirement may seem
unhR%ly, but we shall see in Chapter 7 that it can be yery useful in certain
methods for vanance—x;educuon [Knowledge of U for a formula such as (3.1)
enables one to ‘do this? quue easily, |whereas ‘siich .a’ run facility is not
possible with, phys:ca] gcpcrators unless a p0551bly,t1mc—consum1ng record is
made of the num ¥: Sed Inoue et al. (198 cnbe the generation and

testing of random dlglts “which may be supphe onmagnetlc tapes

_‘__;

r3.5 Congruential psendo-random number generétors"
An alternative mathematical representation of formula (3.1) is:

Uy, =(m+u,) (modl)y forn=0
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rCurrently the recursion formula that is most frequently adopted is:
Xps1=ax,+b  (modm) fornz0 . (32)

in which a, b and m are suitably chos_én fixed integéf cc')n'st'z}hts, and the seed is
an integer, x,. Starting from x,, the formula (3.2) gives rise to a sequence of
integers, each of which lies in the 0 to (m —1) range. Because the resulting
numbers can be investigated by the theory of congruences, such generators are
termed ‘congruential’ JAlthough terminology is not always uniform here, we
shall call a generator with b =:0, ‘multiplicative’, and one with b # 0, ‘mixed’.
T Approximations to U (0, 1) variables'can be obtained from setting u; = x; /m, ps
discussed in Exercise 3.15. For an example, see the solution to Exercise 3.21,

Formulae such as (3.1 are sometimes used to play games involving random
elements on hand calculators. We can examine the numbers produced and we
may find that they satisfy many criteria of random numbers. However, there is
no guarantee, in general, that at some stage the sequence of numbers produced
by such formulae may. not seriously violate criteria of random numbers, and
thus, in general, such formulae are of little use for scientific work As we shall
see, an advantage of the formula (3.2) is that certain guarantees are available
for the resulting numbers. ‘

The constants a, b and m are chosen with a number of aims in mind. Fora
start,'one wants the arithmetic to be efficient. Human beings do arithmetic to
base 10, and so if the formula (3.2) was being operated by hand, using pencil
and paper, it would be sensible for m to be some positive integral power of 10.
7 For example, if we have -

Xq =389, a=1573,b =19, m = 10°
then from (3.2),

x, = 140016 (mod 10%) = 16
X, = 25187 (mod 10%) = 187
etc, :

Clearly, if one naturally does arithmetic -to number'base r; say, then the
operation of division by m is most efficiently done if m = r* for some positive
integer k. For most computers this entails setting m '= 2¥ where k is selected so
that mis ‘large’ (see below)and the numbers involved are within the accuracy of
the machine. ' -

A moment’s thought shows that the generator of (3.2) can produce no more
than m different numbers before the cycle repeats itselfjagain and again. Thus
a second aim in choosing the constants a, b, m is that the cycle length, which
could certainly be less than m,.is reasonably large. It has been shown. (see Hull
and Dobell, 1962; and Knuth, 1981, pp. 16-18) that for the case b > 0, the

[‘maximum possible cycle length m is obtained if, and only if, the following
relations hold: -

A

{i) b and m have no common factors other than I;

!
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r(ll) (a—-1) .is a multiple of every prime number that divides m,
(iii) (a—1) is a multiple of 4 if m is a multiple of 4. 1

Ifm = 2% relation (iif) will imply that a = de + 1 for positive i
ana thf:q;a}lsp!satis.f‘igs relation (ji). When m =.2% relatixt’m (i) is :;:ﬁ;aélfiagsgg
'b.}'"scttlng. b ='any odd positive constant. Proofs of results such as these are
usually given in general number-theoretic terms; however, following Peach
232212’ u; Sectign 39 we pro:ide a simple proof of the above result for the
intcge;;l, y u.if‘:- 'case. m= 2% _a =4c+1 and b odd (¢, b, and k positive
Alth(_mgh _multiplicative congruential generators involve less arithmetic
- than mfxed congruential generators, it is not possible to obtain the full cycle
length in the multiplicative case. Nevertheless, if m = 2* for a multiplicative
generator, then-a.cycle-Jength of 242 may. be obtained | This is achieved by
setg‘._llpg a= 13 (mod 8), and now also imposing a constraint on Xgs namély
_c;]‘_lo'o‘smg‘xo to be odd. A suitable choice for a is an odd -power of 5 ;incé ' fo;
positive, integra] g, - - ' ’ T

S = (L4471 = (14404 + 1) mod(g)
' - = —3 (mod 8)

Five such generators that have been considered are:

a k
5 . 36,39
5 40, 42, 43

;:'g; further discussion of multiplicative congruential generators, see Exf;rcise
A thn one ﬁr.st* encounters the idea of a sequence of ‘random’ nun;bers
ny'C_llllg, this is disturbing. However! it is PUt in perspective by Wichmann and
Hill (1982a), who present a generator; which we shall discuss later, with a cycle
lcngtli:lc greater than 278 x 10**. As they Temar¥, if one used 1000 of these
numbers a second, it would take more‘than ‘800 veats for :
— TR ? the

% o Y e m ¥ ‘ sequence to
7 .Large_cy_cle lengths do not necessarily result in sequences o_f ‘good’ pseudo-
random numl?ers,- and a]Tﬁlrd aim in the'choice of a, b, m is to fry to producea
small correlation between successi?e numbers in the series; 'fb'r'tn;ly randbm
?Lmllbers, successive numbers are uncorrelated, {but we can see thai.tfﬁs is not
ikely to be the case fora generator such as (3 {Greenberger (1961) has shown )
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ﬁﬂat an approximation to the correlation between, x, and x, .., is given by:
1. 6b by '
pz——-—-(l—-—)i;—a- ‘ 3.3)

:Greenbergcr gives the following two examples of sequences with the same full
cycle length '

a b m i op
(i) 23441 1 233 0.25

(ii) : 218+1 1 235_ <& 2—]8 P
. 1
' Expressmns such as (3.3) are obtamed by averagmg over one com plete cycle
‘ of 2 full- penod mlxed generator (cf. Exercise 3.13) and exact formulae for p,
'mvolvmg Dedekmd sums, are presented by Kennedy and Gentle (1980, p. 140)
As is discussed by Kennedy and Gentle, and also by Knuth (1981, p. 84),
[Fﬁaosmg a, b and m to ensure small p can result in a poor generator in other
respects. For instance, for sequences that are much shorter than the full cycle,
the correlation between x, and x,, , may be appreciably higher than the value
of p for the complete cycle.jAlso, higher-order correlations may be far too high;
see Coveyou and MacPherson (1967) and Van Gelder (1967) for further
discussion. It is sometimes recommended that one takes a = \/m (see e.g.,
Cooke, Craven and Clarke, 1982, p. 69). However, this approximate relation-
ship holds for the RANDU generator, originally used by IBM and, as we can
see from Exercise 3.25, this generator possesses a rather glaring Achilles heel.
Unfortunately, as we shall seein Chapter 6, this is a defect which can be hard to
detect using standard empirical tests. As a further example, a & \/m for the
generator of Exercise 3.31 (u) which passes the randomness tests of Downham
and Roberts (1967) yet has since been shown to have undesirable properties by

Atkinson (1980). Similar findings for this- generator and that of Exercise 3. 31 _

" (i) are given by Grafton (1981).

The choice of the constants a, b and m is clearly a difficult one; but the
convemence of pseudo random number generators:has:made the search for
" good generators worth whxlc Ulnmately, the properties of any generator will

‘Be judged by the use mtended for the numbers to be:geherated, and by the tests
“applied [7\_ very lmportant fcaturc of.congruential generators, which is pérhaps

inadequately emphasized, is that the arithmetic involved in operating the .

formula (3.2) is exact, without any round-off error} Thus naive programming
of the formula (3.2) in, say, BASIC can rapidly result in a-sequenceof unknown
'propertlcs bccausc of the use of floating-point arithmetic; thisfeature is clearly
’ 1llustra5ed in Exercxse 3.14. This problem:is wsually solved in computer
: lmp]ementatlons by machmc-code programs which employ integer arithimetic.
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In this case the modulus operation can be performed automatically, without
division, if the modulus, m =2, and r is the computer word size: after -
(ax;_, + b) is formed, then only the r lowest-order bits are retained; this is the
mteger ‘overspill or carry-out’ feature described by Kennedy and Gentle (1980,

_p. 19).

[™ 3.6 'Further propertles of congruentlal generators

: One mlghl well expect numbers resulting from the formula (3.2) to- have

unusual dependencies and that this is so is seen from the following illustration:
iepencencies

Let X;py = 5% (mod m)

Here - Xppy = Sx;—hym 3.4)

in which h; takes one of the values, 0, 1, 2, 3, 4. Thus pairs of successive values,

{x;, x4 ) give the Cartesian co-ordinates of pomts which lie on just one of the

five lines given by (3.4),and the larger mis, ‘the longer the sequence of generated

numbers will remain on any one of these lines before moving to another line.
For example, if x4 = 1, m = 11, then

Xy =5, % =3, x3=4,x,=9, x5=1 v

and the line used changes with each iteration.
However, if x; = I, m = 1000, then '
Vv

Xy =5, x, = 25, xy = 125, x4 = 625, x5 = 125

and the sequence x, — x, is obtained from the line

Xipy = 5% B

after which the sequence degenerates into a simple alternation pairs of
successive values give points which lie on a limited number of straight lines,
triplets of successive values lie on a limited number of planes, and so on (see

- Exercise 3.23).

{"’"IT he mixed corigruential generator : o (.j
X4y = 781 x,+387 (mod 1000) 35

has cycle length 1000. Figure 3.2 illustrates a plot of u, ., vs. u, for a sequence
of length: 500, where u; = x; /1000, for 0 < i < 999.

The striking sparseness of the points:is because of the small valve of m used
here; which:also allows us to'see very clearly the kind of pattern which can
arise. Thus many users prefer to modify the output from congruential
generators before use. One way. to modify the output is to take numbers in
groups of size g, say, and then ‘shuffie’ them, by means of a permutation, before
use. The permutation used may be fixed, or chosen at random. when required. |
Andrews et ¢l. (1972) used such an approach with g = 500, while Egger (1979)
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Ynt1

10

0.6
x
04 * : x x '

0.24

0.0

Figure32 A plot of u, ., vs. u, for half the cycle of the mixed congruential generator
of Equation (3.5).

[l

A

used g = 100, a cholce also mvestlgated by Atkinson (1980). Page (1967)

discusses the construction of random permutations, while tables of these are
provided by Moses and Qakford (1963). See also. the IMSL routine GGPER .
described in Appendix 1. An alternative approach, due to MacLaren and -
Marsaglia (1965) is to have a ‘running’ store of g numbers from a congruential .
generator, and to choose which of these numbers to use next by means ofa
random indicator digit from .the range 1 to. g,‘obtained say, by a separate
congruential generator. The gap in the store is then filled by the next number
from the original generator, and so on.[When this is done for the sequence
resulting in Fig. 3.2, we obtain the plot of Fig:3.3,_|

For further discussion, see Chambers (1977, p. 173) and Nance and

Overstreet (1978). Nance and Overstreet discuss the value of g to be used, and
conclude with Knuth (1981, p. 31) that for a'good generator, shuffling is often
not needed. On the other hand, shuffling can appreciably-improve even very
poor generators, as demonstrated by Atkinson (1980), a point which is also
made in Exercise 3.26. The IMSL routine GGUW employs shuffling with -
g = 128; see Section Al.l in Appendlx L. ’

znr-
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.. Figure 3.3.. The plot resulting from modifying the same sequence that gave rise to Fig,

3.2. The. modlﬁcatlon entajled choosing the next ngmbcr ‘at random’ from a store of

" length g;r = 20 of numbers from theé original sequenoe, as’ explamed in thejtext In this
' example the random selecuon was made using Equatxon (3 1) and a seed of 0.5.

B b ! .
rguccesswe dxg:ts ina: demmal expansion of a truly random U(O 1 ariable

‘may, as we saw-in Section.3.2;be.used as uniform random digits. However, this

approach is unwise in the case of pseudo-random U (0, 1) variables, because of

the:pattern effects which may ari,sﬂ (see. the, solution to .Exercise 3.21). A
.disadvantage of congruential generators with m = 2* is that the low-order bits

- . of .generated numbers, have short cycles (e.g. Atkinson,.1980). This, is not 2
- problem ifn is prime (see Exercise 3.31) but then the arithmetic of the. method
.is. much more time;consuming on a ‘binary’ computer than ifm=

- 2% ‘Ways of
reducing computatxonal effort when m is prime are referenced by Law and
Kelton - (1982 p. 226).

3.7 Alternat:ve methods of pseudo-random number generatmn

A vanety of other methods of pseudo-random number generatlon cxist—see
for example, Andrews (1977, p. 170), O’Donovan (1979, p. 33), Law and Kelton
(1982, p. 230), Tausworthe (1965) and Craddock and Farmer (1971). Miller and

g
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{ Prentice (1968), for instance, use the third-ordér recurrence
X;= Xj_2 + Xi-
in which p is a suitable prime. __}

As, with the congruential methods considered above, it is possible here also
to examine the theoretical properties of the resulting séquence (cf. Exercise
3.26)!

Different computers have different word-lengths (see Kennedy and Gentle
1980, p. 8), which determine the value of the modulus, m, used in congruential
generators. This has resulted in machine-dependent generators, which is
undesirable, as it makes it difficult to reproduce results, a positive feature of
using pseudo-random numbers. Portable generators can result from rep-
resenting ‘large’ integers by means of a number of ‘short’ word-length integers;
see also Kral (1972} and Roberts (1982). An alternative.approach is given by

3 {mod p)

Wichmann and Hill (1982a,b), who combine three. simple multiplicative -
congruential generators in such a way that ‘the. overall cycle-length is the .

product of the individual cycle lengths (see Exercises 3.17 and 3.18). The result
is a portable generator with a cycle length greater than 2.78 x 10!3, As well as

providing FORTRAN and Ada listings for their algorithm, they also provide .

an 82-step program for the Hewlett Packard HP-67 hand-calculator.

3.8 Summary and discussion

rhe bulldlng—blocks of simulation are U(0,:1) random vanablcs and random
dlglts ‘We'have seen that these may be obtamed by the i lise of" physxcal devices,
or arithmetic formulae, and that no method is without its drawbacks. Large-
scale simulations take place on computers, for which arithmetic formulae
provide the most convenient approach. While any formula may seem to be
- adéquate, -and produce reasonable-looking- numbers,. there is always the

~-danger that ‘the formula'could ‘break: down at some stage. The .advantage of -
‘congruential generatorsis that-they can be shown to possess certain desirable -

features; and toigive guarantéed cycle lengtllg'l"liere'is-always-a chance,

‘however, that becaise the numbers are pséudo-random, and not truly random, -
univanted effects could still arise in any-particular application.-The answer is .
clearly to proceed- with caution, and to make regular checks for oddities. .
Certain early gcnerators were blatantly unsuitable, and the possibility remains
- that these generators are still in use.-Well-used computer’ packages, such as

MINITAB (sce Ryan, Joiner and Ryan, 1976) do not always specify the
generator they employ, which is clearly undesirable. (Indeed, different
implementations of the same package may. use different generators.) The same

is true of certain widely used microcomputers. Possible pitfalls, as may occur -
here; can'be avoided by the use of portable generators, “which may be used on
tany machlnc éven a hand-calculator. {Kf:nnedy and Gentle (1980; p. 165) report -

* thdtas many asabout-30 %-of:papets in the Journal of the American Statistical
Association in 1978 employed simulation. In such a climate it is extremely

A

o
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T important for research papers to specify the algorithm used, and the tests for
randomness employed in their investigation. At best, simulation results should
be verified using a differen: generator.

In minimal BASIC there are two statements which relate to the work of this

chapter. These are:
10 RANDOMIZE

20 U=RND

The first statement selects a seed in a random fashion, possibly by reference to
the current time. If this statement is omitted, the pseudo-random number
sequence that is used will always start from the same seed. In the second
statement we obtain a realization of a pseudo-random U (0, 1) variable.Both of
these statements will occur in programs in later chapters. While the BASIC
instructions are as above, the underlying method used will vary from machine
to machine, and on many microcomputers a slightly different form from RND
is used.

The "bibliographies by Sowey (1972, 1978) reveal that random number
generation is a wide field of continuing interest. While new generators of
proven improved properties may be developed in the future, congruential
generatorsare likely to continue to prove popular and convenicnt.h"_he need to
test random numbers cannot be stressed too strongly, and this is a subject to
which we shail return in Chapter 6. We shall now, in Chapters 4 and 5, proceed
to see how uniform random numbers may be changed to give random

. variables of any kind. |

*3.9 Proof of the attainment of a full cycle for a particular mixed
congruential psendo-random number generator

In the following, a, b, ¢, k, 5, ¢, &, v, 8, &, h,, h, and h, denote positive integers.

THEOREM 1.1
The mixed congruent:al generator

X,+1 = ax,+b (modm)

‘with @ = 4¢+ 1, b odd and m = 2%, has cycle length m.

PROOF
The basis of the proof is to show that if x; = x;, for i # j, then we cannot have
li—j| < m. As thecycle length is < m, then this will prove that the cycle length
is m, and the sequence generated within a single cycle is a permutation of the
integers from 0 to (m — 1). Without loss of generality, therefore, we shall take
xy = 0, as this simplifies matters.
First of all, note that x, = y, (mod m),
where Vosg = app+ b,

and, by the above, y; = 0.

forn=0 {(3.6)
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From (3.6) we see that

Yo=bl+a+a*+ ... +a""') forn=0
Now, x;=y,—h,2*
and if x; = x; for some i > j, say, then
bl@+a* ' + ... +d 7 ) =h2¢
ie., ba/(1+a+a+ ... +d7/ )= p,2¢ (3.7
Let us write w,=1+a+ ... +a"! forrz= 1.

In:(3.7), by definition, a and b are odd and so to prove the theorem we must
‘show that
: Wy 7 h32 for (f—j) < 2* ' (3.8)

and this we shall now do. |

THE CASE (i —j) ODD
If{i—j)is odd we can write (i—j) =2t +1, say, fort =0,

Wy, = (1‘_":)_ {{(1 44c)* ~1}/4c |

1
= {1+ 4 — 1} {1+ 40y + /dc}

ﬁ ={(1+4c) +1} {2:,1 4y~ ‘( )}

1 (L4 40) = 2+ 4c i (I.)(%"‘ (39)

1—1

which is even, as
Thus wy, o = wy, + az"“ is odd as g is. odd and so (3. 8} is trivially true.

THE CASE (i —j) EVEN

If (i —j) is even, there exists an s such that (i — J) = o2’, for.some odd, p051t1ve

integral «, and as (i — j] < 2% then s < k.

o -1
W('_J.) = WIIZ’._ 1+a+ PR +a¢2’ "l+a“2’ 4. ._.:+a“2’"'l

= Wc(z:—l'-Jr a'“r_lmﬁ'_az--l

= w1l +a ") (3.10)’

= Wyp-2(1 +a)(1 +a*2)
e we(+ak) (L 4ak) . . (1+a%),

for suitable positive integers, k;, k,, ..., k

5"
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- Since a = (1 +4c), we have, from t3.9)

) . Wepr = W} 25
in which w,and y are odd positive integers. (We have just pro;.ved that w, is odd
if o is odd.) Hence as s < k, there does not exist an h3 such that

Weas = h3 s

ThlS completes the proof We note, finally; that itis sunple to verify xo = X,
since, (xo —X,,).= bw,, where m =:2% w, =1+ a'= 24 4¢, so for k = 1, result
(3.7) is true. Let us suppose that : C

w,=0m,form=2%and k=1 (3.11)
=0m(l+a"), _from (3.10)

and (1 -+ a™) is even, from (3.9). :
Hence w,,, = ¢(2m), and if (3.41}is true for k = 1, then it isalso true for (k + 1).
We have seen that it is true for k = 1,and so by induction itis true forall k = 1.

3.10 Exercises and complements

(a) Uses of random numbers

The randomized response technique (RRT) has been much studied and
extended. A good introduction is provided by Campbell and Joiner (1973),
who motivate the first four questions.

t3.1 Investigate the workings of the RRT when the two alternative questions
. are: :

(i) I belor;g to group X;
(i) T do not belong to group X.

3.2 Describe how you would proceed if the. proportion of posmve
responses to the RRT ‘innocent’ question is unknown. Can you suggest
an innocent question for which it should be possible to obtain the
proportion of correct responses without difficulty?

3.3 Iovestigate the RRT when the randomizing de{ricq is a bag of balls, each
being one of three different colours, say red, white and blue, and the
instructions to the (female) respondents are:

If the red. ball is drawn answer the question: ‘have you had an
abortion’,

. If the whlte ball is drawn, respond ‘Yes’,
If the biue ball is drawn, respond ‘No’.
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In RRT, consider the implicatipns for the respondent of responding
*Yes’, even though it is not known which question has been answered.
Consider how the technique might be extended to deal with frequency

.of gc‘ti}f{it‘y_._ Consider how, to construct a confidence interval.(see, e.g,
... ABC, P 266) for the estimated, proportion. .- |
3.5 urr

IOO‘nui'nbered pebbles formed the population in a sampling experiment
devised by J. M. Bretner, Students estimate the population mean weight
(w =37.63 g) by selecting 10 pebblesiat randoin; Using tables of random

i :numbers, and:additionally- by choosing a'sampie’of 10 pebbles, using

their judgement only. The results.obtairied from a class of 32 biology
undergraduates are given below: : '

Judgement sample means . Random sample means

T " af

6263 53145 -
3585 3013
55.36 51,93
66.43 24,74
34.96 . 4332
3723 . 29.41
34.45 4267 ;
60.53 w4794 . e
49.61 : 28.76
. 5607 56.43
.. 559.02 . 3101 ¢ i
50.65 3273 .- '
33.34 5537
cyo.ei- 58.62 36:65
47.02 22.44 .
48.34 40.04 :
28.56 - 44657 1 - 1
26.65 . 4143 ¢ ¥
46.34 39.39
- 2186, : 2639 ‘
C., 3962 Lo 2188 . !
. 2545, . 3515,
748.82 3588 i
6656 " 2R.03
37.25 3171 .
0 4598 4398
346 6149
54.03 - 3152
51.89 .33.99
- 62.81 33.78
39714 . 49.69

14.05 e T I

(b} On uniform random digits

3.6

37

38

3.9

3.10
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Discuss, with reference to these data,'the imiportance of taking random
samples. .

S /Ls -

(™4

A possible way of using two unbiased dice for simulating uniform
random digits from 0 to 9 is as follows: throw the two dice and record
the sum: Interpret 10as 0,11 as 1,and ignore 12. Discuss this procedure.
(Based on part of an A-level cxémination question; Oxford, 1978.)

In Example 3.2 we used a fair coin to simulate events with probability

different from 0.5. Here we consider the converse problem (the other

side of .the coin)., Suppose you want to simulate an event with
probability 4; you have a coin but you suspect it is biased. How should
you proceed? One approach is this: toss the'coin twite, If the results of
the two tosses are the same, repeat the experiment, and carry on like this
until you obtain two tosses that are different. Record the outcome of the
second' toss. Explain why this “précedure “produces equi-probable
outcomes. Discussion and extensions to this simple idea are given in
Dwass (1972) and Hoefldirig and Simons (1970).

In a series of 10 tosses of two distinguishable fair dice, A and B, the
following faces were uppermost (A is given first in each case): (1, 4),
(2,6), (1,5), (4,3)/(2,2). (6,3), (4,9, (5, 1), 3, 4), (1,2).

Explain how. you would use the dice to generate uniformly dis-
tributed random numbers in the range 0000-9999. (Based on part of an
A-level examination question: Oxford, 1980.).

British car registration numbers are of the form: SHX 792R. Special
roles are played by the letters, but that is not, in general, true of the
numbers. Collect 1000 digits from observing car numbers, and examine
these digits for randomness (explain how your deal with numbers of the
form: HCY 7F). ‘ T

Below we give the decimal expansion of n to 2500 places, kindly
supplied by T: Hopkiné: Draw a bar-chart to represeiit the relative
frequencies of some (if not all!) of these digits, and comment on the use
of these digits as uniform ran'dbm 0-9 digits. Note that Fisher and
Yates (1948) adopted a not dissimilar approach, constructing random
numbers from tables of logarithms; further discussion of their numbers
is given in Exercise 6.8(i1).



3.1415926535 BI79323846 2643383279 5028641971 6939937510
5820974944 5923078164 0626620899 B62B034825 3421170670
8214808651 3282306647.0938445055 5056223172 5359408128
4811174502 B410270193 B521105559 8448229489 5493038198
4428810975 B659334461 2847564823 3736783165 2712019091
4564856692 3460348610 4543266482 1339360726'0249141273
7245870066 0631558017 4851520920 9626202540 9171536438
7692590360 0113305305 4882046652 1384146951 9415116094
3305727036 5759591953 0921861173 81953261179:31051185648
0744623799 6274956735 1885752724 8912279361 8301194912

9633673362 4406566430 8602130404 6395224737'1907021798
6094370277 0539217178 2931767523 B467481846 7669405132
000SBB1271 4525356002 7TB5T71342 7577896091 7363717872
1468440901 2249534301 4654956537 1050792279 6692569235
4201995611 2126021960 BE40344181 5981362977 47713009560
51B7072113:4999999837 2976049951 0597317328 1609631859
5024453455 3469083028 4252230825 3344685035 2619311881
7101000313 7538752385 5875332083 B142061717 7669147303
5982534904 28755468?8 1159562863 B823537875 9375195778
1857760532 1712266066 1300192787 6611195909 2164201989
3B09525720°1065485B63 2788659381 53381682796 8230301952
0353018529 6899577362 2599413891 2497217752 6347913151
5574857242 4541506059 5082953311 6861727655 BA9OYS0983
* B175463748 4909319255 0604000277, 0167113500 6848824012
85683616035 6370766010 4710181942 9556961989 4676783744
0448255379 7747268471 0404753464 620B0466B4 2500694912
P331367702 8962152104 7521620569 6602405803 150193511
2533824300 3558764024 7496473263 9141992726 0426992279

67823547681 6360093417 2164121992 4586315030 2861829745 .

5370674983 B505494588 5B69269956 H092721079 TS09302955

3211653449 8720275595 0236400665 4991198818 3479775356
5369807426 5425273525 518184175? 467239097? TT2793B000
B164706001 6145249192 1732172147 7235014144 1973568548
1613611573 525521334? 5741B40468 4305233239 0739414333
4547762416 B625189835:6948556209-9219222184 2725502542
5688767179 0494801653 4668049886 2723279176 6085784383
8279579766 8145410095 3BB3786360, 9506800642 2512520511
73929584896 08412684886 2594560424 1965285022 2106611863
_DBT4427863 2039194045 0471237137 8696095636 4371917287
4677646575 7396241389 0865832645 9950133904 TBOZT59009

0465764078 8512694683 9835259570 9825822620 5224694077
. 2671947826 B482601476 9909026401 3839443745 5305068200
4062524517 4039965143 1420800190 6592509372 2169646151
5709858387 4105978859 5977297549 B930181753 9284681582
6868386894 2774155991 BE59252459 5305943104 9972524680
B459872736 4469584065 3836736222 62680991246 0805124388
4390451244 1365497627 80TIVTLH60 1435997700 1296180894
4169486655 5848406353 4220722258 2846864815 8456028508
0168427394 5226746767 BB95252118 5225499548 6672782398

o
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(c) On, pseudo-random numbers

- 3.11

13,12

3.13

t3.14

“The first pseudo- randorn qaumber. generator was {the ‘mid-square’
proposed by von Neumann (1951). The method is as follows: select'a
large integer; ég. 7777. Square it and use the’middie four digit$ as the
next integer, square that, and so on. Here we get:

1M1= 604817 729 — 4817 - 23 2034 489 — 2034 — 4137156
— 1371—r 1 879 641 — etc

The above sequence | illustrates how we proceed when the squared
number does not fill the entire poss1blo field-length of 8. Inivestigate and
comrnent upon “this procedure. Further d1scuss;on is provided by
Tocher (1975, p: 72) dnd Knuth (1981, p. 3), ‘who explam ‘the problems
that can arise with this method. Craddock and Farmer (1971) provide a
modification.which avoids the obvious degeneration when the process
results’in zero. - ! : :

Investrgate sequences produced by:
Uy = fracuonal .part of (rt+u )5 '

Show that for a full—penod mixed congruential’ genérator the mean
and variance of the values produced by dividing each integer element
in the full-period sequence by the. modulus m are, respectively,
1(1 —1/m), and (14 1/m)f12. + . ]

The following BASIC program simulates the mixed congruential
generator of Equation (3.4), witha = 781,b =387, m = 1000. Run this

10 REM MIXED CONGRUENTIAL GENERATOR
20 INPUT UOD )

50 FOR1=1TO 1000
60 LETU1 = EA'U0+B /1000

70 LET U1 = {UL-INT{U1))*1000
"1 B0 . LETUO =01

90  PRINT Ut

‘100 NEXT I

110 END

.program with and thhout the followmg change (from Cooke Craven
and Clarke 1982 p. '!0)

75 U1=1INT(U1+0.5)

Comment on the results and the reason-for using this additional line.

3 In pseudo random number generatlon using-congruential methods we
~ obtaina sequence ofi mtegers {x; } over therange {0, m). Approximations

to U, 1) random vanables are then ‘obtained by setting u, = x;/m.

h ‘
Show that Uiy = (au,-+b/m) {mod 1)
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and program this in BASIC (note the fesson of Exeréise 3.14 with regard
. 7 to found-off error)."Note also the' comments-of Knuth (1981,:p. 525).
3.16 Show that for a mi_xedrpohgruéntial, g‘cnéfator,‘ with a > 1,

Xppi = [@*%,+ (@ —Db/(a—1)] (modim) *--fork>0,n20

This property is useful in dist[ibuted array p_roccssi-r.l.g {DAP) program-
~ming of congruential generators (Sylwestrowicz, 1982).

....*3.17. _Show thatif U, and U, are/independent U0, 1) raridom variables, then
- .., the fractional part of (U, + U,) is also U(0; 1). Show further that this
-.result still holds if U, is U(0, 1), but U, has any continuous distri-

-+, bution. . o A
3.18 " (continuation) Show thatif U,, U; and U, are formed independently
from congruential generators with respective cycle lengthsc,,¢; and ¢,,
then we may take the fractional part of (U, + U, 4 U,) as a realization
of a pseudo-random U(0,1) random variable,‘and the resulting
sequence of (0, 1) variables'will have cycle length ¢, c,c5 if ¢;, c; and ¢y
. are relatively prime. For further discussion, see Neave (1972, p. 6) and

-+ Wichmann and Hill (1982a). |

3.19 In a mixed Congruential generator, show that ‘if s = 10* for some
positiveinteger k > 1, then for the cycle léngth to equal m, we need to set

-a = 20d + 1, where d is a positive integer.

3.20"'Show that the sequence {,} of Section’3.5, for which x, = 89, x, = 16,

etc,, alternates between even and odd numbers.

¥3.21 (a) (Peach, 1961) The mixed congruential generator,

Xpe1 I=,?xn+ 13 (mod 32)

has full (32) cycle length. Write down-the resulting sequence of
numbers and investigate it for patterns: For example, compare the
numbers in the first half with those in the second half, write the
. -, numbers in binary form, ete.
(b) Experiment with cdlﬁgruentuillail generators of your own.
3.22 (a) Write BASIC programs to perform random shuffling and random
replacement of pseudo-random numbers. When ‘might these two
““#L. procedures be equivalent? - -~ . -
(b) (Bays and Durham, 1976) We may use the next number from a

- s . ... congruential generator to determing’ the random réplacement. -

_Inves@iéafé this procedure for the genefator S

Xp41=5%,+3 (mod 16);xo = L

b v i

4

3.10 Exercises and complemenis 73
323 A distinctly non-random -feature of congruential pseudo-random

numbers is that nio_riumber, appears twice within 2. cycle. Suggest a
simple procedure for overcoming this defect.

3.24 Construct a pseudo-random number generator of your own, and
evaluate its performance. . _ o

t3.25 The mﬁcﬁ-ﬁsed IBM generator RANDU is multiplicative congruential,
with multiplier 65 539, and modulus 23!, so that the generated sequence
is:

X;4, = 65539x; (mod 2*')

Use the identity 65 5.3‘9 = 2'63 3 to show that

Xigp1 = (63(.,-—9x,-'_1) (mod 23%),

and comment, on the behaviour of successive triplets (X;_ 1, X;, X;41)-
« See also Chambers. (1977, p. 191), Mjller (1980a, b} and Kennedy and
Gentle (1980, p. 149) for further discussion of this generator. Examples
of plots of triplets are to be found in Knuth (1981, p. 90) and Oakenfull

(1979).

3.26 (a) The Fibonacci series may be used for a pseudo-random number
~ generator: ) ' .
. = (xn"*jxn_-l) (mod m)

xﬂ
Investigate the behaviour of numbers resulting from such a
series, See Wall (1960} for an investigation of cycle-length when
m =2~
(b) (Knuth, 1981)" In a random sequence of numbers, 0 x;,<m,
‘how often would you expect to obtain x,_; < X, < X,? How
_ often -does this sequence occur “with the generator of (a)? The
Fibonacci'series above is generally held tg be a poor generator of
" pseudo-rahdom=-numbers, but its: performance can be much im-
proved by shuffling (see Gebhardt, 1967). Oakenfull (1579) has
~ obtained good results from the series -

Xn+1 = (an'xn-'-%l) (mOd 235)

Note that repeated numbers can occur with Fibonacci-type gener-
ators (cf. Exercise 3.23).
327 (a) Foramultiplicative congruential generator, show th'at ifaisan odd
power of 8n+3, for any suitable integral , and x, 15 odd, then all
* subsequent members of the congruential series are odd.
‘ (b) As we shall see in Chapter5, 1t :is so_xtnetlmes necessary to form
"+, Jog, U, where U is: U(0, 1); .Ile':e"_t'hc_r’lr'Fsult of (a) to explain the

T Al e
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advantage of such a multiplicative generator over a mixed con-
gruential generator in such a case.

*3.28 Consider how you would write a FORTRAN program for a congrue}f-
tial generator.

*3.29 (Taussky and Todd, 1956) C0n51der the recurrence S
yn+1—')’n+}’n 1 forn>1 ’
Wlth }Fo.—o yl__!_ . Lz . _ .

Show that
{5 ‘)"—(1 “-;/5)"}/ %

and deduce that for large n, .
541 ' o
R

Hence compare the Fibonacci series generator of Exercise 3 26 with a
multiplicative congruential generator. Difference equations, such as
that above, ogcur regularly in the theory of random walks (see Cox and
Miller, 1965, Section 2:2)i1

3.30 The literature abounds with congruential generators. Discuss the
choice of a, b,.m, in the following. For further. considerations, see
- Kennedy and. Gentle (1980 p- 141) and Knuth (1981 p 170).

s . Lot

(1) 20 T m
78 0 -1
: .Called GGL thls 1s IBMs rcplacement for RANDU -(see
_ Learmonth and.Lewis, 1973). Egger (1979) used this generator in
-combination with shuffling froma g = 100,store, and it is the basis
-of routines GGUBFS and GGUBS:of .the . IMSL hbrary, see
.Section Al.l.in’Appendix 1. .. - . S
(i) a b n | Cey Teo .
16333 25887 .23 (t"rom Oakenfull.- 1979)_ '
(i) a b m S
3432 6789 9973  (see also Oakenfull, 1979)
) a b m '
23 0 10841 the Lehmer generator

 This generator is of interest as it was the first proposcd congru-
ential generator, with x, = 47594 118, by Lehmer .{1951).
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{(v) The NAG ﬁenerator: GOSCAF:

g b m
1313 o 259"

See Section"Al.l

{viy a b m
171 ¢ 30269

ThlS is one of'the three component generators used by chhmann
* -‘and Hill (1982a,b)."" ~°°

(Vi) a b.om oo P
131 0 235 ueec‘i_ by Neave (1973).

(viiiy a b m
2’-!—1 1 2%
: Thls generator is of mterest as it is one of the on‘gmalwmixed
congru.en_nal generators, proposed. by Rotenberg (1960). |
RTINS
‘ 397204094 0 2 —1 S,

This is the routine GGUBT of the IMSL hbrary—nsee Section
All

3.31 Show that thecyclelengthina multiplicative congruential generator is
given by the smallest positive integer # satisfying a" = 1 mod(m). (See
Exercise 3.16.)

We stated in Section 3.5, that if m = 2* in a multiplicative congruential
generator, only one-quarter of the integers O—m are obtained in the

. generator cycle. However, if m is a prime number then a cycle of length -
{m — 1) can be obtained with multiplicative congruential generators. Let
¢(m) be the number of integers less than and prime to m, and suppose m
is a prime number, p. Clearly, ¢{(p) = (p—1).

It has been shown (Tocher, 1975, p. 76) that the n above must divide
¢(m). If n = ¢(p) then a is called a *primitive root’ mod (p), and the cycle
length (p — 1) is attained. Ways of identifying primitive roots of prime
moduli are given by Downham and Roberts (1967); for example, 2isa
primitive root of p if (p—1)/2 is prime and p = 3 mod (8). Given a
primitive root r, then further primitive roots r may be generated from: r
= r* mod (p), where k and (p — 1) are co-prime,

Use these results to verify that the following 5 prime modulus
multiplicative congruential generators, considered by Downham and
Roberts (1967), have cycle length (p —1).
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m=p a
{) 67101323 8192
(ii) 67099 547 8192
(iii) 16775723 327638
(iv) , 67100963 8

(v) 7999787 32

r‘Extensiqps and ‘ful_”lt_h.er discussion are given by Knuth (1981, pp. 19-22) .
and Fuller {1976), while relevant tables are provided by Hauptman et al.

(1970) and Western and Miller (1968).

If a fair coin is tossed until there are two consecutive heads, shiow that
the probability that n tosses are required is’ -

Py = Yo-,/2" fornz2

where the y, are given by the Fibonacci numbers of Exercise 3.29 (cf.
Exercise' 3.26). We see from Exercise 3.29 that as #— oo, the ratio
Ya/Vn=1 <> the golden ratio, '¢.= (1+ ./5)/2; so that the tail of the
distribution is approximately geometric, with parameter ¢/2. Mead and
Stern (1973) suggest uses of this problem in the empirical teaching of
statistics. Verify that the distribution above has mean 6

4

PARTICULAR METHODS
FOR NON-UNIFORM
RANDOM VARIABLES

T Some of the results of Chapter 2 may be' used to convert uniform random

variables into variables with other distributions. It is the aim of this chapter to
provide some examples of such particular methods for simulating non-
uniform random variables. Because of the important réle played by the normal

.distribution in-statistics, we shall start with normally distributed random

variables. A

141 Using a central limit theorem

It is because. of central limit theorems that the normal distribution is
encountered so frequently, and forms the basis of much statistical theory. It
makes sense, therefore, to use-a central limit theorem in order to simulate
normal random variables. For instance, we may simulate n independent U(0, 1)
random variables, U,, U,, ..., U,,say,and thenset N = Z;_, U, Asn— oo
the distribution of N tends to that of a normal variable. But in practice, of
course, we séttle on some finite value for n,’'so that the resulting N will only be
approximately normal. So how large should we take n?.The case n =2 is
unsuitable, as N then has a triangular distribution (see Exercise 4.8), but for
n = 3, the distribution of N is already nicely ‘bell-shaped’,jas will be shown
later. The answer to this question Tteally depends on the.use to which the
resulting numbers are to be put, and how close an approximation is desired.
["A convenient number to take is n = 12, since, as is easily verified, §[U,] = &
and Var[U,] = 1/12, so that then

12
N=3Y U—6
. i=1
isanapproximately normal random variable with mean zero and unit variance.
Values of | N| > 6 do not occur, which could, conceivably, be a problem for
large-scale simulations. The obvious advantage of this approach, however, is

77 .
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I its simplicity; it is simple to understand, and simple to program, as we can see

FPRE X I

from Fig. 4.1.

10 RANDOMIZE 10 RANDOMIZE
20 INPUTM 20 INPUT M
30 REM PROGRAM TO SIMULATE 2*M 30 REM PROGRAM TO SIMULATE 2°M

40 REM APPROXIMATELY,STANDARD i :40i iREM STANDARD NORMAL RANDOM VARIABLESg

50 REM NORMAL RANDOM VARIABLES !502 'REM USING-THE BOX- <M
60 REM USING A CENTRAL LIMIT - 60 LE.%{PB 2'3 Mlﬁﬂéﬁ%ULLER FTHOD

70 REM THEOREM APPROACH , *© .70 , FORL=1
80 FORI=1 TO2'M ©vBo LE’I‘*R‘— SQR( 2'LOG(RND))

1 =1T01 i 100% PRINT R® *U),R* .
e bR , 118 PRXT TR SIN(P2 U)LR*COS(P2 u)
1 ‘ ‘120 E

130 PRINT N-6 NP

140 NEXTI

150 END

Figure 4.1 BASIC programs for simulating 2M standard normal random variables.

- |E-.;

i

: ’ r- 4 2 The Box—Mul]er and’ Polar Marsagha methods S

e

et ray e

421" The Bos'Maller méthod © o - 1o . -
The last method used a convolutiOn to provide approximately no‘rrna‘l'rnndom »
variables. The next method we _consider ;obtains, exact normal random §

~ variables by means of & ‘one-to-one transformat:on of two U{0,1) ran-i
“dom- variables. If Uy ‘and'U, aré two independent-U (0, 1) raridom variables 3
then Box and Mullcr (1958) showed:that,.. -+ .- -, e LS
-.r\f.‘-l'“_\,lﬁ\” G e ey ¥

AT N —( ~2log, U U2, cos(ZnUZ) ) o

. . _ S C N )
and . “TUNY “( 2iog, O sm(2nU1) ceon 3

‘4 are. 1ndependent N(O 1) random vanables Wi e . ;“;

© At-first Sight this-result-seems quite remarkable, as well as most convenient, ¢ :

4

‘owlsee,; " TR TR o

- It is; however a-direct. consequcncc of the result.of Example 2.4, as we shall

b fwe start'wnh mdependcnt N (0 1) random \varlablcs N A and Nz,deﬁnmg

i pomt (¥{ s Ny) in two-dimensions byiCartesian: co-ordmatcs and.we change:

to polar ¢o-ordinates (R, ®), then . . P
N, = R cos© L
N, =Rsin®

. 2)

and in Examplc 2.4 we have aIrcady proved that R and @ are then mdependent

random vanables ) wrth 2’y (0; 2m)distribution, and“R2 = N%y N2 witha x;,

dlstnbutlon 1c an exponential dlstnbunon ‘of “mean 2 Futhermore to

4"3 i . I

TN
N IR |

ﬂ . oy M

ik L EE w ®

- -4\'" 1 N Pl
PR S
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rFs:mul.ato © we nccd sunply take 271.'U2, where U, 5 is U(0, 1), and to simulate R

we can take (—2 log, U, ), where U, is U (0, 1),as explained in Excrcxses 2.1and
2.2,

We therefore see that Box and Miiller have simply inverted the relationship
of (4.2), which goes from (N,, N,) of a particular kind to (R, ©) of a particular
kind, and instead move from (R, G)) to (N,, N,), simulating @ by means of
2nU,,and an independent R from (—2 log, U,)*/?; where U, is independent
of U,. You are asked to provide 4 formal proof of (4.1) in Exercise 4.6. As we
can see from Fig. 4.1, this method is also very easy to program, and each

:method considered.so far would be easily operated on a hand-calculator.

If the Box=M iiller method were to be used regularly on a computer then it
would be worth incorporating, the folIowmg 1nterestxng modification, which
avoids the use of time- -consuming sine and cosine functions.

i Y ﬂ .Y:;_z_z The Polar Marsaglia Method

- The wa’y'té"avoi’d' using trignometric functions is to construct the sines and

cosines of umform!y distributed’ angles dlrcctly withour first of all simulating

' _‘ the angles Thls can be done by méans of d rejection method as follows:

U s U'(O,'l), then 2U is U‘(O,‘Z), and ¥ = 20 —1 is U(-1,1).

If we select two independent U(—1, 1) random variables, V; and F,, then
these specify a point-at random in the square of Fig. 4.2, with polar
co-ordinates (R, ©) given by: N

R?=Vi+ V3
and tan® = W/ W)

Repeated selection of such points provides a random scatter of points in the
square, and rejection of points outside the inscribed circle shown leaves us with
a uniform random scatter of points within the circle.

For any one of these points it is intuitively clear (see also Exercise 4.11) that
the polar co-ordinates R and © are independent random variables, and fur-
ther that © isa U(0, 2r) random variable. In addition (see Exercise 4.11) R* is
U(0, 1) and so the pair (R, ©) are what are required by the Box-Miiller
method, and we can here simply write

sin @ =—E =V, (Viq V-2

cos@ = V,(Vi+ V3~
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1.57

ROV TR

[TV

-15 '1.5

-1, s.J

Figure 4.2 . Anillustration of points (denoted by = and x ) uniformly distributed over
the square shown, The points denoted by.c are rejected when one simply requires pomt‘s
uniformly distributed over the unit disc, s in the Polar Mar:,agha method,

g

so that a pair of independent N(0, 1) variables, N, and N, are given by: :

N, = (=21log(R})' 2V, (Vi+ Vi)'
N, = (—2log(é1))“1V1(V§+ yi-ie
ie. ,—(—2iog(V2+V)]”ZVZ(VZ—H/) 12,

N, =(—2log(Vi+ V¥ ))“2 Vi(vi4e vt

—2logh\!2
Vz( W )

T —2logW\'?
Ns= V(ﬂu,i_) |

resufting in

il

N,

where W = V24 V2,
The phxlosophy of rejecuon may. seem rather strange at first, as it mvolves
discarding vanates obtamed ata certam cost and effort, but pall'S of vanates

e

r( Vi, V) aré }éjéoiédjust a propoflio'ﬁﬂ

g

43 Exponenual gamnia dnd cht-.square uar:ates ) 81

i o

,{i

“if4 of the time. The advantage of the
rejection method here is that it provides a very simple way of obtaining a
uniform scatter of pomts inside the circlé of Fig. 4.2. Another rejection method
was described in Example 3.2, and we shall encounter more goneral rejection
methods in"the next’ chapter'whlch have‘the samé'aim’and lise as here.

Al BASIC ‘programi for this' method is glven ifi Fig> 4 3‘*Now Known as the

' Polar Marsaglxa méthod this approach is“due- ongmally fo'‘Marsaglia and

e Bray (1964),‘ and s used m thie IMSE Touting: ‘GGNPMHsee’ Sectxon AlLL

RS
L)

RTINS sovbnas et Tuerr L s, o o

I X <!
10 RANDOM]ZE o
20 TINPUT W' A
.30 REM PROGRAM TO SIMULATE 2*M S’I‘ANDARD NORMAL
40 °‘REM RANDOM VARIABLES USING THE POLAR
50 REM MARSAGLIA METHGD
60 FORI=1TOM
70 LET V1 = 2*RND-1
80 LET V2= 2°RND-1
S0 LETR2= v1-v1+v2-v2
100 IFR25>1T
L 110 LETY =3Q ‘sgz'LOG(RZ])/Rz)
- 120 PRINT V1*Y,
. ‘130‘,-NE‘XTL,..oi N . R
140 END' o ' '

F :gure -4, 3 BASIC program for. mmulanng 2M. standard normal. random variables,
using. the Polar Marsagha method, , ;o

B
4.3 Exponential, gamma and chl-square vanates

Random variables .with exponential,and gamma distributions are frequently
used to model waiting times in queues of various kinds, and this is a natural
consequence of the predictions of the Poisson, process.The simplest way of
obtaining random variables with an exponential p.d.f. of e "*forx = Qistoset

= —log, U, where U is U(O 1), as has aIready bcen done in the previous

- section’ (see Exercise 2.1):** . e

" 'We hdve also seen that Y = X/ has the exponcmxal pd.f. Jle"”lx forx=0

v (Exermse 2.2). An'alternative approach for simulating- exponentlal random

. ) P Y with- densnty function de™* for x > 0, then "

variables will be given latér in Exercise 5.35.5
We have: seen in Section2.10'that if we have 1ndopendent random variables,

[
S0 T

[~ga

.... : G=

e |

Y

i

has a gamma, I'(n, A), dlstrlbutxon “Thus to smulate a F(n A) random variable
for integral n we can simiply set

G--—— E log, ;

i—l

A

R
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r where U,, ..., U, are independent U(0, 1} random variables, i.e.

| .' | "'c;-ﬁlag;(n‘ U_.)

) _‘vanable (see Sectlon 2. 10) and so 1f m 1s cvcn we. can readlly obtam a random:

. .vanablc with,a. A dlsmbutlon, by, the above, approach If, m is odd, we:
.. can: obtam a random variable with a;xZ .. distribution by first obtaining a:

C{(m—1)/2,1) random variable as above, and then addmg toit N2, where N is.

an independent N{0, 1) random variable (see Exercxse 2.5} Here we are using;

the deﬁmng property of ¥ random variables on mtegral degrees of freedom,
and use of° thlS property alone prowdes us wnth a yZ random variable from-
simply setting o

Z=Y NI @.3)

where the N, are independent, N(0, 1) random variables. However, because of
the time taken to simulate N (0, 1) random varidbles, this last approach is not
likely to be very efficient.[Both NAG and IMSL computer packages use
convolutions of exponéntial random varidbles - m ‘theit routines for the
generation of gamma and chi-square random’ variables {sée Section A1.1). The
simulation of gamma random variables with non-integral shape parameter, n,
is dnscussed in Section 4 6 |

P

["-4.4 Binomial and Poisson variates

e

© - 4.4.1" ‘Binomial variates

A binomial L;(n,\p) random variable, X, can be written as X. = £_, B;, where
the B; are independent Bernoufli random -varjables, each taking the values;
B; = 1, with ;probability p, or.B; = 0, with probability, (1 —p). Thus to simulate
such an X, we need just simulate n independent U(0, 1) random variables,
U,,...,U, andset B; = 1if U; < p,and B; = 0if U; >-p/The same end result
can, however, be obtained from judicious re-use.of a single U(0, 1) random
variable U/ JSuch re-use of uniform variates is employed by the IMSL routine;
GGBN when n < 35 (see Section Al.1). If n = 35, a method due to Relles
(1972) is employed by this routine: in simulating a B(n, p) variate we sxmply

count how many of the U, are less than p. If nis large then time can be saved by .
_ordering the {U;} and then observing_the. location.of p within the ordered

sample. Thus if we denote the ordered sample by {Uw}» forthecasen = 7, and
p = 0.5 we might have:

v, Y U y, y
*(1) *lz) *{3] +H] *(Sl i(bl *H

1
E_ p=(l)5 1

|
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r_In this example we would obtain X == 3 as a realization of a B(7, {) random
variable, |

Rather than explicitly order, one can check to see whether the sample
median is greater than or less than p, and then concentrate on the number of
sample values between p and the median. In the above illustration the sample
median is Uy,, > p, and so we do not need to check whether Uy, > pfori > 4.
However, we do not know, without checking, whether U, > p forany i < 4.
This approach can clearly now be iterated by seeking the sample median of the
sample: (Uyy),; Ugy, Uy, Uysy) in the above example, checking whether it is
greater or less than p, etc. (see Exercise 4.18). A further short-cut results if one
makes use of the fact that sample medians from U(0, 1) samples can be
simulated directly using a beta distribution (see Exercise 4.17). Full details are
given by Relles (1972), who also provides a FORTRAN algorithm. An
alternative approach, for particular values of p only, is as follows.

If we write U in binary form to n places, and if indeed U is U(0, 1), then
independently of all other places the ith place is 0 or 1 with probability § (cf.
Section 3.2). Thus, for example, if U, =0.10101011100101100, we obtain 9 asa
realization of a B(17, 4) random variable, if we simply sum the number of ones.
Here the binary places correspond to the trials of the binomial distribution.

If we want a B{17, ) random variable, we select further an independent
U(0; 1) random variable, U,, say. If I/, = 0.10101101100110101, then place-
by-place multiplication of the digits in U , and U, gives:0.10101001100100100,
in which 1 occurs with probability § at any place after the point. In

- this illustration we therefore obtain 7 as a realization of a B(17, 1) random

variable,

This approach can be used to provide B(n, p) random variables, when we can
find mand r so that p = m2~" (see Exercise 4.3). Most people are not very adept
at binary arithmetic, but quite efficient algorithms could result from exploiting
these ideas if machine-code programming could be used to utilize the binary
nature of the arithmetic of most computers. However, as we have seen in
Chapter 3, pseudo-random U(0, 1) variables could exhibit undesirable patterns
when expressed in binary form.

i~4.4 .2 Poisson variates

Random variables with a Poisson distribution of parameter A can be generated
as a consequence of the following result.

Suppose {E;, i = 1} is a sequence of independent random variables, each
with an exponential distribution, of density le"**, for x > 0. Let S, = 0 and
S, = Z¥_ | E, for k = 1, so that, from Section 4.3, the 8, are I'(k, ) random
variables. Then the random variable K, defined implicitly by the inequalities
Sk=<1< Sk, has a Poisson distribution ‘with parameter_A. In other
words, weset S, = E,,andif I < S, then weset K = 0. If §, < 1, then we set
S, =E,+E;,and thenif §, > 1, weset K = 1. If'S; Z 1, then we continue,

T _.(
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[“setting S, = E, + E;+E;yand s0 on, so that we set K =1 when, and only |
when, §; <1 < 8§y, fori=0. L '
The BASIC program in Fig. 4.4 shows how easily this algorithm may be
programmed, and may also help in demonstrating how it works. Note that we

simulate

PR

k -
Sy = z E;

i=1 i=1: ¢

1 k
by Sy = ‘IIOS(H Ui)

i mpous

20 ,

30 REM PROGRAM TO SIMULATE M RANDOM
40 REM VARIABLES FROM A POISSON .
50 . REM DISTRIBUTION OF PARAMETER L
60 LET E1 = EXP(-L)

70 .FOR1=1TOM

80 LETX=0 )

90 LET'U=RND P

100 'IF U < £ THEN 140

Figure 44 BASIC program for simulating M Poisson random variabies.

where as usual the U, are independent U(0, 1) random variables, as explained
in Section 4.3. The comparison S, > 1, then becomes’

. 1 k i -

——log(ﬂ U,—)>1 ’

k
H U;'<€_j

i=1 .

k
ie. 10g< ] U,-) < —A ie.

i=1

and it is this inequality which is being tested in line number 100 9{ the prograrl.,‘l
On first acquaintance, this algorithm has the same,.._‘rabblt-t_)ut-of-a—hat'
nature as theBox—Miiller method. We can certainly show analy.txc{ally that K.f;
thus defined has the required® Poisson distribution (sce Exercise 4.9), but. a
consideration of the Poisson‘process, mentioned in Section 2.7, shows rcadzly,'
the origin of this algorithm, as we shall now see. . !

q

Ina Poisson process in time (say) ofrate 4 we have the two important results:
(see, e.g., ABC, chapter 19) ° : S |
(a) times between events are independent random variables from th_e;»_-

exponential p.d.f,, le ™%, for x 2 0; R
(b) the number of events in any fixed time interval of length ¢ has a Po:sso;}

distribution of pa,rgmf.ter' (A1)

Result (b) tells us that to simulate a random variable with a Poisson

3
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=, distribution of parameter J, all we-have to.do is construct a realization of a
Poisson- process' of parameter J- and then count the number of events
occurring in a time interval of unit length.'Result-(a) tells.is how we can

.- -- simulate the desired. Poisson ‘process, by -simply 'placing’ end-to-end in-

- dependent realizations: of .exponential:random variables from the le~*
density. We keep a record of the time taken since the start of the process, and
stop the simulation once that time exceeds unity. Figure 4.5 provides an
illustration, resulting in K = 3, as there have been just three cvents in the
Poisson process in’ the (0, 1) time- interval, occurring at times E,, E, + E,
and E, +E,+ E, respectively, with the fourth event.occurring at time

w Ey+Ey+E+ Eg> 1.

e { :
~ |

. I *
|
0 1

¥ > Time

kv
a3

Figure 4.5 Illustration of the simulation of a Poisson process in time, starting at time
0. Four events occur,.at times denoted by x. Inter-event times, E, are independent
randoim variables from the ig~** exponential p.d.f,, and the value K = 3, thé pumber of
events in the (0, 1) time intefval, is a realization-of a random variable with a Pojsson
distribution of parameter . ’ o ' :

1

*4.5 Multivariate random variables

Particular -rules may also be exploited to. simulate multivariate random
variables, Two examples, one discrete and one continuous, will be considered

here. A

-

4.5.1 The bivariate Poisson distribution

This distribution was mentioned briefly in. Section 2.16. If three independent

random variables, X,, X, and X, have Poisson distributions with par-
. ameters 4,, 4, and 4, respectively, then the derived variables ¥; = X, + X5,

Y, = X, + X, have a bivariate Poisson distribution. This is readily verified by
. simply writing down the bivariate moment generating function for ¥, andY,,

‘and obserﬁing-:it is of the form given in Equation. {2.6). If we simulate X, X,

and. X, by the method of Section 4.4.2 then this resuit readily allows us to
E: . .. :simulate random variables Y, and Y, with abivariate Poisson distribution. An
alternative approac_:h is suggested in Exercise 4.7. -

PRA D= 11 Al

L b b Y
JO RN R MYV,

I s L R
B T

L atgra

4.5.2 The multivariate normal distribution

. This distribution was discussed in S,ectior-l.Z._IS.-We saw there that if the p-
variate random variable X has the multivariate normal, ¥ (0, I} distribuzion,
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then Z = AX + u has the multivariate normal N (g, AA’) distribution. Hence, -

if we want to simulate random variables from an N {g; Z) multivariate normal
distribution, then we need only find a matrix- A for which I = AA’: Ways of
doing -this are-discussed in Exercise 4.14 and in the:solution to that exercise, X
is readily simulated, as its elements are independent and N(0, 1). We then set

L= AX-I-,u

4.6 Discussion and further readmg

We have seen in this chapter a utilization of formal relanonshxps between
random variables, which enables us to simulate a variety of random variables,

using only U0, 1) variates; other illustrations can be found in the exercises. All

of these examples are no more than useful tricks for particular cases. Often .

very simple algorithms result, as we have seen from some of the BASIC
programs presented, and these algorithms could be readily implemented for

small-scale simulations, using hand-calculators or microcomputers, for

- example Ina number of cases, however, the algorithms are less efficient than
‘others which may be'devised (see Kinderman and Rama ge, 1976, for example),

" some of which will be considered in the next chaptcr
The method of Section 4.4.2 for Poisson variates may become very
inefficient if A is large. In this case we would expect large numbers of events in

the Poisson process during the (0, 1) interval, resulting in prohibitively many

checks. Atkinson (1979a) compares the algorithm of Section 44.2 for

51mulat1ng Poisson random variables with alternative approaches which will.

be mentioried in the next chapter, while Kemp and Loukas (1978a,b) make

similar comparisons for the bivariate Poisson case. More recent work for’

the univariate Poisson case is to be found in Atkinson (1979¢), Kemp (1982),
Ahrens and Dieter (1980, 1982) and Devroye (1981). .

Atkinson and Pearce (1976) ‘Atkinson (1977) and Cheng (1977) discuss the.
simulation of gamma I'(n, 1) random variables with nonr-integral shape,

o parameter’n and we consider Cheng’s method in Exercise 5.22. More recent:

work is provided by Cheng and Feast {1979) and Kmdcrman and Monahan
(1980}

* Neave (1973) showed ‘that when the standard Box-Miiller method is~

operated using pseudo -random numbers from a particular multiplicative:

congruential-generator, the resultmg numbers exhibit some strikingly non-t

“normal properties: This finding was taken up by Chay, Fardo and Mazumdar

(1975) and Golder and Settle (1976), and we shall return to this point m'

Section 6.7.

We have in this chapter only scratched the surface of thc relations bctwecn
random variables of different kinds. The books by Johnson and Kotz (1969,
19704, 1970b, 1972) provide many more such relationships, and the book by
Mardia (1970) provides more information‘on bivariate distributions.

4.2

43

4.5
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4,7 Exercises and complements

Show that a random variable with a U (0, 1) distribution has mean 1/2
and variance 1/12.

‘Consider how you might simulate a binomial B(3, b] random variable
using just one U (0, 1) variate, and write a BASIC program to do this.

Explain how the approach of using a binary representation of U(0, 1)
random variables may be used to simulate random variables with a
binomial B(n, p) distribution in which p = m2 7", for integral r > 0, and
integral 0 = m < 2.

The following result is similar to one in Exercise 2.14: If the independent
random variables X, and X, are, respectively, F'(p, 1} and I'{r, 1), then
Y=X,/(X;+ X,) has the beta density,

I'(p+r)
C(p}I'(r)
Use this resnlt to write a BASIC program to simulate such a2 ¥ random
variable, for integral p > 1 and r > 1.

) = P l—yy ' for0<y<]

If X,, X,, X5, X, are independent N(0, 1) random variables, we may

use them to simulate other variates, using the results of Exercise 2.15 as

follows:

@) Y=|X,X,+X,X,| has an exponential distribution of par-
ameter 1,

(b) C=X,/X, has a Cauchy dlStl‘lbUlIO!‘l, with density function
1/fx(1 + x2)).

Use these results to write BASIC programs to simulate such ¥ and C

random variables.

Prove that N,, N, given by Equation (4.1) are independent N (0, 1)

random variables.

When (X,Y) have a bivariate Poisson distribution, the probability
generating function has the form

Gu,v) —cxp{ll(u—1)+,1 (v~—1)+13(uu—1)}

The margmal dlstnbutlon of X is Pojsson, of parameter (1, + 4,), while
the conditional distribution of ¥ [X = x has probability generating

A+ Aap V¥
(m) exp[A,(v—1)]

Use these results to simulate the bivariate Poisson random variable
(X,Y).

" function
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*4.8

*4.9

*4.10

*4.11

*4,12

*4.13

*4.14

. two dimensions
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X=X, U, where U, are independent U (0, 1) random variables,
show, by induction or otherwise, that X has the probability density
function

)= zJ( )J(’T)tx—j)""i/(njl)!
i= : L N

=0 otherwise - .

for0<x<n,

where [x] denotes the mtegra] part of x.

Prove, without reference to the Porsson process that the random
variable K, defined at the start of Section 4.4.2, has a Poisson
distribution of parameter A.

Consider how the Box—Muller method may be extended to more than

In the notation of the Polar Marsaglia method show that @ and R,
defined by ’ )

an® = V,/¥, and R®=Viip?

both conditional on ¥2+ V2 < 1, are independent random variables.
Show also that R% is a U(0, 1) random varrable and @ is a U{(0, 2n)
random vanable

When-a pair of variates (V,, V) is rejected in the Polar Marsaglia

method, it is tempting to try to lmprovc on efﬁcrency, and only reject
one of the variates, so that the next pair for consideration would thenbe i

(Vy, V4), say. Show why thls approach is. unaceeptable

Provide an example of a continuous distribution, with density function
f(x), with zero mean, for which the following result’ is true:

X, and X, are independent -random variables with probability .

density function f'(x). When the point (X3, X,), specified in terms of

Cartesian co-ordinates, is éxpressed in polar co-ordinates (R, ®), then -

R,© are not independent.

If S is a square, symmetrrc matrix,. show that it is possible to write

S = YDV’, where D is a diagonal matrix, the ith diagonal element of -
which is the ith eigenvalue of 8; and V-is an orthogonal matrix with ith

column an eigenvector corresponding to the ith eigenvalue of 8. Hence
provide a means of obtaining the factorization, £ = AA’ required for
the simulation of multivariate normal random variables in Section 4.5.2.
More usually, a Choleski factorization is used for I, in which Ais a

. lower-triangular matrix. Details are prowded inthe solutlon Thisisthe

approach, adopted in the IMSL routine GGNSM—-see Section Al.L

i

TR

*415 XX, Xy .0

1417 LetU,,U,,: ..
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X, ‘are independent ‘(column).random variables
+ from .a -p-variate’ multivariaté - normal;, "N(0,E) distribution, then
"o Ze= If. ¢ XX has the Wishart distribution, W (Z; I, n), described, for
+ # example, by Press (1972, p. 100). Use this result, which generalizes to
" prdimensions theé result-of E¢uation (4. 3) to provxde a’BASIC program
to: simulate ‘sucha: Z.For related” dlscussron see Newman and Odell
(1971, chapter 5).

- *4,16 - If X, X, are independent N (0, 1) ‘random vanables, show that the

* rapdom varjables X , and-

Y, =pX,+(1-pY)'2X, where ——ISps +1
have a biv'ariate normal distribution, with zero nreans, unit variances,

and correlatlon coefﬁc1ent 2

Uz,, , bearandom sample from the. U(O 1) density. If
.M idenotes : the sample. median, show that M has the B,(n,n)
distribution. - :

*4.18 (contmuanon) Consnder how the result of Exercrse 4.17 may be used to
'srmulate a B(n p) random varlable (Relles 1972)

419 We find, from Section Al 1 that the IMSL computer library has routine

GGPON for simulating Pmsson variables when the Poisson parameter
2 may vary from ¢all to call. Otherwise one might use 'the IMSL routine
GGPOS. Kemp (1982) was-also concerned with Poisson variable
simulation when 4 may vary, and one might wonder why one should
want to simulaté such Poisson variates. An answer is provided by the
following exercise. - »

.The random variable X has the conditional Poisson distribution:

e—.l k|
Pr{X = k|2) = i forkz=0
IfA has a F(n 6) distribution, show that the uncondmonal distribution

of X is

n-i-k-— l oA )

ieX=Y—n whereYhasanegatlve binomial distribution as defined in
Section 2.6. "As n< 0 the drstnbutton tends to the loganthmlc series
distribution much used in ecology, and generallzed by Kempton (1975).
_ Kemp (1981) considers simulation from this distribution (see Exercise
4.22).

4.20 (continuation) Use the result of the last question to provide a BASIC
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program to simulate negative-binomial random variables, for integral

.. n > 1. This result is sometimes used to explain the frequent use of the
- negative-binomial. distribution for describing discrete data when the
. Poisson distribution is- unsatisfactory. The negative-binomial is a

‘contagious’ distribution, and much more relevant,material is provided

_by Douglas (1980). An algorithm using the waiting-time definition of

the distribution is given in the IMSL routine GGBNR (see Appendix 1).

. Use the transformation theory of Section 2.12 to show that.the random

variable Y = X, where X has.a N{y, o?)-distribution, has the density

function
l _ 2
og. (y) #) ) foryz0

. 1 /1
Fr(p) =—"‘—ya \/(21':) exP(—'z‘(—‘—"—. po

Y is said to have a log-normal distribution. The pdf has the same

“qualitative- shape as-that of the I'(2, 1) p.d.f. of Fig. 2.6, and- the log-

normal distribution is often used to describe incubdtion periods for

diseases (see also Morgan and Watts, 1980) and:sojourn times in more -

gencral states. We shall, in fact, encounter such a use. for this

" distribution in Examplc 83 Scctlon All glves IMSL and NAG

routines for simulating from this dlstnbunon For full details, see

'~-A1tchlson and Brown (1966). - v

S 422,

(Kcmp, 1981) The general logarlthrmc d:stnbutlon is
© Py =—-a"/{klog,1~—tx)} k>10<cz<1

'Show that its moment generating function is:

log (1 —xe®)/log (1 —a)
and that successive probabilities can be generated from:
w =l —1/k)p—y . forkz=2

Show that if X has the condltlonal geometric distribution

Pr(X—x[Y—y)=(1—y)y‘ ' forx=1-
C log(l—y) K
<y =—"" for0=y=<
and'if Pr(Y < y) = log (1 —2) or y=a

' then X has the loganthmlc dlstrlbunon Explam how you can make use :
“of. thls result to snnulate from the logarithmlc dxstnbuuon

5

GENERAL METHODS
FOR NON-UNIFORM
RANDOM VARIABLES

For many uses, simple algorithms, such as those which may arise from
particular methods of the kind described in the last chapter, will suffice. It is of
interest, however, to consider also general methods, which may be used for any
distribution, and that we shall now do. In many cases general methods can
result in- algorithms which, while they. are more complicated than those
considered so far, are appreciably more efficient.

5.1 The ‘table-look-up’ method for discrete random variables

- For'¢ase of notation, let us suppose that we have a random variable X that
takes the values 0, 1, 2, 3, etc.,,and with p; = Pr{X = i)fori = 0 Thus X could
"be binomial, or Poisson, for example, A

A general algorithm for simulating X is as fallows:

- Select a U (0, 1) random variable, U.,

Set X =0 if 0< U < jo, and

setX =j if Z nsSU< Z pi
i=0 i=0

We can think of the probabilities {p;, i = 0} being put end-to-end and, as

22, p; = 1,filling out the interval {0, 1] as illustrated in Fig. 5.1. Wecan now

see that the above algorithm works by selecting a value U and observing in

forj=1,

. whlch probabxllty mterval U lands. In the:illustration of Fig. 5.1 we have

1 2

Z E p;

i=0 i=0 .

and so we set X = 2. ‘
This-algorithm i$ simply a generalization to more than two intervals of

~ the rule used to simulate Bernoulli random variables in Section 4.4.1. The

91
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"'program to simulate négati;.'r'e-binoniial random vali"iablés,"’f_'or integral

n > 1. This result is sometimes used to explain the frequent isse of the

‘négative-binomial distfibution for-deséribing’ discreté data when the

Poisson distribution is unsatisfactory. Thé negative-bidomial is a
‘contagious’ distribution, and much more relevant material is provided
by Douglas (1980). An algorithm using the waiting-time definition of

the distributjon is given in EhéIM SL routine GGBNR (see '%Qbendix 1).

-U,scihc transformation:theory of Section 2._12=§b show that the random

variable ¥ = eX,-where X has a N (g, 0?) distribution, has the density
function . .

D _H_g_m:g)
ff(”"yad(h)“"( 2( . ) fory=0

Y is said to have a [og-nbi-}ﬁal distribution. The p.d.f. has the same
qualitative shape as that of the T'{2,1) p.d.f. of Fig. 2.6, and the log-
normal distribution is often.used.to.describe incubation, periods for
diseases (see also Morgan and Watts, 1980) and sojourn times in more
general sta_tes.,W;é' shall, in fact, encounter such a use for this
distribution in Example 83. Section Al.l gives IMSL and NAG
routines- for simulating from this distribution. For full details, see
Aitchison and Brown (1966). T
“(Kemp, 1981) The general logarithmic'distribution is

. me=—oM{klog. (l-a)] k21,0<u<]
Show that its moment generating function is:

T log(l—ae")/log (1 — ).

and that successive probabilities can be genefated from:
fork=2

px = (1~ 1/k) py—,
Show 'that if X has the conditional geometric distribution

Pe(X =x|Y =y =(1=-yy*' forx=1

log (1 —
and if Pr(Y < y}=~°—g(—i)

<y<a’
gtz TOFYES

then X has the logarithmic distribution. Explain how you can make use
of this result to simulate from the logarithmic distribution.

- — e e m o e o
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5
GENERAL METHODS

'FOR NON-UNIFORM:

RANDOM VARIABLES

For_many uses, simple algorithms, such as those which may arise from
particular methods of the kind described in the last chapter; will suffice. It is of

interest, however, to consider also general methods, which may be used for any

) distrib}l;ign,rand that we:shall now.do. In many-.cases ;general.methods can

r'csul-t in algorithms which, while they are more complicated: than those
considered so far, are appreciably more efficient. - T

3.1 The ‘table-look-up* method for discrete random variables

For ease of notation, let us suppose that we have a random variable X that
takes the values 0, 1, 2, 3, etc, and with p; = Pr(X, = i) for.i =.0. Thus X ‘couId
be binomial, or Poisson, for example. o .

A general algorithm for simylating X is as follows:
Select a U(0, 1) random variable, U. .. A

“Set X' =0"if0 <U<pg,and -7

-1 i
set X =7 if 3 p;<U< ¥ p forjz1
i=o i=0 :

We can think of the probabilities {Pi» i 2 0} being put end-to-end and. as
Z{% o p; =1, filling out the interval [0, 1] as illustrated in Fig. 5:1"We can now
scejthat the above algorithm works by selecting a value U7 and. observing in
which pr‘obabi'lity interval U lands. In the illustration of Fig. 5.1 we have

pslU<
i

Pi

I

.'g[v]...

and so'we set X-= 2. -
This Z‘iig()‘_‘l'lthﬂ'l:“.l?glIEp]y a generalization t6 ‘more thin two intervals of
the rule'used to simulate Bernoulli random variables'in Sectiori 4.4.1. The
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| 1 'l 1] l

1 ] T ]

I-I-—po—)--i-—-})1i—-—-—_b<—pz ,—‘—'“—% O | I

Figure 5.1 An illustration of how the table-look-up method-worllcs;l for simulating a
discrete random variable with probability distribution {P;, i = 0} " -

reason the algorithm works is readily explained. We want to simulate the
random variable X so that Pr(X =i =p, for i= 0. As U is U(0, 1), then
for any 0<axsb Pr@a<U<b)=(b—a) (see Section 2.8) and so
Pr(0 < U < py) = po = Pr(X = 0), and :

- -t , ;o . A u
RTINS PI‘( Y prs U< ,Z"’pf) =p;,=Pr(X=j) r f_orj.z 1
o e LNE=0 i=0 - . . )
Thus, for;j > 0, the algorithm returns the value X = j-with probability p;, as
f m—— e R .t

‘required. '+ v Lo : S

The above algorithm 'is readily modified to'cope with discrete random
variables with different ranges from that considered above, (i.e. X > 0)and one
_ such example now follows.

<«
EXAMPLE 5.1

* We' want to'simulate the geometric random variable X, with dist_ribution
pi=Pr(X=0=0-pf7'p forizl.0<p<l _
In order to operate the above algorithm we need suécessive cumulative sums of

the {p;}, and in this case, because p; is of a simple geometric form, then these
cumulative sums are also of a simple form. Here,

i —(1—p) '
Zpi=w=l—(l—p)" for j=1

:l;h'us‘{t};'é‘;ﬂallg'o:ifhm- becomes: Coe :
S Set X =j F1-(1-py ' SU<1-(1—p) 'forj=1

" which is equi-véklén‘t to: —(1 ——p)-""'1 SU-1< =(1-p) '
ie. L (U=ptz(—U)> (1—p) (5.1)

——

Before proceeding, we can here observe that the algorithm entails s_electix_lg.a
.. U{0, 1) random variable, and then checking, the range of (1 - ‘U}. Now it is
¥ intuifively clear that if U is & U (0; 1) iandom Variable, then so is (1 — U), and

e T
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this result can be readily verified by the change-of-variable theory of
Section 2.12 (see Exercise 5.1). .. L
‘Hence we can reduce the labour of arithmetic slightly if we replace (5.1) by

. the equivalent test:.

—  a-pausu-y 52)

Of course, for any particular realization of U, (5.1) and (5.2) will usually give
different results; however, the random variable X resulting from using {5.2)
will have the same: geometric distribution as:the random: variable resulting
from using-(5.1). Continuing from (5.2), we set X = j 2 1if, and only if,

(j=1)log, (1 —p) 2 log, U > jlog, (1 —p)
so that, recalling that log, (I —p) < 0, we have X —= jif
log, U .
—_——
. log.1=p) /=0
Finally, we note-that we can express (5.3) very simply by sctting

o .lo‘g U
o X=l ——22 5.4
[log.u..—m] .. 64

(-1)< for j=1 . (5.3)

i

- where [ y]is used to dendte the initegral part of y. For further discussion of this

result, see Exercise 5.12, -

This example therefore uses the general table-look-up algorithm to produce
the simple expression of (54). This is in contrast fo a particular approach
which may be used, based upon the definition of the geometric distribution
given in Section 2.6. Thus an alternative method would be to test sequentially
independent U (0, 1) random variables until one was found to be less than D,
and an algorithm using this approach is provided by the IMSL routine
GGEOT (see Section ALlL). ;

This example is unusual in that the cumulative sums of probabilities have a
simple form. The next example is far more typical.
EXAMPLE 5.2 _ : !

If X has a Poisson distribution of parameter 2, its cumulative distribution
- . '.—U_‘—I__-—-—-_u— - .‘—-_'"__‘
function is given, below to four places of decimals:

]

i [o' 1 2 3 4 s 6 7 8 9

Pr(XSi)lO.IBSB 04060 0.6767 08571 09473 09834 09955 0.9989 09998 1.000

Using this table and the table-lock-up algorithm, the following eight U(0, 1)

———— e —_—
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random variables can be seen to give rise to the indicated values of X:

—

]

u

" 00318
04167
0.4908 -
0.2459
0.3643
0.8124
09673
0.1254

.

This example illustrates why the table-look-up method is so called. Given a
table of the cumulative distribution of any discrete random variable, and a
supply of U{0, 1) random variables, we can use this method to simulate that
random variable. By their very nature, such tables are finite, and if the random
variable in question has an infinite range, then the range would have to be
truncated for the methiod to be used. This was done in the above example,
where using accuracy of only four decimal places resulted in the range of
X being truncated to [0, 9]. ,

Human beings can.operate the table-look-up method quite easily, but its
implementation on a computer poses some intriguing problems. First of all we
can remark that for a computer implementation it is not necessary to store
cumulative sums of probabilities—they can be computed each time, as
required. Random.variables of infinite range need not then have their range
truncated, but this approach is usually far too costly in.effort because of the
repeated duplication of arithmetic each time a new simulation is run. More
usually ranges are trunicated if necessary, and the Tesulting finite tables are
stored within ttie' computer. The‘riext problem that arises is how to read such
stored tables. Computers need specified algorithms which could, for instance,
involve reading the table of the cumulative distribution in Example 5.2 from
left to-right. In such a case, the computer would return X = 0 when
U = 0.0318, with the .greatest of ease, but-when U =0.9673 it would
laboriously check whether U < 0.1353, U < 0.4060, and so on until it found
0.9473 < U < 0.9834, Human 't beings need not be so rigid and have the
advantage over computers of being able to change their strategy in the light of
superficial evidence on the size of U. By analogy, when looking up a word such
as ‘wombat’ in the dictionary, not many of us would start at the front, with the
letter ‘A" and then skim through from A to W; rather, we would start from the
middle, or somewhere near the end, possibly even working backwards as well

as forwards. A more efficient computer algorithm may result if the range of X

- and’ Flx)=1=—¢*
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were initially subdivided: for example, if Pr(X < 0) =.px 0.5, say, for some
: !cnoyn_e,_then if U > pit would not be necessary to chiek I}agai’nst 5] p:for
I B Such an approach is utilized in the IMSL routine GGDT and ti;eoNlAG
routine. GOSEYF (see Section Al.l) and was encountered earlier in

Section 4.4.1, —

5.2 The ‘table-look-up’, or inversion method for continuous
random variables

. We shall now consider the analogue of the above method for continuous
randf)m variables. Suppose we wish to simulate a continuous random variable
X with cumulative distribution function F(x), ie. F (x)=Pr(X < x), and
suppose also that the inverse function, F~! () is well-defined for 0 < u, <1

_If Uis a U(0, 1) random variable, then X = F “1(U) has the requ;ed-
distribution. We can see this as follows:

if X =F-(U)
then Pr(X<x)=Pr{F"'(U)< x)

and bccaus? F(x) is the cumulative: distribution function of a continuous
random .varlablc, F(x) is a-strictly monotonic increasing continuous function
of x. This fact enables us to write

. Pr(FT'U) £ x) = Pr(U < Flx))

But, as U is a U(0, 1) fandom variable,

Pr(U < F(x))= F(x) {see Section 2.8)
ie o Pr(X € x) = F{x)

and so the X obtained by.setting X = F ! (U) has the required distribution
The above argument, which was given earlier in Equation (2.1), is perhaps'
best untflerstf)od by considering-a few examples. Figure 5.2. illustrates one
cumulat:wc d1§££il)hu‘tio_n function for a truncated exponential random variable.
We operate the rule X'= F~*(U) by simply:taking value& of U (0;1) variates
and projecting down on the x-axis as' shown, uéing the graph ofy=F{x].

We shall now consider two Further examples in more detail.

EXAMPLE 5.3 Lo B . :
In the unt form, if X exDOReRtial docitv wivh o
i ntruncated form, if X has an exponeritial denslty T:T.rithv-parameter A

fR) =2  for x>0, 4>0,
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Figure 5.2 Operation of the table-look-up method for a continuous random vgriatgle.
The curve has the equation’ (1 —e™*)f{l—e” 1) and is the cumplallve f:hstnbut.lon
function of a truncated exponential random variable, with probability density function,

' He-1)"tfor0sx=< 1.

To simulate X we set X = F~(U), e, set U=r(X)

U = 1 —e~*, and solve for X.

This gives ) X= —'—1‘log,(l—U)

and for. the same ré‘a§0ning as .in Example 5.1, we obtain the desired
distribution for X from setting . . _ ‘ S
. ) ) . 1:
X=—;log,U (5.5)

A verification of this result is provided by the solution to.Exercise 2.1, and this

—

method is used in theIMSL routine GGEXN.and the NAG routine GO S,QBF
: . R - - - -
(see Section Al.1). :

As with Example 5.1, the result of (5.5) is deceptive in its Sir.nplicity, an.d i‘t is
no coincidence that the geometric and exponential distributions play similar

P
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roles, the former in the discrete case and the latter in the continuous case, as
discussed in Section 2.10, Exercise 2.23 and Exercise 5.12. It is unfortunately
the case that it is often not simple to form X = F ™! (U), The prime example of
this occurs with the normal distribution, which has led to a variety of different
approximations to both the normal cumulative distribution function and its
_inverse. We shall return to the subject of these approximations later in
Section 5.7 and Exercise 5.9.
We conclude this section with an example of how this method can be used, in
a ‘table-look-up' fashion to'simulate standard normal random variables.

EXAMPLE 54 _

If we take the same U (0, 1) values as in Example 5.2 then we can use tables of
the standard fiormal cumulative distribution function, ®(x) to give the
following realizations of an N (0, I) random variable X:

U X (to two places of‘decimals)
0.0318 S —1.85
04167 . =021
© 04908 —-0.02
(0.2459 —0.69
0.3643 -0.35
0.8124 ’ 0.89
0.9673 184
01254 - —L15

Thus, for example, 0.8124 = ®(0.89), to the accuracy given.

" Two points should be made here:

(a) Because of the symmetry of the N (0, 1) distribution, the tables usually only
.give values of x = 0 and, correspondingly, values of ©(x) = 0.5, and so
when u < 0.5 we have to employ the following approach which is easily
verified to.be correct: .

We want x for which u = ®(x).
If u < 0.5, then by the s;r?n?{e__}._agglhhgg_ormal density, x = —®~ (I —u).

(b) The accuracy of the numbers produced (in this case to two decimal places)
depends on the accuracy of the _tib_l‘cs, which also determines the degree of

the truncation involved.

The ‘table-look-up’ method for continuous random variables is often called
the inversion method, and a general algorithm is provided by the IMSL routine
GGVCR (see Section A1.1). We shall use these terms interchangeably, though
strictly they describe different ways of implementing the same basic method.
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5.3 The rejection method for Continuous random variables
Suppose we have a method for sprinl_ding points uniformly at random under
any probability density function f{x), and which may-give rise'to the pattern of

points in Fig. 5.3. What is the probability that the abscissa, X say, of any one of
these points lies in the range « < X < §, for any « < §?

£ix}
0.34357

00000
00

Figure 53  An illustration of points x uniformly and randomly distributed under-

‘neath the probability density function f(x). For iilustration we hav_: _used the B, (2.5, 3)

distribution.

The event, ¢ < X < f§ is equivalent to the point being in the shaded area
shown in Fig. 5.3, and so, because of the assumed uniform distribution pf the
points, this event has probability

area of shaded area
total area under f(x)

rf(x)dx /j " fldx

ie J.ﬁf(x}dx as cmf(x) dx =1,

This is

since f(x) is a probability density function.
Thus we are saying that
f
Prea< X < f)= '[ f(x)dx, foranya<§p

e

-points. It is a simple-matterito distribufe points uniformly at ran , ...,
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where .f(x) is a probability. density function, ie. X.has probability density
function f(x) (see Section 2.3). .- . :

Thus, for any probability density: function. {(x), we can‘simulai_e i;andom

“variables X 'from this 'density. function-as:long.as we have.a. method for

uniformly and randomly sprinkling pointsiunder. £(x). Those wh.
Section'4.2.2:will ‘have already, encountered:a, similar situation, t .
being in that-case.to enclose within a square the area to be spr.. .

square, and in Section 4.2.2, those points-mot wit_hin-.jthe area of i1 L
rejected. The same principle for. any density function f{x) results ... .

_ 5 T
rejection method, attributed: to: von Neumann (1951). While the rejection

method {sometimes also-called the ‘acceptance-rejection’ method) may be

used for discrete random .variables (see: Fishman, 1979, for example), it is
usually employed for continuous random variables, the case being investigated
here. . . . R

If the probability density function f{x) is non_:zel_.;o o;p; only a finite range,
then it is easy to box it in, as shown'in Fig. 5.4. Using.U(0, 1) random variables
it-is a.simple matter to-.sprinkle. points, uniformly and, randomly over

‘the-rectangle shown, simply by taking points, with. Cartesian co-ordinates

6+ (e =6)U,,-8U,), where. U; and U, are independent U(0, 1) random

-variables. Points Janding above f(x) are rejected, while for pbints‘landing

below f(x), we take § + (@ —8)U, as. a realization of X_

fix)

Q o
o o
¢ »
- %
o x
o 9- q
o o
@ o x o
o o x °
o
x
" ® X
-] = »
jot x
x
»
* *x 9
x ¥
* ®
o ®
»
x
0 L] L.
8 . ‘ a x

Figure 54 Simulating from the probability density function f(x), which is non-zero
over the finite range {8, «]. The method used generates points (denoted.by © and x)

. uniformly at random over the rectangle shown. Points denoted by.9. are rejected (cf.

Fig. 4.2), while the abscissae of the points x arc agcepted as realizations of the random
variable with _probability density- function f(x)." For -illustration we have used the
B, (3,2.5) distribution, for WEich § =0, a2 =1, § = 0.3435.
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“*''As the area of the rectangle in Fig. 5.4 is & (x—0), and the area under the

curve is unity, we see that the probability of accepting a point is 1/{é{a — 8)),

"and $0 ‘the»smaller & js,. the larger-is the probability of acceptance and,

" correspondingly, the more efficient the method. This is, of course, why a larger

value of & was not used in Fig.5.4. S : ‘
There are’two’snags with theaboveapproach: A rectangle is, as we have seen,
a convenient’shape within which to simulate a random uniform spread of
points, but it ¢léarly ¢annot be used if the density f (x) has an infinjte range,
as we can’ only simufate’ uniform randomvariables over- a finite ‘range.
Furthermore; the probability of rejection could become quite large: if the

*dedsity of Fig. 5.4 was replaced by a spiked density, for instance, such as would
v .r'e's’ult‘frbm'a Eaplace distribution, truncated 10 have a finite range. In such a

“case‘'the simpliéity’ gained from distributing- points uniformly over a rec-

“““tarigular region:could be more than offset by the cost of frequent rejection.

Both of these snags can be overcome by using as the enveloping curve a

" ‘suifable’multiple of a*different probability density.function from f(x), as we

" 'shéll iow see. Consider'a p.d.f. h(x), with the same range as f (x), but from which

© it is relatively'easy to simulate: It is theri simple to obtain a-uniform scatter of

“ poiiits under h(x), by takirig points (X,Y) such-that X has density h(x), while
* the corditional density of Y'given X = x is U (0; h(x)). For.a uniform scatter

. density function h(x).

~'of points, theé &onditional p.d.f. of ¥ clearly ‘must be of: this.form, while the

X co-ordinate must have the ‘property that for any pair (a, §), with « < §,
Pria< X< f)~ _[fh(x) dx, i.e. X must have probability density function h(x).

If it were possible 1o choose h(x) to be of a roughly similar shape to f(x) and
then to envelop f(x) by k(x), we would obtain the desired scatter of points
under f(x) by first obtaining a scatter of points under A (x} and then rejecting
just those which were under k(x) but not under f(x). While it is often possible
to choose an appropriate A(x) to be of similar shape to f(x), it is clearly not
possible to envelop f{x} by h (x), so that, for all x, f(x) < h{x), since both f(x)
and h{x) are density functions, and so [% f(x)dx=[Z_ h(x)dx =1
However, the solution to this last obstacle is easily obtained by, effectively,
plotting k(x) and the scatter of points obtained under h{x) on stretchable
paper, and then uniformly stretching the paper in a direction at right angles to
the x-axis until h(x) = f(x) for all x. Such stretching clearly does not change
the uniformity of the scatter of the points. M’Eﬁgn&atically this stretching is
done, very simply, by taking as the conditional density of ¥ given X = x,
U0, kh(x)), where k > 1 is the stretching factor, and where X has probability

—

: Thus for-suitable Ai(x) and k, we_have the foIlowin'g:' algorithm:.if we write
'g(x) = kh(x), — - SR

: - (i). simulate-X =x.fr0'fﬁ prbbabilify density, f‘u‘n'c.tidn.h(x);

(ii) simulate Y to-be Ug(x), where U is.2n independent U(0,1) random
variable;
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(iii) accept X = x as a realization.of a_ random variable with probability
. density function f(x) if and only if ¥ < f(x).

The situatién is illustrated .in Fig. 5.5.

flx)
0.30
P
/,
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I/
[/
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if S Q(X}
l
[/ fix)
- [l %
0.15 . Sew ow W,
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I X %
[ x5 % *® \\\ ’
X
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s
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000 X xx
T
4] 4 &

Figure 5.5 The points x and © are uniformly and randomly distributed under the
curve g(x) = kh(x), where k > 1 is a constant, and h(x) is a density from which it is easy
to simulate. The points o lie above the density function f(x) and so are rejected, The
points x are accepted and their abscissae are realizations of a random variable with
pl_"o:ability density function f(x). See Exercise 5.22 for an explanation of the pd.fs
used. :

B 'At first sight this algorithm seems unusual and confusing, since the test in
(iii) concerns Y, but if the test is satisfied then it is X = x which is accepted.
However, in the light of the above discussion, we can now see that (iii) is just a

" component of testing whether a point constructed randomly and uniformly

under ¢g(x) is also under f(x).
The probability of rejection here is

J. (g(x) —f(x})dx

Jm o9di "

-«

reflecting the importance of small k, subject to k > 1
We choose h(x) with shape and convenience in mind. The next two examples
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provide two approaches for selecting k. The first-example uses an exponential
envelope to simulate normal random variables. An exponential envelope can
only envelop half of the standard normal density, but it can envelop the *half-
normal’ density, given by

)= \/(%)e"‘zﬁ for x>0

ie. f(x) = 2¢(x), for x = 0. If X*has density function f(x), then the random

variable
5 X with probability §
~ | —X with probability }

clearly has the standard normal density qﬁ(x} for — o0 £ x < 0. We shall
therefore simuilate from ¢(x) by first simulating from f(x), and then applying
the above transformation, from X to X. :

EXAMPLE 5.5 A rejection method for N(0, 1) variables

f(¥)=\/(%)e"""2 forx=z0

and g(x) = ke™™ forx=0

One way of choosing k is to consider the condition for equal roots arising from

setting
oo )
Fod

as the roots in x of this equation correspond to thc intersection of g(x)and f'(x).

Here

If this equation has no real roots, then k is too large. If the equation has two

distinct roots, then k is too small. The case of two equal roots corresponds to
the smallest possible value of k, and the two curves touch, as shown in Fig. 5.6.

——p————.

Setting k\/(;—) = g*~¥2

results in a quadratic equation in x:

’ x1—2x+210g,(k\/(12t-)

)-°
which has equal roots if and only if ..
—— T
1= llog,,(k\/(-i—))

ie. K—=c¢
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1,50+

0,154

0.00

Figure5.6 | Anillustration of the optimum choice of k. Here we illustrate the use of the

exponenual Pt probablhty density function as the basns of an envelope for the half-
normal density (solld line). The envelopmg l'unctlon is glven by \/(E)e_"‘ (dashed
.4

line), illustrated for x < 4, as is f{x).

ie. k= +\/(%—f~)x 13154892

the equal roots occurring at x = 1, which is, in fact, also the point of inflexion
for the half-normal density.
The. algonthm therefore proceeds as follows:

(a) Slmulate X from densxty [‘uncnon, e~ forx > 0. We know, from Equation
(5.5) above, that we can do this by setting X = -—log, U,, where U, isa
U (0,1) random variable. An alternative approach is given in Exercises
5.33-5.35.

(b) If U, is an independent U(0, 1) random vanable set ¥ =kU,e~% ie.

Y kU, U,
Y<\/(—2—>e""ﬂ
T

{c) Accept X 1f and only if,
. 2 2
ie. . kU,U2<\/(E)e—X n
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ie. U U, <exp(—(1+ X%)/2),
since k= \/ ( E)
T
Thus ultimately the aigorithm does not involve k directly. e

Finally, of course, we must convert the half-normal | random variable X to
the standard normal random variable X. X. While this fast s stage can always be done
by selecting a new U (0, 1) random variable, and then testing whether it is
greater or less than 1, we note that as ¥ is U(0,¢(X)), then conditional on

Y < \/(E) e-x‘.'z‘
T
2 1,
Yhasa U (0, \/(E) g% '1) distribution,

and the sign of X can be decided by considering whether or not

e—X 2

\/ (21:)
; ;Thls is the same idea that was exploited in Exercise 4.2 and Section 4.4.1.
A BASIC program for this algorithm is shown in Fig. 5.7.
The reason for using e™* as the p.d.f. for the basis of-the envelope here,
rather than any other ie™** p.d.f. can be found from a consideration of the

probability of rejection, 1 —1/k, and we see in Exercise 5.21 that A = 1
minimizes this rejection probability.

10 RANDOMIZE
20 INPUT M
30  KEM PROGRAM TO SIMULATE M STANDARD NORMAL 4
40 REM RANDOM VARIABLES, USING A REJECTION METHOD
50 . REM WITH A HALF-NORMAL PDF ENVELOPED BY A
60~ REM MULTIPLE OF:THE EXPONENTIAL PDF WITH
70, REM PARAMETER 1
B0 FORIi=1TOM
80-i .LET Ul.= RND
100 LET U2 = RND
110 LET X = -LOG(U1)
. 120. LETB= 5‘EXP( "5-X*%X72)
130 LET C = UL*U .
140 IFC<B THEN 170
150 IF C < 2B THEN 190

210 END

Figure 5.7 BASIC program for the rejection method illustrated in Fig. 5.6.
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The exponential function provides a suitable envelope for the half-normal
probability density function, as the rate at which e ”* tends to zero as x — co is

* less than the rate at which e~*"/2 tends to zero as:x—-co.

A general way of finding k is to note that we want k to satisfy kh(x) = f (x) for
all x, and that we cannot have equality here for all x. k is therefore given

by
k= max f(x)
h(x)
—
if a finite maximum can be found, as then kh(x) = f{x) for all x, with equality
for at least one x.
A finite maximum will not result if h(x) is- unsmtable as a basis for an
envelopé of f{x). For instance, we.could have h(x) 0 when f{x) > 0, or we
might try setting f(x) = e™* and h(x) = e =% "2 In this latter case,

Z

log (f{x)/h(x)) = 3 —x

which increases without bound as x — co. ‘
This approach should work, however, if a suitable h(x) has been found. In
this example we have

f(x)_\/(z)e-*’”_\/(2) st
TEERACI AT A
= log (f(x)/h(x)) = log ( \/ (3)) rx-X
T 2

b
dx
2
) d_); _ g
dx
. . . 2e
Thus we maximize f(x)/h{x) by setting x = 1, to give, as before, k = \/ ( ?).

——

In Section 4.3 we have already seen one way of simulating T'(n, 4) random
variables, when nis a positive integer. The next example proMrnatwe
approach, for the case n > 1, using rejection, and 2n exponential envelope as in
the last example. This approach may also be used when n > 1 is not integral.
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Here we take A = 1 for simplicitsr 'Ifa random variable X results, then the new
random variable Y = X /1 will have a I'{n, 1) d1str1butlon from the theory of
Section 2.12 (see Exercise. 22) " o

*EXAMPLE 5.6 :,:A‘refec.'tipn.ﬁtéthoa Jor I'(n 1) variablles.
: ‘C ~1,-x
T
g{x) = ke"""fn . for x> 0

Here f(x) for x = _0,.and n>1

As n> 1, then as x — 0, f[x) —+0 fastcr than g(x) 1rnp1ymg that g(x) is a
suitable cnvelopmg functlon for. f (x)'ﬂ___“_"

Lety=f (x)/h(‘c) We seek k by max;mlzmg ¥ with respcct to X.

]

log,y = {n—1)log, x —x+ ;1- + log, {n/T(n})

d n—1 . 1
— {1 Vo — | 4 —
dx(og.,}) " -

2

d
E (log, y) =

Thus, as n > 1, we maximize y when

n— 1
n‘l__l____

X n

i.e. when x = n, and so
e

“ ke nmet TR

It is now a simple matter to derive the following algorithm. Let U bea U(0,1)
random variable, and let E be an independent exponential random variable
with parameter ™ If

x n—-1 .
t(x).-—_(;-) exp[(l—n)(——-l)] forxz0

" then cohditional on t(EY=U, E has 't‘hg required gamima p.d.f.

The above method, due originally to G. S. Fishman, is described by
Atkinson and Pearce (1976). Of course, any density function f(x}:can be
enveloped by & wide vancty of altematwe functions, and an alternative rejec-
tion method for simulating gamma random vatiables is given in Exercise 5.22.
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CigwE

For distributions over a finite range, an alternatwe approach is to envelop

the distribution with a suitable polygon and then use the method of Hsuan:

(1979). A generalization of the rejection method is given in Exercise 5.29.

ik
5.4 The composition method
Here again we encounter a general method suitable for discrete and
continuous random variables. We.shall begin our discussion of this method
with an illustration from Abramowitz and Stegun (1965, p. 951).
For a binomial B(5,0.2) distribution we have the following probabilities,
given to four places of decimals:

i by
0 03271
1 0.4096
2 0.2048
3: 0.0512
4 0.0064
5 0.0003
If we take pg as an example, we can write
3 2 7 1
=03277 = -
Po 2 09><9+007><7+0027><27+0003x30
and similarly, :
4 0 9 6
—04096 - 0. —
n 9:-~19~§-00'I><,',+0027>~<2 +0003><30
2 0 4 -8
2 = 02048 = 0. 0. — =
2048 9x9+ 07x7+0027x27+00{)3x30

and 50 on so that in general ‘ ‘
: --09r,;+007rt2+0027r,3+0003r,4 ' f0r0<:<5 (56)

where, {r“} {ru} {hs} a.nd {r,4} are all’ probablhty dlstnbutlons over: the
same range,, 0s:<5 .
Wc can sec that in (5 6),

0.9-=-1071 x (sum of dlglts in first decimal place of the p;)
0.07'="10"2 x (sum.of dlglts in second.decimal p]ace of the p,)

.and so on
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while, for examp_lc,- '
03 3
Tor1 = 0—9' = -9-
04 4
rl 1 = 0—9- = 6 .
02 27
21059 "9 :
002 2 p
0 = 507 = 7
etc.

This explains the derivation of (5.6). We can now use (5.6) to simulate from the
{ p;} distribution as follows: :

(i) Simulate a discrete random v%r’iable, R, say, according to the distribution:

J Pr(R =)
1 0.9

2 0.07

3 0.027

4 0.003

{iiy If R = j, simulate from the {r;;} distribution for 1 <j < 4.1f the resulting
random variable is denoted by X,

4
Pr(X =i)= ) Pr(R=j)r; (see for example ABC, p. 85)
j=1

ie. Pr(X =i)=p;
ie. X has the required binomial distribution,

Of course, a small amount of approximation has taken place here, as we have
written the {p;} only to four places of decimals. Nevertheless, this approach
may be used for any discrete distribition. While one has to simulate from two
distributions {Pr(R-= j); 1. < j < 4} and {r;;}, most (97 %) of the time one is
simulating from {r;,} and {r;,}, and these component discrete distributions
are of a very simple form. A disadvantage of this method is the need to store the
component distributions. In (5.6) we have written the {p;} distribution as a

mixture, Or composition, ‘of the {r;;} distributions;-a further example of this_

kind is to be foind in Exercise 5.42. We shall now. consider the analogous

proccdure for continuous random variables.
It is not unusual to encounter probability density functions- Wthl’l are
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mixtures of other probability density functmns say
punibaa il ey T

- S =afix)+( —a)fz(x) 0<a<l (5.7)

e e ———————

In psychology, for example, bimodal histoprams- of :reaction times are
sometimes encountered, which may reflect a tendency for subjects to behave in
some standard fashion a proportion « of the time, producing reaction times
with probability density function f] (x), say, but the remainder of the time,
possibly due to a loss in concentration, to produce réaction times that tend to
be longer than before, with probability density function f(x), say Cox (1966)
provides further discussion of this example.

. Another example is provided by human height hlstograms, which could be
blmodal diie to'a mixtire of different male and female height- histograms.
However, samples from such mixtures may nét-obviously reflect.the mixture
form of the underlying p.d.f, as is the case in the histogram of Fig. 5.8.

-

32+

24

)
60 6 64 6 68 70 72 14 T 718
Helght (inches)

Figure 58 Histogram describing the heights of some undergraduates at the
University of Kent (taken from Fuller and Lury, 1977, p. 14). For the 142 male
undergraduates, heights range from 63 to 77 inches, with 2 modal height of 70 inches;
for the 69 female undergraduates, heights range from 60 to 70 inches, with a modal
height of 65 inches.

.Indeed, we shall see that in many apphcauons in simulation the mixture
formof (5.7)is adopted solely for convenjence, even for unimedal distributions
such as the normal distribution. Thc convemcnce anscs if & is fairly large and
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l.
'

fi(x)isa probablhty densﬂ:y functxon Wthh is apprecw.bly easier 1o smulate
from than f(x) itself. If we sample from f) (x).with probability o, and from fz(x)
with probability (1 —a), then because of the relationship of (5.7} we obtain a
random variable, X, with probability den31ty function f{x). We see this simply

as follows:

Pr{X < x) = «Pr(X < x| sample fromfl(x})+ (1 —a)Pr(X < x|
sample from f, (x))

H

J fl(y)dy+(1 a)J- fH(ndy

J f(y)dy by (5.7

Let us now consider two examples which Illusirate the use of the method.
i PO

r

EXAMPLE 5. 7 .

Suppose we want to snmulate random vanables ‘with the p d.f. of Flg 5. 9

i

fix}
]

Area={1-0)

| ~Area=8_"

o 1 o x

R

Fi, igure 59 Anunusual probablllty density functionf (x), from which we shall simulate

using a composition, the first densny, f1 (x), of which is the U(O 1} density.

We note here that we can write

fx)=0+f(x)—0.

forany 02x<1

i.e.,

) =0x1+(1— 9)(f b — 6) - (58)
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As _[0 f(x}dx = 1,thend < 1,and (5.8)is of the same form as (5.7). To s:mulate
from f (x), with probability 8 we simply select a_Q_[Q,__l_]_random vanable whlle
with probability (1 —8) we simulate from the p.d.f,

- {f{x)—8
o= (P

which’has subsumcd the featurcs of ff (x) whlch made ita dzfﬁcult p de from

v,

which to simulate. We can simulate from both f (x) and j'2 (x) usmg a rejectlon ’

method, but the advantage of the composition of (5. 8) is that one “only ™
simulates from £, (x) with' probability (1-8), and in the illustration of Fig. 5.9,

(1-8)is appreciably ‘less than 0.5.

EXAMPLE 'S8
A random vanablc X with the simple beta probability density function

S = 6X(1—x) for 0<x<1 .

can be simulated ‘quite ieasily by either the tablc-Iook ug mcthod or theh
rejection method (see Exercise «5:18). ‘Higure 5.10.shows how we max usea

1.505 - "'-.,\_‘
rd N —e—— flx}=bx(1-x)
. /./' , \ ul’{x) o
7 A (x} ~af (-r)
Fd hY
i A Y
e ,,. . \Q
e A
1 ,ﬂ ‘\
/ RN
/ \
/ kY
/ \
0.75 ] . \
ll. \‘
! A
{ \
. / \
/ A
r !. e \‘
o ! 77T LT TN Y
.I' ’-’/ £ \\\ e N i
". ’,, - = . \( ,/ \\ \
Iy . \ L v
N N t Fl '
i \ ’
i Lo ;
1 - A\ \]
0.00 —— , —2 .
00 toe 05 o A 10
’ e el -, - : Rl S
Figire 5.10 Thc bcta densuy funcuon f x)= 6x(l —X) and the basns for

composition. .. T .

ax.

a.
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com @smon method Here f,(x) is sunply the symmetnc tnangular dcnsxty
over (0,1), i.e. ’ - —
' for 0 £x<05" o

hx= {4(1 —x) for 05<x<1

From simple geometrlcal consideration we see that we must have o < 3,and as

we want.a to be as large as’ p0551ble we take =3 The second density in the -

r
—

compos:tlon 1s thcn glven by

J0) —af; (x): {J;2x(l .2x)

?pby0§xﬁﬂ5
ﬁ()' 1—ca 12(1 —2x) (x — 1) ‘

for 05<x<1

We shall leave the reader to consider how we might simulate from f; (x).

In general, suppose we have a probabllity densn:y function f (x) and that
filx)isa probablhty density function 6f roughly similar shape, but that it is
appremably easier to-simulate 4from fi (x).than from f{x). We shall see shortly
why we want f(x) and f; (x)to ‘be of similar:shape, .- .

We can formally write, for any « in the range 0 <z < 1,

S0 = aif, (9 (1 - )(f———(") 2 ("))

and from the above discussion we see that we can simulate from f(x) by
simulating from A (%) with probability e, and from f£(x) = (f(x)— af; (x))/
(1 —o) with probability (1 —a). As fl(x} is chosen to be relatively easy to
simulate from, we clearly want ¢ to be as lg_ggg_as possible. The constramt ono
is that for all x we must have f(x) ““fi (x) = 0, in ordeér to ensure that f,(x) is

also a probability dcnsnty function (it is easy to see that its integral is unity).

Now if

o = min (f(x) )
filx) |
and a positive, non-zero minimum can be found, then o< f{x)/f] (x),
Le. fix)—af;(x) =0, as required, and there js at 'least one x for which
af; (x) = f(x), so that a larger value of « cannot: be found. This'approach to
finding « is, of course, analogous to the general approach given in the last
section for finding k. Here we can consider e as shrinking f] (x) sO that it just fits
completely under f (x), as we have seen in the last two examples. ThIS of course
explains why we seek an f; (x) to be of roughly similar shape to’ f(x) the more
similar in shapc *f{x) and f, (x)are, then the larger the shrinking parameter a can

be. For fejection, theh, we envelop f(x), but for compositionit is f(x) itself that.
plays the enveloping role. The method generalizes in a straightforward way, so.

- ——m— -
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that we could repeat the procedurc for fa (x) and 50 01, endmg ulumately with

the mixture:
—_— - . teontl

f(x) Z whx)
N S ,

o n+l
in which ' th—l
and . >0 for 1<1<n+1

all the f(x} are probability density functions, and

Sirr ()= (f(x) - EI aLﬁ(x))/(l - Z “})
i= i=1
In choosing n, one has to counterbalance the difficulty of simulating from the
final density function, f, . , (x), with the size of anﬂ ,and the general desxrablhty
of keeping n small.

In the last two examples, all the p.d.f's considered had a finite range. As we
shall see in the.next section, it sometimes happens that f(x) has an infinite -
range, butf, (x)hasa finite range. Insucha case, we have a range of x for which
J1(x) = 0,but f;(x) > 0.In fact, as is shown in the next section, we can also have

J2(x) = 0 and f; (x) > 0 for certain x. “ 4

*5.5 Combining methods for simulating normal random variables

In recent years much ingenuity has been devoted to devising composition
methods for the standard normal probability density function. These ap-
proaches have also employed rejection, table-look-up and particular methods,
and it is fascinating to see all of these different tools put to work on the one
problem. As with the rejection method, many different compositions can be
formed for any one probability density function, and here we shall just
consider one, for the N (0, 1) density. Due to Marsaglia and Bray (1964), the
method gives rise to what has been termed their ‘convenient’ algorithm. Other
methods are discussed in Exercises 5.36-5.38.

What many of the different methods proposed for the N (0, 1) p.d.f. have in
common, however, is the initial isolation of the tails of the normal density
function, and the first composition usually taken is:

R '
= ad, () + (1 —)p,(x) (5.9)
N
in which
L e 3<x<s
- ——— or —_ X5
b=« Jom .
Yo - " for- |x| >3
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1 e~ ¢ - ' -
e for x| >3
and o= { T =m. Jom, e >
70 - for —-3<x<3
where
_3 e_xjfz
l—a=2] -—=—=00027 -
—m /(21 ‘

to 4 places of decimals. Here, then, is an instance of the two éompoheht pdf’s
in (5.7) having different ranges. {x| > 3 is used to define the normal p.d f. tails as

3 is suitably large and, as we shall see, ties in conveniently with the approaches .

adopted in what follows. ‘

The composition of (5.9) means that most of the time we simulate from the
expanded normal density, ¢, (x), over the finite range |x| < 3, while with the
very small probability (1 —«) we simulate from the p.d.f. ¢,(x), formed by
expanding the tail areas from the standard normal p.d.f.

Let us consider ¢,(x) first of all. A random variable X with probability
density function ¢,(x) is simply an N (0; 1) random variable, conditioned to be
{X] = 3. Such random variables result from the Box-Muller or Polar
Marsaglia methods of Section 4.2 as follows: in thé Box—Muller notation of
Equation (4.1), if the exponential variable —2log, U, > 9, then from the
geometrical explanation of Section 4.2.1, there is a good chance that at least
one of N, and N, is greater than 3 in modulus, as required. Certainly, if
—2log, U, <9 then neither of N, and N, will be greater than 3, and so the
standard approach of Section 4.2 towards constructing the conditioned
normal variables that we require would be very wasteful, However, as is
discussed in Exercise 5.24,Y = 9 —2log, U, is a random variable with the
required exponential distribution, but conditional on being greater than 9. We
can therefore simulate from the p.d.f ¢,(x) by replacing —2log, U, in
Equation (4.1) by (9 —2 log, U, ), but only accepting a resulting N, or N, value
if it is greater than 3 in modulus. Correspondingly, we can modify the
Polar Marsaglia method by replacing {—2log, /) in Equation (4.2) by
(9—2log, W), and proceeding in the same fashion. . _

There is more discussion of tail area simulation in the solution to Exercise
5.38. So far we have used the particular approaches of Section 4.2, and the
table-look-up method to give exponential random variables of mean 2. Now
we shall return to ¢, (x). ‘

Figure 5.11 illustrates ¢,(x) and also the probability density function of the
random variable

Y=2(U,+U,+U,—15) -3<v<3
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0

Figure 5.11 The prefiminary to a composition method. Here we want to simulate
from ¢, (x) (denoted by a solid line) the standard normal p.d.f. conditioned to the range
| = 3.1tis proposed to use as the first p.d.f. in the composition, f, (x) (dashed line), the .
density of ¥ = 2(U, + U, + U3 — 1.5), where U, U, and U, aré independent U (0, 1)
random variables. :

in which-Uy; U, and: U, are independent U.(0, 1) random. variables, .(See . ‘
Exercise 4.8). The two curves are of similar shape; and Y is clearly;‘_casy‘"tq
simulate: We shall now, therefore, seek a.composition for. ¢ (3, wit,h_-‘th{c"ﬁrst
p.d.f. in the-compositior being: f;(x), the probability.density function of. ¥,
given by (see Exercise 4.8) R i L

B-x8 —1<xx1 !

A =1 B —|x]¥16 1<|x|<3
0 ' x| <3

Using the approach outlined in the last section, we want to minimize

q(x) = &,(x)//,{x) with respect to x varying over the range {x] < 3. Because

Jfi(x) is specified differently over different ranges for x, we shall deal with these

different ranges separately. ‘ ' o b : :
First let us consider 0 < x < 1. Here,

§e—x'2

1) = a(3 —x*)/(2m)
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2
1{x) = log g(x) = constant —x? —log (3 —x%)

d - 2x
— I = —_— —
ax ' *+ B—x%
= 0 when x =0 and when 3—x*=2,je. x=1
d?i(x) 2 4x*
= —1+ 7t 72
dx 3—x7) (3-—x%
. dilx) . . -
le. — 3 I8 negative when x = 0, and positive when x = 1.
Next we shall consider the range 1 < x < 3,
16e -2
Here, g(x) = ¢

a3 —x)* ./(@2n)
x2
I{x) = log g(x) = constant —? —2log(3—x)

d- 2
/W= Xt ETy

d
=0 when 3x- x —2

Le. whenx—landwhenx-—z _
d21 _ 2
o= ey

1€ d’l(x)/dx is negative' when x = 1, and. positive when x = 2, reveahng a
minimum 1o g(x) whén x =2, -

Thus f‘or the case of x> 0; g(x) hasa maximum when X.= 0 a saddle pomt
wheii x'< ', and a'minimum when x = 2. We need not consider the case x < 0
separately because of the symmetry present, and so: we can conclude that q(x)
has minima at x = 4 2 in the range |x| < 3.

Hence if we write

- @y (x) = oy fy (x) ety f5 (%)
o ¢, (2) _ 16 e”?
o TR ajen

and .overall; from considering the compositions for e""’/ \/ (21:) and ¢, (x),
we simulate from f; (x) with probability .
16e~*

J@n)

Here we see a dramatic’ demoristration of the possible power of the
composition method: over 86 per cent of the time we can expect to simulate an

= 0.8638

auy =
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N (0, 1) random variable by simply taking a linear function of the sum of three
independent U {0, 1) random variables.

In fact there is still more of intereést remaining in this. example. With
probability we, we must simulate from the probability density function

Ll = (¢1(xi—ﬂ;1ﬁ(x)) _3<x<3
—o, -

i.e. with probability aw, = a{l —«,) = (0.9973 —0.8638) = 0.1335.

Figure 5.12 presents a graph of ¢, (x) —«, f; (x), and the form of the graph
suggests proceeding further with the composition for ¢, (x), by now using a
triangular p.d.f. and setting

03 = Bal)+ (1 — Ph(x),

¢1 {x) 'Cl]fi‘v\']
0,08

a% J . 0 -

,‘;_\

Figure 512 The residual curve ¢ (x) al fi () following the composmon method
enwsaged in F:g 5.1L .

where g(x) =‘(6 ;4'|x])/9 for |x| £1.5
' =0 - for |x| > 1.5

g(x) is simply the probability density function of

Y=15(U,+U,—1)
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where U, and U, are independent U(0,1) random variables (see Exercise 4.8).
In this case, thh the aim of determining B, f,(x)/g{x}-.cannot be minimized

explicitly, but a “Humerical method such as Newton—Raphson readily pro- .

vides us with §= 0.8292, the minimum . occurring at x = + 0.8739. We

thus simulate from g(x) with probability-a(i —e,) B = 0.1107, so that over 97 .

. per cent of the time we use.the two simple p.d.f[.’s f; (x) and g(x).

give
—x2

= 0.8638 f, (x) +jo.1107 g(x)+0.0027 t(x) + 0.0228 r(x)
V@) ‘ (5.10)

for —<x<ow

€

where (x) is the tail-area p.d.f. which we con51dcred earlier, and r(x)is the p.d.f.
that remains for [x] <3, :

We simulate from the p.d.f. r(x) only with probability 0.0228,and as r(x)isof

a fairly complicated form (shown in Fig, 5.18) we can simulate from it by means
of simple rejection, using a rectangular enveloping region over the finite range
|x] < 3, with, it can be shown, probablhty 0.53 of rejection (see Exercises 5.16
and 5.39).

The above derivation of (5. 10) should not dngUlSC the fact that {5.10) is a
description of ‘one way of dividing up the area under the N (0,1) probability
density function, precmely as was'done ina different case in Example 5.7, The
end-resuit is shown in Fig. 5.13.

0.51

] os8638
01107
R 00228

b L] I 1 . AL K — .
-30 -25.-20 -15 .10 05 00. 05 10 15 20 25 30

Figure 5.13 A'rcpfeseﬁtationlof the’ composition given in Equation (5.10) for the
range |x| < 3. The regions shown have the areas indicated-above.

The three composmons that we have dealt with here.can be writtenasone,to -

5 6 D:scusswn ana’ further readmg 119

*5.6... Discussion and further reading -
The examples considered'i m this chapter form only: awery'small subset of; the vat
many 1nterestmg and comphcated approaches that have been devised in recent .
years. For 1nstance havmg obtained a niofmal random .variable; then one can,-
even Tise the nérmal distributiori‘itself as an enveloping;distribution; see, for
example Ahrens and Dleter (1974) and. Atkmson (1979). Mare: examples areto
befound m the éxereises. ~ @ e m D nan gae

Wé have seen'that uniform U {0, {) random variables are the bulIdmg-blocks
for the 51mulat10n of any other-random- variable. Comphcatedxalgonthms
utllizmg composmon angd: I'C_]CCtIOD methods, and: 'sometimes requiring: the -
storage of a ]argc number of ¢Bnstants, are demgned foraise on. computers’that
work to hlgh precmlon “Thése "dlgotithins are' often’ programmed insmachine - ,;
codeand tend 16 bé the most: ‘efficient. They are therefore most suitable if one’is !
scekmg to prov1de a ¢omputer with anefficient’ package.iof ‘programs for
mmulatmg aVanety of random-nuriibers, Which will be used. frequently by a
large number of individusls;: Comparisons of different algorithms, using speed
and efficiency, have been undertaken by a number: of:authors—see, ;for:,
example, Atkinson and Pearce.(1976), Kinderman:and; Ramage: (1976)_and
Ripley (1983b) “Appleton- (1976) pointed. out:-that certain methods can_be .
programmcd in the programming language APL, to take advantage;of, APL’ N
vector-handlmg capabilities, ‘and sas an:example.hesfoundithe Box—MuIler
method to be 30 times fastér than the Marsaglia and Bray ‘convenient’ mcthod, vy
when both weré programined in‘APL.This is partly.due to the.fact that ARL
programs are mtcrpreted rather-than'compiled, as are. FORTRAN programs..
Using" FORTRAN -Atkinson and Pearce’(1976): found Box-Muller. to be
roughly twice as slow as the convenientimethod: Distributed array.processing .
isanother factor wh1ch could mﬂuence thc companson of different; algonthms
(cf. Exercise '3.16)." - 5o s

Ripley (1983b) prov;des a’list of relatwely efﬁcxont 51mple algonthms for a,_
variety of distributions. Most-users of main-frame computers:will be: llkely to.s
use library subroutines siich asthose'deseribed in Section Al.1.Because of tho i
time-lag before library subroutines are changed to accommodate L EW. &
developments, these’ programs ‘may  not always.be .the -most. efficient. -tEach
individual clearly has to experiment with the facilities available.if it is suspected. ..
that long generation times of random variables could render a simulation .
impractical. - o

Of course, the sxmplest way for human bemgs to'sithuldte frandom variables
is to use tables of realizations of such random variables, such as.those by, Wold -
(1954), providing normal fandom variables, and those by Barnett (1965), 1 wh:ch
provide exponential random variables. In'the absence of such.tables, the. table- -
look-up approach is also easily performed by hand if one has suitable. tables of
cumulative distribution’ functions, ‘and only “a “small-scale : simulation is
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envisaged. Some such tablés can be found in Harter (1964), Lieberman and
Owen (1961), Mardia and Zemroch (1978), Neave (1978),. Odeh, et al. (1977),
Williamsonand- Bretherton (1963) and Worsdale .(1975)..

Simulétion of-discrete random variables by-the table—Iook—up method can
be very-time consuming.- This occurs-with the Poisson distribution, for
example, ifit”has large mean, in which: case the parncular method for this
distribution, described in the last chapter, will also be metﬁment_ There is
further ‘discussion-of this point in Exercises 5.3 and 5.4.. The range-dlwdmg
techniquie; discussed in Section 5.1, can.be generalized by dmdmg the range
into d > 2 parts, as in- Neave. (1972), who provides ALGOL programs for
several discrete distributions: A faster:search,procedure is the optimum binary
tree seatch described in Knuth (1968, p. 400). As.can, bescen from Section Al.1,
the NAG libzary of computer programs simulates all dlscrete d!Stl‘lbuthﬂS by
first“of all establishing.a reference. vector - of cumulatlve surns, and then
performing an indexed search by means ofithe routine GOSEYF The IMSL
routine for the table-look-up method. for a general discrete. distribution is
GGDT {see Section'All).: - .

The polar Marséglia method of Sect1on 422 ShOWS that the ratio V,/ Vyof

the co-ordinates of a point uniformly distributed over a disc of unit radius and
centréd on the origin has-a Cauchy distribution (see Exercise 5.8). Kmderman
'and Monahan (1977) have generalized this. result to provide a new general
method- for simulating random variables;.viz., the ra_;;q_meghqd——see Ripley
(1983b) for illustrations-of its use. A further-new general method is the alias
methiod for discrete random variables, described in Exercise 5. 42. _

In this chapter-we have only considered univariate random. varlables but
table-look-up, ‘rejection’ and: composition .methods .may, alsoz,be used for
multivariate-random -variables. ‘Kemp-and Loukas (1978a, b). consider. the
table-look-up method for a bivariate Poisson distribution, and the table-look-
up-method for bivariate Poisson and normal distributions is dlscussed in
Exercises 5:10 and 5:11.-Best and Fisher-(1979) use a rejection method on the
circle, enveloping the von stes dxsmbutlon with a wrapped Cauchy
distribution.

Weshall-conclude this chapter with some further dlscussmn of mcthods for
simulating -normal random variables.

. *5.7 Addmonal approaches i'or normal random vanables

Thc table-look-up method for normal random vanables is d1f’ﬁcult to program
for computers because -of the intractable form of the standard normal
cumulative -distribution function, ®(x), and its -inverse; ®~*(x). Various
authots have approached this problem by providing approximate. methods———
see, for example; Zelen-and:Severo (1966).and Wetherlill (1965). Wetherill’s
approach employs the attractive idea that an efficient algorithm can result

—— e g W ey
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from using one approximation to ® ! (x) in the middle of the range for x, but
ancther, more complicated algorithm in the tails, wh1ch would be used far less
frequently. This idea is simply providing a composition mcthod the com-
ponents of which are simulated using approximate table- look-up methods.
Some other approaches are described below,-

Because of the similar shapes of the normal and. logxstlc probability density
functions, it is natural.to try to approximate the normal cumulative
distribution function by the simple logistic cumulative distribution function.
In order to.obtain a good match over the middle of the range, the logistic
cumulative distribution function that may be used'is

PN ) R

as this curve has the same slope at x = 0 as does ®(x). An alternative possibility
which might be considered is the logistic cumulative distribution function,

J'TI(J«:)=[1+exp(—-z:/—);-)]_1 —RSx<w

corresponding to a random variable with zero mean and unit variance. F, (x)
and F,(x) are illustrated in Fig. 5.14, for 0 < x < 3.

Table 5.1 is taken from - Page (1977), who tries to improve a logistic
approximation by adding an extra parameter, resulting in the cumulative
distribution function '

G(x) = {1+exp[ —2ayx(1+a,x*)]} 7

Note that as the coefficient of the new parameter, a,, is x*, and not x?, which
may have been considered a more natural choice, then we preserve the
property G(x)+ G(—x} = 1, and the correspondlng probability density func-
tion is symmetric about x = 0.

If a,= J 2/n), and a, is chosen_by least squares, then a value of
a, = 0.044 715 is obtained. A slightly better approximation is obtained by
allowing both a, and a, to be chosen by least squares, but the advantage of
keeping a, = ./(2/m)is that if one wanted to approximate ®(x) this way ona
hand-calculator, only one constant needs to be remembered, most calculators
having a ‘x* key. To simulate approximate N (0, 1) random variables we need
% = G7(U) (see Exercise 5.9). Some examples are given in Table 5.1.

Hamaker (1978) and Schmeiser (1979) provide further approximations that
are suitable for computation on a hand-calculator, and more recent work is
described. in Bailey (1981) and Lew (1981).

Kinderman and Ramage (1976) use an even simpler p.d.f. for f; (x), the first
p.d.f. in a composition for the standard normal density, than that resulting
from the sum of three U(0, 1) random variables. In their case, they used the

- Ex<w

- p.d.f.of the sum of just two U(0,1) random variables, as illustrated in Fig. 5.15.
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1'0_* - f ._____
__________

T e

0.5 Y
0 3
x -
Figure 514 An illustration for 0<x <3 of two logistic cumulative “distri-
2 =1
bution functions, (— —): F,(x)=[1+exp(-—2 \/(;)1)] and (———)

. _1 . ‘ ‘ )
Fo(x)=|14+exp| — r:_;; ,either of whic_k} may b_q used as a rough approximation

).

to the normal cumulative distribution function, ®(x), denoted by {

Table 5.1 Approximating the standard mormal cumulative distribution function
®(x). Two possible approximations are F, (x) and G(x), explained in the text. X results

from inverting G(x) (ffom Page, 1977).

x 1 -®(x) 1-F(x) 1-G{x) x

0 0.5 g 05 - ' 05 + 0

0.1 04601722 0.4601902 04601725 - 01

0.3 '0.3820886 03825519 - 03820569 - 03

0.5 0.308 5375 . 03104782 -0.308 5720 0.5001
1.0 0.1586553 0.1685738 0.1588080 1.0006
i.5 0.066 807 2 0.0836579 0.0669523 1.5011
2.0 0.0227501 . 00394854 0.0227012 1.9991
2.5 0.006 209 7 00181740 0.0060337 24901
30 0.0013499 - 0.0082660 0.0012125 2.9693
35 00002326 - 0.0037390 0.0001761 34332

4.0 0.0000317 0.0016871 0.0000176 3.8800

Figure 5.16 illustrates ¢(x)—af; (x) for —3 < x <3,.-which may be
simulated by means of rejection, the details of which are discussed in the

f * 3 LI
=3 i . . 0 . 3
X

Figure 5.15 The standard normal density function ¢(x) — ) over the range,
(=3, +3), and af; (x) (------ ), in the notation of the composition method of the
Section 5.4.'Here f;(x) is the probability density function of (U, U, —1), where U,

and U, are independent U (0; 1) randomvariables. « is chosen so thataf; (0) = 1/ J2a,

and f must.be chosen to give the triangle illustrated here, ie. the largest symmetric’
triangle with height 1/./(2n) which can be fitted under ¢{x). : .

0064

Figure5.16 A graphof (x) —af; (x)for|x| < 3, resulting from the curves of Fig: 5.15.
The dotted lines relate to a particular approach used for the rejection mettiod employed
to simulate from the probability density.function which is a positive multiple. of this
curve, as discussed in the solution to Exercise 5.38.
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solution to Exercise 5.38. Also presented in Exercise 5.38 is the full algorithm

General Methods for Non-uniform Random Variables

of Kinderman and Ramage (1976).

5.8 Exercises and complements

(a) General

5.1

5.2

53

Use Equation (2.3) to show that when U is a U(0, 1) random variable,
then 1 —U is also a U (0, 1) random variable.

When X has the half-normal p.d.f.

Sx)= \/(%)e“zﬁ for x20

show that X, defined by:

X = X with probability 4
X = —X with probability

. has the standard normal p.d.f.

Simulating Poisson random., variables‘-wnh' large mean can be time
consuming, whether one usesa-particular approach; as iniChapter 4, or
a general, table-look-up approach, Discuss 6nie ‘way of tackling this

problem, in the context of the distribution of the sum of two -

independent random variables, each with Poisson distributions. See
Exercise 2.8(b).

(b) Table-look-up methods

5.4

5.5

Seléct a Poisson distribution with mode different from zero.

(a) Simulate from.this distribution using the table-look-up method.

(b) Repeat (a), but employ a 8, as suggested in Section 5.1.

(¢) Repeat (a) but employ two such: 9’5 thus. dmdmg the range into
three parts.

{d) Repeat (b) after havmg first ordered the probabilities in increasing
order.

Compare the efficiencies of these four approaches (cf. also Exercise 5.3,

and Kemp, 1982).

(a): Write a computer program to simulate a'tandom variable, X, from.. ..

Yo

5.6

*5,7

*5.8

*5.9

*5.10
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the triangular distribution defined by:

0 0 x{O

x x*/2 0<x<1
JB=1 e T -1 1=x<2

0 1 x>2

using the inversion method. Here f(x) is the probability density
function of x, and F (x) is the cumulative distribution function of x.
This is the method used in the IMSL routine GGTRA (see Section
ALl).

(b} Compare the efficiency of this program with one which simulates
such a random variable by simply summing two independent
U(0, 1) random variables.

Use the table-look-up method to simulate 10 random variables:

(a) from the binomial distribution B(6,1/3); and
{(b) from the normal distribution N(1,2), using tables of the standard
normal cumulative distribution function.

Use the tabie—look-up method to simulate random variables with the
simple.beta probability density function

J(x) = 6x{1 —x) for0=x=< 1

(@) Explain how to simulate random variables from the Cauchy
distribution, with probability density function,

: 1

f(x):m for —w<x<w
using the inversion method. An algorithm using this approach is
provided by.the IMSL routine, GGCAY (see Section Al.1).

(b) If N, and N, are independent standard normal random variables
then, as we saw in Exercise 2.15{b) and Exercise 4.5(b), their ratio
C = N;/N, has the Cauchy probability density function of
(a} above. Explain how this result may be deduced from (a}and an
understanding of the Box—Muller method described in Section
4.2.1.

The approximate appfdach for simulating N(0, 1) random variables
described in Section 5.7 involved. setting %= G~ *(u), where
G(x} = [1 +exp{—2a,x(l +a,x*)}]17"*. Solve for x.

Discuss how you would use the tablé—I'bok-up method for simulating
from the bivariate Poisson distribution of Exercise 4.7.
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*5.11 Discuss how you would use the inversion method for simulating from
the bivariate normal distribution. ; '

5.12 If X is a random variable with the exponential, le™** p.d.f, for x = 0,

deduce the distribution of the integral part o6f X, viz, ¥ = [X]. Hence

_explain why, in (5.4), we obtain a geometric random variable by
rounding up an exponential random variable. o

¥5.13 Use the inversion method to simulate from the following distributions:
I 7y t. - =__:__
(a) logistic: f(x) Tte )
Note that this method is implemented in the NAG routine: GOSDCF
(see Section All). L _ :
{b) Weibull (see Exercise 2.3): f(w) = }%qy’“' exp{ —(w/y¥} . for

for —0 =x =5 c0. .

.

O<w<o, f>0,y>0. -
Note that this method is implemented in the NAG routine GO5SDPF
and the IMSL routine GGWIB (see Section Al.1).

{c) Pareto distribution:
Pr(XSx)=1-—(i—(c-) fora>0,x= k>0,

(d) Extreme-value distribution:
Pr(X < x) = exp{ —exp((£ —x)/6)}

5.14 Provide a.detailed algorithm for simulating from, the logarithmic
distribution of Exercise 4.22.

for x = 0.

*5:.15 Barfig:tt (1980) presents the bivariate uniform p.d.f:
' f vy =1 —-)[Quv—u—v)a+1]{Pu )} 3 (511

where W (u, t) = (e(u+v)=1Y+4e(l —cuvand e <}, 0=y, p < 1,
This probability density function is illustrated in Fig. 5.17 for the case
a = —4. It is constructed from a bivariate distribution of Plackett
(1965), which is given;implicitly by: -

(F e ){1 ~ Fy () = Fy0) + F s )} _
{Fx )= F (e ) }HFr 0) = F (%, )}

From Section 5.2 we can see that if we set U = F,,(X) then U is U(0, 1),
and sois ¥ = F, {¥'). This is an interesting reversal of the aim of Section
5.2, which is to progress from U to X..Verify that this substitution here
results in the joint p.d.f. f(u, v) of Equation (5.11). Derive further
bivariate uniform distributions in this manner from the following
bivariate distributions also presented by Barnett (1980):

1-¢a

I
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Figure 5.17 Isometric projection of the bivariate uniform density of Equation (5.11),
from Morgan (1983).

@) F(x,y)= Fx(x)F {1 —e(l =Fx(x)){1 —F, ()}
for |a| < 1. ~ ‘

(b) fx 3 = {(1 +ax)(L +ay) —a}exp(—x —y —oxy)
R forO<ea< 1. : _

(t_hi_s;l:s' a bivariate gxponeniial_ distribution)
. 1 B
(©) flry) = o= (L2473

(this is a bivariate Cauchy distribution)

. {c) Rejection methods ) ) o L
5.16. Figure 5.18-shows the probability density function r(x) of Equation
" (5.10), resulting from the composition of (5.10). Explain-how you would

simulate from r(x) using a rejection method.

' 5.17+-To éimulatc)ffc;m.lhe probability density function given by
| .

. for—1sxs1
f={ Tgi-xy T
0

otherwise
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#lx}
0.4

1

3

-3

Figure 5.18 The pd.f r(x)for —3 < x < 3. which is sampled wi ili
_ ) [he p.d.f. r(x) fc Lxx<3 ed with prob: .
in the ‘convenient’ composition method of Equation (5.1%).— probability 60228

5.18
5.19
5.20

521

we note that this is the probability dénsity function of the random
variable X = cos(zU), where Uisa U (0, 1) random variable. Use this
result to devise a rejection method, based on the first quadranit of a circle
and similar to the Polar Marsaglia method, for generating the required
random variables. |

Devise a rejection method, with an acceptance probability of not Jess
than.8/9, for simulating random variables from the beta probability
density function f{(x) = 6x{1 —x) for 0 < x < 1.

Describe how to simulate a random variable with the lﬁgigtic' pfob—

- ability density ‘function, €™ *(1+¢7%)"2 for —os < x < ©0, using a

rejection method based on the exponential envelope, e~ for x > 0.

Explain h'.ow to simulate normal random variables using a rejection
methoq \_wth an enveloping function based on'a logistic p.d.f. Derive the
probability of rejection (cf. Exercise 5.31).

Repeat the approach adopted in Exampie 5.5 with kle™** for x = Q as
the enveloping function. Show that. the probability of rejection is
minimized if we take 1 = |, as in Example 5.5.

*5.22

*5.23

*5.24

*5.25

*5.26

15,27
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-Cheng (1977) presented a rej?c;ioh method for simulating from the
(o, 1) distribution, where o > 1. In his case, '

hix) = A " forx2 0

(a) ‘Consider how you would simulaté from the préba'bi]ity density
function, h(x). S

(b) If g = w*and A= .. /(2e — 1), determine the probability-of rejection,
and the mean number of variable selections until acceptance.
The case a = 3'is ilustrated in Fig. 5.5, for x < 8.

Compare the two rejection méthods for :s_'iimilatin"g“'from a gamma
distribution, given in Example 5.6 and Exercise 5.22.

Explain How you would simulate a random variable that has an
exponential distribution of mean 2, conditional on it being greater than
9 {cf. Exercise 5.26). S o |

Figure 5.16 preséntsa p.d.f. to be'simulated from by'means of a rejection
method. Kinderman and Ramage (1976) used the method of triangies
(see Marsaglia, MaclLaren and Bray, 1964), which, in outline, is as
follows.
If a p.d.f. from which one wants to simulate can be sandwiched
between two parallel lines, the X-value for the rejection method is
" simulated from an appropriate triangular distribution corresponding to
the upper of the ‘parallel lines. When the corresponding uniformly
" distributed ¥ value is less than the appropriate value on the lower of the
parallel lines, then X is accepted, and it is not necessary to compute the
formula for the curve. If, however; the ¥ value is greater than the ap-
propriate value on the lower line then it is necessary to compute the
formula for the curve in orderto decide on rejection or acceptance.
. Discuss the objective of such an approach, and expiain its use for the
beta p.d.f. of Exercise 5.18 (cf. comments in the solution to Exercise
5.23).

Marsaglia (1964) proposed the -following method for simulating
standard normal random variables X, conditional upon X > a > 0. Let
U,, U; be two independent U(0, 1) random variables. Set

X = (a?—2log,U,)! 2.

~ Accept X as a realization of the required random variable if U, X < a.

Otherwise, reject- U, ‘and U,, and- start again. Verify that X has the
required distribution (cf. Exercise 5.24 and the comments of Section
. 5_5). o : . T . )

; 4

If U, and U, are indépendent U(0, 1) random variables, show that,
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conditional upon (2U; —1> + U3 £ |, then C = 2U, —1)/U, has the
Cauchy distribution of Section 2.11. Note that this method is im-
plemented in the NAG routine GOSDFF (see Section Al 1) :

If X, and X, are independent, identically dxstnbuted exponentlal
random variables with mean unity, show that, condttlonal upon
(X, —1)? < 2X,, then X, has a half-normal p.d.f derived” from an
N (0 1) distribution. {This rcsult is due to von Neumann—-see Kahn,
1956, p. 39.)

Suppose we have a probability. densuy functlon f(x} Wthh can be
written in the form: ) .
Ji () = cg(ar(x)

- where g(x) is also a p.d.f., ¢ > 0 is a constant, and over the range of x,

0 < r{x) < m, for some finite m. Show that we can simulaté X from J(x)
as follows:

(i) Simulate X from g(x)
(i) Accept X if Um < r(X)

where U is an independent U (0, 1) variable. Otherwnse I'C_]CCT. X and
U and start again at (i):

What is the rejection probability? An example is provided by Butcher
(1960), in which f(x) is half-normal, and g(x) is exponential. This
generalization of the rejection method can give rise to efficient
*switching’ algorithms, in which the rbles played by g(x)and r(x) change
for different parts of the x-range; see Atkinson and Whlttaker (1976),
and Atkinson (1979b).

(d) Compos.ition methods

15.30

5.31

5.32

Use the composmon approach of Section 5.4, as applied in the example
of Equation '(5.6), to! 51mulatc random variables with the Poisson
dlstnbut:on of Example 5 2.7

EXplam why it is not posmble to sunulate normal random variables
using a composition, the first element of which, )"l (x) is a Togistic
density.

A continuous random-variable X has the ‘wedge-shaped’ probability
density function, f; (x) = a —a?x/2, for 0 £ x < 2fx and ¢ > 0.

{a) Explam how you would simulate X.

(b) Tt is desired to simulate from the cxponentlal pd £ f(x) = e~ %
forx = Oand 24 > «, usmga composmon the first p.d.f. of which is
to bef; (x). Derive the shrmkmg factor for 11 (x), and deduce that, by
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suitable choice of «, the probability of simulating from f; (x) in the
composition can be made as large as 2/e. ‘

5.33 {a) Show that the random variable X, with probability density function

5.34

*535

. *5.36

=X

f(x)=(?_—1)

is obtained simply by setting X = m —Y, where ¥ has probability
density function

J =

for(m—1)<x<m wherem=1

et

(e—1)

The cumulative distribution function for X when m=1 is il-
lustrated in Fig. 5.2. )

(b) By expanding f(y) as a power series in y, show that we can
simulate from f{y) by means of a composition, simulating from
probability density function, (i+ 1)y for 0 < y < 1, with prob-
ability i

G+DHle—-1)

(continuation) We note that

for0sy=<1

fori=0.

L el 4

s le=1)e""xe
(e—1)
Explain, with reference to Fig. 5.19, how this result may be used as a

basis for 4 composition ‘method for 51mulatmg from the: probablhty
density function; e *for x=0. -

foranym=1

(connnuanon) Explam the followmg algonthm, gwen by Marsagha
(196 1), for s1mu1atmg random va.nables from, the exponentlal e *pdf:

(i) Simulate a discrete random’ vanable I} from the distribution
L. . 6
- P -" —— e e for >0 : .-l . [
o (x+1)'(e—1) ! .
(11) Sct W=max(U; U, ... oUpp " o -
-where the {U,} are lndepcndcnt»U(O,’l) random variables.
(ii): Simulate a discrete random variable, M; from the distribution

(e—Le™" form=1
{iv) Set X = M —W. - Co

Consider how you would simulate standard normal-random variables
using 2 composition method; in which thesfirstp.d.f. in.the composition,
fi{x), is of trapezoidal form..See Ahrens.-and :Dieter (1972)
for.an algorithm based on, this approach.
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e™x

1.0

0.5
Teoo ¢ 063
Figure 5,20 Part of the half-normal density, - . .
2

= Z o x2
, 2¢Fx) \/(ﬂ)e )

00 T — . ' .

0 2 4 enveloping 97 rectangles, each of drea 0.01.
R . A

Figure 5.19 A brcakdown of the p.d.f. e *into sections of area, (e —Ne™™ form = 1,

forx<4. . 29{x}-057 £(x)

0.03304 .. ' ol

,_,.*S 37 Flgure 5 20 xllustrates a portlon of the haif-normal p.d. f 2¢>(x) and

0.97f, (x), in which f, (x) is 2 density composed .of 97 rectangles, each of

. area | /97 Figure 5.21 xl]ustrates 2¢p(x) — 0.97/, (x). Discuss how. these ' il

) " curves ndy be used ts simiilite standard normal random vanables “This 0.0165- . '

P 'miethod is due to Lenden=Hitchcock (1980)'arid is based on a method of
- Marsaghia,.MacLaren and. -Bray. (1964).. "

*5.38 Kinderman and Ramage (1976) produce the algorithm, given below, for
their method discussed in Section 5.7. Explain how the method gives .
rise to this algorithm. (Note that &= 2:216035867.166471 and J
. =.0(t) = 0180025 191:068:563 (é—] |) for [t].< & Here we preserve
- the thigh accuracy of constants ‘given in: the original source.)

TT U yva — 1
. 1.86 24
F 4

000001
[+1¢

Figure 5.21.. /A graph of 2¢(x)~ 097f,(x) from Fig. 5.20,.in Wthh 097 f (x) is the
envelope of the rectangles shown in Fig. 5.20.
Algorithm from Kinderman and Ramage (1976) - -

;- L-Generate. u. If:u <.0:884070402 298 758; generatc v and ‘tefirn ‘ again. Oth?rwwe lrl‘;t“m x = (2{)l_’2 ifu< 0985 655477086949 or
X =ExU(LIBE131 635444 180w v 1) e s ; returnxf-—(Zt) if not. be]
—wt 201w <0.973310954 173 898, gotéis below, v - o I % Ifu<0958720824790463 80 10 6 bélow.

= 1960
3. Generate v, w. Sét- t-—r§2/2—log,w If 263 E2y - begm this step ‘5" Generate’ v, w. Set z7='5'~w and t = &£-0.630834801 921 960 x
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min(p, w). If max(y, w) < 0.7555915316567601, go to 9. If
0.034 240 503 750 111]2| < f(2), go to 9. Otherwise, repeat this step.
6. If u < 0.911 3127807388 703, go to 8.
7. Generate v, w, Set z = v —w and

t = 0479727404 222441 4 1.105473 661022 070 mm(v, w). -
If .
max (v, w) < 0.872 834 976 671 '?90

g0 to 9. If 0.049 264 496 373 128|z| < f(¢) go to 9. Otherwise, repeat
this step.
8. Generate v, w. Set z = v —w and

t = 0.479 727 404 222 441 — 0,59550 71380 15940 min (v, w).
If
max (v, w) < 0.805 577924423817

go to 9.1 0.053377 549 506 886]2] <f(t), go to 9. Otherwise, repeat
this step.
9. If z <0, refurn x = otherw1se return X = —L

*5.39 For the: residual pd f r(x)-from-the composition of Equanon 5 10),

show that the probability of réjection is (.53 when we snmulate from r(x)

using rejection and anienvelopmg rectangle.

(e) Additional methods

*5.40 Suppose W is U{a,b), for'some’b > a, and suppose that fora < x < b,
0 <g(x)y<1 for some funcuon g(x) Suppose N is the first integer
=1 such that

G2 U, 2 Uy 2 .2 Uy, < Uy
where the {U;} iﬁc a se_:q‘uence of independent, iaentically distributed
U(0, 1) variables. Thus N = 1, if and only if g(W) < U,
N =2, if and only if g0¥) 2 U, < U,
‘etc.. o
Show that )
g(w) . gy

PriN = n|W =w) =7 ==

forn=1

and deduce thaf )
Pr(N is odd [ = w) = exp(—g(w))

*5.41 .
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Finally, show that the conditional p.d.f. of W is given by . , .

~exp( ‘g(wD - (5.12)

' Luw N, is 0dd) = e P .

: J exp( g(w))dw w0
(conttnuauon) Use the. results of thelast exerciseto prov1de arejection
method to. sunulatc random,varlablcs with the p.d.f: of Equation (5.12)
over the range (a..b). This is.the basis of what is known as:Forsythe’s
mezhod (see Forsythe 1972),, which, has: been used forra variety of

' dlSll’IbUtlonS (see; Atkinson and Pearce, 1976). Of course; the require-
.ment that g(x),s 1 is, by itself, very restrictive; however, this restriction

can be overcome byadmdmg,upcthe range.ofsx-into’tasnumber of
1ntervals and\then first of all;using. a composition: tq determine the

" appropnate interval: if g(x} isan increasing function of x, over the range

*5.42

(0, c0), say, then if the interval {g;, g;. , ) is chosen by the first stage of the
composition method, {g(g; + x) — 3(4,)} plays the rble of g(x) in the last
exercise. The {g;} must be chosen so that

0<g{gi+x)—glg) <1 for 0 x < (g;—40)

One such choice of {g;} gives rise to what is called Brent’s GRAND
method for N(0, 1) variables (see Brent, 1974). This is the method
employed by the NAG routine, GOSDDF (see-Section Al.1). Further
discussion and comparisons with other methods are given by Atkinson
and Pearce (1976). One advantage of Forsythe’s method is that it avoids
time-consuming exponentiation.

The random variable X takes the values 1, 2, 3, 4 with the following
probabilities:

PriX=1)=4=43+0+0+0)
Pr(X =2) =13 =30+3+0+0)

PriX =3) =7 =310 +3+1+3)
Pr(X 4)=4=30+0+0+3)

Thus, by analogy with Equation (5.6), we can write

Pr(X =1 Z ry
j =1
where the {r;;, 1 <i <4} are all probability distributions, for each j,
1< j £ 4. The difference as compared with Equation (5.6) is that now
random variables with any of the four {r;;, 1 < i < 4} distributions take
just one of at most two values, and the distributions in the composition
have equal probability of being used. Show that any discrete random
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variable X over a finite ‘range cai’ bé obtained by means of such a
composition (Kronmal and Peterson, 1979). This composition results in

*- the alias method, so called because'if the {r;;; 1 < i< 4} distributions
do not select thewvalue:X =1 then the ‘alias’ value for X is chosen by the

{ry, 1 < i < 4} distribution. For example; in the above illustration, with

.+ probability: { the.component distribution; {riz, 1 <i<'4)is selected,
i .and.then either X =2, with probability r;; ‘=4, or X" = 3, the alias
s -value;with probability ryy = 4. For further discussion; se& Peterson and
« . Kronmal!(1982). An-attractivefeature'of this méthiod is that it does not
17} Téquire more than‘two' uniforih random variables fot éach'value of X.
. »vsCanyou suggesta way in which only oneuniform fardom variable need
+ «ibeused?(See’Kronmal and Peterson; 1979.) An algotithm fot the alias

- s .method is'provided by the IMSL routine GGDA (see Séction AL.1).
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6
TESTING RANDOM

'NUMBERS

6.1 Introduction

The nead for stringent testing of uniform random variables was gmphasized in
Chapter 3. When tables of random digits were first produced, tests were
employed for uniform random digits. More recently, with the development of
pseudo-random-number generators, the numbers to.be tested are continu-
ously distributed-over the range (0, 1)..In. theilatter case, tests for digits are
frequently applied to the digit occupying the-first-decimal place, while in some
cases of detailed testing other decimal places are also considered, as in
Wichmann and Hill (1982a). An alternative approach, given by Cugini et al.

(1980), is described in Section 6.3. . :

We have seen that congruential methods of random number generation are
convenient.and widely used; but that they can produce sequences of numbers
with certain undesirable properties. For any particular application, the need is
to determine what may be ‘undesirable’, so that random numbers should
always be tested with an application in mind. This is often easier said than
done, but we can see that it could entail testing not only uniform variables, but
also'variables of.other distributions, obtained by methods such as those of the
last two chapters. In Chapter 5 in particular, some of the algorithms given are
very complicated, and in such cases testing is needed quite simply as a check
that there have been no programming errors. In Chapter 4 we saw thal
particular properties of random variables and processes can be used to
generate particular random variables. By the same token, similar properties
may be used to test particular random variables, as we shall see in Section 6.6.

A room full of eternally typing monkeys will ultimately produce the plays of
Shakespeare, and similarly, a large enough table of uniform random digits will,
by the very nature of random digits, contain sections which, by themselves, will
certainly fail tésts for uniformity. This feature is noted in the tabie of Kendall
and Babbington-Smith.(1939a), which contains:100000, digits. They tested
their table as a whole. and also in parts. down to blocks of 1000 disits each. As




variable X over a finite range can be .obgaip?d by n{g:?.r‘:s;.of su;:h.a
composition (Krohmhl'and Peterson, 1979). This cor'nposxpc_)_n r_.e]:ut.ts in
the alias method, so called because ifthe {rj 1 S0 s 4} distri 1]:1) 10;15
do not select the value X, = j then the ‘alias.’ value for X is chosr?n y 4 tﬁ
rpl=i= 4} distribution. For example, in the above. 1llpstrfat19r11, wnd
pruobability 1 the component distribution, {riz,ll <i<dlis 51: ect;as,
and then either X = 2, with probability ra; =13, 0f X =3, the ali y
value, with probability r,3 = 2. For further (.iiscusslon,.see Pe.tezc'lsoens. axz) :
Kronmal (1982). An attractive feature ofthxs'method is thz}a.lt 1t1 0 an
require more than two uniform random va_rlables for éach va 111::60 eeci
Can you suggest a way in which only one uniform randpm va;na_the 2]135
be used? (See Kronmal and Peterson, 1?79.) An algorithm (t)_r o
method is provided by the IMSL routine GGDA (see Section Al.1).

6

TESTING RANDOM
NUMBERS

6.1 Introduction

The need for stringent testing of uniform random variables was emphasized in
Chapter 3.-When tablés of random digits were first produced, tests were
employed for uniform random digits. More recently, with the development of
pseudo-random-number generators, the mumbers to be tested are continu-
ously distributed over the range (0, 1). In the latter-case, tests for digits are
frequently applied to the digit occupying the first decimal place, while in some
cases of detailed' testing other decimal places are also considered, as in
Wichmann and Hill {1982a). An alternative approach, given by Cugini ez al.
(1980), is described in Section 6.3.
We have seen that congruential methods of random number generation are
" convenient and widely useéd, but that they can produce sequences of numbers
with certain undesirable properties. For any particular application, the need is
to determine what may'be ‘undesirable’,’s6" that random numbers should.
always be: tested ‘with an application in mind. This is often easier said than
done, bt we can'see that it could entail testing not only uniform variables, but
* also variables of other distributions, obtained by methads such ds those of the
last two chiapters. In Chapter-5 in particular, some of the algorithris given are
" very complicated, and in such cases testing is needed quite simply 'as a check
that there have been no programming errors. In Chapter 4 we saw thai
‘particular properties” of random variables 'and processes' can be used to
" generate particular random variables. By the same token, ‘similar properties
.-may be uséd to test particilar random variables, as we shall see’in Section 6.6.
+ - Aroom full of eternally typing monkeys will ultimately produce the plays of
Shakespeare;and similarly, a large enough table of uniform random digits will,
by the very nature of random-digits,contain sections which, by themselves, will
certainly fail tests for uniformity. This feature is nioted in the table of Kendall
and Babbington-Smith (1939a), which contains 100000, digits. ‘They tested
their table as a whole, and also in parts; down to blocks of 1000 digits each. As
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expected, some of these individual blocks fajled certain tests, and a note was
added to these blocks, to ‘caution the reader from using them by themseives’.

EXAMPLE 6.1
As an illustration of this, let us consider the digits of Table 3.1. For the two
halves of the table we obtain the following frequencies for single digits:

A

Digit o 1 2 3 4 5 6 7 8 9 |Totals
(@) 17 16 13 16 17 16 36 16 20 13 | 180
b) 15 19 20 19 14 22 16 20 11 24 | 180
@)+ (b) 32035 33 35 31 38 52 36 31 37 | 360

For the entire table, if the digits were random the expected number for each

‘digit is 360/10 = 36, and so the departures from 36 observed can be tested by
* the chi-square’ test of Section 2.14. Here no parameters.have been estimated
from the data, and so the number of degrees of freedom is 9. For the entire
table we obtain x§ = 9.39, which is not significant at the 59 level. However, if
we take part (a) of the table above, we find x3 =22, jusTsignificant at the 1%
level, for a one-tail significance tést, or the 2% Ievel for.a two-tail test. As we
shall see later, two-tail tests are frequentiy used for testing random numbers.

In the cop.téxt of pscudo-random‘nunibcré,, we. have already encountered

" "this same point in Chapter 3, since congruential generators can be devised

which have a low first-order serial correlation for their fuli cycle, but which

result in much higher such correlations for fractions of the cycle (see Exercise

'6.1). A property of a pseudo-random number generator for its entire cycle
: prdyidcs, effectively, a test of that generator, and a test of a kind that is not
.. possible for physical random number generators. As well as serial correlations,
. the first- and second-order moments of Exercise 3.13 can be interpreted in this
. way. Such tests have come to be known as. theoretical tests, and an elaborate
. such test is the spectra test of Coveyou and MacPherson.(1967). Theoretical

tests evaluate the generating mechanisms used, and..do.not make use of

~ generated nuh}bers. Knuth:(1981, p. 89) states that all congruential generators

" that are thought to be good pass the spectral test; while those that are known to

applying this test to a variety of congruential generators. Ultimately, however,
we have to test the numbers produced bya generator in the context of their use,
and this is done by.a variety of empirical tests, which are.the subject.of this
chapter. Atkinson {1980) describes when the spectral test is appropriate, and
for a number of generators compares the results of theoretical and empirical

" be bad fail it, Oakenfull (1979) and Knuth (1981, p.-102) proyide the resuits of

0.4 A variery of tests 13y

;i;tgs.l)'fh'e same theoretical/fempirical comparison is also made by Grafton -

6.2 A variety of tests

When we are dealing with random variables such as Poisson or normal, we
want to check that the generated.values come from the distributions we tﬂink
tl?ey do. In the case of Poisson variables this could involve checking that the
differences between the bar-charts of Fig: 2.3, for cxamp[e,.ére not significant
while for normal variables we would be comparing, for instance, the dcnsit}:

- function of Fig. 2.5(a) with the histogram of Fig. 2.5(b)..Methods for makine

these_ comparisons will be considered later. In addition, we may well want to -
consider the serial dependence -of. the variables, as is done for instance by
Barne§t (1965) for exponential random variables.Obvious discrepancies can
sometimes be spotted by inspection of a convenient graphical display, as can be
done_ for the figures of Chapter 2, but ultimately significance tests must be
applied. The scatter plot of Fig. 3.2is‘obviously’ non-random, but what can we
say of the scatter of Fig. 3.37 The same question can be asked of the plot of
Fig. 6.1, produced by ‘the generator of Equation (3.1).

Yt
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Figure 6.1 A scatter plot of u,,, vs. u, for a sequence of length 2000 from the
generator of Equation (3.1).
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Recently a sophisticated approach to judging the randomness of scatter
plots has been provided by Ripley (1977, 1981), whose technique itseif utilizes
repeated simulations, and Atkinson (1977b} applied this technigue to numbers
resufting from the multiplicative congruential generator

Xigg = 2%

discussed earlier in Equation (3.4).

In inspecting and testing scatter plots such as that of Fig. 6.1, we are
implicitly considering how often different one- and two-dimensional intervals
are represented. This corresponds to the basic frequency and serial tests which
we shall soon describe. Apart from these, however, what other empirical tests
should we apply? Thus, hard on the heels of the earlier problems of generator
-selection and, when appropriate, which method to use for transforming
uniforin random variables, is the problem of test selection. As mentioned
earlier, the glib answer is that tests should be suggested by the use intended for
the random variables, and this could result in the applxcammﬁc
tests, over and above those already apphed 'to a' basic source’ génerator.
Different producers of uniform random numbers have’ answered this question
in different ways, and batteries of tests are to be found, for example, in Kendall
and Babbington-Smith (1939), Tausky and Todd (1956), Craddock
and Farmer (1971), Mmer and Prentice (1968) and W1chmann -and Hill

(1982a).

It is important to realize that there is nothing magical or God-given abouta -

particular set of tests. Clearly an infinity of tests is possible, and as we shall see,
nmer Kendalland Babbington-Smith
used just four tests, designed to check frequencies and various forms of
sequential dependence, and this basic approach is that adopted by subsequent
auihors, though conventions have chariged with time. We shall now
describe certain standard tests for uniform random digits, and then see the
results of applying these tests to sequences resulting from a variety of
generators. : .

6.3 Certam tests for umform random dlg:ts

When presented with tablcs of digits such as those of Tables31 3.2 and
Exercise 3.10, the first reaction of most of us would be to count up the
frequencies of oceurrence of each'digit and compare the observed frequencies
with what we would expect for random digits. The statistical yardstick that is
usually used in making this comparison is the chi-square test of Section 2.14,
and we have already seen such examples of a frequency test in Example 6.1,and
Exercise 2.24. Y
Deterministic sequences . such as: ... 89012345678901 ... satisfy the

. consider the ordenng of the elements in the sequence. The simplest such test
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frequency test (if a.one-tail test is used —see later), but blatantly fail tests which
the serial test, takes a sequence of digits: . . . d;, 4, disrsdinay-. ., and frorr;
considering non-overlapping pairs of d1g1ts compares the observed matrix
{0y }-with the expected {en},0 <k 1 <9, in which digit [is observed to follow

- digitk, 0, times, and e, is the corresponding number to be expected if we have
. a truly random sequence. If we have n non-overlapping pairs of digits, then
. ey =nfl100, for 0 < k, ! £9. The yardstick here is again a ch:-square test, but

this time on 99 degrees of freedom. An illustration of a serial test is given in
Example 6.2,

Non—overlappmg pairs of digits are taken so that the independence
requirement of the chi-square test is preserved. (see Section 2.14). If overlap-
ping pairs arg used, then a modified test, due to Good (1953), may be used. The
IMSL routine. GTPST, of Section Al. 2 performs this test. It is an interesting
footnote that: Kendall and Babbington-Smith (193%9a) used .overlapping pairs
and then incorrectly -applied the standard chi-square test. Deterministic
sequences, such as. that illustrated aboye do in fact produce too good an
-agreement with expectation in the frequency.test, and this is indicated by
significantly small values of the chi-square coodness-of fit statistic,
Consequently, chi-square tests of randomness are often two-tail tests, unlike
customary chi-square tests in which only the upper tail is used as the_critical

r}egmn An example of a sequence of digits that are too regular is Qrowded by

the first 2000 decimal digits of ¢ = 2.71828 . . Here the frequency test gives
1z = - 1.06, a value which is significant at the 0 2 ‘,’.{, level, using a {wo-tail test. If
the first 10 10000 decimal digits of e are taken, then we obtain the satisfactory
result: 3 = 8.61;a more detailed breakdown can be found in Stoneham (1965),
-some of whose results are illustrated in Example 6.7 2nd Exercise 6.15.

Of course, as stated in Section 2.14, the chi-square test is an asymptotic test,
and so is not ‘appropriate if expected .cell values are ‘small’. The serial test
generalizes to the consideration of triples, quadriples and 50 on, of digits, and
the number of cells, .correspondingly increases geometncally Thus, especially if
one is considering non- -overlapping n- tuples, care must be taken in tests of
high-dimensional randomness to ensure that expected cell values are large
enough for the chi-square test to be valid. An alternative test of randomness in
high-dimensional space is the collision test described by Knuth (1981,
pp. 68-70), and for which4 FORTRAN | program is given by Hopkins (1983b).

We canjtest. random dmts in a less routine way, by looking for patterns. One
rudunentary way of doing this is provided by the gap test, which is as foliows:

[ﬁﬁact any. digit, e.g. 7. We can now consider any sequence as consisting
“of 7’sand ‘not 7°s’, .e., a binary sequence in which Pr(7) = 1/10,and Pr(not 7)
= 9/10, il the sequence is random, and if successive digits are independent then
the d:strlbut:on of the number of digits ‘between T s s geomctnc (see
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Section 2.6). Thus empirical and observed distributions of numbers of digits
between 7's may be compared. For an illustration, see Exampie 6.2. Like the
gap test, the ‘coupon-collector’ test is also based on a'waiting-time, as it

" tonsiders the number of digits until at least one of each of the digits 0-9 has
appeared. This test treats all digits equally, and wasfirst! proposed by
Greenwood (1955), who found that the test was satisfied by the first 2486 digits
in the decimal expansion of e = 2.71828 . . . and by the first 2035 digits in the
decimal expansion of m = 3.14159 . . .; details of his test results can be found in
Exercise 6.7.

A more obvious way of looking for patterns is provided by the poker test,
which considers digits in sequences of length 5, and classifies the patterns
‘according to the conventions of the game of poker; al] different, two pairs, etc.
Further discussion of the coupon-collector and poker tests is provided in
Exercises 6.6, 6.7 and 6.15, and Example 6.7. The poker test may be performed
by means of the IMSL routine— GTPOK -(see Section 'A'L.2),

Example 6.2 gives the results of applying the serial and gap tests to
sequences produced by the random number generator of the Commodore
PET microcomputer. This generator is not ofa standard form, and will not be
described here.

EXAMPLE 62 The result of applying the serial and gap tests to the
- - Commodore PET microcomputer random number generator

(a} SERIAL TEST:

Following value

1 2 3 4 5 6 7 8 9 10° 11 |[Totals

1 15°17 18 27 20 16 21 18 21 20 14 207

21 30 24 20 18 25 13 18 24 27 25 17 241

3{ 25 18 19 23 28 15 14 16 16 16 22 212

Preceding 4 14 24 23 14 22 16 17 16 18 19 19 202
value 51 24 16 16 15 15 23 17 21 24 23 18 212
6| 22 24 22 27 18 8 17 19 31+:24 25.1 237

71 26 22 21 15 19 24 13 20 19 19 17 | 215

8| 24 13 18 26 21 16 19 21 19 14 20 211

9 14 17 24 22 18 18 .17 15 18 18 .21 202

10| 22 24 26 27 23 25 18 23 25" 16 23 252

11 22 13 24 25 26 18.21 18 25-14 23 229

Totais 238 212 231 239 235 192 192 211 243°208 219.| 2420

Here we obtain x?,, = 108.8, which is clearly not significant, and so on the
basis of this test we would not reject the hypothesis that the digits were
uniform and random. ' .

A
1
1
4
i

b
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{b} GAP TEST

Gap size. Actual count Expc;:ted count
0 36 2590 .

l 36 2331

2 23 20.98

3 20 18.88

4 17 16.99

5 6 1529

6 15 13.76

7 10 12.39

2 11 ) 1115

9 10 . 10.03

=10 75 90.31
Totals - 259 258.99

Here x3, = 19.924, which is close to significance at the 5 % level (two-tail test),
and one would want to repeat this test to see if other samples produced similar
results.

Note that these and other test results presented later in this chapter were
obtained using the suite of BASIC test programs of Cugini et al. (1980). Rather
than work with digits, they divided the (0, 1) interval into 11 sections for the
serial test, while for the gap test, gaps were recorded between numbers lying in
the (0.03, 0.13) interval. Thus for the gap test,

2590 = 259/10,
23.31 = 25.9 x 0.9, etc.

T"’ *$6.4 Runs tests

A striking feature of a table of digits can be the occurrence of runs of the same
digit. If such runs occur with greater frequency than one would expect for

o=
random digits then one might, for cxample expect this feature to result in a

significant departure from the geometric distribution of the gap test. One can,
however, lock at distributions of other types of runs, and this was done by
Downham and Roberts (1967). — -

- Runs tests are frequently applied to a sequence of (0, 1) variates. Here we
shall just consider ‘runs up’. To illustrate what is meant by a ‘run up’, consider
the following sequence of numbers, given here to 3 decimal places:

(0.134 0.279 0.886) {0.197) (0.011 0.923 0.990) (0.876)

The ‘runs up’are indicated in parentheses, so that here we have four such runs,
of lengths 3, 1, 3, 1, respectively. We see that a ‘run up’ ends when the next item

—
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in the sequence is less than the preceding item, the next item thlén starting the
fextrun-up’. Levene and Wolfowitz (1944) showed thatina random sequence
of n U{0, 1) variates, the expected number of ‘runs up’ of length k = 1, R, say,
is given by: .

bt

(k? 4k — 1)(n —k — 1)
k+2)!

(See also Knuth, 1981, pp. 65-68, for a derivation of this result.)
Typically, n is taken to be large, s0 that
' (k? 4k — 1)
R = ———mn
ELR (k+ 2)!

Clearly, for fixed n, E[R,] decreases as k - n, and it is usual to consider

the joint distribution of (R, R, ..., R; Sp) fc';r some j> 1, where

S.=Zi_:.y Ry j=>5is frequently adopted. Successive run lengths are not

i'r;_d-ependcnt, and so a standard chi-square test for comparing observed and

expected numbers of runs is inappropriate. The test-statistic used (see Levene
and Wolfowitz, 1944) is

for1<k<n

¢RI =

fork <€n

g

-1
U=-
n;

> (- S, ~ 61X Day 6n

in which X, = R, for 1 £k <5,and X; = S,

the {a;;} form the inverse of the variance-covariance matrix of the {X,}, and
for large n are given by:

45204 90449 13568 18091 22615 27892
18097 27139 36187 45234 55789

40721 S47281 67852 83685

AR . 22414 90470 111580
113262 139476

172860

the lower half of this matrix being obtained from symrpg;ry. T_he exact
expression is given by Knuth (1981, p. 68). U'is referred to chi-square tables on

6 (not 5) degrees of freedom.’As with the usﬁél.qhi-square’ test, an asympiotic
approximation is being made when this test is used, and Knuth fecommends

taking n = 4000. An illustration of the outcome of applying this testis given in &3
the following example. . h .

EXAMPLE 6.3 Theresult of applying the ‘runs up’ test to a sequence of lengt g
n = 5000 from the generator (131, 0; 2°%)7

1t Mote tl;al for conveniencé we shail henceforth use the notation: (a, b; m) for the CDngrucntl?-!::_

generator of Equation (3.2). : ‘.

-statistics of
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Run length (k) R, E[R] = from o
r 824 $33.34 o
2 . 1074 ¢+ . 1041.66

-3 " 440 . . 45833
4 13 . 13194
3 2 . 28,77,

26 7’ U595

1% = 18..10, significant at the 7 % level, u.si'ng a two-tail test. Thus here the test
rejects the hypothesis that the variables are random and uniform.”
rejects the hyp : |

Before the work of Levene and Wolfowitz (1944), runs tests.weré incorrectly
used, incorporating the standard chi-square approach. Unfortunately the
algorithm by Downham (1970) omitted the {a;;} terms of Equation (6.1). That
this omission could possibly result in erroneous conclusions.is demonstrated
by Grafton (1981), who provides a brief comparison between' the correct runs
test and the spectral test. Grafton (1981) provides a FORTRAN algorithm
which tests ‘runs down’ as well as ‘runs up’, though the two tests are not
independent. See also Section Al.2 for the IMSL routines .GTRN and
GTRTN. Accounts of the power of runs tests vary, andare: clouded by
incorrect uses of the tests. Kennedy and Gentle (1980, pp. 171-173) provide the
theory for the case of runs up and down. :

'

6.5 Repeating empirical tests

One might expect a poor generator to fail empirical tests, but a failure of an
poor generator can pass empirical tests, and both of these instances are
illustrated in the following two examples.

EXAMPLE 6.4

The frequency test was applied to the (781, 387; 1000) generator, starting the
sequence with 1. The full cycle was divided into 20 consecutive groups of 50
numbers each. For any group the frequency test was satisfied, but the 20 chi-

v

. EXAMPLE 6.3

The PET generator produced the borderline 5 % significance result of Example
6.2(b) urider the gap test. Nine subsequent gap tests produced the insignificant

9,49, 14.88, 6.50, 13.73, 7.80, 7.80, 4.36, §.12, 7.80

A similar ‘uniucky start’ is found withthe fréquency test applied to the decimal
digits of ¢ (Stoneham, 1965).

F
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These difficulties can sometimes be resolved by repeating an empirical test,
producing in effect a.more stringent test. Chi-square values from repeating
tests can be interpreted in a number of ways: a simple graphical representation
can be obtained by probability (also called 0-Q) plots (see for example,
Chernoff and Lieberman, 1956; Gerson, 1975; and Kimball, 1960), in which a
sample of size n from some distribution (chi-square in our case) is ordered and
plotted against the expected values of the order statistics. The expected order
statistics for chi-squaré distributions are provided by Wilk et al. (1662), and

two illustrations-are provided by the following two examples.

EXAMPLE 6.6 , _
The RANDU generator, (65 539,0; 2°1), resulted in the probability plot shown
in Fig. 6.2 for 30°applications of the ‘runs up’ test, each applied to a sequence of

5000 numbers.
— Rt
25

Ordered sample xz -values

10+

*H

¢ #X,

0 T ] T L)
o 5 10 15 20 : 25
. Expected order statistic

Figure 6.2 A probability plot of 30 test-statistics resulting from the ‘runs up' test
applied to the RANDU generator. The ordered sample is plotted against the expected Yo

order statistics for a sample of size 30 from a xZ distribution.

EXAMPLE 6.8 :
.The C‘ngil:li et al. (1980) program for the frequency test applies the test to 1050
-numbers in the (0, 1) range, categorizing them according to 21 equal-length
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EXAMPLE 6.7 . : : : .
Stoneham (1965) made a study of the first 60 000 decimal digits of e. The results

- of 12 applications of the poker test are illustrated in Fig. 6.3, each test being

applied toa block of 5000 consecutive digits. Some of the detail is presented in
Exercise 6.15.

12

>
i

Drdered sample %2-volues

o
1
x

c x
T T
0 3 6 9 12
Expected order statistic

Figure 6.3 A probability plot of 12 test-statistics resulting from the poker test applied
to degimal digits c:f e. The ordered sample is plotted against the expected order statistics
for a sample of size 12 from a %2 distribution, 3

Note, however, that Wilk et al. (1962) remark that it is difficult to interpret
such plots for fewer than 20 points, reaching their conclusion after applying
the plots to simulated data. -

Whetl_ler_ or not these plots indicate significant departures from the
appropriate chi-square distribution can also be judged by means of a further
chi-square test, if the sample size permits, as demonstrated in the next example.

intervals. The test is then repeated 60 times, and the resulting chi-square

statistics are themselves categorized according to the percentile range into
R ———

5000410



1

148 Testing Randém Numbers

which the values fall. Applying this test to the PET generator produced the
following result:

% range Actual count Expected count
0-1 4, 06
-5, 0 24
5-10 2 3

10-25 10 9 -

25-50 18 13

50-75 15 : 15

75-90 ' 7 9

9095 2 3

95-99 2 2.4

99-100 0 0.6

60

60

Combining the first three and the last three rows allows us to" pcrforiﬁ a chi-
square test, now on 5 degrees of freedom, to this table. We obtam the value of
73 = 1.82, which.is not significant at the 10 % level, and so these numbers pass

this empirical test.
i B

- An alternative approach is to use the Kolmogorov—-Smirnov test, which is
described by -Hoel (1954, p.345) and Knuth, 1981 {pp. 45-52) who provides
some interesting comparisons .of power between the. chi-square and
Kolmogorov—-Smirnov tests. Categorization ﬂ_e 'individual chi-square
values is unnecessary for the Kolmogorov—-Smirnov test, and when applied to
the sample of size 12 illustrated in Fig. 6.3, the test does hqt.révgal;z}__ssi_,g_giﬁcant
departure from the.expected x3 distribytion at the 59/ level, While the same is
true for the sample of size 30 illustrated in Fig. 6.2, in that case the result is

significant at the 69, level.

o+

.. 6.6 Tests of non-uniform random‘_variables S )
We have already seen, In the last example, an illustration of the chi-square tesi]

The same approach may be used, with suitable combining of categories whén g
‘necessary, for any distribution; see Exercise 6.19 for an illustration.  The

particular tests for non-uniform random variables.
——

oo :Pr(Rﬁi‘)=n1f
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"~ 6.6.1: Normal variables. . x
Wold (1954) obtained standafd normal random variables, to 2 decimal ' 1
by tra.ljf.f:QLrn_iE&t_ll:e digits of Kendall and Babbin gton—Sn‘li’th (1939); 'thf HE:C‘?tS ,
were initially grouped to correspond to U (0, 1) variates and then ,the ta.ll:.gl1 ;
Aloo_k—up method of Section 5.2 was used (see Example 5.4), Except for nor ei
vanal_:lei in the tails of the distribution, for the two-place accuracy needed I:Eat
fourfc.l'g'cxml‘ﬁ]éce:gacc__uracy Wwas. necessary for the U(0, 1) variates ,’J.['l'f

~ resulting.table had: 25 000 iterns,.which.were tested as a .wixﬁlé as'wellla i
groups of.500 and 5000. Four tests were employed: . S o

appropridte normal distribution {see Exercise 28@)

(b) The squares of the numbers in a group were summed, and the result

referred to_the appropriate chi-square distribution {see ’Exercise 2.5). As

the Sroupsizesare 2 500; we can use the approximation‘that if X has a e

N 21;;;111111&:1, (yexH= :2{2_13 — 1)) is approximately, N (0, 1) {see Exerc;sé

* (c).From the,solution to Exercise 6.4 we see .tlhat if Reis the far}lgef:fni-‘om a
- random sample of size n from an N{© 1) distributibn, thcﬁ

(@) The numbers ina group were summed, and the result referred to the

ey

o .

- 4]

@G+) -0y dgdx - (62)

e and.thu:s the:'-r-anges’.of such-samples ;0£‘<size.n ca;..}-né;oiatain;d and
cc.)ml.:iarefi- with wha_.t one..would. expect, using a chi-square ‘test. The
distribution-of: (6,2).is tabulated in Pearson and Hartley (1970, 178-183).

Jieo(d) 1A runsitest -was‘appliégi ‘o, the runs .of signs only of .the sequence of

numbers. P P

As: with the .endall anq'Babbihgton—S_mifh-(193§a) tables, a note was

- . .appended to each set of nummibers that failed any test.

"Other tests for normality are discussed by Pears 197
. ) , y Pearson et al. (1977) and
Wetherill er al (1984, chapter 8). One of these tests, by Shapiro’ 'a'ii’d)Wilk

—_———

ﬁ_j%ﬁ’ tests for departures from linearity in the appropriate probability plot.

*6.6.2 Multivariate norm'a] variables

If (?( 1y X»g).has' the bivariate normal density function of Section 2.15; then the
derived univariate statistic, N

1 X, -1, \? _ .
Dol A Y & WX — ) X, — )\
(l—pZ){( Z ) S +(-—~2,“ )} (6.3)

- hiags ay? distributi(?n (i.e. exponential of mean 2y—see Exercise 6.5. Healy
. (1968a) proposed using sample values of D? and comparing ffiem with the chi-
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square distribution they would have if (X,, X,) is indeed_bi'variate norr_ﬂ.al.
Once again a graphical examination can be made with the aid ofa I:I»rol_aabqny
plot, the expected order statistics in a sample of size n from a 12 distribution

being:

2 (2 1-2 2 2 2'} {g_+ 2 +___+g}
Z’{EJ’(n—l)}'{E+(n—1)+(n—2) AR U TR 1

(see Cox and Lewis, 1966, p. 27). In practice the parameters of {6.3) have to be
;- estimated from the data, and there is discussion :of this in Barnett-and Lewis
(1978, pp. 212-215 and 226). This approach can also be -extended fc?r general
multivariate normal distributions. For additional tests see Mardia (1980),
Gnanadesikan (1977, p. 161) and Royston (1983).

6.6.3 ‘ExpOngntiginnd Poisson variables

A random sample from any exponential density may be ilustrated by using
the order-statistics of the last section after a preliminary scaling (see Exercise
2.2). Tests for exponential random variables were used.;by Barne.tt (1965), v»:rhc.v,
in contrast to Wold, transformed pseudo-random variables, using a m!.lltlpll-
cative congruential generator with m= 227, and the transforx_n.atlc.m .of
Equation (5.5). Five tests were then applied to the resulting numbers, including
an extension of the test of Cox (1955) for detegting the presence of first:order
serial correlation in a sequénce of exponential varjables: Barnett (1965) also
generated and-tested x§ variates by squaring N (0, 1) variabies clerived.by the
Box—Muiller method of Section 4.2:1. In connection’ with some of }}15 tests,
Barnett was confident ‘that only the: right-hand-tail of the chi-square
distribution need be used for. the test critical region. .

The mean and variance of Poigson random variables awl,‘ and the
index of dispersion test makes use of this result to provide a particular test for
the Poisson distribution. If (x,, - - . » X,) is a random sample fro a Poisson

. dist;ibutiOn of péramet_er A, then ’

> (=%

i=1

—_

X . : . |

is, approximately, a fealization of a y2_, random variable; where

See for example ABC, p. 314

6.8 Exercises and complements £51

6.7 Discussion

The very first tabulation, by Tippett (1927), of random digits did not include an
account of any systematic testing. By contrast, the testing of random variables
has now become a standard procedure, and a description of a variety of
computerized algorithms which may be used is given in Section A1.2. A suite of
test programs such as that of Cugini er al. {1980} indicates the kind of compro-
mise that may be reached in the choice of a suitable subset of empirical tests.

The need to maich tests of numbers to the intended application for those
numbers is graphically illustrated by the insignificant result of the
Kolmogorov—Smirnov test of Example 6.6. The RANDU generator that is
tested here has very poor properties when one considers successive triples of
numbers, as explained by Exercise 3.25, yet the generator does not fail at the
5% level the repeated runs test of Example 6.6.

The RANDU generator failed the extension of the serial test to three
dimensions when this test was applied by Dieter and Abrens (1974, p. A8): each
time the test was applied the resulting chi-square test statistics were roughly
100 standard deviations from the expected chi-square mean for the test.
However, only one (a poker test) of the many other empirical tests applied
indicated that the generator had poor properties. Caution is clearly the key

* word. The possible problems with pseudo-random numbers are evident, and

true random numbers could be biased in unexpected ways. For instance,
Kendall and Babbington-Smith (1938) selected digits from the London
telephone directory and found appreciably fewer 5’s and 9's than one would
expect (see Exercise 6.8). They attributed this to the high acoustic confusion
between five and nine (airline pilots use ‘Afe’ and ‘niner’ respectively), and
telephone engineers selecting numbers to try to reduce this effect (for related
work, see Morgan et al., 1973, and Exercise 9.10).

‘Neave (1973) showed that when certain pseudo-random variables were
transformed by the Box—Muller transformation of Section 4.2.1, the resulting
variables displdyed unusual characteristics. For instance, observed frequencics
in the intervals (—oo, —3.3)-and (3.6, c0) were zero, compared with expec-
tations (for 10° generated values) of 483 and 159 respectively. However, it has
been pointed out subsequently (see, e.g., Golder and Settle, 1976) that this
effect is mainly due to the (131, 0; 2°%) generator used, which was considered
earlier in Example 6.3 (sce also Exercise 6.25). Atkinson (1980) in fact uses the
Box-Muller tranisformation combined with a test of normal random vaniables
as a test of the underlying generator. -

6.8 Exercises and complements

i 6.1 Compare the bounds on the first-order serial correlation given by

Equation (3.3) for a mixed congruential generator with empirical first-
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6.2

6.3

6.4

*6.5
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\

order serial correlations obtained for a sequence of léngth 1000, for the *6.6

following generators:

' (781, 387; 10%)
(6941, 2433; 10%)
(517, 0;2%)

Note that an additional test of random numbers is provided by
comparing empirical serial correlations with their expectation for a
random sequence (see, e.g., Cugini et al,, 1980).

Perform the index-of-dispersion test for the Poisson distribution using
the following sample statistics obtained using the PET generator and
the program. of Fig. 4.4

1 n X 5 .
5 500 - 4960 4804 :
2 500 1856 L1679 &
1 500 1060 1140 : : %
1 500 0974 1076 2
1 500 1013 1080

0.5 500 0.463

0438

Here s> = Y, (x;—f)zf(” -1

i=1 )
Two dice were thrown 216 tirﬁes, and the number of sixes at each throw
were.

No. of sixes -0 1 2 Total

Frequency 130 76 10 216

Test the hypothesis that the probability of a six,is:p = 1/6. :
Explain how this test would be modified if the hypothesis to be tested
is that the distribution is binomial with the parameter p unknown. 3
(Based on an Oxford A-leve! question, 1978). . |

Verify the formula for the distribution function of Equation (6.2), fq;;f '
the range of 2 random sample of size n from an N(0, 1) distribution’§

Use the formula of Equation (2.4} to verify that the random variable of
Equation (6.3) has a 3 distribution. 7

e “the distributional form-of S given above, '
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(The coupon-cbkli.lo_'i"tor. j;foble;i a e igi he

he pplied to the digits 0~9) The prob-
al-ml_ity; that the-full set of -digits.is .obtained for the first time at tll:e ith
digit of a sequence is given by: ' ’

L 1G
s , 9 Y, .
. Pr(j)= 10! 4_};1,1(—‘1) ”(V_I)(IO—Iv)_f:‘ for j > 10.

Two different ways of proving this resilt are suggested below.
(i) If the number of digits until the first occurrence of a complete set is
denoted by S, then {verify) we can write - a _

10
‘ =2 . .
‘where X; has the geometric distribution c;f Section 2.6, wi
p=((11=0/10,2 < i % 10. SRS i
Shgw that the probability generating function (see Section 2 16)
of § is given by: . -

1,10
Glz) = 9z

o

11 (10 —iz)

1]
-

which, further, may be written as:

9z10

e L
A= 1o L (T (1_0'—.fz>'(f.—ll.)

Finally, by expanding this expression as a p

ower series in z, verify

(i) An alternative'approach uses the ‘theory of occupancy prablems, in
_which r balls are thrown at random into n cells, with » = n. In our
case, each digl_t corresponds 10 a ball and each type of digit
0,1,...,etc)is a cell. 3 '
If u(r, n) = Pr(no cell is empty when r balls'are thrown at random
. . into n ceils),
. then we sce that -
— ulr, 1) =Pr(S<#, -
andso Pr(S = 1) = u(, 10)—u(r—1, 10,
‘ Use this approach, coupled with the fact that
Pr(no cell is empty) = 1 ~Pr(at least one is empty)

to obtain Pr(S = r). :
7 NoTE ('Feller,_l?ST, p- 59) that the median of the distribution of S
is 27; Pr(S > 50)> 0.05; Pr(S > 75)2"0.0037." Note further that
u(r,n) may be used to_solve the ‘birthday problem” n = 365,
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r = number of people in a room; if e;g; ¥ = 1900, Pr(no day is not
represented as a birthday) = 0.135. :
Greenwood (1955) obtained the following resulté from the coupon-
collectortest applied to the first 2486 digits in thie decimal expansion of
¢ = 271828 ... and the first 2035 digits in the decimal expansion of .
7= 314159 .... (réproduced’ by permission of the American

- 10-19 13 11.604 "7 "12 14.202
2023 13- 11720 - 1l 14.344
2427 - 9 11491 © 14 14.064
28-32 5 11.480 15 14,050
33-39 - 13 10.185 17 12.477
40+ ) 14 10.510 13 12.863
X? values: : 6.436 2.826

.. digits (see Metropolis et al., -1950).

b e

Number of digits to

the full collection Observed  Expected, Observed  Expected

Verify the expected values given above and discuss the non-significance
of the result for e in relation to the failure of the frequency test by these

(i) Kendall and Babbington-Smith. (1938) obtained the following
.. distribution of 10000 digits from the London telephone directory:

"Digt 0 1 2 3 475 -7 8 9 Toul

Frequency ' 1026 ‘1107 997 966 1075 933 1107 972 964 853 10000

Verify. that the frequency test results in 72 = 58.582. -
(i) Fisher and Yates (1948) obtained the following distribution of =8
digits obtained from suitably reading tables of logarithms: v

. el R

Digt 0 1 2 3 4 5 6 T 8 9 Toml

decision to remove at random 50 of the 6’s, and then replace them

6:8 Exercises and complements iSS

with other digits, chosen at random. For additiohal discussion, see

Kendall and Babbington—Smith (1939b).
6.9 Comment on-the following test statistics resulting from applying the
runs up' test to sequences of 5000 numbers from the generators

indicated:
Sequence .
Generator 1 2 3
(131, 0; 2°%) o ‘889 © 270 18,10
(65539, 0; 23%) 13.16 5.59 1270
(23, 0; 108+ 1) 683 1462 1190
(3025, 0; 67 108 864) 10.87 3.53 375
PET- 5.16 2.26 8.20

The generator of Equation {3.1) 5.03 4.23 6.90

6.10 Verify that for the sequenée of numbers from the (781, 387: 10%)
genclrator there are no runs up of length greater than 4, and discuss this
result.

6.11 Apply tests of this chapter to the digits of Tables 3.1 and 3.2, and of

Exercise 3.10. For many years the established decimal expansion for
was that of William Shanks, computed over a 20-year period to 707
decimal piaces. It was noted that 7 appeared only 51 times. In 1945 jt
was noticed that Shanks made an error on the 528th decimal, and all
§ubscquent decimals are wrong. In the correct series the freqﬁency of 7’s
15 as one would expect (Gardner, 1966, p, 91).

6.12 Consideg how you might construct a sequence of numbers which pass
the frequency test, but which fail the serial, gap, poker and coupon-
collector tests. '

6.13 A test which is sometimes used (see, e.g, Cugini et al, 1980) is the

" ‘maximum-of-’ test. Here numbers are taken in disjoint groups of size 1,

and the largest number is recorded: for each group. The resulting
maxima are then compared with the expected distribution.

If M = max(U,, U, ...,U,)

th:re the {U.} are independent, identically distributed U{0, 1) random
variables, show that M has the density function

f;,(x) = nx""! for0<x<1.

What is the distribution of M"?
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A further test is the permutation test, inwhich, again, numbers are taken
in groups of size ¢. Here the ordering of the numbers is recorded, and the
empirical distribution of ‘the orderings compared with expectation,
which allots a probability of 1/t for mdependent uniformly distributed
numbers. (The possibility of tied values is not considered.) The
following results were obtamed for the PET generator and the case

t =4

Permutation Number of cases  Permutation Number of cases
1 9 .13 11
2 17 14 12
3 .16 B ) 10

T4 9 16 7
5 [ 17 9
6 6 i8 13
1 10 19 9
8 12 20 12
9 10 21 7

10 10 22 3

11 3 23 10

12 11 .24 8

Assess the significance of these results using a chi-square test.

{Stoneham, 1963) The detail of six of the poker test results presented
in Example 6.7 and Fig. 6.3 is given below:

Hands

One triple 4or5of
. All © One Two One and one the same
Block different  pair pairs - triple pair - kind
1 116 506 98 0 S g
2 307 499 108 30 6 ;
3 a7 503 20 72 13
4 299 511 114 5% i2 g
5 299 498 99 84 18 2
6 307 503 111 67 8
Theoretical
frequencies
for random .
digits 302.4 S04 103 72 9 4.6

Verify the theoretical frequencies and the resulting chi-square values.

6.8 'Exercises and complements 17
Block 1 2. 3 4 5 6
2 342 662 553, 461 532 7.05

6.16 . Invent.a test-of your.own for umform randorn numbers

6. 17 Investrgate and test the: random number generators that are available to

you. Thrs can be quiie reveahng Miller, (1977a, 1977b). and Bremner
(1981) have’ revealed errors in, Texas, hand-calculator : mult1phcat1ve'
congruenttal generators Furthermore Bremner has pomted out that
the RND funcuon avarlable in the University of Kent implementation
of BASIC is (3023 0; 67108 864), and not (3123,0; 67108 864), as

' mtended and for which test results were available! (See Pike and Hill,

1965). Nevertheless the (3025 0; 67108864) generator passes the
empirical tests 6f Cugini er al. (1980). (See also Exerc1se '6.27) "

6.18' (Cooper 1976) The Box-Muller method mvolves computma the

functions, log, square-root, sin and cos, for each parr of normal random
. variables generated: If (as in Barnett, 1965) the aim is o simulate 13
vanables, show how the number of functions computed can be reduced.

6.19 Use a chi-square test to compare the pid.f. and hlstogram of Fig. 2.5.

The frequencies illustrated by the histogram-are; :
_ 2,48181912141452,2
Repat this approach for other appropriate-figures from Chapter 2,

_ readmg the frequencres from the hlstograms/bar—charts .

6 20- Wold deﬁned the P-value for each test as the two-tail probability of

being as, or more, extreme as the resulting value of ‘the 'test-statistic.
Thus, for example, the sum of the first 500 numbers was S = 159.97,

. ©(159.97/./5000) = 0.9882, and P = 2(1 —0.9882) = 0.0237. In ad-

dition to the tests already described,-he wrote:

‘For each type of test, the distribution of P-values obtained from the
50 page sets has been compared with the expected distribution, which
is rectangular over the interval (0,1). On the wHole, the agreement
with the expected distribution is good. The deviations have been
tested by the y® method, grouping the distribution in 10 equal
intervals. The P-values obtained forthe 4 tests are 49.4, 13.7, 29.0 and
91.1 % respectively. The agreement was'also tested by the method of
Kolmogoroff, mentioned above, a method not involving grouping,
with the results P = 15. 5, 42.6, 26 6 and 98.9 %

Discuss his approach and conclusions. (cf Section 6 5)



158
6.21

i

632

- .{6.23;

*6.24

*6.25

" rand

‘ _,' Show that we can write N in the form

_ only the sine form of the Box—~Muller transformation, (see Section4.2.1),

. these data, was made with the aid*of ‘the NAG FORTRAN routine

~GOI1BCF; which évaluates the right: “hand tail areas .assuming these
*values forma random sample from xs,and GOBCAF, using the option:
" null. = 1, which performs & Kolmogorov—Smlrnov testcf whether these
- tail areas ‘are “uniform {cf. ‘Exercise 6.20). Tail areas for chi-square

' computauonal formulae see Kennedy and Gent!e (1980 Section 3.7).

. we are seeking an.approximate relatlonshlp)

Use.. the results of .Exercise 2.8 to. construct partlcular tests for
* exponential and Poisson variables. How might you make use of the
: »result of‘ Exerc:se4 17" '

) Use the, ;esults qf Exercise 4.14 to. simulate bivariate.normal random
. variables, and tést them,using the approach of Section 6.6.?

Testing Random Numbers

The 30 test statistics illustrated in Fig. 6.2 are given below:

0.84 1.82 292 301 306 343 351 3.84 443 445
474 502 509 561 564 573 577 611 612 633
647 6.52 709 7.62 1020 11.34 11.88 1693- 1732 24.59

Use a.chi-square-test to.assess whether these values come from a y?
distribution. The Ko]mogorov—Srmmov test of Example 6.6, applied to

densities 'are also given in Pearson and Hartley (1972 p. 160). For

v 2

In Section-6.6.1 we.used the. result:

If X has a %2 distribution, for large v, then

N= .J (2X) - /(2v —1) is approximately N(0, 1).

Why is this? (Note that the results of Section 2.12 are exact while here

Neave' (1973) combined a- multlphcanve congruentlal generator with

obtaining . : . ‘
N'=(~2log, U))*? sin22U,)
in which x, = ax, {inod m), .

.

Ul = xllm Uz = xz/m

-{ 2 log, )”"sm(Z:raU)

Chay et al. (1975) suggested usmg the. {U 1N frorn the multiplicative
congruential generator in the opposite order.to, that above, resulting in: §

= (—2log, U,;)'/? sin (2zU,)

Show that X, = a*xz (mod m)
where aa* = 1 (mod m)

6.26

16.27"

6.28

*6.29

6.8 Exercises and complemenis 159
so that the Chaymterchange is'equivalent to changing the multiplier in
the generator, and keeping'to the original sequence. Kronmal (1964)
applied -the Box—Mulier transformation to pseudo-random numbers
from two mixed congruential generators, one for U/, and another for

U,, and found that the’ resulnng numbers passed a variety of lests,

Wntc computer programs to perform the tests considered in this
chapter.

Conduct -empirical tests of.the (25173, 13849; 216) generator.
T. Hopkins has pointed out that this generator, proposed by Grogono
{1980), performs badly on the spectral test, The choice of muitiplier here
appears to be particularly unfortunate, as literally hundreds of alterna-

“tive multipliers give rise to a much better result on the spectral test.

Consider, for example, (13453, 13 849; 219,

What will the result be if the frequency test is applied to the entire cycle
of a full-period mixed congruential generator? What are the impli-
cations of this result?

Given a sequence of pseudo-random numbers, how would you test
whether or not a cycle was present?
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: {_:E—XAMPLE 1.1 Buffon’s cross : .
The Buffon peedle experiment has already been described in Exercise 1.2.If a -
thin needle of length lis‘thrown af random on to an'infinite horizontal table; ;.

A with parallel lines a‘distance 4= l'apart; then the probability that the needle

, o will cross a line is given-by 2//=d: This probability may be estimated by the

V ARI AN CE REDUCTION B - T pl:oporti?n of cr(;ssingsd iE an elx%erim?r;t cocils&istll;ng ofa nlumbe'r of successive

oo o S © throws of a needle,"and Knowledge of T and d then enables,us. to, estimate 7.
AND INTEGRAL ESTIMATION ‘ . From the data of Exertise 1.2; we see'that n is not very precisely estimated in
o this way (cf. the precision of Exercise 3.10), even for as many-as 960 throws of
the needle. Soldiers recovering-from wounds sustained during the American ,
Civil War bad' the 'timé,"and’ apparently 2lso the interest (Hammersley and; ..
Handscomb; 1964, p 7), for ‘multiple repeats of the needle experiment, but
present-day experimenters are unlikely to be so patient: . . .- .
One wdy to speed thé process up is to throw more than one needle each time,
and then the picking up of the néedles is facilitated if the needles are joined

7.1 Introduction

In the preceding chapters we have seen how lo generate uniform random together. In its simplest form, this is accomplished. by fusing twoneedles of ...,
variables, and we have considered ways of transforming these to produce other _— _ equal length at right-angles at their centres, to form a cross.If Z denotes the - .
common-random variables. Having tested our random variables, we are well total number of lines imtersected from a single throw of (he Gross, We can write

prepared for using them in a simulation exercise. However, b?:{ogc‘iprf:"ssi’x}g.bn
in a bull-at-a-gate fashion it is worth while first of all c.onsiden,ng whether the o
efficiency of the approach to be adopted could be increased. Andrews (1976) .
writes: , D .

Z = X +Y, where X and Y separately denote the number of crossings of each
of the two needles: The distribution of: X, and equivalently Y, is unaffected
by the presence of the:other needle, and so €[ X] =&[¥]=2l/(rd), and , .,
- E[Z] = Alf(nd). Thie bestapprodch isto take ! = d (see Exercise 1.2),and letus,” 7.
" in this case set'f’ =72/ X and Y-dre simple binomial random variables and so
(see Table 2.1), Var (X) = Var (¥}) = 8(1-— 8)- K
It can be shown that the distribution of Z is given by: . |

| 3 Pr(Z=0)=1 —2—*/3; Pr{Z = Lj = 4( /2 -y,

“In a recent Monte Carlo study of a regression problem the computing cost ™
was about £2350. The cost of generating the requir'ed 160000 Gaussian
[normal] deviates was 50p, 2 negligible amount relative to }t_h; total cost.}
have found that variance reduction methods often apply.-As -thesc a?ffect
sample size they affect the remaining ,{:24'9.5,0. Modest gains in ef‘ﬁcmnt_:y
result in large savings; very efficient methods can often be found.” .

T
| LPHZ=2=4l-Y Y2 S
This enables us to evaluate Var(Z) = Var(X)+ Var(¥)+2 Cov(X, ¥), yield-
ing, ultimately, """ " " ’ e coe T
ClCovX, ) 2n2— D -t e —00324 G i

Thus variance reduction is 2 way of improving value for money, and itcan |
result in much greater-savings than those involved in just changing from one
algorithm to another for generating variates. As we shall see, there are many
different variance-reduction techniques, and a ready way of illustrating these
techmiques arises in the context of integral estimation usirllg }'andom numbers.
The above guotation used fhe term “Monte Carlo’; this 1s .now.f_frqu:epglyr
employed as a more evocative synonym for simulation_._\yhefl fandom _val:labl_es
are employed. ‘Monte Carlo’ frequently also'has an implied connotation-of
some variance-reduction method having been used. (See, for example, Cox and
Smith, 1961, p. 128; Gross and; Harris, 1974, p. 383; and Schxube?n and
Margolin, 1978, for related discussion.) It is an item of folklore that t?us term
was introduced as a code-word for secret simulation work in connection with
the atomic bomb during the Second World War (Rubinstein, 1981, p. 11).

The basic idea of variance reduction 1s contained in the following example. __l

* reflecting the fact that the needles are fixed together; and X and Y are - not:
‘independent: Cori(X,Y)= =014, * ~_ - - 1 - S
;%" In the original Buffor experiment, Var(§) = 02313/n; where n denotes-the  «
g‘-':fr}umbcr of throws of the needle. In the case of the cross, fromoné throw,
8 = 1 (X +Y),and so, because of the term 4 we immediately have a reduction in

e
.
H

";'t\,[.ar(ﬂ), for T
27 #Var(B) = 4 (Var(X) + Var(¥) + 2Cov(X, 1) =$Var(X}+4$Cov(X.Y) . . . |

; ,;-a{;;d Cow(X,¥) < 0
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Tﬂ Thus fixing the two needles together has a utility over and above the added

ease of collecting the needles. For n throws of the cross, Var(f) ~ 0.0995/n. So -,

we see that using 2 cross; rather than a single needle, is 2 variance-reduction
techniqtf;;‘jt results in greater precision, {c. an estimator of smaller varance.
Against

form a cross (though this is more easily done by etching a cross on a clear
perspex disc), and the computation of the new theory. These losses occur once
only, and- would clearly be worth while if a very large experiment were
envisagedmere is no reason why further gains should not be obtained from
the use of more than two fusedrnccdlei,jand Kendall and Moran (1963, p. 72)
provide the result for the case of a star shape; see- Hammersley and Morton
(1956) for details: In the case of a star, further additional labour (small for a
cross) is invelved in counting the number of crossed lines. The converse to
changing the needle is changing the grid, and Pertman and Wichura (1975)
provide the theory for the case of square and triangular grids.. Further
discussion and elaboration are to be found in Mosteller (1965, pp. 86-88) and
Ramaley (1969), as well as Exercises 7.1-7.4. - : .

The extended example above illustrates the basic features of a variance-

reduction_method, and we shall encounter these features again in the next
section. Of course the above example is artificial in that we already know.,
which permits a simple evaluation-of the variance -reduction achieved.

A fundamental aspect of the above example, and others-to follow, is the .

estimation of a parameter 8 by an estimator 8, with
£6]=6 and VarBecn L

In both the needle and the cross cases, § is proportional to a sum of random
variables, and hence for large n (and typically n is large in such experiments),
central limit theorems apply, so that B N (8, k/n), for appropriate . T_huﬁ as
well as simply producing the estimate 8, we can also obtain approximate
confidence intervals for 8; for exampile, a 95% confidence interval is
(8 + 1.96 x!/2 /n'/?), when the normal approximation is valid. The width of this

interval is cc n~ /%, so that, for instance, to halve an interval width one has to .
quadruple the number of observations. Because of this feature it is clearly
desirable to employ a variance-reduction technique that results in as small a 33

value for « as possible.

7.2 Integral estimation

. . / ’ R
A definite integral, such as ®(x), which cannot be explicitly evaluated, can be -

obtained by a variety of numerical methods. Some of these are described by

Conte and de Boor (1972), and algorithms are available for programmable: §

hand-calculators, as well as within computer subroutine libraries such as

1s gain must be offset the-labour of correctly fixing the needles to

—
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NAG. For numerical evaluation of integrals in a small number of dimensions
one would therefore be unlikely to use simulation. However, simulation

. methods can be viable for high-dimensional integration, say in the dimensional
range 6—12 (Davis and Rabinowitz, 1975, p- 314). In this section we refer solely
to simple one-dimensional integrals, as they provide a convenient vehicle for
.illustrating some basic methods of variance reduction [Tt is in any case
interesting to see how random numbers may be used to evalvate deterministic
Integrals. In the following we shall.again consider estimation of x, but now
through the representation:

T

1
7= J J{l—x*)dx (7.1)
o

each side of (7.1) being the area of a quadrant of a circle of radius unitl‘[

r 7.2.1 Hit-or-miss Monte Carlo

Theintegral of (7.1) is thé area ofa qﬁag;anm_ﬁ_thmg, radius 1 and centre 0. R s
If that quadrant is enclosed bya unit square, and points thrown independently

at random on to the square, then the proportion R/n of n points thrown that ‘.- 7T
land wsthin the guadrant can be used as an estimate of the probability, n/4, of noE
any point landing within the quadrant; see Fig.7.1(a). Thus 4R/ncan be usedas B, )
an estimate of n. Now R is a random variablé with a B(n, /4) distribution, R irom
with Var(R)=n}(1 —%) so that Var(4R/n) =16 Var(R)/n" = (4 —n)/n

A 2.697/?1._‘ . nPh 1 ]

———————

X

.2.2 Crude Monte Carlo

As

&

1 -
= J. J (1 =x?)1dx, we can write
. ‘

n4=4& [_\/.(1 - U?)], where Uisa U(0, 1) random variable, and so if we
take a random samplc? U, Us, ..., U, we can estimate n/4 by:

I= % JO=-Udyn

i=1

This approach is termed ‘crude’ Monte Carlo.

Clearly, Var(I) = n~* Var (/(1-U zj)

1 1
n—l(J‘ (1 —xz)dx—(J J —-—xz)dx)z)
. 0 o .
2 x? -

%-;: | % 00498 /n
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%o 0.5 : 10
{a) =
y y
1.0 10
0.5 0.5-
00 r 0o — A
00 05 1.0 000 0.25 050

{b} x

Figure 7.1 A graphical demonstration of variance reduction

(a) y= JU=x) —-—y= J(1—{1—x)")

(b) . y=3{JU -+ JU-(1-xN}

(©) y=1{J =+ JU=(1=xP)+ JU -G —x)+ JU=G+x%}-

The area under the curves of (a) and (b) is n/4; the area under the curve of (c) is w/8. %

" el X
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To construct a point at random within a unit square, we only need to takea . .
point with Cartesian co-ordinates (U, Us), where U; and U, are mdependent
U, 1) vanables In order to compare the ‘hit-or-miss’ aiid crude Monte Carlo
approaches to” estlmatmg T We can "take 2n U(0,1) variables in’ each case,
resultmg In thé respective vanances of estimators of o7

_2'291@_ 'and 0. 0498 X 16/2n =0, 398/n ) aal
So we see that the variance in the hit-or-miss case is roughly seven times larger
than in the crude case, indicating that crude Monte Carlo is much more
efficient. — —— - - -

m—

723 Usmg an amlthetlc variate
Let o —i{J(l—U2)+ \/(1—(1-0)1)}

where U is U{O 1. (1 —U) is the antlthctlc variate to U. As both U and
(1 - )are U (0, 1) random vanables

&[H] = n/4, but now

Var(H) = §{Var( /(1 -U 2))+Var(J 1-— 1—U)2))
+2Cov(J1— ) SO =1 =UP)N}

=4{Var(J(1 ~U?)) +Cov(J(1—U ) \/(1._(1_{1)2”}
=£(—2——n—2)l+1£[\/((U+_1)U(L'T—-1)(‘U—-?_))—1—;j|>

2 2

It can be shown that

. 71 & (2k—3)(2k—1)I(12)"*
Sl U+ HUWU - ) - 2))]— {96 622 (k_2)!(k-;.1)!k.!.(k+l)!}

= 0.5806
leading to: Var{H) = 0.0052.

—_

Thus if 2n U(0, 1) variates were used to estimate = using this antithetic
approach, the resulting estimator would have variance 0.042/n. The crude
estimator variance is just over nine times larger than this, while the hit-or-miss
estimator variance is roughly 64 times larger. In real terms this means that to '
obtain the same precision using the hit-or-miss and antithetic approaches, we
need 64 times as many uniform variates in the hit-or-miss approach. Of course

- there may be losses in the different types of arithmetic involved between these
" two different approaches. We commented on this aspect in-our comparison of

the Buffon needie and cross, and we can now see that the second needie of the

- cross produced an’ antithetic variate, resulting in the negative correlation

between X and ¥ in Section 7.1. The idea of using antithetic variates was
formally introduced by Hammersley and Morton (1956), who explained the

% idea through the example of Buffon's needle.
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*7.2.4 Reducmc variability

_..-i"

The reducnon in- varlablhty obtamed by the use of an annthetic variate as
above issimply seen from.a comparison of, the curves of F:g 7.1{a) and 7. 1oy

the ranges of the y-values are, respectively, 1, ( J 3-1)2, whxle theareas under
the curves are each /4. We can clearly reduce vanaﬁlluy even further by using
the curve of Fig. 7.1(c), enablma us to estimate 7 using:

—{Jl—U)+J1—U—UF+JU—G—U)
+ JO-(+U¥Y .

where now U is U{0, 0.5). This process can be continued without end, rather
like the testing of random numbers. Again a compromiise has t6 be reached, in”
this case between variance reduction and increase in computation. For more
discussion of this approach, see Morton {1957) and Shreider (1964, p. 53).

. The variability in y = J (1 —x*Ycan be reduced ina number of additional
ways. For instance, we can write

y={l-x}+{ /0 —=x?)—(1-x%)}

as suggested in Simulation I (1976, p. 41). In (7.3), of course, both the
components of y can be integrated explicitly, but if one knows how to integrate
{1 —x?} and not \/ 1 —x*), then the decomposition of (7.3) replaces the
_vanablhty of /(1 —x?) by the smaller variability of { \/(1 —x*) — {1 —x?)}. A
. decomposition of y can also be obtamed without introducing a new function,
simply by splitting up the range of x, and evaluating the integral‘as the sum of
the integrals over the separate parts of the x-range. This is called stratified
sampling, and is famﬂlar to students of sampling theory (see ‘Barnett, 1974, P
78). For 111ustrat10n, suppose the funcnon to be integrated is y = f(x), over the
range (0, 1), (see Fig. 7.2). :

12

for0=x=<1 {1.3)

Y

+

1
|
1
I
1
1
I
|

Er B

P - . : >

Figure 7.2 Stratified sampling for Monte Carlo iritegral éstimation.
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We shall break the range of integration into k pteces of length («;—a;_,),
for 1 Sj<kwithO=a,<a < ... <a, = 1. Clearly, the var iability of y
within each piece is less than the vanablhty of y over the full range. Eshmauon
of the sub-integral$ may be done in each case by, for example, crude Monte
Carlo. If we use n; U(0, 1) variates for the jth interval, then we can estimate
g = jof(x)dx by:

1=y » &

f=1i=1

-4)

— oo+ (=2 ) U

J
in which the Uj; are independent U(0, 1) random variables. Thus

Y=o ey =2 )U; Uler;—qsw;)

as required for crude Monte Carlo estimation within the jth interval. The
terms («; —a;_,;) are weights which are needed to ensure that 8 is unbiased.
We see that

Is

k

5@—22

j=1i=1

(

(a;

%i- l)J Slo;oy + (y—o;_  )x)dx

Ll

6

k

)

i=1

3

j=1

1y

> 1

i=1

aj—al._l)J’r Slx)dx
‘.x (o;—at;_
4oy
1

Wﬂmu=ffmm

0

1

ny

ooy

In order to examine the precision of this approach we need the variance of 8:
faihiissdnlhg

k fiy

L X

li=1

(“j—a )2
3
h;

Var(a) =

i

Var(f &y + (o —apo UL

which leads readily to:

k 1 x a; 2
Z;{mr%ﬂﬂ‘fﬂmM—(f ﬂnu)} (7.4)
L P LI

i=1h ;

Var(8) =

In using stratified sampling, one has to choose k, {« ;- 1n;}. Increasing k, the
number of pieces, or strata, is likely to increase precision, but results in more
arithmetic labour, and as before, a compromise is usually reached. For given k
and {aj},_one can try to choose the {n;} to minimize the variance of ({7.4).

We can write

k

y 4

j=1 1

Var(B) =

say,and we want to choose the {n;} to minimize Var (B), subject to a restriction
(n;=n, for fixed n. We can incorporate the constraint by
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introducing a Lagrange multiplier; 1, and then minimizing the Lagrangian:
.-——-—-——'_'_'_‘_'_"'_‘_‘— ——e——

L= T ;——A(n—_i n,-)

Stationary values are obtalne.d by setting .

dL
anj

ie. a;=An7, for 1£_}Sk. _
Standard theory (see Exercise 7.6) verifies that this stationary value is indeed

a minimum, obtained by selecting the
n; o 0“2 (C{ —°'-;—1) \/{Var(f{aj 1+ (‘1 —;-,l.)Ur'j)’} 1(7-5)

__,(J Unfortunately, as we can see from (7.4), a mvolves the very integral-we are
seeking, and 50 is unknowu However, the messagc of (7.5) is clear, suggesting
that the larger strata and strdta with more variable function values, should
receive relatively’ more variates, as one"would -expect. Thus one: ‘could, as.a -
rough rule of thumnb, choose the. {o;} to' correspond; as closely a5 possible, to -

=0 for1<j<k,

parts of the curve withra constant range of y-valies, and then-allot the {m;}.in. . -
proportion to {(a; =a;_7)}: Alternatively, one ‘could conduct a: preliminary.. ..

experiment to estimate the unknown variances in (7.5), and then use those:
estimates in’deéiding‘_ upon the {nj}'for a full, subsequerit investigation.

1 1 0 L -
g

T

*7.2.5 Importance samplmg

In stratified sampling, pr0port|ons n;/n of n U(O 1 vanables are transformed

to the range («;-,, &;). This is not d1531m11ar from selectmg the Uy vanates S

which go to form 8, from. the composition. denstty functlon

v= % (M 2.
=1

{1((0:}.—‘0:1_1_) ’

f'oraj 1_x<o£

Cfor1<jsk.
otherwnse for 1<)

in which 7 J-(:c} =

The continuous analogue of (7.6) is found in importance samphng, SO mlled
because, as with (7.6), f(x) is evaluated at the important partsof therange more
frequently than -otherwise. Continuing:with the aboye lllustratlon, let .us
further suppose f{x)> 0 for.0< x <1, and also that.g(x) is a probablllty .

density function over this range.

9*_[ Sx)dx = I Lt )g( x) dx
=& f(X)/g(X)], when X has probablllty densrty functron g(x).

’ ThuS-!, . e f(y)k-l =
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If (x,,...

» X,) -constitutes..a random sampie from g{x), then we .can
estimate & by: . o
LR F(L0
nisy glXy)

which has variance given by

Var(e) {J 20 92}

=0ifg(x)=67"/(x)

which would clearly be a good form to adopt for g{x). Unfortunately, this
entails knowledge of the unknown 8 before g{x) can.be. spc(:iﬁcd However, if
g(x})is of roughly the same shape as f{x) then (7.7) will ho]d approxlmately, and
so we would expect the § that results to have small vanance

’ (7f.ﬁ)'—‘

X

EXAMPLE 1.2 An illustration of zmportance samplfng
e

d
e J(z) f K20 Y,

We have seen already in Examplc 5.4 how th1s dlstnbunon funct1on may be
used in s:muiauon, and we know that it is not pos.51ble to evaluate the integral
explicitly. A density curve of similar shape to ¢(y)i is’ lhe IOgISth

| __ mexp(—mny//3)
Lt b A f[y) \/3(1+exp( 7'5}’/\/3))2 "y ,Al'_:r..,-l’.v : : r‘:;:' B

thh ‘mean 0 and vanance 1, already encountered in Sectlon 5.7.

='f_x kq&(y)@dy o - ‘: ".'_:'f- :, B

Evaluation of D(x) =

=0 f(y) k e
where k is chosen so that f{y)k ~* is a density function over the range { — o, x)in™
nexp(—ny/ /3) (L +exp(—nx/ ,/3) (75;)

V3 +exp(—ny/ /3))?,

i and ifYis a JTandom variable with the density function-of (7:8) then, - .-

¢(XJ—(1+GXP( ﬂXIJ3)) 15[‘?(1’)11’(?')]

- We can therefore estlmate (I)(x) by:

~ 1 " )
. 9 =‘;(1}_9XP(—’7rx/‘\/3))"‘ Y S

‘Where {Y;, 1 < i< n} is a random sample from the density of Equation (7.8),"
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conveniertly simulated by means of the inversion method of Section 5.2 as
follows. If U is a U(0, 1) random variable,

set U=F(¥)=(1+exp(—~nx//3))/ (1 +exp(—nY//3))

then we seek ¥ = F ~1{U), resulting in:
3 _ - 1
= —in—log,{(lfexp(—nx/J3))U -1}

A BASIC program to evaluate CD(x) in this way is given in Fig. 7.3 for
a selection of x-values, and results from usmg this program are shown in
Table 7.1. ‘

10 - RANDOMIZE

20 REM PROGRAM TO CALCULATE PHI(X)
30 . REM USING IMPORTANCE SAMPLING

40 INPUT N’

50 -ZLET Pl. =1.§13799364
60 LETX=-2.5

70 FOR K =1TO4

B0 LETX=X+.5

90 LETS=

100 FORI=1TON
110 LET R = (1+EXP(-X*P1))/RND

120 LET Y = -(LOG(R-1})/P1 -
130 LET P2 = (EXP{-Y*Ys2))/2 506628275
140 1ET Q = (P2*{1+EXP(-Y*P1))~2) *EXP(Y*P1)
150 1LE’I‘S=S+Q .
- 180 NEXTI: : S
170 (| LET.3.=
180 LETS = S/ Pl'(l+EXP( X*P1)))
190 - PRINT'X
200 NEXTK
210 END

Figure7.3 A BASIC program to evaluate ®(x) using importance sampling. Note that
n/ /3 2 1.813759 364, and J(er) == 2.506 628 275.

15

An application of importance samplmo in qucuemg theory is provxdcd by

Evans et al. (1965).

Table 7:1- ..
Estimated ®(x)
- — Actual ®(x) (from .
x n=100 n= 1000 * n= 5000 tables) to 4 d.p.

—20 0.0222 0.0229 00220 ‘o227

—1.5 0.0652 0.0681 - . 00666 . . ... 00668

-1.0 0.1592 0.1599 0.1584 _ 0.1587

—0.5 0.3082 03090 - 03081 - -+ - «0.3085

We shall not here consider Var (@) for this example, but see the solution

to Exercise 7.7.- . . L . o
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7.3 Further variance-reduction ideas _

7.3.1 Control variates

——— e

With antithetic variates, negative correlation was used to reduce variance. One
can also use positive {or negative) correlation with some additional, control
variate. As with stratified sampling, compansons can be made here ‘with
elements of sampling theory.

Suppose X is being used to estimate a parameter 8, and £{X] = 6. I{ Zisa
random variable with known expectation g, then for any positive constant c,
we can write .

Y=X—c(Z-p)

Thus?, like X, isan unbiased estimator of §,as §[Y] = £[ X ] = §. Whether or
notY is a better estimator of 6 than X depends on the relafichship between X
and Z.-:Now-Var(Y) = Var(X)+c? Var(Z)—2¢c Cov(X, Z), and so if
Cov(X, Z) > c Var(Z)/2, then Var(Y) will be less, than Var(X), indicating that
Y is the better estimator. The maximum vanm obtained when
¢ = Cov(X, . Z)fVar(Z), and while Cov(X, Z) (and possibly also Var(Z))
may not be known, it could be estimated by means of a pilot investi-
gation. However, many, mvesugators have simply taken ¢ = +1 as appro-
priate. -

We shall see an example of the use of a control variate in Section 9.4.2. More
than one control variate may be used, and a variety of different approaches
have been employed to obtain the desired correlation between the variate of
interest, X, and the control variate, Z, See for example Law and Kelton (1982,
Section'11. 4). Improvements in the use of control variates are considered by
Chengand Feast (1980). A recent application is provided by Rothery (1982), in
the ‘context of estimating the' power of a non-paramétric ‘test, and an
illustration from queueing theory is given in the following example.

EXAMPLE 73 (Barnett, 1965, p. XVII) Machine interference
A mechanic services n machines which break down from time to time, We
suppose that machines break down mdeEcndently of one another, and that for

* any machine; bieakdowns are events in a Poisson. process of rate 1. We

sup';ﬁJse alSo that the‘time taken to repair any machine is a constant, 4. The

interference arises if queues of broken-down machines.form. This process can
. “be solved analyfically, but it was'presented by Barnett as an illustration of the
. use of a control variate. It is clearly simple to simulate the process, and to

estimate the ‘machine availability’, S, over a time period of length ¢, by,

§ : total cumulatwe running time for all machines

nt




\—7

by

172 Variance Reduction and Integral Estimation

As the control variate, Barnett used the estimate, £, .of 1/, given by

total cumulative running time for all machines

~

total cumulative repair time for all machines

It was estimated empirically that the correlation between Sand £ was ~
+0.95 for a variety of values of n, t and the product Ap. tl'hus S was estimated

~ o~ ~ 1
Sl=S—c!L—1)

and ¢ was chosen as indicated above for maximum variance reduction, using
estimates of second-order moments obtained from a pilot study. It was

Py

estimated that Var(S)/Var(§ )= 9.87. (Further discussion of this example is
given in Exercises 7.22 and 7.23.)

The standard approach for estimating 8 = §[ X] is by forming

n,
L X
g — i=i
n
where { X, 1 < < n} forms a random sample from the distribution of X. This
is completely analogous to the averaging approaches used in-the previous
examples in integral estimation, which is to be expected, since here 8 is a mean
value which, for contintous random variables, can be written as an integral,
and vice versa. As was pointed out in Section 7.2, integrals of:low dimen-
sionality are probably best evaluated by a numerical method which does not
involve simulation. However, while one can certainly think of ‘the estimation of
a mean of a randomvariable in terms of evaluating an integral, in this case the
integrand is itself almost certainly going to be a function of the (unknown)
mean, and so simulation methods are then appropriate. .
When a model is to be simulated upder. different cqndit:l’ons,.andigg_n_l_—: )
parisons made between the différent simulations, then the variation-between
the sinulations can be reduced by using common random numbers in the
different simulations. This is a very popular method of variance reduction and,
as with many uses Of Control variates; it relies on an induced -positive

correlation for it$ effect. We shall“return to the use-of common: random-
numbers in Chapter9. A good example, involving the comparison of 23
alternative queueing mechanisnis, is. given by Law and Kelton (1982, p.*352).

*732  Using simple conditioning e

The principle here is best illustrated by means of an example.

8
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EXAMPLE 74 (Simon, 1976)- S

Suppose-‘we want to.estimate the mean value @ of a random variable X s which! - .

has the beta B, (¥, W.2+1) distribution, where W itself is a random variable, -+

with a- Poisson distribution of known-mean;-. The/obvious.approach is to

sm}ulate n X-values and simply average them. However; this involves simu- -
. lation from Poissdn and beta distributions; and an alternative approach isas™ .- -

follows. . L
We know, from Section2.11, that
ELXIW =w] = w/w?+w+ 1)

e~ v

Furthermore, =8

==}
> e[x|w =]
© ow=0n F— W! X .
(h'_are we are using a property of conditional expectation—see Grimmett and
Stirzaker, 1982, p. 44), '
30 we may estimate 6§ by _
s 1 ' :
6= 3 wi/wiwer 1) o
i=] ) : .
Wht?re the {w;, 1 <i<n} form a random sample from the Poisson distri-
bution, Parameter #: a pracedure which dees not, in fact,rinvolvé éimuléting X.
Thus this app_roach certainly saves labour. Discussion of how tha variance of
tI.\e above estimator may be further reduced is given in ‘Exercise 7.20. In a
dlﬂ“.erent'context, Lavenberg and Welch (1979) use ‘conditioning 10 reduce
variance in a particular queueing network, and their example is reproduced by
Law and Kelton (1982, p. 364), I

" V733 The M/M/1 queue

It is interesting to_see how variance-reduction techniques that .have, been .

clearly expressed for simple..procedures,. such -as the.;evaluation of, one- .

dimensional integrals, may beemployed in more complicated investigations.: -
We shall here consider the M/ M/1 queue. This model of a simple queue has
already been encountered in Exercise 2.27, which also provided a BASIC-
program. for the simulation of the,queve. * .. L
: \.rV_.e:are; often,int;xbsﬁted‘in"thg:‘:“_a;‘zir'a'gc custorer waitin é—timc inaqueue. The"
- waiting time of the nth customer, from arrivalat the quéue until departure, W,
. may be very simply, expressed as: L T

P A ARl U APES AL B A
m=S i W, <,

- where, S, is the service-timé of customer n, and )

79

. ERgits

. customers, for n > 2,

o ST the .time ., befween - the arrival of the nth ,énc—l. (n—l)th

E

v
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Note here that we take /| = §,, i.e,, the first customer arrives to find an empty
queue.. Figure 7.4 provides a BASIC program for simulating this queue, for
which the service and inter-arrival times are both exponential, with respective
parameters g = 1, 1 = 0.6: We see that the average waiting-time is comptited
for 200 customers. The process is then repeated 100 times so as to provide an
estimate of the variance of the average waiting time. The program of Fig. 7.4
provides a much simpler way of estimating average waiting-time than direct
use of the program of Exercise 2.27, and we shall return to this point in
Chapter 8.

16 REM BASIC PROGRAM TO ESTIMATE THE AVERAGE
20 WAITING TIME OF THE FIRST 200 CUSTOMERS

30 REM AT AN M/M/L QUEUE, STARTING EMPTY, USING (7.5)
40 LET L=.6 .

50 LET M=1

60 RANDOMIZE

70 LETTi=0

80 LET T2=0

90 FOR J=1i TO 100

110 LET 52=0

110 LET W=0

120 FOR 1=1TO 200

LET U=RHD

130 LET S=(-LOG(U))M

150 LET U=RND

160 LET T= ~I_DG(U3&IL

170 1¥ W<T THEN 200

180 LET W=W+5T

190 GOTO 210

200 LET W=$S

210 LET S2=S2+W

220 NEXT 1

230 LET T1=T1+(32/200

240 LET T2=T2+{52/200)2

250 NEXT J
" 260 LET V=(T2-(T1*T1)/100)/99

270 PRINT "VARIANCE OF AVERAGE WAITING TIME = "V

280 PRINT “MEAN = ", T1/i00

290 END

Figure 74 A BASIC program to estimate the average waiting-time of the first 200
customers at an-M/M/1 queue, starting empty. The procedure is repeated 100 times.
Note that:in lines 140 and 160 the method of Equation (5.5) is used. S

‘This is an example where an antithetic-variate approach could prove useful.
Figure 7.5 provides another BASIC program for simulating this queue. Tn this =
case we duplicaté each block of 200 customers, and in the duplicate block each
original U is feplaced by (1 — U), with the result that long service times are

' replaced by short services times, and vice versa, and similarly aldo for inter-
arrival times. Each block average therefore still estimates the same average
waiting time, but the two duplicate block averages might now be expected to
have a negative correlation. Table 7.2 illustrates the results of the start of a run
of the program of Fig. 7.5, and we can see here the anticipated relationship °
developing between the two sets of W, values. Proofs that variance reduction 3§
will occur when antithetic variates are used in this, and more general, queueing :

7.3 Further varignce-reduction ideas

10 REM ILLUSTRATION OF VARIANCE REDUCTION USING
20 REM ANTITHETIC YARIATES IN AN M/M/1 QUEUE
30 DIM R{400)

40 LETL=.8

50 LETM=1

80 LETIL =

70 RANDOMIZE

80 LETUl =0

g0 LETU2=0

100 LETT1=0

110 LETT2=0

120 LETN =50

130 FORJ=1TON

140 FORI=1TO 400

150 LET R(I) = RND

160 NEXT1

170 LETS2=0

180 LETW =

190 LETK=0

200 FORI2 =1 TO 200

210 LETK=K+1

220 LETU= dex}

230 LETS= s( OG(U)) /M

240 LET X = K+1

250 LETU= R{K)

260 LETT=(- OG(Ug)/L

270 IF W < T TREN 300

280 LET W=W4+S-T

290 GOTO 310

300 LETW=S

310 LET 52 = S2+W

320 NEXTI2

330 JFI1 =1 THEN 380

340 LET S5 = S2/200

350  CGOTO 400

360 LET 55 = (S5+82/200)/2

370 LETT1 = T1+55

380 LET T2 = T2+585S5

380 . GOTO 460

400 FORI=1TO 400

410 LET R(I) = 1-R(])

420 NEXTI

430 REM THIS FORMS THE ANTITHETIC VARIATES
440 LETNI =1

450 GOTO 170

450 LETIL =

470 NEXTJ

480 LETV = {T2-T1*T1/N}/(N-1)

450 PRINT “VARIANCE OF AVERAGE WAITING TIME="Y
gcl)g Eggrr "ESTIMATE OF MEAN WAITING TIME =" T1/N
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Figure 7.5. A BASIC program to estimate the average waiting-time of the first 200
customers in an M/M/1 queue, starting empty. The procedure is based upon Equation
(7.9) and uses antithetic variates, as explained in the text.

models are provided by Mitchell (1971) and others (see Kleijnen, 1974, p. 190),

who also provide empirical investigations, as do Law and Kelton (1982,-

p- 356).
A variety of results from running the programs of Figs 7.4 and 7.5 are given

-in Table 7.3. We can see, by considering the results from different runs, that the
estimate of efficiency gain can vary appreciably, but in all comparisons there is

a gain in efficiency. Use of equations (7.9} does in fact contravene a basic rule

» for variance reduction, already encountered in (7.3) (see also Exercises 7.8 and
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Table 7.2 An illustration of the use of Equation (7.9) to compute waiting times in an
M/M/1 queue, and the effect of replacing service ($,) and inter-arrival times (7,) by
their antithetic counterparts. - ‘ '

Main block Antithetic block
n S, T, W, n Sa T, W,
1 1.35 — 1.35 1 030 — 0.30
2 0.20 040 1.15 2 1.70 1.34 1.70
3 0.75 1.89 0.75 3 0.64 0.22 212
4 0.17 0.36 0.56 4 1.88 142 = 258
5 0.43 0.97 0.43 5 1.05 0.60 303
6 1.83 0.39 1.87 6 0.18 1.34 1.23

7.20), as we shall now explain. We can write

W,=0,+S, fornz1

where Q, is the time spent by the nth customer queucing before being served:
Q, and 5, are independent, and Var(Q,) < Var(¥,). Therefore in order to
estimate &, [ it'is more efficient {0 estimate & Q,J-and:then add .on the
known &[5,] = 1/. This can beseenifrom a comparison of Tables 7.3(a) and
(b). This comparison also suggests, however, that the use of (7.9) combined
with an antithetic-variate approach can increase efficiency, relative to the use
of (7.10) below combined with antitheticivariates, Note that

" Qp = max(Qy_ +S,—I,, 0) ©(7.10)

Table 7.3 (a) Sample variance of the estimator of the mean waiting-time of the first
200 customers in an M/M/1 queue, starting empty and with px = 1. 100 replications
were used in each case, with 50 matched pairs when antithetic variates were employed.
In this case the waiting-times were simulated including the service-times, i.e. using

Equation (7.9) .

P No variance reduction Using antithetic variates
Run }
1 0.1338 0.0760
0.5 2 0.1426 0.0736
3 0.2174 0.0561
0.1646 0.0686
1 03102 ' 0.1338
0.6 2 04010 0.1851
3 0.5233 0.1676
04115 0.1622

(contd.

Table 7.3 (comd) ~
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bl

No variance reductjon

Using antithetic vériatéé B

0.7

[ S

0.8

L2 I R

2.3254
54315
1.0977

293515

Corresponding average waiting-times of the first 200 customers.

No variance

Using antithetic

Theoretical value
in equilibtium

reduction variates (see.Exercise 7.24)
Run :
17 ~1.889 1.998
2 2035 2.020 20
3 .'2.03_0 1.984 ! E ’
1.985 2001 . ‘
1 2.513 2.464
2 ) 2467 2.408 2.5
k) 2533 2.543
2.504 2472
1 3.320|_ 1041
2 3.497 3.199 3.33
3 3.051 3,241
3.289- 3.160
1 4.244 4.392
2 4.416 4.404 5.0
3 5.152 4,451
4,604 4416
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(b) The following results are obtained by simulating the waiting-times’ without the .
service-times, i.e. using Equation (7.10). First of all we give the sample variances, as . o Theoretical values
in (a). : No variance  Using antithetic in equilibrium (see
A reduction variates Exercise 7.24)
A : No variance reduction Using antithetic variates 1 3.129 3.300
0.7 2 3.134 3.165 333
Run 3 - -3.198 3.282
1 0.1314 0.0927 :
0.5 2 0.1547 0.0902 ' : ﬂ 3249
3 0.1225 0.0466 1 4.594 4.444 _
0.1362 0.0765 - 0.8 2 4.447 4445 50
3 4.576 4531 :
1 0.3228 0.2487 . '
0.6 2 0.6141 0.1521 ‘ ' 4339 4473
3 0.5180 0.1182
0.4850 0.1730 3 . : g
. g As one might expect, whether we are using Equations (7.9) or (7.10), the
1 0.8;(6)2 0.3201 / amount of variance reduction achieved depends on the relationship between A
0.7 % (1).5862 h gg%g‘l‘ and p:if Lis appreciably smaller than g, then the queue will frequently be
Ehatd) Pt empty, reducing the negative correlation. The values of Land g also affect the
1.0145 0.4895 rate at which a stead¥-state'system is reached (for the case i < 1 —see Exercise
1 €.4527 13440 7.24). Barnett’s (1965) tables of exponential random variables provide values of
08 2 132618 20066 —log, (}~U)as well as —log, U, with just such antithetic investigation in
3! 5.4324 1.6008 mind (see Example 7.22). ~ co :
— — An alternative approach to antithetic variance reduction in simple queues
5.049 16703 . T AT .
- : was applied by Page (1965), who used the following idea. Suppose we are

Correspondi‘ng average waiting-times of the first 200 cul;v._tomers in an M/M/1 queue,
starting empty and with 4 = 1, asabove. Values are obtained by computing the average
waiting-time, excluding service, and then adding on the known mean service-time.

t+

, simulating an M/M/1 queue, constructing service and inter-arrival times
i respectively from:

. M .
S= ";10&_(5’1 ).

Theo.retlical values

No variance Using antithéti,c in equilibrium (see - i
i reduction variates Exercise 7.24) - T Fl log, (Us)
Run y . for independent U(0, 1) variables U, and U,.
1 2.028 2019 A duclicate tum —_— %
0.5 2 2,000 2034 20 uplicate run can be made with-
3 1,936 1.589 ! ) 1
1.988 2014 S= ~;log,(£{z)
1 2354 2533 1
0.6 2 2.550 2418 25 =
3 2.559 2.401 T="—ylog. (U}
248

2451

In this case U, values giving rise to large service times in the original run will be
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translated into large waiting times in the duplicate run, and vice versa. Page
—— e ————————
showed that
Corr({S—T), (§ TN = —2p/(1 +p?)

where p = /1.

*73.4 A simple random walk example

In random walks we are interested in the distribution of the position. of a
particle which moves along a lipe. actording to proba-billty rgles. A simple
example results when the particle moves between absorbmg_ ba{rlers at0 anq a,
a being a positive integer, according to; the rules specified.in Fig. 7.6. Exercise
1.4 provided an example of a random walk with a reflecting barcier at 0.
The particle position can be. used tg:dg_gli_bg,g‘eatyres‘,pf more con_1p_h__cated
processes such as the population size of a colony oﬂ,bac_:_@ean_the partu_:u.l:ar
example of Fig. 7.6 is often called the ‘gambler’s ruin’ probiem, as the par_ncie
position can be taken as the capital of one of two __E_E‘EEETS, with combmeﬁd
capital of a units. In the game played by the gambiers, money changes hands in

single units according to the probabilities pand g, and,the game ends when one

of the gamblers loses all his/her capital, corresponding to the particle reaching ,
one of the barriers. Various features of this walk are of interest, such as the P
values {d,, 1 < k <a—1}, where.d, is the average number of steps to :;%

termination of this walk, when the walk starts at k.

| ~ |

R U - lamt) |
a

a

Figure 7.6 - Illustration of a simple random walk. When the pa'rticle.is atifian intege;
in the range 1 i £ a—1), then, independently of the past, it moves 10 (z+_l] wit
probability p, and to (i — 1) with probgbility q = {1 —p). Once .euher of the barriers at 0
and g is reached, then the walk terminates. .

It can be shown that the {d,} satisfy:
dk=1+{pd,¢+,+qdk_l T for1<ksd—1 -
dy=d,=0 ' .
(sce, e.g., Bailey, 1964, p. 27, and Exercise 7.30). While these quu_atiorll's‘hza}'-é'an
explicit solution, given in Exercise 7.31, the {d,} can be est?mat_ed-by f_lznulat‘_mn
(cf. Exercise 3.29). Thus one can select a value of &, a_nd_:c.lmulgt_e_;p'_.\yglks, ;o
starting at k, running until absorptiofi. ykfméy then be est;;hz}ted by-?ﬁ.e s‘an}pTE g
mean time to absorption. A very simple variance-reduction idea which may be 3
used here is outlined by Barnett (1962a). If a walk starting at k passes through
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some point j at a later stage, say after.r steps, then if it takes msteps: for the ..
original walk to end, we also have, from this walk, anexample of a walktaking:: .
{n —r)steps to absorption, starting.from j. Thusa single walk starting from any

k can provide:information ‘on: mean times.to absorption for walks starting
from points other-than k. Clearly by this method the mean-time estimators for.
differént valuésof k-.’wi_]l_ngut;lgq;independent. Fordiscussion of this see-Barnett, .-
(19624d), who'uséd this approach for a:two-diménsional random.walk-without . ., -.
an explicit solution; and-Morgan and Robertson (1980), who considered-an.
intractable one-dimensional ‘problem (see Exercise- 7.32).

7.4 Discussion

The aim of this chapter -has been.to underline .the importance of variance. .- ; -
reduction, and -to introduce isome. of the methods- that are used: F’m,‘ i
methods: and :illustratioris will- be .encountered. later. Quite: apart.fromaits <. .
importance; variance reduction is-attractive because of the extra information : ..
that can oftenitbe-squeezed out of single random variables,. .this. process:. .. .
frequently requiring a {flash.of insight’, in Barnett's (1976) words. Because of
the dramatic’gain in value that'can result,-variance-reduction-techniques are’™".
sometimes-also- termed ‘swindling’ (see’ Simon, 11976, -and :Schruben and .. .
Margolin, 1978,:p. 524).°Of course, this idea of obtaining.as much value as:-.
possible from-a 'single random- variable has already been. encountered,: for
instance in Exercise 4.2, and Example 5.5. We can also note the analogies
between the rejection method of Section 5.3, and importance sampling and hit-
or-miss Monte Carlo, as well as between the composition method of Section
5.4, and stratified sampling and the method of extracting an easier integral, in
Section 7.2.4. ' R
Much'more:detail of variance reduction-is- provided by Law.and Kelton
{1982, chapter 11), and Kleijnen.(1974, chapter 3). Freqﬁently,it,i_s.necessar.y to
run a pilot-study in order to assess the possible value of a variance-reduction
technique; for in.complicated. systems- theoretical justification for.employing
sucha technique is usually not possible.Indeed, it is unfortunately.the case that
in some applications variances have inadvertently.been increased fromusing a
‘reduction’ appreach.'Cheng (1982) points.out the importance of high negative

correlation when antithetic “variates. are - used,- and suggests. a modified

procedure. which has been applied successfully to a variety of models.
- We saw in Section 7.1 that in many applications simulation estimators of

:parameters are expressed as sums of independent random variables. In these
-.-and related cases itis asimple matter to.estimate variances of estimators, which
-are vital for thesinterpretation ofestimates; InSection 7.2.2 the variance of the

stimator involved.the parameter that was, :.béing .estimated.. In that case,-for
lustration, the known parameter value. was used in-calculating.the variance,
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while in practice the variance itself would only be an estimate. Knowledge of
the answer. (n) has undoubtedly also affected the reporting of experiments
involving Buffon's needle, as-well as the decision of when to stop. As Mantel
(1953) points out, Lazzerini's experiment, conducted in 1901, produced
# =3.1413929 after 3408 throws, but ending the experiment.one throw

sooner or later inevitably loses half the decimal place accuracy. When one is _

estimating  waiting-times in queues,-one Is averaging. dependent random
variables, which complicates ivariance- estimation: A, number of possible
approaches for such cases are described and compared by Moran (1975), and
we shall return to this topic in Chapter 8.

Additional reductions in variance may be obtained by the judicious
combination of different methods {see Exercise 7.23 and Schruben and
Margolin, 1978), though here again one must proceed with caution, as
Kleijnen (1974, Section IIL.8) has shown. ‘Proceed with care’ is therefore
clearly the.watchword for variance.reduction, as it'was with the use of pseudo-
random numbers.-However, as with the use of pseudo-random numbers, the
benefits {rom using an appropriate variance-reduction techmique can be
substantial. Finally, we may note thal common random variables and
antithetic variates are variance-reduction techniques of general applicability,
in so far as the same approach is adopted, whatever the problem. In contrast,

methods such as importance sampling, stratified sampling, and the use of
control variates all have to be individually tailored-to particular problems.

et ELLACLCLS ekl el dobat

7.5 Exercises and complements

(a) On Buffon’s needle

7.1  Whatisthe-mean number of lines crossed if { > 47 For discussion of this
case; see Mosteller {1965, p. 88) and Mantel (1953). --

7.2 (Gani, 1980)- Suppose the centre of the needle lands at a-distance x

- from a line, and that the needle makes an angle # with the direction of

the lines. Map out the sample space for (x, 8), and by identifying the

subset of the sample space corresponding to the needle crossing a line,

show that, for! < d, Pr{needle crossesa line} = 2i/nd. When! > d,show -

“that this probability must be corrected by the amount -

sl -1 ___-_2__1_ 4242
cos™ ' (d/) - \/(1‘ d*/1%).

*73  (Perlmanand Wichura, 1975)- - The case of asin gle needle thrownon to
a double grid. Here we have grids, A and B, say, each of parallel lines a -
“distance'd apart; the -grids béing at right angles to each other. This~

problem was originally studied by ‘Laplace. Let r = d/l, and.let:pg

= Pr(needle crosses an A-line and a B-line), p,5 = Pr(needle crossesan 3§

IR T e
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A-lipe but not a B-lineg), etc. Show that

r
Pap™= —
_ _ 2r
PAE = Pap = p -
_ 1 4r " r?
PR = " ”

Separate evaluation of these probabilities may be used to estimate &, in
different ways, and which one to use is an intriguing question. If in n
throws of the needle there are nzy, nz5, nygand n, g throws in the four
possible categories, then (verify)’

2

n r
~28is an estimator of —
T

nagtnzst2nap

; . 4r -
15 an estimator of —
n ' T

n—nzg. . 4r—r?
——48 s an estimator of

Ifr = 1, Perlman and Wichura show that the variances of the resulting
estimators are, respectively, 5.63/n, 1.76/n, 0.466/n.

" 1.4 (Continuation) The following data were collected from class experi-

ments by E. E. Bassett:

. n nzg nze T Bam Nag
experiment 1 400 16 12 125 147
experiment 2 990 64 315 304 307

Use these data and the estimators of the last exercise to provide a variety
of estimates of =
Further data are provided by Kahan (1961), who describes practiczal
problems such as the blunting of the needle with use, and Gnedenko
(1976, pp. 36-39), who also considers the throwing of a convex contour.
Historical background is found in Holgate (1981), who conjectures on
“how Buffon obtained his solution. Mantel (1953) obtains an estimator
of = from the'estimaﬁon of a variance, rather than a mean.

5 {Holgate, 1981) Another problém.studied by Buffon was the ‘Jeu du
franc-carreau a circular coin of radius b is thrown on to a horizontal
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square grid of side 2a. Show that if b/a = (1 —27 %} then the coin is as
likely as not to land totally within a square.

(b) Integral estimation

*7.6

7.7

7.8

79 .
* stratification of four equal pieces, and 40 sample points. How should

Show that the stationary value of the Lagrangian.

given by: njoc ¢j* is a minimum.

When the computer program of Fig. 7.3 is run for values of x = 0.5, 1.0,
1.5 and 2.0, the following values result:

Estimated ®(x)

- D(x)
x n=100 n = 1000 n = 5000 to 4dp.
0.5 0.6999 0.6905 0.6898 0.6915
1.0 0.8477 0.8405 0.8423 0.23413
1.5 0.9253 - 0.9386 09337 09332
2.0 0.9867 - 09822 o 0.9761 09773

We obtajn better accuracy with the results of Table 7.1. pse the
argument of Section 7.2.4 to explain why we might expect this.

Hammersley and Handscomb (1964, p. 51) define the relative efficiency
of two Monte Carlo méthods for éstimating a parameter & as follows:
The efficiency of method 2 relative to method 1 is:

(n,03)/(n203)

where method i takes n; units of time, and has variance g2, i=12
Write BASIC programs to estimate the integral:

I=[ e vdx

by hit-or-miss, crude and ant1thetlc variate Monte Carlo methods and
compare the efficiencies” of these three methods by using 4 timing
facility. Suggest, and investigate, a simple preliminary variance-
reduction procedure. Investigations of variance reduction when

I = [ g(x)dx are given by Rubinstein (1981, pp. 135-138).

Write a BASIC program to estimate the integral of Exercise 7.8 usinga

you distribute the sample-points?

7.10

*7.11
7.12

1713

*7.14

7.15
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Expiain. how the use of stratification and antithetic variates may be
combined in integral estimation,
Verify that f,\/{(x+ D)x(x ~ 1)(x — 2)} dx & 0.5806.

Given the two . strata, (0, /3/2), (./3/2,1), for evaluating
{o Jl =x?)dx, how would you allot the sampling points?

In crude Monte Carlo estimation of [, ./(1 —x?)dx, how large mustn
be in order that a 35/ confidence interval for the resulting estlmator of
« has width v? Evaluate such an n for v = 0.01, 0 1, 0. S

Daley (1974) discusses the computation of 1ntecrals of blvanate and

- trivariate, normal den51ty funcnons Describe variance-reduction
techniques which may be employed in the evaluation of sich integrals

using simulation. For releted gmcuss:on, see S_smulatlon 1 (1976, Section
13.8.3) and Davis and Rabinowitz (1975, Section '5.9).

Repeat Exercise 7.8, using the pseudo-random number generator of
Equation (3:1).

{¢) General variance reduction

7.16

7.17

7.18.

Show that the maximum variance reduction In Section 7.3.1 is obtained
when ¢ = Cov(X, Z)/Var(2Z).

(Kleijnen, 1974, p. 254) Suppose one is generating pseudo-rapdom
uniform variables from the (g, 0; m) generator, with seed x,. Show that
the correspondmg antlthetlc variates result firom usmg (m xo) as the
seed

Suppose one wants to esumate g = Var (X) and X U +V, when U, v
are independent random variables,and Var (U )is known. Clearly here a.
simulation should be done to estimate Var(})) < Var(X). Use this

. resultto estlmate Var(M % where ‘M is the median of a sample of size n

7.19

froma N (0 1 dlstnbutlon "You may assume (s€e Simon, 1976) that X
and (M X ) are 1ndependent where X denotes the sample mean.

(Continuation) Conduct an experlment to estimate the extent of the

. variance reduction in Exercise 7.18.

720 .

(Simon 1976} )
W 1 1
Wl e (W+ By (W+ l)(W"—!—W—(—l)

(1) Venfy that (

(i) If W has the Poisson distribution of 'Example= 7.4, -show that
E[1/(W+1)] = (1 —e™")/n. :
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(iii) Show that .
- fl—e™m\ 1 s .
b=\ —— )7 L, (O DO +W+ 1)
i=1

is an unbiased estimator of @, and that Var(d) < Var(d).

{d) Queues

*721 Investigate the use of the mean service-time as a control variate for the
mean waiting-time in an M/M/] queue.

7.22 For any simulation. giving rise to the estimate § in the machine-
interference study of Example 7.3 we can construct an antithetic run,
replacing each U(0, 1) variate U in'the first simulation by (1 — U)in the
second. If we denote the second estimator of S by &', then a further
estimator of S is: .

_ §, =18+
Barnett (1965) found empirically that the correlation between Sand §
was =~ —0.64, a high negative value, as one might expect. Estimate the
efficiency gained {see Exercise 7.8) from using this antithetic-variate
~approach (cf. Fig. 7.5). .

7.23 (Comtinuation) Barnett (1965) considered the further estimator of &
§, =4{@E+85)—k(L+L -2/}

. where [’ is the estimator of 1/4 from the antithetic run. Discuss this
approach, which combines the uses of control and antithetic variates.
Show how k should be chosen to maximize the efficiency gain, and
compare the resulting gain in efficiency with that obtained from using

“control variates and antithetic-varidtes separately. -

724 1Inan M/M/L queue, when 4 < j, then after a period since the start of
the queue, the queue is said to be ‘in equilibrium’, or to have reachied the
‘steady state’. The distribution of this period depends on 4, 4 and the
initial queue size. In equilibrium the queue 'size Q has the geometric
distribution ’ .

Pr{Q = k) = p{l —p)* fork=0

where p = A/, and is called the ‘traffic intensity’. Use this result to show 3

that the customer waiting-time in equilibrium (including service time)
has the exponential density: (¢ —2A)e*~#= and hence check the
theoretical equilibrium mean values of Table 7.3. Further, comment on
the disparities-between the values obtained by simulation and the

theoretical equilibrium mean values. For related discussion, see
Rubinstein (1981, p. 213) and Law and Kelton (1982, p. 283). !

7.25
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Unfortunately, it is the cases when p isnear 1, for p < 1, thatare often of
p_racueal importance, but also the most difficult to investigate using
simulation. ) ‘

Exponential distributions are, as we have seen, often used to model
inter-arrival and service-times in queues, Miss A. Keniward obtained the
data given below during a third-year undergraduate project at the
University of Kent. Illustrate these data by means of a histogram, and
use a chi-square test to assess whether, in this case, the assumption of
exponential distributions is satisfactory (cf. Exercise 2.26).

The following data were colliected from the sub-post office in
Ashford, Kent, between 9.00 a.m. and 1.00 p.m. on a Saturday in
December, 1981. o - '

\

Incer-arrivals

Time in -

seconds 0-10 10-20 20-30 3040 40-50 5060 60-70 70-80 80-90 90-100
No. of .

arrivals 179 108 79 37 32 21 18 13 8 4
Time in .

Seconds 100-110 110-120 120-130 130-140 140-150 150-160 160170

No. of

arrivals ) 5 1 3 2 1 0 2

Service times

Ti_‘me in

minutes L0-05 051 1-1.5 1.5-2 2-25 25-3 3-35 354

No. of

customers 63 32 21 10 7 6 0 2

Time in

minutes 445 455 57 7-15 7.5-8

No. of

customers 0 1 0 1 1

(Gaver and Thompson, 1973, p. 594) Sometimes service in a queue
takes a variety of forms, performed sequentially. For e:_cémp[e,' if one has
two types of service: payment for goods (taking time T,), followed by
packing of goods (taking time T,), then the service time S = T, + 75. 1t
is an interesting exercise to estimate &[S] by simulation, using
antithetic variates. In an obvious notation, this would resuit in:

YT+ T+ Thi+ Toih

§=—
2n

- inwhich T’;isan antithetic variate to 753,/ = 1,2,1 < i< n.If T} and T

are independent, exponential variables, with density e~ then show that
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the usual approach of taking, for example, 7); = log, (1 — U), where
T;; = log, U, results im .

, ) N
Var (8) = -1—{1 +J log, x log, (1 —x) dx} = ! (2 —-E) = 0.36/n.

n o n 6
Compare this value with that which results from a usual averaging
procedure. Of course in this simple example the distribution of § is
known to be I'(2, 1) (see Section 2.10). However, we have here the
simplest example of a network, and for.a.discussion of more complicated
networks see Gaver and Thompson (1973, p. 595), Rubinstein (1981, pp.
151-153) and Kelly (1979). _

Investigate further the findings of Table 7.3 by means of a more

7.27
extensive simulation. Validate your conclusions by also using the

generator of Equation {3.1).

Ashcroft (1950} provides an explicit solution to the machine-
interference problem with constant service-time, while Cox and Smith
{1961, pp. 91-109) and Feller (1957, pp. 416—420) provide the theory
and extensions for the case of service-times with an exponential
distribution. Discuss how you would simulate such a model. Bunday
and Mack {1973) consider the complication of a mechanic who patrols

the machines in 2 particular order.
(Page, 1963} In the simulation of Fig. 7.5, let D, and D}, be defined by:

71.28

7.29
D,=S,—1I,
D, =S,-1,

Show that Corr (D, D) = —0.645 (cf. Exercise 7.26).

{e} Gambler’s ruin
From a consideration of the first step taken by the particle in the

7.30
gambler’s ruin problem of Section 7.3.4, verify the relationships of
Equation (7.11).

*7.31 Show that the solution. of Equation {7.11} is given by:

{1) the case p+ ¢
k a (1—{g/p}
4, = - 0<
““{g-p) (@-p) (L—(g/p")

Za

(ii) thecase p =g = &
dkﬂk(a—k) 0<k=<a.
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*7.32 Wn?e a BASIC program to simulate the gambler’s ruin problem of
SCCt'lOH 7.34, employing the variance-reduction technique of that
section, and compare estimated values of {d,} with the theoretical
values given in the last exercise.



