
2 
SOME PRO.BABILITY 
AND STATISTICS 
REVISION 

We have seen from Chapter 1 that in many'uses of simulation, statistic,ians 
need to simulate discrete and continuous random variables of different 
kinds, techniques for doing this are provided in Chapters 4 and 5, The 
aim of,fhischapter is t"specify what wemean by random variables, and 
generallytb provide revision of the material to be used later: 

It 'will be assuined' that the reader, is familia'r with the axioms of 
probability and thi::id,eas cif'irtdependence, and conditional probability. 
The material assumed is covered in, filr'example,-chapters 1-6 of ABC. In 
,the fol!oWingwe shalI'wrile PrtAl for thqirobability of any event A. We 
shall begin wit,h generaldennitions, and then proceed to consider particular 
importanec':ses. ' , 

2.1 variables 

is the concept of, a ,random 
,experjrnen.t,snchasfhetossing" of times. The set of all possible 
, otiichmes tdis,u'ch::it'il.eijletiimentiis caUedfhe,sample-space, introduced by 
.' can formally define as the saniple,space, about which it is 

.. tements: In the simple model of a .'Iueue 
in-.'13xer.c1'se:-l cha'[l'gc'iri' size forms a random expenment, 

withjusttwQ,posstb\e an arrivalora departure. With 
this random eXperi)nent we can a.ssociatea random variable, X, say, such 
tliat X", 4' 1 jhiehavean.arrival, andK = - 1 if we have a departure. The 
model issnch that'J>r,(X = + 1) = p, and J>r(X = - 1) = 1 - p. In detail 
here, fh:e samv.lt';spaqe.c,ilnta,ins, just two outcomes, say W, w" 
corresp0l'ldil'lg to a, dep ... ure,' respectively, and we can the 
ra.nd6m.,.aria.bleXasX(w);slf'that X(w,}= + 1 and X(w,) - -1. 

to suppress the argument of X (w), and-
12 

2.3 The probability density JunctIOn (P'.uJ.} 

simply write the random variable as X in this example. We shall adopt the 
DOW standard practice of using capital letters for random variables, and' 
small letters for values they may take. When a random variable X is 
simulated n times then we obtain a succession of va :lues: {Xl' • _ • I XII}. 
each of which provides' us with a realization of X. 

Another random experiment results if we record the queue size in the 
model of Exercise 1.4. From Section 1.6 we see that if p <!. then after a 
long period oftime since the start of the queueing system we can denote the 
queue size by a random variable, Y, say, such that Y may take any non-
negative in tegral value, and J>r(Y = k) for k <:: 0 is as given ,hi Section 1.6, 

r 2.2 The cumulative distribution function (c.d.L) 
",-1' 

any random variable X, the function F, given by F(x) = J>r(X :;; x) 
IS called the cumulative distribution/unction 0/ X. We have 

lim F(x) = 1; lim F(x) = 0 

F(x) is a nondecreasing function bf x, and F(x) is continuous from the right 
(i.e. if X > X., lim F(x) =c F(x.». 

x-xu 

The nature of F(x) determine; the type of random variable in question, 
and we shall normally specify random variables by defining their distri-
bution, which in turn provides us with F(x). If F(x) is a step function we say 
that X is a discrete random variable, while if F(x) is a continuous function 
of X then we say that X is a continuous random variables, 
called mixed random variables, may be expressed in terms of both discrete 
and random variables,· as is the case of the waiting-time 
experienced by cars approaching traffic lights; with a certain probability 
the lights are green, and the waiting-time may then be zero, but otherwise if 
the lights are red the waiting-time may be described by a continuous 
random variable, Mixed random variables are easily dealt with and we shall 
not consider them here. Examples of many common.c.d.f.'s are 
given later. . 

r 2.3 The probability density function (p.d.f.) 

When F(x) is a continuous function of x, with a continuous first derivative, 
, then fIx), = dF(x)/dx is called the probability.densitY (unction of the 
(continuous) random variable X. If F(x) is continuous but has a first 
derivative that is not continuous at a finite number of points, then we can 
stiB define,the probability density function as above, but for uniqueness we 
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14 Some Probability and Statistics Revision , ' r set f(x) = 0, forinstance, when dF(x)/dx does not exist; an example of this 
is provided by the c.d.f. of the random variable Y of Exercise 2.25. 

The p.d. f. has the foBowing properties: 

(i) f(x)?: 0 

(ii) t: f(x)dx = 1 

(iii) Pr(a < X < b) = Pr(a S X < b) ,; Pr(a < X S b) = Pr(a S XS b) 

= J: f(t)dt 

EXAMPLE 2.1 . 
Under what conditions on the constants a, /J, y can the following functions be a 
p.d.f.? for x?:O 

for x<o 

We must verify that g(x) is non-negative, and that S-:ro g(x)dx = 1. If oc S 0, 
this integral cannot be finite;and so .• we must have oc > O. 

. . " 
rro g(x)dx= :' 
J-a> J ro 

Thus we must have y = a' - oc/J = 11.(11. - /3) resulting in the p.dJ. ) 

for x?:O 

In order that g(x) ?: 0 for x?: 0, we must have /J ?: 0, and a?: fl· Hence set 
fl = Ooc and y = 11.'(1-8), for a > 0 and 0 S 8 S 1. 

We sometimes abbreviate 'probability density function' to just 'density'. 

2.4 Joint, marginal and conditional distributions 

In the case of two random varia»les X and Y we can define the by 
F(x, y) = Pr(X S x and Y S y), and .the!, univariate distributIOns of X and 
Yare referred to as the marginal dlstnbutlOns. If 

a' F(x, y) 
fix, y) = ax ay 

is a continuous function, except possibly at a finite number of P?ints, 
fIx, y) is caBed the joint p.d.f. of X and Y, and in this case the margmal p.d.f. s 
are given by: 

fx(x) = f", fIx, y)dy 
.J 

2.5 Expectation lJ 

and 

rro f(x,y)dx 
. . 

Herewe h.aveadopted a notation we shaB employ regularly, the 
fa?d.0m so sho uld 

be nO.confusion"as'to'which:·random,variable is being' deScribed>The·'same . .-; 
is 'adripteitifori for' jbllli ilistributions .. ' 

IThe conditional p.d.f. of the r"lidoin' X>, , 
may be"" defined'by ... -- , ., ", '''. ,. 

!YIX(Y I x) = fx.r(x, y)lfx(x) if !x{x) > 0 
For two independent continuous rand?m variables X with joint p.d.f. 
fx.y(x, y), we have "". '. .. ' 

fx.y(x, y) = fx(x)fr(y) for any x and y 

The of;indepenge\lce ,and join,t, Ipargi\l",1 an:d conditional 
p.d,f.'s': have; straightforward "nalogues for discrete ranociiri"variables.-:For 
example; ,ti)e tif''': discrete random Iyariab.!e, X may lJe 
given by: '.., . " ., , . . .',,, '" . "'1 r -.-- "', " J 

'. "Pr(X = x)=li.Pr(X Y), , 
FurthermOl;e, w\lile we have only discussed the bivariate case, these detiilitions' 
may be extended 'in 'a'natun,lway to ,the case of more. than two random 
variables .. \ . .' 

,-:; ,J . 

I 2.5 Expectation 

The expectation of a random variable X exists only if the defining sum or 
integral converges absolutely. If X is' a continuous;random variable we define 
the expectation. of x' as: . 

if fa> Ixlf(x)dx < 00 

. . .r. of X:'Similarly; if X' is a discrete ranc:\om variable which 
may take the values (Ji;},'lhen >. . "','. ." ',:. 

• _. . i" .' '". '_" 
<f[X] = LX, Pr(X'= x,) 'if 'L Ix,1 Pr(X' = x".:<oc , i 

The'variance of a random varia»le X is defined as 
;j •• -. _ J ,', ).. • 

. Var(X) = <f[(X'''':&[X))'] 
,', I' 
,-.--J . 
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r and the covariance between random variables X and Y is defined as 

. Cov(X, y) = <f[(X -<f(X])(y -<fry])] 
/' .". ".- .. , - ,- .. -: '" 

The:-expectationof a random variable X,is frequently,used as a. measure of 
location' of thedistd&"tioH';;r X, vi-liilethe·variance .provides,a· ni'easure of 
spread random viriables·haye,zero' cOviri: ' 
ance, but in generarthe converse isnot " . 

The correlation between random variables X.apd, Y is ddined as 

" " Cov(X,Y) 
Corr(X, Y)= -;-::-,",-.. .J [Var(X) V':r(y)] i-.. 

2.6 The binomiaJ and negative"binomial.distributioDS 
" _ :" ,I, : _ .' __ " .. ' _", • - •• : l!::' J' ., ,_ 

Consider a 5utce'ssion of tosses' of a coin; at 
each of which either 'success' (which we could identlfy with"heads''iri'the case 
of the coin) or 'failure' ('tails' for the coin) oecurs. This rudimentary succession· 
of experiments, or trials,'providesthe framework for'three important discrete 
distributions. -

.d, :, 
.j ',' -.1; •. , 

q =·1 - p ,= Pr(fililure) 
, '1 -,:. . 

Let p' ;;.; Pr(suecess) . and 

The simplest is the geometric distribution, which results if we let X be the-
discrete random variabie measuring the number of trials until the first suecess. 
We have 

'-', , . 
Geometric distributi';n: 
Pr(X = i) = qi-l p for 

J: • __', .. 

lS;Soo' , , 

J <f[X] = lip and VariX) = qlp' .v 

'Figui. 2.1(a) gives a bar-chart ilIustratjngthegeometric distribution for the 
case p = 0.5. Figure 2.1(b) the.·resuit 'df siinuliitiilgsuch a 
geometric random variable 100 times, , 

The binom'ial distribUtlon results if we fix a number of trials at n ;;,: 1, say, and 
- "'..J 

Figure 2.1 (a) Bar-<:har,tillust\ating the disiributibn with p = Q,S, (b) Bar-
chart illustrating the results simulating a random variable with the distribution of 
(a) 100 times. Here i is observed "I times, i 1. 
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2.9 The f. .. c.", n,tra,,!, .. Jheorem 23 
". .l tl 

a result U (0, 1) ral)dom variable X, 
<!"[X] = 1,; Var(X,l = 1/12, Figu're 24illlistrates 
density 'function, ana also a' histogram reSUlting from a random saQ1plj: of size 
100 from this density) ,., 

r 2.9 The normal'distribution·and a'central ,limit ,theorem 

A continuous random variable 'with a normal distribution" and mean Jl. and 
variance ,,2 has the p.d.f. . 

Normal probability density funCtion: 

. 

Early work on this distribution was bj/such pioneers as De Moivre, Laplace 
and Gauss, end century tlle, sta,rtpf the 19th . 
centuryIThe normal distribution is so called because ofits cominorioCcurrence' 
in nature. which is due to li£!1it :stite" that,' 
under appropriate conditions, when one adds a large number of random 
variables, which may well not be normal, the reSUlting sum has an ap-
proXimately normal A formal statement of the commonest 
central limit theorem is that: 

\if X l' X 2 , ••• ; X. are independent, identically distributed random vari-
ables, with C[X,] = Jl. and Var (X,) = ,,2, then for any real x, 

lim Pr {._1_ i: (Xi - Jl.) x} = <!J(x) 
"-.;0 In je< 1 (J 

where <!J(x) is thec.d.f. of a normal random variable with zero mean and unit 
variance . .,.} 

For a more general central limit theorem, and historical background, see 
Grimmett and Stirzaker (1982, p. 110). 
iWe shall use the notation N(Jl., ,,2), to deriote the distribution of a normal 

random variable with mean Jl. and variance .<Cl The N (0,1) case is frequently 
called the standard normal, when the p.d.f. is denoted by "'(x). Figure 2.5 
illustrates </I(x) and also presents a histogram resulting from a random sample 
of size 100 from this density. 

Figure 2.4 (a) The U(O, 1) probability density function. (b) Histogram summarizing 
a random sample of size 100 from the density function of (a). 
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2.1,0 . Laplace distributions 
- -' -,' ." ';.' ... ! ,'. . 

We say that'a continuous random variable X ha,s an!exponential 
with A when we can write the p.d.f. as .. '. 

,·Exponentialprobability.density. funGtioJ): . 

f(x) ='Ae-'x for 0 ,,;; x ,,;; 00, . 

SeX] = 1P- and Var (X) = lfA2 

Some authors (see for example Barnett, 1965) calHhis the 'nega,tive exponen-
tial' p.d.f. .J 
\" The Poisson process, mentioned in Section2.7, is often used to model the 
occurrence of events in time'. It predicts that . 

e -" (At)' 
Pr (k events in a time interval of length t) = k!.: , . for 0";; k ,,;; (jJ 

." 
where), > 0 is the rale parameter for the model, and is equal to' the average 
number of events per' unit 'time . .-l 

f 

-2 -1 

t(x) 
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x 

2.10 Exponential, gamma, chi-square and Laplace distributIOns 
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Figure 2.5 (a) The standard normal probability density function, 

4>(x) = +exp ( - x, ) overthe range - 3 ,,;; x ,,;; 3. (b) 'Histogram summarizing a 
" (2,,) 2 

random sample of size lOO from the density function of (a). .J 
l If Tis a random variable denoting the time to the next event in the Poisson 

process, measuring time from some arbitrary time origin, then 

Pr (T I) = Pr(no events in the time interval (0, I») 

i.e. /(1) = Ae -" .---l 
I and so times between events in a Poisson process have an exponential 

distribution. ..J 
\ If we form the sum 

s= I x, 
i= 1 

in which the X, are independent random variables, each with the above 
exponential distribution, then (see Exercise 2.6 and Example 2.6) S has a 

, ) 
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J count the number, X, of successes. This gives 

Binomial distribution: 

for 05 i 5 n 

0"[X] = np and Var(X) = npq 

Figure 2.2(a) gives a bar-<:hart illustrating tbe binomial distribution for the 
ease p = 0.5 and n = 5. Figure 2.2(b) demonstrates the result of simulating 
such a binomial random variable 100 times. We shall refer to sucb a random 
variable as possessing a B(n, p) distribution, tbus specifying the two 
parameters, nand p. .J 

A geometric random variable provides tbe wailing-lime measured by the 
number of trials until the first success. The random vadable X wbicb measures 
the waiting-time until the nth success bas a negative-binomial distribution. 
Wben X = n + i, for i "" 0, tben tbe (n + i)tb trial results in success, and tbe 
remaining (n -1) successes occur during tbe first (n + i_I) trials, and we can 
write 

Negative-binomial distribution: 

(
n+i-1) Pr(X = n+iJ = i plq" for 0";; i ,,;; 00 

4[X] = nip· and Var(X) = nq/p'. 

As is shown in Exercise 2.18, there is a simple relationsbip between the 
binomial and tbe negative-binomial distributions. 

2.7 The Poisson distribution 

A random variable X witb a Poisson distribution of parameter .< is described as 
follows: . 

Poisson distribution: 
-Ali 

Pr(X= 
I. 

for 

4[X] =.t and Var(X) = .t 

Figure 2.2 (a) Bar--chart illustrating the binomial distribution for the case n = S, 
P = 0.5. (b) Bar-<:bart illustrating the results from simulating a random variable with 
the distribution of (a) 100 times. Here i is observed "I times, 0 :s; i :s; S. 

0.4 

0.3 . 

o.Z 

0.1 

0.0 
0 

nf 
3Z 

30 

Z8 

Z6 
Z4 

. ZZ 

ZO 

18 

16 

14 

lZ 

10 

8 

6 

• 
Z 

0 
0 

I. 

·,r 

I 
z. l 5 

(oj I 

, , , , ., , , , , , , , , , , , , , , , , ' . , , , , , , , .. , , , , , , , ; , , , , , , , 1 , , , 
1 

, 1 
1 , , , , 

Z 3 • 5 
(bJ i 

..-1 



20 . Some Probability and Statistics Revision 

Named after the French mathematician, S. D. Poisson, who derived the 
distribution in 1837, the distribution had been obtained earlier by De Moivre. 
The Poisson distribution is often useful as a description of data that result 
when counts are made of the occurrence of events, such as the occurrence of 

(telephone calls in fixed intervals of tim;,.rr the numbers of plants within areas 
of a fixed size. This is because the real-life processes giving rise to the data 
approximate to a model called a Poisson process, which predicts a Poisson 
distribution for the data. We shall discuss the Poisson process in detail in 
Section 4.4.2. 
( Figure 2.3(a) gives a bar-chart illustrating the Poisson distribution for A = 5, 

.and Fig. 2.3(b) describes the results of simulating such a Poisson random 
variable 100 times. J 

2.8 The uniform distribution 

The simplest continuous random variables have uniform (sometimes called 
rectangular) distributions. As we shall see later, uniform random variables 
form the basis of most simulation investigations. A uniform random variable 
over the range [a, b] has the p.d.r. 

Uniform p.d.f. over [a, n 
1 

J(x)=--(b -a) 

J{x) = 0 

for a < x < b 

for :x < a and x > b 

We shall frequently refer to this as the U(a, b) p.dJ., the most important case 
being when a = 0 and b = 1. 

The c.d.r. of a U (0, 1) random variable X is given by 

F(u) = t 1 dx = u for 0'; u ,; 1 

and so for any 0 ,;:; IJ. ,;:; [3 ,;:; 1, 

= F{[3)-F{IJ.) = ([3-IJ.) 

Figure 2.3 (a) Bar-chart illustrating the Poisson distribution for A = 5. (b) Bar-chart 
illustrating the results from simulating a random variable with the distribution of 
(a) 100 times. Here i is observed ni times, for i ;;:: o. 
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I gamma distribution with the .p.d.f. 

Gamma prob.ability dimsiiy function: 
e-J.,x,;""x"-:-l,, 

f(x)=r(n) .' for O:S;'x:S;OCJ 

SeX] = 1If} • . and Var (X) = 11/)..2 
, '."., 

We shall refer to such a gamma distribution by of the notation 
1(11, )..). In this derivation, n is a positive integer, but in general gamma random 
variables have the above p.d.f. in 'which the only res.triction .on Ii is n > O. 

Figure 2.6 presents an exponential p.dJ., and two p:d.f.'s, and a' 
histogram summarizing a random sample of size 100 from the exponential 
p.d.f. 
'I A random variable with a I(v/2,'ildistribiltion is said to have a chi-sq¥are 
distribution with parameter or ",hich we shall not discuss here, the 

Iparameter v is usually ·referred to as the 'q"grees,of-freedo'm" of the ilistri-' 
buti0!!lA random variable X .with a 1(v/2, i) distributio.n is arso said tohave a X: distribution, with the p.d.f. 

--. 

-,c,2 v/2-1 - ex" 
fIx) = 1(v/2)2"2 for x;;'; 0 

"'[X] = v and VariX) = 2v' .J I The exponential and gamma distributions describe only non-negative 
random variables, but the expo'nential distribution forms the basis of the 
Laplace distribution,. discovered by Laplace in '1774 and given below: 

Laplace prob.ability density function: 

fIx) = -;'Ixl 
2 

SeX] = 0 and Var (X) = 2/,-2 

Figure 2.6 (a) The r (1, 1) (i.e.; exponential), [(2, 1) and [(S, 1) probability density 
functions. (b) Histogram summarizing a random sample of size 100 from the 
exponential density function of (a). 
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Just as the geometric and' negative-binomial distributions describe waiting 
times when time is measured in integer units, the exponential and gamma 
distributions describe waiting times (in a Poisson process) when time is a 
continuous quantity, and we shall return to this point again later. 

2.11 Distributions of other continuous random variables 

Here we shall simply list the standard forms of the p.d.L of a number of other 
common continuous random variables to which we shall refer later. 
jA probability density function that has the same qualitative shape as the 
normal p.d.f. is the logistic p.d.f., given in standard form below: -

The standard logistic probability density function: 

for - OCJ :::; X :::; co 

C[X] = 0 and Var (X) = 'rr2/3 

We shall later make use of the logistic c.d.f., which in standard form is 

F(x) = (1 +e-T' for 

A unimodal symmetric p.d.f. with more weight in the tails than either the 
normal or logistic is the so called because of its appearance in a 
paper by Cauchy in 1853. In its standard form the Cauchy p.d.f. is as follows: 

The standard Cauchy probability density function: 

I 
J(x) = rr(1 + x') for - Cf:.l :::; X :::; 00 

Because of the large weight in the tails of this p.d.f., a random variable with this 
distribution does not possess a finite mean or variance. 

Finally, we give below the p.d.f. of a random variable with a beea distribution 
over [0,1]' , -

The beta probability density function over [0, I]: 

{ 

x·-'(I-x)P-'q,,+{J) forO<x< I 

J (x) = 0 qa) q{J) 
for x < 0 and for x > I 

2.12 New random variables for old 29 

C[ X] = "/(" + {J) and Var (X) = (a + W + {J + I) 

The beta distribution contains the uniform distribution as a special case: 
a = {J = I. If the random variable X has llris distribution; then such a beta 
random variable will be said to have a B.(", P) distribution. 

Figures 2.7-2.9 provide examples of tnese p.d.f.'s together with,histograms 
summarizing random samples of size 100 from the respective p.d.f.'s 

The logistic and Cauchy p.d.f.'s are given in standard, parameter-free form, 
but we can simply introduce and respectively 
by means of '" "X + p.This is anexample of transform-
ing one random va'riable to· give a new-rand0II:1 variable, and we shall now 
consider ;such transformations in a general 

r 2.12 New random variables 

Transforl1!ing, randod., variables is '3. common statistical 'practice, and one 
which is often in simulatio,n. The simplest transform",tion is the linear 
transformation, Y = aX + p: In'the case of certain' random variables, such as 
uniform,logistic, normal and Cauchy, this transformation does not change the 
distributional form, and merely changes the distribution parameters, while 
in other cases,the effect of this transformation is a little more compli-
cated:.J ' 

In the case of single random variables, a general transformation is Y = g(X), 
for some function g. In such a case, if X is a discrete random variable 
then the distribution of Y may be obtained by simple enumeration, 
using the distribution of X and, the form of-g. Thus, for example, ifY = X 2 , 

Pr(Y=.i) = Pr(X = - = Such eimmeration is greatly sim-
plified if 9 is a strictly monotonic function, so that in the last example, if X were 
a nori-negative random variable then we simply, have 

Pr(Y= i) = Pr(X =, 

rThe simplification of the case when g ,is a strictly monotonic function applies 
also to the case of the continuous random variables X. Two possible examples 
are shown in Fig. 2.10...J ' 

For the case (a) illustrated in Fig. 2.10, the events {Y S; y} and {X S; x} are 
clearly equivalent, while for case (b) it is the events {Y y} and {X S; x} that 
are eqllivalent, so that 

r for case (a), F(y) = Pr(Y S; y) = Pr(X S; x) = F(X)} '(2.1) 
and for case (b), I-F(y)= y) = Pr(X S; x) =,F(x) 
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Figure 2.10 IllUstrations of y = g(x) where 9 is strictly monotonic. (a) increasing and 
(b) decreasing. 

leading naturally to: 

and 
, 

dx 
f(y) = f(x) dy 

. dx 
f(y) = -f(x)-

dy 

Two examples of case (a) now follow . 

for case (a) ) 

for case (b) 
(2.2) 



34 SOllie Probabi/if.y ci:,d Slalis;ics l{e'visioll 

EXAMPLE ,2.2 
y = x2 

Jx(x) = Ae- Ax for x ;,: 0 

Ae-·b; ).e -i. Jy 
fY(Y) = - = --,--

2x 2Jy 

See Fig. 2.11 for the case ;i. = 1. 

EXAM PLE 2.3 
y= Jx 

fx(x) = Ae-'x for x 2: 0 

fy(y) =2;.ye -i,y' .. 

See Fig. 2,12 for the case;' = 1. 

We can see from Figs 2.11 and 2.12 how the two different transformations 
have put different emph;'ses over the range 'of x, resulting in the two different 
forms for fy(y) shown. Thus in Fig. 2.12, 'small' values ,of x are transformed 
into larger values of)' (forO < x < I"J x >',x), viJth theresultihat tlie'modeof 
fy(Y) is to be found at y = J(I/2A) > O. However, in Fig. 2.11, for b < x <' I, 
X2 < x, and the mode of Jy(y) remains at O. 

The aim in the above has been to obtainJ(y) as a function of y alone, and to 
do this we have substituted x = g-"(}'i:'Cases (a) and:(b) in Equation (2.2) are 
both described by:' 

-.: 

; 

If 9 does not'have a' continuous derivative, then' strictly'(2'.3) does not hold 
without a clear specification of'whatis'meiwt by,dx/d}" In, practice, however", , 
such cases are easily ,dealt with when they arise (see Exercise 2,25), since th!,", 
a£propdattresultofEquation (2.1) alwaysholds::giving FlY)'" " ':,:., , 
T The (2.3) isvery'useful iirthe sirtll11ation of random variables, we .. ; 

shall see later. It m'ay be 'generalized 't6 ,thecase"of more',than one random •.• , 
variable, when the derivative of (2.3) becomes a Jacob/all. Thus, for example, if' " 

w = g(x,y) 
and 

z = h(x, y) 

2.12", Newiralldom. varlables/orlold., ' 35 
\ us with a one-to-one transformation from (x, y) to (w, z), then the 

JacobIan of the transformation is given by'the determinant 

DW DW 
J= DX DY 

DZ DZ 
DX DY 

; and if J of and all the partial derivatives i'nvolved are continuous, we can 
, wnte the Jomt density of Wand Z as: ' 

Jw,z(W, z) = fX,r(:x, y)1 r'l (2.4) 

As with the cas,: of a single random variable, we express the right-hand side of 
, (2.4) as a funchon of z only. It is sometimes useful to note that 
, , . 

DX ax 
J- I = DW DZ 

DY DY 
DW DZ 

; It often Occurs ihat ;"erequirethedistribu'iion of the random " 
; = g(X, Y). Introduction' of somesliitablefunction, Z ,; h(X, y), may resul; .. 
; m a one-to-one transf?rmation, so that (2.4) will give the jOint density function 
• of Wand Z, fr?m WhICh we may then derive the required density ofW'as the 
. margmal 

Jw(w) = ffw,z(w, z)dz 
" , (See Exercises 2.14,and 2.15 for examples.) We shall now consider an example 1 of the use of (2.4). .. , ' " ' 
" 

" EXAMPLE 2.4 
" Let N I and N2 be 1). normal random The pair 

(N" N2 ) a,pOl':'\,m}Wo by Cartesian cO,-ordinates. The 
transformatIon, from'Cartesian to polai'co-ordin3:tes given,by 

,) .. ' ," ,N I =.,R cos E> 

N2 = RsinE> ' ,,' 

, , 

is onecto-one, and all the partial deav-;;tives involved continuous; so that we' '" 
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y 

",. ". 

" " \; " 

.' i' 
" 01, ,,": , 

X 
fyly) 2 2 

;1 
I 

I, 
'I ;, ! 'XIx), ! I 

. the . densitie$", ' 
'II' ,,.ii". ,:,,_' .c'" e - -,:) "::. _ 'I,' • ,:.'. .L. . .',', ..!iii [j-:-:.":,- '4 'I" ", :":!:11; " J" 

fx(x) =',:,', :::y(Y) " 2.)y'; The.shaded, reglons ,haye the same area,.", 
.i l 

, _.::l·,." 1.1,:;, , 
'" ' , <; I ',.d ' 1,1 ,: ,,' ";.1;., ,::; I, , ' • . t;:;i - , !, 

may usb (2.4),to derive 'the joint density' function R and,e as follows:" . 
,i',:: ,., ,," 

'I ,-'I-, I ,I I an! 

•• '1 

]-'f = or 08 ="1::: ., 81"'" '. =r on, on, rcos8 ." 
or 08 

L I 'r ,:, " "', " 
= exp [...:.,'/2J .. 2,,· . 

We thus see that Rand e are independent iimdom variables, withfa(8) = 1/2", 
i.e, e is uniform over [0, 2" J, andfR (r),= r [ - r' /2J, i.e. (see Example 2.3), 
R2 of paraII)eter! .. 

2.13 Convolutions J'j 

y 

4 

"---':::" 

X 
fyly) 2 

'X(xl 

i. 2}7: ,i qf the y = .jx and the densities 
ix(x) = e %./yU')'= shaded regIons have the same;area. 

r 2.13' Convolutions 

We have seen earlier that a further common transformation is a linear 
combination of a number of independent random variables. Again,fTil some 
cases the distributional form of the components of the sum is preserved, as 
occurs with Poisson, normal and Cauchy random variables, for example, while 
in other cases the distributional form changes,.as when a sum of independent 
exponential random 'variables 'has a gamma'distribution,' as we hi ... e seen 
aboved'·,·' ., .... _,.. " .. ':- .. ,', .. 
rThe sum ofmutuallyjndependent random aionvpluiion. 

Its distribution"may be, evaluated by .. a convolution SlIni, or integral, as 
appropriilte, as'can be seen from.the two examples that now follow . ..-1 

!EXAMPLE 2.5 
Suppose X, has a B(n" p)distribution, X, has a B(n2' p)distribution,and that 
X, and X 2 are independent. 
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Let S = X, +'X, 
.,' . -' 

Pr(S=k)= L: 
, 1=0 ',' 

which can be shown to equal: 

" ("'':"' )P'(l-P)"'+'"'-' . for 0,"; k"; 11,.+", 
Thus S has a B(Il, + 11" p) distribution. 

EXAMPLE 2.6 
Suppose X, and X, are independent exponential random variables,. each with 
the p.d.f . .<e - 'x for x :2: O. ' , 
Let S = X, +X, 

Is(s) = fIx,(X)Ix,(S-X)dX 

= f: '<'e-'Xe-'('-X1dx 

= )!e-"s for s:2: 0 

i.e. S has a r(2,'<) distribution. 

", .-
The result df'this last example was,anticipated in Section 2,10, and further 

examples of convolutions are ,given.in Exercises 2.5-2.8 .. and 
often difficult feature in the evaluation of convolution sums,and mtegrals 's the 

determination 'of the admissible range for the convolution sum or 
integral. 

2.14 The chi-square goodness-of-fit test 

In the above figures illustrating we can see the qualitative 
match between the shapes of distributions and the correspondmg shapes of 
histograms or bar-charts. For larger samples we would expect this match to 

.2:15 Multivariate distributions. 39 
improve. Whatever the:sample size,. however; we can ask whether the,match 
between, say, probability. density functionJlOd.histogram is good:enough. This 
is an importanLquestion,when it comes to testing a procedure for-simulating 
random variables of a specific type. 

Special tests exist for special distributions, and we, shall encounter some of 
these in Chapter 6; however, a test, due to K. exists ;;"hich may be 
applied in any situation. When this test was established by Pearson in 1900 it 
formed one Of cornerstones, Of modern statistics. The test refers to a 
situation in which, effectively, balls are being placed independently in,one of m 
boxes. For any distribution we can divide up the range of the random variable 
into m disjoint intervals, observe how many of the simulated values (which now 
correspond to the balls) fall into each of the intervals (the boxes),and compare 
the observed numbers of values in each interval with the numbers we would 
expect. We then compute -the statistic, 

, X 2 = f (O,-E,)2 
i=1 Ej 

where .we haye, used 0 i alld E, fo denote respectively the observed iind exp;,cted 
numbers of vaiuesin the' ithiillerval. If the raridom variables are ir;deed from 
the desired distribution then'the X2 'statistib has, asymptotically:;' chi-square 
distribution on an appropriate number of degrees of freedom. The rule for 
computing the degrees oj; freedom is 

degrees of freedom = nl;lmber of inter,vats -1 - number of parameters, 
, , estimated, if any 

This test,is IIsefu) of its univ,ersal applicability, but simply because it 
may be :applied in general it tends not to be very powerful at detecting 
departures from what One expects. A further problem with this test is that the 
chi-square result only holds for 'large' expected values. Although in many cases 
this may simply mean that we should ensure E, > 5, for all i, we may well have 
to make a judicious choice of intervals for this to be the case. For further 

p. 40); ,hd p: 172). the 
distribution of X 2 when cell values are small is discussed by Fienberg; this case 
may be investigated by simulation, and an illustration is in Section 9.4.1. 
We shall use this test in Chapter 6 (see' also Exercise 2.24). 

*2.15 Multivariate distributions 

In the last section we encountered simplest of all multivariate distributions, 
the multinomial distribution, which results 'when we throw " balls· in-
dependently into m boxes, with p, = Pr (ball lands in the ith box), for 1 ,,; i ,,; m 

and 1 Pi = t .. , 
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Here we' have a family of random ',variables, {X;, 1·" i" m}, where X; 
denotes the number of balls· falling into·the ith box; and·so I X; = n. The 
joint distribution of these'random variables' is given below."" 

Mttltinomial distribution: 

, Pr (X; = XI, 1 " i" m) =( 'n ' ) IT pf', , 
X 1.X2'···.Xm. f=l 
m m 

. where L X; = nand L P; '= 1 
i"" 1 i "" 1 

Here 

the multinomial coefficient. 
. . An important continuous multivariate distrioution is the multivariate 

also called the In iis bivariate 
,: forni the normal deflsity function is '" , 

Bivariate normal probability density function:" 

1 ' ' '{ 1 ' [(Xl -P., )2 
t/>(XI' X,) = 2m111T2(1-'p2)1/2 exp 2(1_p2) 

, , 
for -00 < Xl. Xl <;:: ro 

. Here p is ilie between the 'two random"variables;' Fig: 213 
, "" i _ . _ ,. . •. -_ 

, illustrates two'possil:ile fonns for i!>(x1; Xi). The p-va"riate density has 
"the 'followiiig form:' ',' ' , 

': 
p-variate multivariate normal probability density function: 

t/>(x) = (27tp /21:!: 1- 112 exp ( -! (x ;-,I')':!: - I (x - I'll 
" " .,', 

for - CO < X; < CO, I " i " P 
notation used: N (p.,:!:) 

Here I' is the mean vector, (x - 1')' is the transpose (row vector) of the column 

2.16, ,Generating functions 41 

vector !x - 1'), and. :!: isthe variance/covariance matrix, i.e. :!: = {1T;j' 1 " i, 
} " p}, In whIch IT;j IS the covariance between the component random variables 
X; and Xj' Thus "II isthe variance of X;, for 1 " i "p. 

It can readily be shown (see, e.g., Morrison, 1976, p. 90, andcr. Exercise 216) 
that if Y = AX and X has the N (p.,:!:) distributic;m, where A is a nonsingular 
P x P matrix, then Y has the N (AI', AI:A') distribution. 

*2.16 ,Generating functions 
The material of this section is not used extensively in the remainder of the 
book, and many readers may prefer to move On to Section 2.17. 

It is often convenient to know the forms of generatingJunctions of random 
variables. For any random variable X, we define the moment generating 
function (m.g.f.) as 

Mx(e) = g[e BX] 

for an appropriate range of the dummy variable, e. Not all random variables 
have m.g.f.'s: the Cauchy distribution provides a well-known example. 
'However, if M x(e) exists for a nontrivial interval for e, then the m.g.f. 

I,) 

0.0/ 
',0/ " 

Fig. 2.13 
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0.12 

Ibl 

Figure 2.13 Illustration of the bivariate normal density function for, the cases 

(a) 1'.-1',=0, tT, =tT,= I, p=O 
(b) 1'. = 1', = 0, . tT, = tT, = I, P = 0.5 

characterizes the random variable. An alternative generating function is the 
probability generating fu;;ction, defined by 

G(z) = C[zX] 

M.g.f.'s for some of the distributions considered earlier in this chapter are 
given in Table 2.1. 

For the distributions of Table 2.1, the m.g.f. may be used to check the values 
of means and variances given earlier, since .. , ... - , i 

M'(O) = S[X], and M"(O) = ';[X'], 
illustrating why the m.gJ. is.so·named. 

A glance at the m.g.f.'s of Table 2.1 shows that binomial,.neg!\tive-binomial", 
and gamma random variables. can be expressed as convolutions.of identically .. 

2.16 Generatingjunc/ions .... 
. • •. , ' .• '.' ,,'! 

Distribution 
";,._1 ;. 

'm.g.f. 

geometric: Pr (X - I) - q; • p -qe')-', for qe' < I' 

binomial: B(n,p): Pr(X = i) = C)piq:-; 

negative-binomial: Pc (X = n + i) 
(q + pe')' 
p"e"9(1_qe6)-II. for qeB < 1 

(
n+l-l) , . 

= . pq' , 
. e-A.;..i 

POlSson: Pr (X = i) = --
iJ 

'-, "', ;' e-x.1/2 
normal: N (0, I): fIx) = --.J (2n) 

e.xponential:f(x) = .Ie- 2, 
.I-a for a < .I 

gamma: rln, ,l): fIx) ,for a <.l 

distributed random variables, We see why this is so as follows: 

, Let 

then 

, 
s = " x· . £.., , 

i= 1 

M 5(0) = c[exp(o J, X,) ] 
= {v, exp (OX,) ] 

and if the {X;} are mutually.independent. then 
, , 

M 5(0) = ITC[exp(OX,)] = IT Mx(O). 
1=1 . i=l I 

Furthermore, i(the {X,} have the common m.g.f .• Mx(O), say. then 

43 

M 5(0) = (M x(O))' . (2.5) 

Thus. for example. a random variable X with the 1(n • .\) distribution can be 
WrItten as 

.' J 

" ' .. 

, ;.' 
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where the E, are.'lndependent, identically qistributed eiiponential random 
variables with parameter A (cf. Exercise 2.6). . 

Moment generating functions may also be defined for m jointly distributed 
random variables'Xj-, X 2 •••.• Xm • as follows: 

M x(B) '" exp (B,X,)] 

Thus for the multinomial distribution of Section 2.15, we have the multivariate 
moment generating function 

Mx(B) = (JI p,exP8,)". 
while the multivariate normardistribution of Section 2.15 has the multivariate 
m.g.f. 

M x(O) = exp (0' I' + 10'1:0) 

A bivariate Poisson d'istribution which we shall encounter later is simply 
defined by its m.g.f.: 

M x(O) = exp [AI (e 9, -1)+A2 (eo, -1)+ A) (e9, +9'_1)] (2.6) 

We shall conclude this section with two examples which complement work 
earlier in the chapter and illustrate further the utility of generating functions. 

EXAMPLE 2.7 Proofofa celltra/limit theorem 
A B(n, p) random variable W can be written as a convolution: 

• 
W= L X, 

i=1 

where off [X,] = p and Var (X,) = pq, where q = 1 - p. 

(W -lip) 
Let S. = .j (lip) 

then [ ( w-np)o)] 
M s.,(O) = off exp .j (lIpq) 

where cP = 8/ .j (lIpq) 

and so by (2.5), as the {X;} are independent, 

M s.(B) = (M y(cP»", where Y=(X,-p) 

2.17 Discussion and further reading 45 

From the off [Y] = 0 and C [y2] = pq, and so 

( 
",2pq )" M 5,(0) = 1 + -2 - + higher terms in '" 

( 
02 '. ( 0 ))" = 1 + 2n + higher order terms in .j n 

and by a result similar to that of Exercise 2.22, 
M s.<B) -, exp (82/2) as n -"'Xl.: 

1'lius as n --+ co the m.g.f. of S. --+ the of an N (0, {rrandom variable, and 
so the distribution of S, --+ N (0,1).' A: :similar limiting applied to the 
multinomial distribution results in 'the- distribution. 

EXAMPLE 2.8 Deriving the Poisson distribution jron. ·the .. binomial 
distrib ution , 
IfW has a B(n, p) distribution, then 

Mw(8) = (1- p+ pe')" 

, Now let us keep np = A, say, fixed, while we let n --+ co (and consequently 
p --+ 0). 

Now 

a'nd as n -+ 00, Mw(O) --+ exp [A(e' -1)], (see Exercise 2.22) 

i.e. the m.g.f. of a Poisson random variable with parameter A.' Hence under this 
Ijmiting operation the distribution of W tends to this Poisson form. 
; It is possible to derive the exponential and gamma distributions by similar 

limiting processes applied, .. respectively, to the geometric and negative-
binomial distributions (see Exercise 2.23). This approacli may .be used to 
provide an heuristic proof that the rules of the Poisson process result in a 
predicted Poisson distribution (see Parzen, 1960, p.253). 

2.17 Discussion and further reading 

While we have dichotomized random variables' as usuallY' discrete or 
continuous, we have not mentioned, for instance, that most discrete random 
variables siniply take"illteger' values. Furthermore; ·the continuous random 
variables 'we have considered· are, formally, absolutely continuous:random 
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variables. Such discussion is not necessary for the material.tofoIlow, buti! may' 
be found in books such as Blake (1979) and Parzen (1960). Additional'discrete 
and continuous distributions will arise throughout the book. , 

In this chapter we have presented only the tip 'of a wiry large iceberg. Much 
more detail can be found in, for example, Haight (1967),)ohnson and,Kptz 
(1969, 1970a, 1970b and 1972), and Stuart (1961) and Ord (197;,2). 
Mardia (1970) considers families of bivaria\e distributions, while Douglas 
(1980) describes the interesting distribu'tions which'dm result from special 
'combinations of distributions such as the binomial and Poisson; Cramer 
(1954) discusses and proves different forms of pentral limit theorems, and 
Bailey (1964), Cox and MiIler (1965) and Feller (1957) provide the necessary 
background to the Poisson process. Apostol (1963) is a good reference for the 
fuIl transformatio'ncof-variable tbepry, whic\t is ,also weIl, by,J:Hak!', 
(1979). Further discussion of the chi-square goodness-of-fit test is provided by 
Cochran (1952)and Cra'ddol:k and Fl06d'(1970), whose smaIl'sample study is 
the subject of A introduction to some orthe 
material of this chapter is provided by'Folks '(1981), and Cox and Smith (1967) 
provide a good introduction to the mathematical theory of queues, relevillit to 
Exercises 2.26--2.28. ' ' " 

2.18 Exercises and complements , , 

(a) Transforming random variables 

o '2.1 

o 2.2 

2.5 

Derive the density function random variable 

X = -log, U, where U is U (0, I). 

Consider the effect of the transformation Y = aX; where a is a fixed 
constant, and 'X is, 'e.g., an normal, 'gamma, or Poisson 
random variable. 

Show thatif X has the distribution of Exercise 2.1, and W = y then 
W has a WeibuIl distribution with p:dJ. ' , 

, , ,[3 , 
fw(w) = 7 wP-' exp [ - (w(y)P] 

y 

forO:'; "? < 00, '[3'>: 0, y > O. 
Find the distribution ofY,= N', where N is an N (0, 1) random variable. 

If Y" Y" ... , Y. are all mutually independent N(O, 1) random 
variables. show, by induction 'or otherwise, that '1:7=1 Y'f has the X! 
distribution. 

2.6 If Y" Y" ... ,Y. are ,,11 'mutually independent exponential random 

*2.7 

012.8 

, 2.9 

412.10 

*2.11 
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variablesl:)yith p.d.f. '\e-·Y,Jor'\ > 0, y.,<::O, ,sho.w,by induction,and 
using the con:volution that:E:., Y, has the r.(n,'\) dis\ribution., 

If Y" Y" .. . ,Y; are all Cauchy random 
variables with p.eLf., (n(1 + )i'»-'; . derive' ihe: distribution of 
Ijn:Er=,y,. 

X, Yare independent random va;iables. Fin'ci the distribution of x.+ y when: ,', ," ,', 

(a) X,YareN,(p" !Til, " 
Q(b) X, Yare Poisson, with:pa,r,!meters A, '/l, respectively 

(c) X, Yare exponential, with parameters ,t, /l, respectively. 
If X, Yare as in Exercise 28(b), find 

Pr(X=rIX+Y=n) 

If X and Yare independent random variables, find the distribution of 
Z = max (X, Y) in terms of the c.d.f.'s of X and Y. '" 
X l1 Xz ,···, X lI afe independent random variables with the distri-
bution of Exercise 2.1. Proye that the following random variables have 
the same distribution: 

Y=max(X"X" ... , X.) 

z=x,+X
2
,+ ... +X •. . , . \ n 

'*2.12 Random variables Y, and Y, have the exponential p.d.f., e - % for' x ;;, O. 
Let X, =Y,-Y, and X, =Y, +Y,. Find the joint distribution of 
(X"X,). 

'*2.l3 Let X" X; be two and identically distributed non-
negative continuous random variab'les. Find the joint probability 
density function of min(X"X,) and /X,,-X21. Deduce that these 
two new, .random ,vari,,?les are independent if and only if X, 
and X, have an exponential distributio'n. In such i. case evaluate 
PrIX, +X,:,; 3 min(X" X,):'; 3b), 'where b consiant. ' 

12.14 Random variables X, Yare independently distributed as xi. and xi. 
respectively. Show that the new random variables, S = X + Y and 
T = X/eX + Y) are independent, and Thas a beta, B, (a, b) distribution. 

; *2.15 If N" N2, N" N. are independent N (0,1) random variables, show that: , 

(a) X =" has the exponeritlal p.d.f., for x:2: O. 
,(b) C o='N,/N2 has the cauchy distribution of Exercise 2.7: ' .. ., , .... . 

*2.16 X is a p-dimensional column vector with the multivariate .. N(O, I) 
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distribution, in which 0 denotes a p-variate zero vector"and I is ·the 
p x p , 'iClentity matrix,' If Z = AX + 1', ',where A- is an arbitrary 
p x p matrix, and Jl is an arbitrary p-dimensional column vector, show 
that Z has the H (I', AA')',clistribuiion. ',' 

(b) Manipulation of random variables, and questions arising 
from the cha'pter 

*2.17 Two independent Poisson processes have parameters,l.1 and ,l.2' Find 
and identify the distribution of the mi!nbenif everits in the first process 
which occur before' tne'first eveht'in "the"1secoha process.· . 

*2.18 Random X and Y have the'related'distributions: 

*2.19 

*2.20 

*2.21 

*2.22 

*2.23 

Pr(Y= k) = (n:n:)c1_6)'6.+ m-. 

.,' for k :2: ,0 

Here n, m are positive integers, and 0 < 6 < I, sO that.y is binomial, 
and X is negative-binomial. By finding the coefficient- of Zl in 
(i + z)·+m/(i + z)m+ I-I, for 0 ,;; i ,;; III, or otherwise,.show that . . 

Pr(X ,;; III) = Pr(Y:2: n). 

Use a central limit theorem approach to show that 

n nr I 
. lim e-' I,=-. 

""'!XI ,=0 r. 2 
Show that.a random variable with the negative-binomial distribution 

tl?-e . . .' j . 

Show that '" random yariable with the gaminar (n, .:!J'disiHJ:iution has 
the··mbment" funcfion ," r .for e d. 

ShOW, tha,i '( 1 eX. 
Suppose X is a rand.om variable with a geometric distribution of 
parameter p. Let Y.;"aX.If" ',...0 andp "',O)n such a way tnat). = alp is 
a constant, show that the distrioution'ofy ierids to' that of a random 

with'an: 'exponential distribution with parameterl,l. -1. 

2.24 

2.25 
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Use the chi-square goodness-of-fit .compare the observed and 
expected'values in,the inte!",als: (0,0.1), (0.1,0.2), etc" for the example of 
Fig.2A, arising. from the, U (0, 1) dist.ribution. data 
frequencies are, in increasing ofder: 8, 8, 14, 12,.11, p, 12, 6, 12, 6. 

Xis'a'iandomvariable with the exponeiltial p.d.f., e- x for x O. We 
define Yas follows: 

f';r 0 ;XS:I, 
for X:2: I; 

Obtain the of Y. 

Y=X 

y= 2X-1. 

(e) Questions on modelling,-continuing Exercises 1.4, 1.6 and 1.7 
, > ••• ; 

f2.26 The.simpleq'leue 1.4.measured tiI;ne in integral units. More 
realistically, times between. arrivals, and,service times; would be con-
.tinuous ,quantities, sometimes ,by 'random variables with 
exponential djstributions. Observe a real-life queue, at a Post-offiCe, for 
example, make a record of inter-arrival and service times and'illustrate 
these by means of histograms. What underlying distributions might 
seem appropriate? 

2.27 (contin'uation) The 'BASIC"program' given below simulates what is 
called an MIMII queue (see e.g., Gross arid Harris, 1974, p. 8). In this 
queue, times are independent random variables with Ae -1.x 

exponential density Junction, and service times are independent 
random variables with I'e -px exponential density function. There is just 
one server and, ,l./(,l.+ 1') plays the r6Ie of p in Exercise 104. Run this 
program for cases:,,l. = I',,l. > I' and,l. < 1', and comment on the results. 

NOTE that the statements HiD, 150 and 190 below simulate a UfO, I) 
random variable. The method used by the computer is described in the 
;}ext chapter. The function of statements 110 arid .160'shOi.dd be, clear from 
the solutions to Exercises 2.I-and 2.2. An explanati6n' of why this 
program does in fact simulate an MIMII queue is given in Section 8.3.1. 

10 REM THIS PROGRAM SIMULATES AN MIMl11 .QUEUE. STARTING EMPTY 
20 REM AS INPUT YO'U MUST PROVIDE ARRIVAL AND DEPARTURE RATES 
30 REM NOTE THAT THERE IS NO TERMINATION RULE IN THIS PROGRAM 

, 40 PRINT "TYPE LAMBDA AND MU, IN THAT ORDER" , , 
50 INPUTL.M 

,60 LETS,=L+M 
70 LET J = LIS 

SIZE ....... AITER TIME" 
100 LET U = RND 
110 LET E = (-LOGfU))/L • 
120 REM.E,IS THE tIME TO· FIRST ARRIVAL AT AN EMPTY QUEUE 
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130 LET'Q = 1 
140 PRINT Q,E 
150 LET U = RND 
160 LET'E = (-LOG(U»/S 
170 REM E IS TIME TO NEXT EVENT. IE., ARRIVAL OR DEPARTURE 
180 REM WE MUST NOW FIND THE TYP.E OF THAT EVENT ' " 
190 LET U = RND 
200 IF U > I THEN 250 
210 REM THUS WE HAVE AN ARRIVAL 
220 LETQ=Q+I· 
230' PRINT Q.E " ',L 
240 GOTO,150 
250 REM THUS WE HAVE A DEPARTURE 
260 LETQ=Q-I 
270 PRINT Q,E 
280 IF Q = 0 THEN 100 
290 GOTO 150 
300 END 

*2,28 ( ) continuation We have seen that exponential distributions result 
from processes, and we can consider the parameters;' and Jl of 
ExerclSe 2.27 to be rate parameters in Poisson processes for arrivals and 
departures, respectively: In some cases it-may seem realistic forrXand J1 
each to be of-the current queue size;n, say: For e'xample, if A. n 
.= 2/(n + I),and J1 = I, we have simple 'discouragement' queue,with an 
arrival rate which decreases with'increasing' queue size: Modify, the' 
BASIC program of Exercise 2.27 in order to simulate this discourage-
men!queue; and'compare the behaviour of this queue with, that of the 
MIMII queue with A = 2, J1 = 3. We shall contiriuediscussion of these 
queues in Chapters 7 and 8. 

3 
GENERATING UNIFORM 
RANDOM VARIABLES 

3.1 Uses of uniform random numbers 
r--" ' I • ' 

\ Random digits are used widely in statisiics, for example,in the generation of 
random samp,les (see Ba,nett, 1974, p. 22), or in the allocation of treatments in 
statistical experirrientsj(see Cox, 1958, p. 72). More generally still, uniform 
random numbers ana digits are needed for the conduct oflotteries, such as-the 
national premium bond lottery of the Kingdom (see Thompson, 1959). 

A further use' for randoin digits is given in the following example. 

!EXAMPLE:3.! 
The randomized response technique 

, ' In conducting surveys of individuals' activities it may be of interest to ask a 
question which could be embarrassing to the interviewee; possible examples 
include"questions relating to car'driving offences, and the. use 
of drugs. Let us denote the embarrassing question by E, and suppose, for the 
popUlation in question, we know the frequency, p, of positive response to some 
other, non-embarrassing, question, N, say. We can now proceed by presenting 
the interviewee with both questions Nand E, and a random digit simulator, 
producing 0 with probabilitypo, producing 1 with probability 1 - Po' The 
interviewee is then instructed to answer N if the random digit is 0, say, and to 

, ,answer E if the random digit is L The interviewer does not see the random 
"digit From elementary probability'theory (see ABC, p. 85) 

-I. . 

Pr(response ,;=' Yes) = Pr(response = Yes I question is N)po 

+ Pr(response = Yeslquestion is E)(1 - Po) 

Knowing Po and Pr(response = Yes! question is N), and estimating 
,Pr(respollse ;;;,Yes) frolll the survey, enables one to estimate Pr(response 
= Yes! question is E). This illustration is an example of a rindomized-

. "I 
51 ---' 
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Iresponse technique (RRTlJand for further examples and discussion, see 
Campbell and Joiner (I973) and Exercises 3.1-3.4. 

Uniform random nu,?bers are clearly generally useful. Furthermore, in 
Chapters 4 and 5 we shaW'see,tliatfif w,e'haye a U (0,;1) random 

_ • ,_ ,-, / ;. , ,_ i 

variables, we can simulate any random variable: -discrete or cohtiIlllotis', by 
suitably manipulating these U (O,J),-rahdom ya'riablei;.J'/;' "j ",., 1. .,' 

Initially, therefore, we must consider h9W we can simulate unifor;D. i-iuidom 
variables, the building-blocks of simulation, and that is the subject of this 
chapter. We start by indicating the relationships between discrete and 
continuous uniform random variables. 

3.2 Continuous and discrete uniform random variables 
. ,(:' .. , . ,-; . " : ,. . . : , ,'; ! .. 

If U is a U(O, 1) random variable, and we introduce a discrete random variable 
D such that ., 

(hen 
D = i ifand only, if i 10 U < i + I.. . for ic= 0, i, 2,: .. ,9 

Pr(D'= i) = Pr(i s: 10 U·< i + 1) , 

1''' for i''''; 0,1,2, ... ,9, . =-
10 , 

The random variable D thus provides equi-probable (uniform) ran(jqm digits. 
Conversely, if we write a U (0, 1) random variable, U, in decimal form, 

U = ,L: D(k) 10-' 
. k ::!::.1 - .C 

'. Then intuitively' we would expect D (k) to·be a uniform for each 
1, ' 

I . 
Pr(D(k) = i) = -,for 0 s: is: 10," 

. 10 ' 

and k :<: i ,-,." 

This and further,results are proved by Yakowjtz ('197.7: pp: 29T 31} .. We see, 
therefore, that U(O, I)'random variables can uniform' 
digits, while given a means of simulating random' digits we can combine them 
to give U(O, I)'variables'to 'whatever accuracy is ·required. 

',3.3 Dice and machines 

,: riumbeigenerators coloured 
"'halltihe tier of exerCises tary'pfobability theory. 

<, 

; 
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!.i-hus in the RRTexample above, the interviewee could be"given a well-shaken 
bag of balls, a proportion Po of which are white, with the remainder being 
black. Without looking, the ipterviewee then selects'a ball from the bag, and 
answers question N if the bail cliosen 'is white, arid answers qu&stion E if the 
ball chosen is black. Similar physical devices are soinetimes used in lotteries, 
and games of chance such as bingo and'roulett::J Certain cou,ntries such as 
Australia, Canada, France and West Germany televise, once a week, the 
operation ofa complex physical device for selecting wirirling lottery numbers. 
West (1955) provides an analysis of the results of a lottery carried out in 
Rhodesia. 

The random digits we usually need are uniform over the 0--9 range, and such 
digits can be obtained by suitably manipulating simple devices such as coins, as 

· in the following example: 

IEXA'MPLE 3.2 'J ' '. " .' 

A fair-coin is tossed, four times. If we record ahea,d a,s 0 and a tail as I, then the 
result oCthe.experiment-is fO,ur digits,aqcd, in order, ,e.g., 0110. We can 

· interpret.abcd as' the (a x 2')+ (b x 22 )+(c so that 0110 is 
interpreted as 6.· If the'!esultingnumber Js.greater, than:9.we reject it and start 
again. If-the resulting number is in the 0--9 range then}t is a ,realization of a 

• 'uriiformly.?istributed random digit over that rang.=:J(Based on part an A-
level queshon,i,Oxford"1978.) '. 

We can see this simply by enumerating the possible OU,tcomes to the 
experiment: 

Outcome 

()()()() 

1000 
0100 
0010 
0001 
1100 
1010 
1001 
0110 
0101 
0011 
1110 
1101 
1011 
Olll 
1111 

. Resulting number 

o 
8 
4 
2 
1 

12 
10 
9 
6 
5 
3 

14 
13 
11 
7 

15 
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IWeare just using the the binary of, the digits (}-I 5. This 
method therefore does give rise to uniform random digits over 0-9, but it is 
rather wasteful, as, resulting numbers are rejected 3/8 'of the 

r- Manipulations of this kind are avoided:by the direct use of simple dice to 
produce 0-9 uniform random digits. Unfortunately, a'regular 10-sided figure 
does not exist, but one can use icosahedral dice regular'iO-sided 
figures), each digit 0-9 appearing separately on two different faces: Further 
possibilities include rolling a regular 10-faced cylindel, or throwinga"lO-faced 
di-pyramid, with each face being an isosceles triangle of some fixed size. These 
simple devices are.illustrated in Fig. 3.1. J 

Figure 3.1 (a) Three icosahedral4ice. Note,the need to distinguish between 6 and 9 
(b) A regular, IO-faced cylinder '(e) Three IO-faced 'with truncated 
isosceles triangles of the same size as faces. Note that the two pyramids are so attached 
that when the body is at rest a face is uppermost. 

1 
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Isecause of the general demand for random digits, tables"s,!ch as those of 
Appendix widely available. A sequence of random digits.can be 
obtained by the table by rows, by columbs, or by any other rule. The 
first table of this kind was,produced by Tippettin' 1927, and it 'Vas regarded as 
a 'godsend' byrthe statisticians of the day (Daniels, 1982)." rrn' using physical devices such as dice to simulate random digits one is 
rever.sing the cu'stomary model/reality relationshipjAs described in Chapter I, 
one usually takes a real-lire-situation, and builds ,ff model of it. THere we start 
with' a model; as a tiiliform random digit, seek a real-life mechanism to 
correspond to"that mOd;!Jand take from the real-life 
mechanism. There is always a discrepancy between model and reality-coins 
may not be fair (see, e.g., Kerrich" 1946), l(jke may be ,biased, and so 
on,':' therefore 'the numbers produced by physical devices are tested, to ensure 
that: no drastic' non-randomness is present. This is simply a form of quality 
control of random numbers, and one applies only a finite subset of the 
of tests that are possible:We shall return to the subject of testing of numbers 
Chapter 6, ' , 

Any process in nature that is thought to be ralldom may be used to try to 
simulate unif6rm random numbers. Kendall and Babbington-Smith (19390.) 
used a rotatin'g diskwi th ten uniform segments, which was stopped at random. 
1)ppett (1925) used digits read from tables of logarithms. ERNIE, the 
computer us.;,ffor selecting'viinni'ng l'remium,bonds in the,British,natismal 
lotiery; 'uses the 'electronic"noise' of'neon 3.1 :-.yere 

, obtained from reailing the last'three digits of successive from, the 
" Canterbury telephone 'director,X;l(Cf.,.Section 6.7· an4 Exe!,cise,6,8. The 

, relative 'frequenCies"ilf!these'tiigits are conSIdered ,,' , 
" Student (1'908a) ,hew Sainples from aset of physical measurements taken on 
crimina:Js, 'as described in Section 1.5. In his' case we have an,illustratiRn of 
sampling from a non-uniform population, (approximately normal in.this case), 
anii"'similarly exponential and Poisson random variables may be simulated 
directly if one can Observe a process, in· nature :which provides a good 
approximation to a Poisson process (see Section 4.4.2). 
, IDice and machines are impractical forall but the smallest 
are now in any case likely to be conducted with the aid of rea:dily available 
tables (see forinstance, Neave, 1981, and Murdoch .. 1974). lLa.rge-
scale simulati6O:s usually conducted using early computers 

, were eqUipped with,built-in random-nuJllber generat,ors of the physi<;'fl kind, 
, using 'random electronic,Jeatures, asin ,ERNIE. Tocher (19]5, chapter 5) 

provides'many examples here, and, even IM!"r" rec,ently, 'Isida 
(1982) presented physical on the 
noise of a Zener \The modern equivalent.of this canOe found iIi certain 

, hand-calculators, which,have a'1 RND simula.ting U (0;'1) random 
'problemwit.h all physical devices is the danger'that they may 
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874 580. 873 824 564 663 
478 658, 540. 561 360. 0.82 
661 839 996 261 0.52 938 
334 420. 356 571, 0.81 866 
569 166 045 0.91 961 610. 

(aJ 471 378 936 569 107 0.22 
916 865 961 838 30.3 826 
665 014 148 764 276 638 
504 716 237 682 634 20.7 
659 654 774 217 60.9 684 

423 213 423 002 960. 273 
18l 0.59 563 379 " 252 955 
20.2 410. 451 887 467 427 

, (bJ ,20.7 483 80.9 265, 117 891 
061 658 145 950. 135 495 
716 232 955 771 747 ' 699 
693 757 952 0.53 659 459 
991 876 0.91 ' 431 316 283 
499 223 743 0.37 891 729 

, 611 998 650. 5,27 ,,0.73 ', 665 
, J 

become unreliable, through changes to, the deVIce in time; thus dice, for 
'instance, could become unevenly worn, resulting in 'checks of 
the generated numbers should therefore be carried ou.!:l . 

The modern approach to large-scale simulation IS quite different from that 
of this section, and it'avoids,the need,fonsuch frequent checking by producing 
a sequence of numbers that "can be shown to' possess .certain 

, . 'desirable' features. This approach, which is also not without its drawbacks, is 
described 'in' the next section. 

, 
13.4 Pseudo-random numbers 

The digits o(Table 3.2 superficially hilVe the appearance ofthc! algits of Table 
3.1, but they have been generated in a blatanily non-random' fashion, from the 

rrecursion fprmula . . . / 
, 'u.+ 1 = fractional part of (n + u.)', for n 2: 0. (3.1) 

where Uo is some specified number in the range 0. < uo < L Uo is, rather graphi-
cally, termed the 'seed'. Knowledge of the formula of (H), provides one with 
complete knowledge' of the s'equenceofnumbers resulting in Table 3.2., but in 
rri;IllY applitaiioris one may fj'nd these,digiis as suitable as those, say, of Table 
3.1, and much more easily generated on a calculator or computer., Formula 
(3.1) ean be'likened ',to a 'black box' which takes, the place of a physical,black-
box such as .. 'die. Recursion formulae are most suitable for use on computers 

....J , 
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\- Table 3.2 Digits from the recursion of Equation (3.1). 

254 0.32 329 233 252 444 
794 80.7 600 974 884 454 
797 354 440. 855 159 290. 
162 0.53 737 489 953 381 
0.51 0.91 224 843 0.75 513 
70.3 740. 755 750. 0.70. 002 
30.1 810. 90.3 392 970. 915 
690. 642 767 0.38 140 0.51 
962 283 420. 435 835 150. 
574 108 551 564 20.9 788 

810 657 491 939 365 537 
612 514 0.20. 950. 567 239 
119 ' 865 638 0.32 0.62 491 , 

966 ' 619 460. 553 850."" .'!. .0.96 c', 

255 550. 872 0.19 60.1 282 
474 943 141 486 0.22 • 0.74' 
0.13 589 0.23 454 681 854" 
489 857,,: 712 412 30.7 910 
826 , ,753." --:. .... 610 , 885 458 
346 008 ' 30.,9 763 890. 300 .. 

, . . , . 
Each triple is obtained from the firsfihree decimal places' of the Uj. when (3.1) was 
operated using', computer and Successive 

...... numbers were moving from left to right across the rows, and down the .J 
, .... table;' ' '. . ":" 

and furthermore produce 
can be investigated mathematically-illhe'resulting of 
tests, then of the of a}reqursiori' formula, 
additional appliCation of these is n9t as there is 
n9 creeping)rito the wi!p. of timU 

rrn'.'lonie applications it to re-run a· simulation using the . ,",'. 

san:e,lllandom numbers as ?n. a ·previous Such a f:quirement 
but we shall see III Chapter 7 that It useful III certam 

methods for variance-redu';tion.tKnowledge of Uo formula such as (3.1) 
enab.les to is 
possible gen.erators unless a record IS 

made ofiIie.niiirll?h$'used, Inoue el al. the generation and 
testing of may besuppli!,&6tr'iiiagnetic tapes. " 

'., - . . .' " . . 

13.5 Congruential pseudo-random number 

An alternative mathematical representation of formula (3.1) is: 

u.+1 = (n+ ".)' (mod 1) for n 2: 0. 
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I Currently the recursion formula that is most frequently 'adopted is,: 

(mod m) for n <:: ° (3.2) 

in which a, b and ",'are chosen fixed integer constants, and the seed is 
an integer, Xo' Starting from xo, the formula (3.2) gives rise to a sequence of 
integers, each of which lies in the ° to (m -1) range. Because the resulting 
numbers can be investigated by the theory of congruences, such generators are 
termed terminciiogy iSOOtiilways uniform here, we 
shall call a generator with b =,0, 'multiplicative', and one with b:l' 0, 'mixed'. 

I Approximations to U(O, l)variables'can be obtained from setting "l = 
discussed in Exercise 3.15. For an example, see the solution to Exercise 3.21. 

Formulae such as (3.1) are sometimes used, to 'play games involving random 
elements on hand calculators. ,We can examine the numbers produced and we 
may find that they satisfy many cri,teria of random numbers. However, there is 
no guarantee, in ,general, thatat some stage the sequence of numbers produced 
by such formulae may seriously violate criteria of , random and 
thus, in such formulae are of little use for scientific worK.:As we shall 
see, an advantage of the formula (3.2) is that certain guarantees are'available 
for the resulting numbers, 

The constants a, band m are chosen with a number of aims in mind. For a 
start,"one wants the arithmetic to be efficient. Human do to 
base 10, and so if the (3.2) operateei'by hand, using pencil 
and paper, it would be sensible for m to be some positive Integral power of 10. 

"lFor example, if we have 

then from (3.2), 
Xo = 89, a = 1573, b = 19, m = 103 

X, = 140016 (mod 103 ) = 16 
x 2 = 25187 (mod 103 ) = 187 

etc. 
Clearly, if one naturally does arithmetic ,to number'base r; say, then the 
operation of division by m is most efficiently done if m = r' for some positive 
integer k. For most computers this entails setting m= 2', where k is selected so 
that nI is 'large' (see below) and the numbers involved are within the accuracy of 
the machine. 

, ,.-
A moment's thought shows that the.generator of (3.2) can produce no more 

than m different numbers before the cycle repeats its<:.!llagain and again. Thus 
a second aim in choosing the constants a, b, m is that {he cycle length, which 
could certainly be less than m,.is reasonably large. I t has been shown, (see Hull 
and Dobell, 1962; and Knuth, 1981,pp. 16-18) that for the case b > 0, the 

\maximum possible cycle length 111 is obtained if, and only if, the following 
relations hold: 

(i) band m have no common factors other than 1; 
I 

-' 
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I (a -1) !s a'multiple of every prime number that ;"; 
(111) (a -1) IS a mUltiple of 4 if m is a mUltiple of 4. .-l 
If m = 2', (iii) will imply that a = 4c + 1 for positive integral c. Such 
ana @.Whenm ;= 2" relation (i) is easily obtained 
by b =. any odd posltlve constant. Proofs of results such as these are 
usually.glven I.n general number-theoretic terms; however, following Peach 

In SectlOn 3.9 we provide a simple proof of the above result for the 
I used case: m = 2" a = 4c + 1 and b odd (c, b, and k positive 

Integers).:.) .," ' 
Alth?ugh multiplicative congruential generators involve less arithmetic 

, than generators, it is not possible to obtain the full cycle 
length In the multlphcatlve case. Nevertheless, fif m = 2' for a multiplicative 

then,acycl"'length of 2'-2 may be obtaine!!J This. is achieved by 
a = ± 3 (mod 8), now also imposing a constraint on xo, namely, 

.xo to pe odd. A sYltable choice for a is an odd power of 5, since, for 
pOSItIve, Integra.! q, 

52
,+1 = (1+4)2'+1 = (1+4(2q+l)) modi(8) 

= -3 (mOd 8) 

Five such generators that have been 'considered are: 

a 

5" 
517 

k 

36,39 
40,42,43 

For further discussion of multiplicative congruential generators, see 
3.31 . 
.1When one first· encounters the idea of a sequence -of 
,cy.cling. this is disturbing. However; it ispilt in perspective by Wichmann and 
Hill (1982a), who present a generator; which we shall aiscuss hiier 'with a cycle 
length As they remark, used 

it would take more' thah "800 yeats for the sequence to 
i ' ' , , 

,Largecycle lengths do not necessarily result in sequences of'good' pseudo-
random and afihird aiin in the choice of a; b, m is to try to produce a 
small correlatlOn:,between successive numbers in ,the series; 

successive numbers are unccirrelateel.\but we can see that,tWs is not 
hkely to be the case for a generator such as (3.2).'(GTeenberger 

:J 
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flhat an approximation to the correlation between, xn and X n+ I is given by: 

p';' _ 6b ± (3.3) 
.aam m rn 

• Greenberger gives the following two examples of sequences with same full 
cycle length: 

(i) 
(ii) 

a b m p 

0.25 
2- 18 

...J. 
E;'pressions suchas (3.3) are obtained by averaging over one complete cycle 

of a full-pedod ,",ixed generator .(cf. Exercise3.-13) and exact formulae for p, 
are presented byKenne'dyand Gentle 140). 

As IS dIscussed by Kennedy and Gentle, and also by Knuth (1981, p.84), 
[Choosing a, band m to ensure small p din result in a poor generator in other 

respects. For instance, for sequences that are much shorter than the full cycle, 
the correlation between xn and x n+ I may be appreciably higher than the value 
of p for the complete higher-order correlations may be far too high; 
see Coveyou and MacPherson (1967) and Van Gelder (1967) for further 
discussion. It is sometimes recommended that one takes a .jm (see e.g., 
Cooke, Craven and Clarke, 1982, p. 69). However, this approximate relation-
ship holds for the RANDU generator, originally used by IBM and, as we can 
see from Exercise 3.25, this generator possesses a glaring Achilles heel. 
Unfortunately, as we shall see in Chapter 6, this is a defect which can be hard to 
detect using standard empirical tests. As a further example, a "" .J m for the 
generator of Exercise 3.31 (ii), which passes the randomness tests of Downham 
and Roberts (1967) yet has since been shown to have undesirable properties by 
Atkinson (1980). Similar findings for this· generator and that of Exercise 3.31 

. (i}-are given by Grafton (1981), 
The ch?ice of the "o,nstants.a, band m is clearly a difficult orie; but "the 

'. ccinvenience of number generators,has'made' the search for 
: good 'genirators iJI.timately, the properties of any generator will 
'oejudged.tJy the the numbers to be'generated,andbythe tests 

impof!ant feat\lre ofcongruential.generators;which is perhaps 
'inadequately' emphasized, is that the arithmetic involved in operating the 
formula is exact, without any round,off na'ive programming 
.a'fthe forunila (3.2}in, say, BASIC can rapidly. result in a·sequehceofunk'niiwn 

beCa,use oft'he use offloating-point arithmetic; this feature is deafly 
"illustratea' 'i" Exercise .3.14. This .problem; is .usually solved incoitiputer _.". . • t 1 -' '< • • ,.c.,.;. -'" .. ' . , . • . '. _, . . lmplementalI.ons by machme-code programs whIChemploy'mteger anth'metlc. 

' .. ' 
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In this case the modulus operation can be performed automatically, without 
division, if the modulus. m = 2', and r is the computer word size: after 
(axi _ 1 + b) is formed, then only the r lowest-order bits are retained; this is the 
integer 'overspill or carry-out' feature described by Kennedy and Gentle (1980, 
p: 19) .. 

\ 3.6 . Further properties of generators 

One might well expect numbers resulting from the formula (3.2) to' have 
unusual dependencies and that this is so is seen from the followlng illustration: 

Let Xi+ I = 5xi (mod m) 

Here (3.4) 

in which hi'takes One of ttie values, 0, 1,2,3,4. Thus pairs of successive values, 
(Xi' X i + I) give the Cartesian co-ordinates of points which lie on just one of the 
five lines given by (3.4),and the larger In is, the longer the sequence of generated 
numbers will remain on anyone of these lines before moving to another line. 
For example; if = 1, m = 11, then 

Xl = 5, x2 = 3, XJ = 4, x4 = 9, Xs = 1 ' 

and the line used changes with each iteration. 
However: if Xo = 1, m = 1000, then 

XI = 5, X 2 = 25, x, = 125, x. = 625, x, = 125 

and the sequence Xl -to X 4 is obtained from the line 

X i + 1 = 5X j .-J 

, \ 

after which the sequence degenerates into a simple alternation pairs of 
successive values give points which lie on a limited number of straight lines, 

,'. triplets of successive values lie on a limited number of planes, and so on (see 
Exercise 3.25). . / 
(The mixed congruentiai generator 

X n+ I = 781 xn + 387 (mod 1000) 

. ..".. <') 
(3.5) 

has cycle length 1000. Figure 3.2 illustrates a plot of Un + I vs. Un for a sequence 
of length 500,-where Ui = x,fl000, for 0 ,,; i ,,; 999. 

The striking sparseness of the points'is because of the small value of mused 
here; which· also allows us to'see very clearly the kind of pattern which can 
arise.' Thus users prefer to modify the output from congruential 
generators before use. One way. to modify' the output is to take numbers in 
groups of size g, say, and then 'shuffle' them, by means of a permutation, before 
use. The permutation used may be fixed, or chosen at random when 
Andrews et al. (1972) used such an approach with 9 = 500, while Egger (1979) 

J 
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Figllre 3.2 A plot of Un + 1 VS. Un for half the cycle of the mixed congruential generator 
of Equation (3.5). 

--' 
used g =100, also investigated by Atkinson (1980). Page (1967) 
discusses the construction of random permutations, whilo'·t.ihles of these are 
provided by Moses and Oakford (1963). See also. the IMSL routine GGPER 
described in Appendix 1. An alternative approach, due to' MacLaren and 
Marsaglia (1965) is to have a 'running' store of 9 from a congruential 
generator. and to choose which of these numbers to use next by means of a 
random indicator digit from .the range 1 to. g,' obtained, say,. by a separate 
congruential generator. The gap in the store is then filled by the next number 
from the original generator, and so on. /when this is done for the sequence 
resulting in Fig. 3.2, we obtain the plot of Fig, 3.3 . .J ., 

For further discussion, see Chambers (1977, p. ,173) and Nance and 
Overstreet (1978). Nance and Overstreet discuss the value of g to be used, and 
conclude with Knuth (1981,.p. 31) that for a'good generator,shuflling is often 
not needed. On the other hand, shuflling can appreciably-improve even very 
poor generators, as demonstrated by Atkinson (1980), a point which is also 
made in Exercise 3.26. The IMSL routine GGUW employs shuflling with 
9 = 128; see Section AU in Appendix 1. ' 

3.7 :Alternative methods·of pseudo-random· number generation 

x 
x 
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. Figure __ , plot resulting fron-t modifying the same sequence that,gave rise to Fig. 
3.2. Tpe.mcidification entailed'choosing the 'at ran<1om'. from a store of 
.' • ,.'" • . • , ': '. " ..' , , ; , ': T. . .., .:'.".' J' , , length g == 20 of numbers frqm the ongmal s.equence, as 'explanied in 'the text. In thiS 
example the l random' was made using Equatioo' (3J) and I:i seed of 0.5. 

," ,",,' ",I' .... , : _.!.' . 

. \successive digits in a decimal expansion of a truly (0, 1) 
'may, as we saw-in Section.3.2,·be.used·as,uniform random' digits. However, this 
approach is unwise·in the'case of.pseu.do-random U(O, 1) variable&.because of 
the;Pilttern ,effects· which'may the, solution' to .Exercise·3.21). A 

.. disadvantage ,of qongruential.gener,ators with m = is that the bits 
. ntjmbers.have shor.t cycles.(e.g.j,tkinson,,1980). This;.is not a 

. , problem is prime .. ExerCise 3.31) but t.hen of the;method 
. is!lluch m?re (m a.'binary' compute, m "" 2'. Ways of 

compu!3,tional. effort ,when m is prime are referenced by Law and 
Kelton (lQ82, p.226). . . 

3.7. Alternative methods of pseudo-random numbergeileration 
, .. 

A variety of other metho.ds exist--see 
for example,Andrews (1977, p.17P), O:Donovan (1979, p. 33), Lawan,j Kelton 
(1982, p. 230), Taus\yorthe (1965) and Craddock and Farmer (1971) .. Miller and 
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tPrentice (1968), for instance, use the recurrence 
Xj = Xj-2 + x j - 3 . (mod p) 

in which p is a suitable prime. 
As, with the congruential methods considered above, it is possible here also 

to examine the theoretical properties of the resulting sequence (cf. Exercise 
3.26): 

Differentcomputers have different word-lengths (see Kennedy and Gentle 
1980, p. 8), which determine the value. of the modulus, m, used in congruential 
generators. This has resulted in machine-dependent generators, which is 
unde,sirable, as it makes it difficult to reproduce results, a positive feature of 
using pseudo-random numbers. Portable generators can result from rep-
resenting 'latge' integers by means ofa number of'short' word-length integers; 
see also Kral (1972) and Roberts (!982). An alternative approach is given by 
Wichmann and Hill (1982a, b), who combine' three. simple multiplicative 
congruential generators in such a way thal' the. overall cycle-length is the 
product of the individual 'cycle lengths (seeExercises 3.17 and 3.18). The result 
is a portable generator"with a cycle length greater (han 2.78 x 1013. As well as 
providing FORTRAN arid Ada listiilgs for their algorithm, they also provide 
an 82-step program for the Hewlett Packard HP-67 hand-calculator. 

3.8 Summary and discussion 

[THe building-blocks of simulation are U(O,-·I)random variables and random 
. digiis.:W¢liave seen that these may"be by. the use b'f'phYsical devices, 

or. and that metho4 is its Large-
scale SImulations take place on computers, for which arithmetic formulae 
provide the most convenient approach. While any formula may seem to be 
adequate, -and' produce reasonable-looking' numbers,'. there is always the 

,'- 'danger that 'the formula' could 'break. down' at some stage; The ,advantage of . 
'congruentia! generators is that,they can be shown to possess certain desirable 

and to 'give guaranteed cycle lengtl).U Tliere' is . always a chance, 
·how.e:v'''' that because the numbers are pseudo-random, and not truly random, 
'un,,/anted'effects could still arise in any' particular application/The answer is . 

'clearly to proceed witli caution, and to make regular checks for oddities. 
Certain early generators were blatantly unsuitable, and the possibility remains 
that these generators are still in use.·W"ll'used computer'packages, such as 
MINlTAB (see Ryan, Joiner and Ryan, 1976) do riot always specify the 
generator they employ, which is clearly undesirable. (Indeed, different 
implementations of the same,package ll1ay. use different generators.) The same 
is true of certain widely used microcomputers. Possible pitfalls, as may occur . 
here; can 'be avoided by the use of portable generators; which may be used on 

everi a hand-calcuhitor.\I<Onnedy and Geiltle (1980; p. 165) report 
.' mariy as 'about30 %-ofpapers in the JOt/rna/' of the 'American Statistical 

Association in 1978 employed simulation. In such a climate it is extremely 
--.l 
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lImportant for research papers to specify the algorithm used, and the tests for 
randomness employed in their investigation. At best, simulation results should 
be verified using a different generator. 

In minimal BASIC there are two statements which relate to the work of this 
chapter. These are: 

10 RANDOMIZE 
20 U=RND 

The first statement selects a seed in a random fashion, possibly by reference to 
the current time. If this statement is omitted, the pseudo-random number 
sequence that is used will always start frorri the same seed .. In the second 
statement we obtain a realization of a pseudo-random U (0, 1) of 
these statements will occur in programs in later chapters. While the BASIC 
instructions are as above, the underlying method used will vary from machine 
to machine, and on many microcomputers a slightly different form from RND 
is used. 

The bibliographies by Sowey (1972, 1978) reveal that random number 
generation is a wide field of continuing interest. While new generators of 
proven improved properties may be 'developed in the future, congruential 
generators are likely to continue to prove popular and convenient.lfiie need to 
test random numbers cannot be stressed too strongly, and this is a subject to 
which we shall return in Chapter 6. We shall now, in Chapters 4 and 5, proceed 
to see how uniform random numbers may be changed to give random 
variables of any 

• 3.9 Proof of the attainment of a full cycle for a particular mixed 
congruential pseudo-random number generator 

In the folIow.ing, Q, b, c, k, s, t, iX, y, (), tP, hI' "2 a.nd h3 denote positive integers. 

THEOREM 3.1 
The mixed congruential generator 

X.+ 1 = ax.+b (mod m) 

'with a = 4" + I, b odd and m = 2', has cycle length m. 

PROOF 
The basis of the proof is to show that if Xi = Xj' for i oF j, then we cannot liave 
I i j I < m. As the cycle length is :>; m, then this will prove that the cycle length 
is m, and the sequence generated within a single cycle is a permutation of the 
integers from 0 to (m -1). Without loss of.generality, therefore, we shall take 
Xo = 0, as this simplifies matters. 

First of all, note that x. = y. (mod m),. 

where for n 0 (3.6) 

and, by the above, Yo = O. 
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From (3.6) we that 

y, = b(l+a+a2 + .. . +a'-') for n 0 

Now, Xi = Yi-h,2' 
and if Xi = Xj for some i > j, say, then 

b(ai+ai+'+ ... +ai -')= h2 Z" 
i.e., (3.7) 
Let us write for n ;;, 1. 

In.(3.7), by definition, a and b are odd, and so to prove the theorem we must 
·show that: . . I 1 ' 

W(i- J) oF' h3 21t. 

and this we now d·o. 

THE CASE (i-j) ODD 

for (i - j) < 2' 

, If (i - j) is o'dd, we can write (i - j) = 2t + I, say, for t ;;, O. 

(
I "). .' 

IV" ,,; I = { (1 + 4C)2'._ I) /4c 

, = {(I +4c)' -I}{ (I +4c)'+.1)/4c). 

= {(1+4c)'+1) tt, 
which is even, as I + (I +4c)' = 2+4c it, (;)(4(')'-' 

(3.8) 

(3.9) 

Thus \V" + , = w2 , + a2,+' is odd, as a is.odd, and so t3.8) is· trivially true. 

THE CASE (i -I) EYEN . 
If (i - j) is even, there exists an s such that (i - j) = a2', forsome odd, positive-
integral a, and as (i - j) < 2', the,;, s < k. 

, '," 0:2'-1"':"1 0:2,-1 2' I 
W(i_j) = Wa:2·= 1 +a+ ... +a +a + . " .. ', +a tt -

= wa:;r-l'+ do:2"-\v.o:2'-1 ,,-, = w.,,-.(l+a· ) 

= w.,,-, (1 + ak<)(1 + ilk,) 

= w.(I+ak')(I+ak,) ... (I+a k.). 

for suitable positive integers, k1 • k2 •••. 1 kso 

(3.10) 

3.10 Exercise; and complements 

. Since a =' (I + 4c), we have. from (3.9) 

W«l'i= wcry2S
; 
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in which w.arid yare odd positive integers. (We have just proved that w. is odd 
if a is odd.) Hence 'as s < k, ·there does not exist an 'h 3 such' that 

, .1::: 

This completes the proof. We note, finally; thatit is simple to verify Xo = X m, 
since,{xo -xm).= bwm , where m =.2'. W2 =1 + a'= 2+4c, so for k = I. result 
(3.7) is true. Let us suppose that 

IVm = em, for m = 2' and k ;;, 1 (3.11) 

from (3.10) 

and (I + am.) is even, from (3.9). 
Hence w2m = 4> (2m), and if(3.11) is true for k ;;, I, then it is also true for (k + I). 
We have seen that it is true for k = I, and so by induction it is true for all k ;;, 1. 

3.10 Exercises and complements 

(a) Uses of random numbers 

The randomized response technique (RRT) has been much studied 'and 
extended. A good introduction is provided by Campbell and Joiner (1973), 
who motivate the first four questions. 

t3.1 Investigate the workings of the RRTwhen the two alternative questions 
are: 

(i) 1 belong to group X; 
(ii) '1 do not belong to group X. 

3.2 Describe how you would proceed if the' proportion of pos,llve 
responses to the RRT 'innocent' question is unknown. Can you suggest 
an innocent question for which it should l:le possible to obtain the 

of correct responses without difficulty? 

3.3 Investigate the RRT when the randomizing deviceis a bag of balls, each 
being One of three different colours, say red",vhite and blue, and the 
instructions to the (female) respondents are: 

If the red. ball is drawn answer the question: 'have you had an 
abortion'., 
If the white ball is drawn, respond 'Yes'. 
If the blue ball is drawn, respond 'No:. 
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*3.4 In RRT, consider the implicatipns .\qr .the of , responding 
'Yes', even though it is not known which question has been answered. 
Consider how the technique·might be extended to deal with frequency 

:. of p,.nstwct a intervaJ.(see, e.g;, 
_,: .. ,.:'. " . 

3.5 100 numbered pebbles formed the population in a samplingexpedment 
devised by J. M. Bremer. Students estimate the population mean weight 
(I" =37.63 g).by·selecting 10 pebbles'at random;'using tablek of random 

.numbers, andiadditionalli by choosing a'sa.mplefof 10 pebbles, using 
their judgement only. The results obtained 'from a class of 32 biology 
undergraduates given below: 

Judgement sample means. Random· sample' means ., . 
, -.I. : )J 

, ,j 62.63 i. 31.45 ; : . :35.85 32.12 
55.36 51.93 
66.43 24.74 
34.96 43.32 
37.23 29.41 
34.45 42.67 
60.53 ' .. ;,.: : .,: .47.94 '. 
49.61 28.76 
56.07 56.43 
59.02 31.21 
50.65 32.n 
33.34 55.37 

';. 58.62 36:65 
47.02 22.44 
48.34 40.04 
28.56 44.65 
26.65 41.43 
46.34 39.39 
27.86, 26.39 
39.62 23.88' ., . 
25.4;; , 35.15. 

''48.82 35.88 
66:56 28.03 
37.25 31.71 
45.98 43.98 

'32.46 61A9 
,r 

54.03 . 31.52 
51.89 33.99 
62.81 33.78 
59.74 .49.69 
14.05 22.97 

, . , 
-:. 
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Discuss, with reference to these data,'ih'; ilriportance of taking random 
samples .. 

(b) On uniform randOM digits J(-. \,)"Z.-) 
v 

3.6 A possible way of using two unbiased dice for simulating uniform 
random digits from 0 to 9 is as follows: throw the two dice and record 
the sllmdnterpret 10 as 0, 11 as 1 ,and ignore 12. Discuss this procedure. 
(Based on part of an A-level examination question: Oxford, 1978.) 

3.7 In Example 3.2 we used a fair coin to simula.!e events with probability 
. different fro'm 0.5. Here ";,, the converse problem (the other 
side of .the coin) .. ,Suppose you want to simulate an event with 

you have a coin but you suspeclit is biased. How should 
you proceed? One approach is this: toss the:coin' results of 
the two tosses are the same, repeat the experiment, and carryon like this 
until you obtain two tosses that are different. Record the outcqme of the 
second'toss. Explain why this ·pi6'cedur{.'prbtluces equi-pr9bable 
outcomes. Discussion and, extensions to this simple idea are given in 
Dwass (1972) arid Hoeffdirig and Simons (1970). 

3.8 In a series of 10 tosses of two distinguishable fair dice, A and B, the 
following faces upperni()s't (A is given first in each case): (1,4), 
(2,6), (1,5), (4,3), (2,2), (6,3), (4,5), (5, 1), (3,4), (1,2). 

Explain hdYl. you would' use the dice to generate uniformly dis-
tributed random numbers in the range 0000-9999. (Based on part of an 
A-level examination question: Oxford, 1980.), 

'3.9 British car registration numbers are of the form: SHX 792R. Special 
roles are played by the letters, but that is not, in general, true of the 
numbers. Collect 1000 digits from observing car numbers, and examine 
these digits for randomness (explain how you deal with numbers of the 
form:. HCY 7F). . . 

3.10 Below we give the decimal 'expansion of " to '2500 places, kindly 
supplied by'T: Hopkins, Draw a bar-chart to represeht the relative 
frequencies of some (if not all!) of these digits, and comment on the use 
of these digits as uniform random 0-9 digits. Note that Fisher and 
Yates (1948) adopted a not dissimiiar approach, constructing random 
numbers from tables oflogarithms; further discussion of their numbers 
is given in Exercise 6.8(ii). 



3.1415926535 8979323846 50266419716939937510 
5620974944 5923076164 0626620699 6626034625 3421170679 
6214606651 326230664'70938446095 505622.3172 5359406126 
48111745.02841.02,,(.019365211.0555964482294895493.038196 
442881.09756659334461: 264756'48233786783165 27120is091 
4564856692"346.034861 a 4'54326'6462 1':33936.0726' .0249 i 41273 
7245B70QI?6 917.1SaS436 
789259.036.0 .01133.053.05 4882.046652 1384146951 94i5116094 
33.05727.036 5759591953 .0921861173 81'93261'179'3105118546 
07.446237996274956735166575272489122793818301194912 

963367336244.0656643.0 66.02139494 6395224737"19.07.021796 
6.09437.0277 .0539217178 2931767523 8467481846 76694.05132 
.0.0.056612714526356.06277857713427577896.0917363717672 
14664409.01 22495343.01 4654958537 1.05.07922196892589235 
4201995611 2 i 2902i 960 864.0344181 598136'2977- 4-77 i 309960 

2976049951 0597317328 1609631859 
50244594553469083026425223062533446650352619311881 
71010003137838752,886567533208381420617177669147303 
59825349042875546'873 i 1'5956'2663 6823537875 9375195778 
18577805321712266066'130019276766111959092164201989 

3809525720'1065485863 27B8659361 82303q1952 
03530185296899577362259941389124972177526347913151 
5574857242 4541506959 5062953311 66617278558690750983 
8175463746 4939319255 0604009277,0167113900, 
85836160356370766010471016194295559619894676783744 
94482553797747268471 040475346462080466842590694912 
9331367702 6989152104 7521620569 6602405803 6150193511 
253382430035587640247496473263 91419?2726 0,426992279 
6782354781 216412:1992;4566315030 2861829745 ' 
55706749838505494588586926995690927210797509302955 

3211653449 6720275596'0236460665 4991198818 3479775356 ,,1..'. J 

63698074265425278625516164175746726909777727938000 
81647060C)1 6145249192 173217214772350141'44 1973566548 
16136115735255213347 5741849466 4385233239 0739414333 
454 7762416 2725502542 
56887671790494601653466604988627232791786065784383 

8145410095 9506800642 
7392984896 19652850222106611863 

,0674427862203919494504712371378696095636'4371917267 
46776465757396241389066583264599581339047802759009 

9465764078 9512694663 '9635259570 9825822620.5224894077 
·267194782684826014769909026401 36394437455305068203 
4962524517 4939965143 142960919065925093722169646151 
57098583874105978859597729754989301617539284681382 
66683868942774155991 655925245953959431049972524680 
845987-2736446_9584865,383673622262609912460605124368 
4390451244 1365497627807977156914359977001296160694 
41694866555848406353422072225828488648158456026506 
01684273945226746767889525213852254995466672782398 
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(e) numbers 
'. c· _;. '. . -,: 

3.11 ,The 'first ,number. 'mid-square' 
by v,On The method is as follows: select a 

large integer;e:g. '7777: Square it an,f use the'·niida!e four digits as the 
next .iJ;lteger, so on. Here we get: 

7777 -+ 60481 729 -+ 4817 -+ 23203489 -+ 2034 -+ 4137 156 ,', . ",--", ,-- --
-+ 1371--:' 1879641-+ etc. 

The above sequence illustrates how we proceed when the.squared 
number'd"es.not fili theentirepossible field-length of8. Irivestigate and 

this procequre. Fuither discussion' is provided by 
Toblier (i975;'p: 72)and Knuth '(1981, Ii,' 3);\vho explain'the problems 
that can arise with this method. Craddock and Farmer (1971) provide a 
modification.which avoids the obvious degeneratioo,when process 
results:in zero.· I 

t3.12 Investigate sequences produced by: 
. U.+1 = fractional·part of (11 + u.)'. 

3.13 Show that for a full-period mixed congruential' generator the mean 
and variance of the values produced by' dividing 'each integer element 
in the full"period sequence by the. modulus m are, respectively, 
1(1 I/m), and (1+ l/m)/12. 

'3.14 The following BASIC program simulates the mixed congruential 
generator of Equation (3.4), with a = 781, b = 387, m = 10000,·Run this 

3.15 

10 
20 
30 
40 
50 
60 
70 
60 
90 
'100 
110 

REM MIXED CONGRUENTIAL GENERATOR 
INPUT UO 
LET A = 781 
LET B = 387 
FOR I = I TO 1000 
LET Ul = (A·UO+B)11000 
LET Ul = (Ul-INT(U1))'1000 
LET UO ='U1 ' 
PRINT Ul 
NEXT 1,· 
.END 

,program with and ",ithout the following (from Cooke, Craven 
and Clarke, 1982, p. 70): . . . 

. .75 ,Ui'=Il-UIUI +0.5) 
Comment on the results and the reason for using this additional line. 

In using'congruential methods we 
obtain asequence of integers {x,} over the range (O;m). Approximations , " -, 'r' 
to U(O, 1) random variables are then' obtained by setting u, = xclm. 
Show that 

U'+1 = (au,+b/m) (mod 1) 
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and program this in BASIC (note cifExeicIse 3.14 with regard 
. t? iound"off error»Notealso the comments'of Knuth (1981,'p. 525). 

3.16 Show that a mixed congruentiaL generator, with' a> I, 

x ... = [a'x.+ (a'-I)b/(a':':'I)] (modm)····fo'r k 0, n ° 
This property is useful in distributed (DAP) program-

. ming of congruential generators (Sylwestrowicz, 1982). 
'I" 

'*3.17. .Show tqat if [J, anq 1:.[2 random.variables, then 
. ".' the fractional part of,(V, + V2 ) is also V(O',"I). Shov{'ttirther that this 

"result still holdSif V, is U(O, 1),. but 'U2 has any coiltinuous distri-
bution. .. . .-. . .... 

3.18' (coniinuation) Show that if V" Vi andV3 are formed independently 
from congruential generators with respective cycle lengths c" c, and c 3 , 
then we may take the fractional.part of (V, -1: V2 + V3 ) as a realization 
of a pseudo·random V(O, 1) random' variable,"'and the resulting 
sequence of (0, 1) variables; wiIl have cycle length c, C2C3 if C" C2 and c3 

. are rela.tively. For see Neave (1972, p. 6) and 
, ." . WIchmann. and EiIl (1982a)" . . " , 

--," 

3.19 

3.20 

In" a mixed "congruential generator, show that :iL·tn.= ·10k for some 
positive'integer k > I, then for the cycle length'to equal m, we need to set 

,a = 20d + 1, where d,is a positive integer. 
.d 

'Shovithat the sequence {x.} ofSection'3,5, for which Xo = 89,x, = 16, ' 
etc., alternates between even and odd numbers. 

'3.21 (a) (Peach, 1961) The mixed congiuential generator, 

x.+, .=, ?x. + 13 .(mod 32) 

has full (32) cycle length. Wriie: down, the resulting sequence of 
numbers and investigate it for patterns';'tFor example, compare the 
numbers in the first half with those 'in the second half, write the 

, ,numbers in binary form. e.W. 
(b) Experiment with your own, 

3.22 (a) Write BASIC programs to and random ' 
replacement of When"might these two ; 

-'. ,procedures.be equivalent? 
(b) (Bays and D\lrham,.1976) We may use the next number from a ' 

cqngruential',geneiitioi' to determin',,' the random replacement. 
",Investigate ibis. p:rocedure for the " 

,";C •• 

. - ... . - - -:.' ' .. ' . 
x.+, = 5x.+3 (mod 16);xo =;ok· 

3.23 

3.24 

t3.25 

3.10 Exercises and complements 73 ... " 

A distinctly non-random' feature of congruential pseudo.random 
numbers.is that- no ,number, apPears twice within a- cycle. Suggest a 
simple procedure for cive.rcoming this 'defect. 

a pseudo-random mimber generator' of your own, and 
evaluate its performance. . , .. ' , , ". . 

The much-used IBM generator RAN'DU is mUltiplicative congruenlial, 
with multiplier 65 539, and modulus 231 , so that the generated sequence 
is: 

xi+' = 65539xi (mod 231
) 

Use the identity 655'39 = 2'6 + 310 show that 

xi+' = (mod 231
), 

and comment:'on the behaviour'ofsllccessive triplets (Xi_', Xi' xi+d· 
, See also Chambers (1977, p . .191), Miller (1980a, b) and Kennedy and 

Gentle (1980, p. 149) for further discussion of this generator. Examples 
of plots of triplets are to be found in Knuth (1981, p. 90) and Oaken full 
(1979). 

3.26 (a) The Fibonacci series may be used for a pseudo.random number 

3.27 

generator: 
x.+, = (x.+x._d (mod m) 

Investigaie the behaviour of numbers resulting from such a 
series. See Wall (1960) for an investigation of.cycle-Iength when 
m = 2'. ' 

(b) (Knuth, 1981), In a random sequence of numbers, 0"; Xi < m, 
how often would you h;(obtain x n - 1 < X n + 1 < xn? How 

" oflendoes' this sequence occur·with. the generator of (a)? The 
Fibonacci'series above is generally held,tq be a poor generator of 

. pseudo-rahdotn":'-numbers, but performance can be much im-
proved "by shuffiing (see Gebhardt, 1967). Oakenfull (1979) has 
obtained goo4 from the 

• x.+,=(X.+X.-97) (mod 235
) 

Note that repeated numbers can occur with Fibonacci-type gener-
ators (cf. Exercise 3.23). 

(a) For a generator, show that if a is an odd 
. power of 8n ± 3, for any suitable integral n, and Xo is odd, then all 
" subsequent members of the congruential'series are odd. 
(b) As we shall .see in Chapter" 5, it is sometimes necessary to form 
.: log.V, Vis' V(O; 1( Use';the result of (a) to explain the 
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advantage of such a multiplicative generator over a mixed con-
gruential generator in such a case. . 

*3.28 Consider how you would write a FORTRAN program for a 
tial generator. 

*3.29 (Taussky and Todd, 1956) the recurrence 
. ; 

3.3.0 

with Yo = .0, Y 1 = 1. 
Show that 

and deduce that for large 11,' 

. '(;/5+1)"/ Y" "" .. 2 .J5 

Hence compare the Fibonacci series generator of Exercise 3.26 with a 
multiplicative congruential generator. Difference equations, such as 
that above, occur regularly in the theory of random walks (see Cox and 
Miller, 1965, Section 2.2)d , .... ; 

The literature .abounds with congruential generators. Discuss the 
choice of a, b •. m, ,in the following. For see 
Kennedy and.Gentie (198.0, p. 141) and,Knuth (1981, p. 17.0). 

. ,,r 
(i) a b m 

"7'.0 2"-1 

. , 
I .. 

Called GGL, this· is, 1BM:'s •.. replacement .for RANDU . (see 
Learmpnthand"Lewis, 1973). Egger (1979) used tl1is in 

·combination with shuflling from.a g = lQ.o,store, and it is the, basis 
'of routines GGUBFS and GGUBS.ofthe,IMSL library; see 
. Section Al.lin:Appendix.\. .;.' " •. 

(ii)'.a b·· m 

(iii) 

(iv) 

16333 258872" (from Oakenfull; 1979L, 

a b m 
3432 6789 9973 (see also Oakenfull, 1979) 

a b m 
23 .0 1.0' + I . the Lehmer generator 

This generator is of interest as it was the first proposed congI'u-
ential generator, with'xo = 47 594118, by Lehmer·(1951). 

3.31 
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(v) The NAG generator: G05CAF: 

a b m 
1313 .0 2'9 

See Section Al.1 

(vi) a b m 
171 .0 3.0269 

I :, ," . , . , • 
. This,isa!)e 'ofthe three component generators used byWicbmann 
'and Hill' if982a, b)." . c ' . " .' ." , 

(vii) a .,b. n.l 
'. I3'1 .0 2'" used by Neave (1973). 

,"' " . -

(viii) a 
2' + 1 

b m 
1 2'" 

(ix) 

This is of in.terest as it .is one .of the original mixed 
congru,ential generators, proposed. by Rotenberg (196.0). 

. a b m 
3972Mo94,o 2"-1 .. -, 
This is the routine GGUBT of the lMSL library-see Section 
AU 

Show that the cycle length in a mUltiplicative congruential gen'erator is 
given by the smallest positive integer n satisfying a" = I mod(m). (See 
Exercise 3.16.) 
We stated in Section 3.5, that if m = 2' in a multiplicative congruential 
generator, only one-quarter of the integers O-m are obtained in the 
generator cycle. However, if m is a prime number then a cycle of length . 
(m -I) can be obtained with multiplicative congruential generators. Let 
c/>(m) be the number of integers less than and prime to m, and suppose m 
is a prime number, p. Clearly, c/>(p) = (p -1) . 

It has been shown (Tocher, 1975, p. 76) that the n above must divide 
c/>(m). lfn = c/>(p) then a is called a 'primitive root' mod (p), and the cycle 
length (p -1) is attained. Ways of identifying primitive roots of prime 
moduli are given by Downham and Roberts (1967); for example, 2 is a 
primitive root of p if (p -1)/2 is prime and p = 3 mod (8). Given a 
primitive root r. then further primitive roots r may be generated from: r 
= r' mod(p), where k and (p -I) are co-prime. 

Use these results to verify that the following 5 prime modulUS 
mUltiplicative congruential generators,. considered by Downham and 
Roberts (1967), have cycle length (p -I). 
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m=p a 

(i) 67101323 8192 
(ii) 67099547 8192 
(iii) 16775723 32768 
(iv) 67100963 8 
(v) 7999787 32 

"Extensiops and furfher discussion given by Knut!) (1981"pp. 19-22) 
and Fuller (1976), while relevant tables are pr()vided'b)i ,Hauptman el af. 
(1970) and Western and Miller (1968). ' 

*3.32 If a fair coin is tossed until there are two consecutive heads show that 
the probability that n tosses are required is " ' 

P'=Y'_1/2" forn<::2 

where the Y. are given by the Fibonacci numbers of Exercise 3.29 (cf. 
ExerCise' 3.26). We see from Exercise 3.29' that as 'ri'"" 00, the ratio 
Y.IY.c"1 -'-> the golden ratio,</>, = (I + )5)/2; so that the tail of the 
distribution is approximately geometric, with parameter </>/2. Mead and 

(1973) suggest uses of this problem in fhe emp;irical teaching of 
statlsllcs. Venfy that the distribution above has mean' 6. 

I 
f 

4 
PARTICULAR METHODS 
FOR 
RANDOM VARIABLES 

r Some of the results of Chapter 2 may be' used to convert uniform random 
variables into variables with other distributions. It is the aim of this chapter to 
provide some examples of such particular methods for simulating non-
uniform random variables. Because of the important rOle played by the normal 

,distribution in statistics, we shall, start with, normally distributed random 
variables . .J 

14.1 Using a central limit theorem 

It is because. of central limit theorems that the normal distribution is 
encountered so frequently, and forms the basis of much statistical theory. It 
makes sense, therefore, to use ,a central limit theorem in order to simulate 
normal random variables. For instance, we may simulate n independentU(O, 1) 
random variables, U l' U 2, ... , U"t say, and then set N = 1 U j • AS.n -+ CX) 

the distribution of N tends to that of a normal variable. But in practice, of 
course, we settle on some finite value for n,:so that the reSUlting N will only be 
approximately' normal. So how iarge should we take n? The case n = 2 is 
unsuitable, as N then has a triangular distribution (see Exercise 4.8), but for 
n = 3, the distribution'of N is,already nicely will be shown 
later. The answer to this question really depends on tlie, use to which the 
reSUlting numbers are to be put, and how close an approximation is desired. 
IA convenient'number to take is n = 12, since, as is easily verified, G[U;] = 
and Var[U;] = 1/12, so that then 

12 

N=IU;-6 
i= 1 

is an approximately normal random variable with mean zero and unit variance. 
Values of INI > 6 do not occur, which could, ,conceivabl)i' be a problem for 
large-scale simulations. The obvious advantage of this approach, however, is 

77 .-1 
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I its simplicity; it is simple to understand, and simple to program, as we can see 
from Fig. 4.1. 

10 
20 
30 
40 
50 
60 
70 
80 
90 
100 
ltO 
120 
130 
140 
150 

RANDOMIZE 10 RANDOMIZE 
INPUT M 20 INPUT M " 
REM PROGRAM TO SIMULATE 2'M 30 REM PROGRAM TO SIMULATE 2'M 
RREEMM ANPOPRRMOAXIL MRAANTED,LoYM"SvTAARNIDA' BARLEDs'. 1401 IRBM STANDARD NORMAL RANDOMYARIABLES; 

'50> 'REM USING THE BOX-MULl:ER'METHOD I 
REM USING A CENTRAL UMIT 60 LET P2 = 2·3.14159265 
REM THEOREM APPROACH ·.70 , F'.OR 1::#:1 TO M i .• '. .;;. 
FOR I = 1 TO 2'M :' 80' LET'R!: SQR(-2'LOG(RND))" 
LET N = 0 '90 LET U = RND .' 
FOR J = 1 TO 12 , 100' PRINT R'SIN(P2'U).R'COS(P2'U) LETN=N+RND ,,' .,':.,'",f 
NEXT J '120 END ' 
PRINT N-6 

NEXT I 
END 

Figure 4,1 BASIC programs for simulating 2M standard normal random variables. 

: ,). I, . : .. ).-

F, ,4.2 The Bc;x-'Mulier, Mlii's,iglia me'thods-'" 

," '4.2.1': TlieBox.'-Muller method' 

The last method used a convolution to provide approximately n()rmalrandom l' 
variables. The .. !nethpd _ : ob!ajns, exact normal random , 
variables by means of aone-'to-one, transformation of two U(O, 1) ran- 'f 

" "doin' If U;'and 'U, are' two indePendent',U(O, 1) random variables , 
,then'BoiiandMuller (I958)·showed i tqat.. 

;. .. _ " 
:.oN I ,=d ,...: 2 Iqg, v'l 

'N'2.:it <>1/' sin(21tU ,)' ' 'and (4.1) 
'" .. < 

,!,' ,are,indereddent N(O, 1) random variables;., ":, "l.-
" AHirsv this-result seems quite remarkable,. as well as,most convenient. , 
It is;-Iiowevei, a,direct.co'nsequence of the result,of,Example 2.4, as we shall' 

..... ,; 

·rio'viisec;··· . ... ...'; 

",; 'If we startiwith independent N (0; Ij'random 'va<iables, NI and N lidefining: 
"a point '(NI N 2:) in two dimensions, byiCartesian,co-ordinates, and.we change; 
td'p,Har'co-ordiIiates (R,El), then '," .. ',,' ',,' 1 • • 

(4.2l} NI = Rcos0 
N,=Rsin0 

and in Example 2.4 we have already proved that Rand 0 are then independent; 
." 0"wit'Iia'd(O; 21tjdiSt'riliutioti,and'R' '=Ni+ Hi with a xii, 
, 'dist'ritiuiion; 1.'6: aii"oXphneiltial' distriblitionor'mean 2, Furtllerrilofi: to? 

,'-' i,;,<,;', :, -' ,.1.: 

".'-' - If U is U(O, I), then 2U is U'(O, 2), and V = 2U -1 is U( -1,1). 

If we select two independent U( -1, I) random variables, VI and V2 , then 
these specify a point- at random in the square of Fig. 4.2, with polar 
co-ordinates (R, 0) given by, \ 

R' = v;+ vi 
and tan 0 = V,/Vt 

Repeated selection of such points provides a random scatter of points in the 
square,and rejection of points outside the inscribed circle shown leaves us with 
a uniform random scatter of points within the circle. 

For anyone of these points it is intuitively clear (see also Exercise 4.11) that 
the polar co-ordinates Rand 0 are independent random variables, and [ur-
ther that 0 is a UfO, 21t) random variable. In (see Exercise 4.11) is 
UfO. 1) and so the pair (R,0) are what are reqUlred by the Box-Muller 

we can here simply write 

. c. V, V (V' V')-l/' smo=-:;:-= 21+ 2 
R 

cos 0 = V, (Vi + VW 1/2 
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1,5 r 

1.5 

-1.5 

FiYllre 4.2 . An illustration of points (denoted by -:; and x) uniformly distributed over 
the square shpwn. The points by,c c;me requires points 
uniformly distributed over the unit disc, as in the Polar method. . 

.--l 
r so that a pair of independent N(O, l)!ariables, N, and N" are given by: 

i.e. 

resulting in 

N, = Vil- II ' 

N, = (-2Iog(R'lllt'V,<V;+ Vil- It ', 

N, = (-210g(V;+ J.:'illlt'V,<v;+ Vil-"" 

N, = (-210g<V;+ VDllt'V,(V;+ Vil-'" 

( 
- 2 IOgW)It' 

N, = V, W 

whereW = Vi + vi· , 
The philosophy of rejection may, seem rather strange at first, as it involves 

discardhlg obtained at a effort, of 

.-l 

'" 4:3' '. 81 

I( V;,' Vi) proporiibil1:;.:dicj4 ofthitime. of the 
rejection method here, js that it provides a very simple way of obtaining a 
uniform scatter of pdirlts inside the circle of Fig. 4.2. Another rejection method 
was described in Example 3.2, and we shall encounter more general rejection 
metliods'irt· tlienext' chaliter;"which :have'tlie' same"aiIii'arid'-use: as here. 
" A'BASIO'prograrri for' givb; iij'Fig.'43:'Now·known as the 
'Polar'Marsaglia' method;'this approach t'dIMarsaglia and 

, ". Bray (1964X'iin'd"is' lisediri tli,:'iMSr}'tolifiile:GGNPMl!se'e'SeCtion Al.l. 
.' •. · 'iF .; 'jl 

-I ' 
10 • ' 

"'20'INPUTM""" ;" , 
,30 .REM, PROGRAM TO SIMULATE 2 0 M STANDARD NORMAL 

40 'REM' RANDOM VARIABLES USING THE POLAR 
50 REM MARSAGLIA METHOD 
60 FOR I = 1 TO M 
70 LET VI =2-RND-l 
80 LETV2:f 2-RND-l 
90 LET R2 = Vt-Vl+V2·V2 
100 IF R2 > 1 THEN 70 
110 LETY = SQR((-2°LOG(R2))/R2) 
120 PRINT .'. 
130 ,.NEXT I. , _ ' 
140 END 

I",', 

BASIC program for .simulating, standard normal. random variables, 
ti,e. Polar " , "', 

. . ,.' 
r 4,3 

- I, • 

Exponential, gamma and chi-square variates 

Random ,,,,,it,, exp<?nen!ii'!,andgal)1,ma distributions are frequently 
used to model waiting times in queues ofvario.us kinds. and this is a natural 
consequence of the predictions of the si,mplest way of 
obtaining random variables with an exponential p.d.f. of e- X for x 0 is to set 
X = Vis U(O,I);'as'has-already been previous 
section' (see Exercise 2.1):"'" • '.. .. ' ,," 

.. We have also seen that Y = X/A has the exponentialp.d.f. 'Ae->' for x <e: 0 
"v'(Exercise 2.2). l\n'alternative approach' for simulating, exponential random be given la'ter in Exercise 5.35.'·' 

We have seen in Section-2.lO'that if we have independent random variables, 
Y,: . .. ; Y; withdehsity function for x <e: 0, . 

" ' 

• 

has a gamma, ['(n, ',l), distribution.'Thus to simulate a i{n, ,<) random variable 
for integral n we can simply'set' ". . ,. -,' " 

J • 
G = -- I log, U, 

1 i= 1 
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r ___ ,,:here. U 1> ••• , U. are independent U(O, 1) random variables, i.e. 

-xIOg·(DJI,) .. 
'." '. • ,t:.')1 .'.. . J .. " i • . l' '" 

.. Now a,ral)fiolI\ ,yariable with '! is simply. a J;:(m/2, !) random 
v'!-riab!e.(seeLSection 2.19), and sP,ifm)s:even w.e.can,readily.obtain a random 

_, . jPY.),qe, ab.oY,e, If: m is odd, we'· 
," :random wfth ,fiistribution .. by first obtaining a' 

l( (m -1)/2,!) random variable as above, and then adding to it N 2 , where N is 
an independent N(O, I) random variable Here we are using, 
the defining property of X2 random variables on·integral degrees of freedom, 
and use of- tliis. property alone provides us wiih a X;' random variable from 

' .. 

simply setting . 
. m 

Z=L Nt (4.3) 
. j;; 1 

where the N; are independent, N(O, 1) randomvarial?les. However, because of 
the time taken to simulate N(O, 1) random vadatiles, this last approach is not 
likely to be very efficient.l1loth NAG and IMSL computer packages use 
convolutions of exponential' random variables in . their routines for the 
generation of gamma and chi-square random-variables AU). The: 
simulation of gamma random variables with non-integral shape parameter, n, 
is discussed in Section 4.6. 

,. 4.4' Binomial alid Poisson variates 
-:. 

. 4.4.1- 'Binomial variates 

A B(n,'p) ra;'qolI\ variable, i,.can be written as X = 1:;=, B;, where 
the B; are independent Bernoulli random .varfables, each taking)he values, 
B; = I, with.probability R, ocB; = 0, with probal;>ility,(I. -pl. Thus to simulate 
such. an X, we .need just· simulate n independent U(O, 1). random variables, 
U" ... , U", and set Bi = 1 if U,"; p, andB; = 0 if [fi ><:B:lThe same end result 
can; howeyer, be.obtainedJrom judicious ree!lSe,of a single U(O, 1) random 
variable U.l$.uch re-use of uniform variates is employed by the IMSL routine; 
GGBN when n < 35 (see Section AU). If n ;", 35, a method due to Relies 
(1972) is employed by tl)is routine: in simulating a B(n, p) variate we simplY 
count how many of the U; are less than p. Ifn is large then time can be saved by. 
ordering lUi} and then observingtheJocation. of.p within.the ordered. 
sampie. Thus if we denote the ordered sample by (U(;)}, for, the case n = 7, and 
p = 0.5 we might have: - '. 

I o 

UI1) . 'UIZ } U13} UIIS} u16} UIIl} + + + + I 

, 
) 

! 

4.4 Binomial and Poisson variates 8:i 

'in this example we would obtain X = 3 as a realization ofa B(7, i) random 
variablW 

Rather than explicitly order, one can check to see whether the sample 
median is greater than. or than p, and then concentrate on the number of 
sample values between p and the median. In the above illustration the sample 
median is U(4) > p, and so we do not need to check whether Uti) > P for i > 4. 
However, we do not know, checking, whether U(i} > p for any i < 4. 
This approach can clearly now be iterated by seeking the sample median of the 
sample: (U(1)' U(2), U(3),U(4») in the above example, checking whether it is 
greater or less than p, etc. (see Exercise 4.18). A further short-cut results if one 
makes use of the fact that sample medians from U(O, 1) samples can be 
simulated directly using a beta distribution (see Exercise 4.17). Full details are 
given by Relies (1972), who also provides a FORTRAN algorithm. An 
alternative approach, for particular values of p only, is as follows . 

If we write U in binary form to /I places, and if indeed U is U(O, I), then 
independently of all other places the ith place is 0 or 1 with probability t (cf. 
Section 3.2). Thus, for example, if U, = 0.10101011100101100, we obtain 9 as a 
realization ofa random variable, if we simply sum the number of ones. 
Here the binary places correspond to the trials of the binomial distribution. 

If we want a B(17, i) random variable, we select further an independent 
U(O; 1) random variable, U2, say. If U2 = 0.10101101100110101, then place-
by-place multiplication of the digits in U, and.u 2 gives: 0.10101001100100100, 
in which 1 occurs with probability * at any place after the point. In 

. this illustration we therefore obtain 7 asa realization of a B(17, t) random 
variable. 

This approach can be used to provide B(n, p) r'lndom variables, when we can 
lind m and r so thatp = m2-' (see Exercise 4.3). Most people are not very adept 
at binary arithmetic, but quite efficient algorithms could result from exploiting 
these ideas if machine-code programming could be used to utilize the binary 
nature of the arithmetic of most computers. However, as we have seen in 
Chapter 3, pseudo-random U(O, 1) variables could exhibit undesirable patterns 
when expressed in binary form. . 

14.4.2 Poisson variates 

Random variables with "Poisson distribution of parameter A can be generated 
as a consequence of the following result. 

Suppose (E;, i;<: I} is a sequence of independent random variables, each 
with an exponential distribution, of density Ae- Ax, for x;'" O. Let So = 0 and 
S, = £; for k ;", I, so that, from Section 4.3, the Sk are r(k, A) random 
variables. Then the random variable K,. defined implicitly by the Inequalities 
S K 1 < S K + I has a Poisson distribution w.ith' parameter A. In other 
words, we set S, .; E"and if 1 < S" then we set K = O. If S, S;; I, then we set 
S2 = E, + £2, and then if S2 > I, we set K = 1. If'S2 :s; I, then we continue .. 
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Isetting S, =' E, + E, +E,.- and so on, so that we set K = i when, and only 
when, S;";; 1 < S;+, for i O. 

The BASIC program in Fig. 4.4 shows how easily this algorithm may be 
programmed, and may also help in demonstrating how it works. Note that we 
simulate ' 

k 

Sk = L: E; by 
i"" 1 

10 RANDOMIZE 
20 INPUT M.L 
30 REM PROGRAM TO SIMULATE M RANDOM 
40 REM VARIABLES FROM A POISSON 
50 . REM DISTRIBUTION OF PARAMETER L 
60 LET E' = EXP(-L) . 
70 • FOR I = I TO M 
80 LETK=o 
90 LET' U = RND 
100 IF U < El THEN 140 
110 LET U = U-RND 
120 LET K = K+l 
130 GOTO 100 
140 PRINT K 
150 NEXT 1 
160 ,END 

Figure 4.4 BASIC program for simulating M Poisson random variables. 

where as usual the U; are independent U(O, 1) random variables, as explained 
in Section 4.3. The comparison Sk > I, then becomes 

10g( fr U;) > I 
A j= 1 

I.e. 10g(D,U)<-A i.e. iI,u;<e-1 
and it is this inequality which is being tested in line number 100 o(t,he progra!!!l 

On first acquaintance, this algorithm has the same,.;rabbit-out-of-a-hat' 
nature as theBox-Miiller method. We can certainly show analytically that K 
thus defined has the P<:>isson distribution (see ·Exercise 4.9), but ";i 
consideration of the Poisson'process. mentioned in Section 2.7, shows readily 
the origin of this algorithm, as we shall now.see. '. : 

In a Poisson process in time (say) of rate A. we have the two Important results' 
(see, e.g., ABC, chapter \9): :. ., . . 
(a) times between events are independent random variables from the: 

exponential p.d.f., Ae -AX, for x 0; . i 
(b) the number of events in any fixed'time interval of length t has a 

distribution of (At). , . , 
Result (b) tells us that to simulate a random variable with a Poisson 
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distribution of parameter A, all we.have·to.·do is construct a realization of a 
Poisson' process' of parameter A,. and then count the. number of events 
occurring in a -time interval of unit length;'Result·(a) tells,tis'how we can 

. simulate the desired, Poisson 'process; by -simply' 'placing' end-to-end in-
dependent realizations- of., exponential" random variables from the Ae - Ax 

density; We keep a record of the time taken since the start .cfthe process, and 
stop the simulation once that time exceeds unity. Figure 4.5 provides an 
illustration,. resulting in K = 3, as there have been just three events in the 
Poisson process in'tlie (0, l)'time' interval, occurring at times E" E, + E, 
and E, +,E, + E, respectively; with the fourth event.· occurring at time 
E,+E,+E,+E.> L 

"\ )()( ")(il:Time 
o 

Figure 45 Illt,Istration'of the simulation of a Poisson process in time, starting at time 
O. Four events occur,. at by x" Ej, are independent 
random variables from the Ae-J.% exponential p.d.f., and the value k = 3, the number of 
events in the (0,1) time inteival, is a realization'ofa random variablewitha Poisson 
distribution of parameter J.. 

*4.5 Multivariate random variables 

Particular ,rules· may also .be expl<;>ited. to, simulate multivariate random 
variables. T'!"o examples, one discrete_ and one continuous, ',NiH be considered 
here. , 
4.5.1 . The bivariate Poisson distribution 

Thjs distribution was mentioned briefly inSection2.16. If three independent 
rando.m yariables, X" X, and X" have Poisson, ciistribuUons with par-
ameters 1.,,1., and A, respectively, then.the.derived variables YI =: Xl +X,> 
Y, = X, + X, have a bivariate Poisson distribution. This is readily.verified by 
simply down the bivariate moment- ,forYI and Y2, 
and observing,it is of the form given in Equation (26). lfw,; simulate X" X, 
anciX, .by themethad. of S\,ction _4.4.2 then this res,ult readily allows us to 

',' : simulate ran,dom. variablesYI and Y, with a,bivariate Poisson distribution. An 
alternative approach is suggested in Exercise 4.7, -. 

4.5.2 The multivariate normal distribution 

. This d.istribution was ,discussed in 2,15. We saw there"that if the p-
variate random variable X has the multivariate normal, N (O,.!) distriburion, 
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then Z = AX + p has the multivariate normal N (p, AA') distribution. Hence, 
ifwewant to simulate random variables from an N(p;L.) multivariate normal 

then we need only find a ,matrix· A for which AA'; Ways of 
doing· this are discussed in Exercise 4.14 and in the sOlution to that exercise. X 
is readily simulated, as its elements are independent and N (0, I). We then set 
Z = AX+p. 

. 4.6 Discussion and further reading 

We have seen in this chapter a utilization of formal relationships between 
random variables, which enables us to simulate a variety of random variables. -
using only U (0, I) variates; other illustrations can be found in the exercises. All 
of these examples are no more than useful tricks for particular cases. Often 
very simple algorithms' result .. as we have seen from some of the BASIC 
programs presented, and- these algorithms could oe readily implemented for 
small-scale simulations, using hand-calculators or microcomputers, for 

, example; In a number of cases, however, the algorithms are less efficient than 
. others which: imiy be'devised (see Kinderman and Ramage, 1976, for example), 

, 'some of which will Qe considered in the chapter. ' ' '" 
The method of Section 4.4.2 for Poisson 'variates ,may become very 

inefficient if A is large. In this case we would expect large numbers of events in 
the Poisson process during the, (0, I) interval, resulting in prohibitively many, 
checks. Atkinson (19'i9a) compares ihe algorithm of Section 4.4.2 for 
simulating Poisson random variables with alternative approaches which wilL 
be mentioned in the next chapter, while Kemp and Loukas (1978a, b) make 
similar comparisons for the bivariate Poisson case. More recent work for' 
the univariate Poisson case is to be found in Atkinson (1979c), Kemp (1982), 
Ahrens and Dieter (1980, 1982) and Devroye (1981). 

Atkinson and Pearce (1976i:Atkinson (1977) and Cheng (1977) discuss the 
simulation of garnma r(n, A) random variables with non-integral shape, 
parameter' n, and we consider Cheng's method in ExerCise 5.22. More recent; 
work is provided by Cheng and Feast (1979) and Kinderman and Monahan: 
(1980). ' 

Neave (1973) showed that when the standard Box-Mullet' method is' 
operated 'using pse'udo-random numbers from a particular multiplicative, 

. congruenti.al o genenitor, the resulting numbers exnibit some strikingly 
. normal properties: This" finding was taken up by Cliay, Fard6 and Mazumdar' 
(1975) and Golder imd Settle (1976), and we shall return to this point hi 
Section 6.7. 

We have in this chapter only scratched the surface. of th,e relations between 
random variables of different kinds. The books by lohnson and Kotz (1969; 
1970a,1970b, 1972) provide many more such relatioriships, and the book by 
Mardia (1970) provides more information'oil'bivariate distributions. 

4.1 

4.3 

4.4 

4.5 

*4.7 
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Show that a random variable with a U(O, 1) distribution has mean 1/2 
and variance 1/12. 

Consider how you might simulate a binomial B(3, p) random variable 
using just one UfO, 1) variate, and write a BASIC program to do this. 

Explain how the approach of using a binary representation of U (0, 1) 
random variables may be used to simulate random variables with a 
binomial B(n, p) distribution in which p = m2-', for integral r > 0, and 
integral ° m 2'. 

The following result is similar to one in Exercise 2.14: If the independent 
random variables Xl and X, are, respectively, 1(p, I) and 1(r, I), then 
y= Xl/(Xl +X,) has the beta density, 

f(y) r(p+r) p-l (I ),-1 c ° < < I r(p)r(r) y - y lor - y -

Use this result to write a.BASIC program to simulate such a Y random 
variable, for integral p, > I and r > I. 

If Xl' X" X 3 , X. are independent N(O, 1) random variables, we may 
use them to simulate other variates, using the results of Exercise 2.15 as 
follows: 
(a) Y= IX l x,+X3 X.1 has an exponential distribution of par-

ameter I. 
(b) C = Xl/X, has a Cauchy distrib,ution, with density function 

1/(,,(1 +x')). 
Use these results to write BASIC programs to simulate such Y and C 
nindom variables. 

Provethat N l , Ni, given by Equation (4.1) are independent N(O, I) 
random variables. 

When (X,Y) have a bivariate Poisson distribution, the probability 
generating function has the form 

G(u, v) = exp{ Al (u -I) + A, (v -1) +).3 (uv -I)}, 

The marginal distribution of X is Poisson, of parameter ().l + A3 ), while 
the conditional distribution of YIX = x has probability generating 

, function ell: ?3V r exp [.<2 (v -1)] 
Use these results to simulate the bivariate Poisson random variable 
(X,Y). 
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If X = '1:.;.1 Uh "ihere U, are independent U(O, I) random variables, 
show, by induction or otherwise, that X has the probability density 
function ' 

= ° otherwise 
where [x] denotes the integral part of x. 

*4.9 Prove, without reference to 'the Pciisson process, that'the random 
variable K, defined at the start of Section 4.4.2, has a Poisson 
distribution of parameter A. 

*4.10 Consider how the Box-Muller method may be extended to more than 
. two dimensions. 

*4.11 In the notation of the Polar Marsaglia method, show that El and R, 
defined by 

*4.12 

*4.13 

*4.14 

tan El = V I /V2 ,and R2 =VI+Vi 
both conditional on Vl + vi :,,; I, are independent random variables. 
Show also that R2 is a U(O, 1) random variable, and e is a U(O,2") 
,rapdom " 

When'a pair of variates (VI' V2 ) is rejected in the Polar Marsaglia 
method, it is tempting ,to try to improve on efficiiency, and only reject 
one of the variates, so that the pair for then be i 
(V2' V,), say. Show why approach is, 

Provide an example of a continuous distribution, with density function 
J(x), with zero mean, for which the following result, is true: 
X 1 and X 2 are independent' random variables with probability 
density functionJ(x). When the point (Xl, X 2 ), specified in terms of 
Cartesian co-ordinates, is expressed in polar (R, El), then 
R, e are not 

If S is a square, symmetric matrix,. show that it is possible' to write 
S = VDV', where D is a diagonal matrix, the ith diagonal element of , 
wliich is the ith eigenvalue of S; and V is an orthogonal matrix with ith 
column an eigenvector corresponding to the ith eigenvalue of S. Hence 
provide a means of obtaining the factorization, '1:. = AA' required for 
the simulation of multivariate normal random variables in Section 4.5.2. 
More usually, a Choleski factorization is used for '1:., in which A is a 
lower-triangular matrix. Details are pro,vided in This is the 

in the IMSL'routine GGNSM'::"'see Section A1.1. 
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*4.15 If XI" X2" .. 1;, X. 'are' independent'(columnr,Tandom variables 
" from, a 'Ji'variate' multivariate' "normal; N (0, '1:.) distribution, then 

'" z,= '1:.1" 1 "',"''' has the Wishar'fdistribution,'W(Z;::E;'n), described, for 
1 example, by ,Press (1972,p. 100). Use this result; which generalizes to 

p:dimensions' the restiltofEquation' (4.3); to'prcividi,a'BASIC program 
to' simulate 'such 'aZ.' FOr related distitssion'see New1nan and Odell 
(197[; chapter '5). ' 

*4.16 If X" X2 are indepimdent N(O, I) 'random variables; show' that the 
random' variables X 1 and- ' 

YI = pX I + (l_p2)1/2 X 2 where 

have a normal distribution, with zero unit variances, 
and correlation coe.fficient p . - . -, , .' 

'4.17 .Let U 1, U2 , ; •• , U 2.-1 be a random sample from the,U(O, 1) density. If 
.M Iilenotes, the, sample, median, show thatM has the Be(n, n) 
distribution. ' 

*4.18 (coJiinuacion) Consider how the result of Exercise 4.17 may be used to 
'simuiaie a B (n, Pi' (Relles,' i 972).' " 

"\' , . ' .. , . " 

'4.19 We find, from Section AU, thatthe IMSL computer library has routine 
GGPON for simulating Poisson variables when the Poisson parameter 
,( may'vary call to call. Otherwise one might ;'se'the IMSL routine 
GGPo.S. Kemp (1982)' was, also conc,emed with Poisson variable 
simulation when). may vary, and one might wonder why one should 

• ' "r ' .: .'" ,:\. > " want to SImulate' such POIsson·variates. An answer is provided by the 
following exercise. 

.The random variable X has the conditional Poisson distribution: 
e-J.l.ic . 

Pr(X = ki).) = -- for k :2: ° " k! 
In has a r(n, 0) distribution, show that the unconditional distribution 
of X is 

Pr(X = k) = S (o!J for k:2: ° 
i.e. X = Y -.n, whereYhas a ,negative-binomial distribution as defined in 
Section 26, 'As II ° ,the to the'logarithmic series 
distribution much used in ecol6gy, and by Kempton (1975). 

, Kemp (1981) considers simulation from this distribution (see Exercise 
4.22). 

4.20 (continuation) Use the result of the last question to provide a BASIC 
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to simulate negative-binomial random variables, for integral 
n> 1. This result is sometimes used to explain the frequent use of the 
negative-binomial. distri.bution for describing discrete data when the 

distribution is' ·unsatisfactory. The negative-binomial is a 
'contagiouf distribution, .and much more. reievant,.material is provided 

. by Douglas (1980). ,An algorithm ,lIsing the .waiting-time definition of 
the distribution is given in the IMSL routine (see Appendix I). 

, 4.21 . Use the.transformation,theory of Section 2.12 to show that, the random 
variableY = eX, where X has, a N (I', 0'2):d,istribution, has the density 
function 

'f'()- 1" (1(IOg,(y)-I')') y y - exp --yO' J (2,,) . 2 . 0' .. 
for y :2: 0 

Y is said to have a The has the same 
qualitative· shape as that ofthe r(2, I) p.d.f, of Fig. 2.6, and the log-
normal distribution is often used to describe incubation periods for 
diseases (see also Morgan and Watts, 1980) and'sojourn times in more 
general states. We shall, in fact,.,encounter such a use. for this 
distribution in Example. 8.3. Section. AU gives IMSL and NAG 
routines for simulating from this distribution.' For full details, see 

,Aitchison and Brown (1966). ' , 

4.22. (Kbmji, 1981) 'The distribution is 
-., ' , .. { ", 

',. 

p, = -el'/{klog,(I-el)} k:2: 1,0 < el'< I 
, Show that moment generating function is: 

log (I - eleB)/log (I-el) 

and that successive probabilities can be generated from: 

p, = el(1 -I/k)pk-.I : for k;? 2 

Sho,:" 'that if X has the conditional geometric distribution 

Pr(X = xlY= y) = (l_y)yX-' forx:2:1 

and if Pr(Y';; y) = log (1 - y) 
. log (1 -el) 

, then X has the Explain ho;v, you can make use ' 
of.this result to simulate frbni 'the logarithmic disiribution. . 

'.' i." :' - . -, .:.. . , . 

5 
GENERAL METHODS 
FOR NON-UNIFORM' 
RANDOM VARIABLES 

For many uses, simple algorithms, such as those which may arise from 
particular methods of the kind described in the last chapter" will suffice. It is of 
interest, however, to consider also general methods, which may be used for any 
distribution, and that we shall now do. In many cases general methods can 
result in· algorithms which, while they, are more complicated than those 

so far, are appreciably more,efficient. 

5.1 The 'table-look-up' method for discrete random variables 

. For' ease of notation, let us suppose that we have a random variable X that 
takes the values 0, 1,2,3, etc., and with Pi Pr(X = i) for i :2: O. Thus X could 

. be binomial, or Poisson, for example. , 
A general algorithm 'for si'mulating X is as follows: 

Select a U (0, 1) random variable, U., 

Set X ='0 irO';; U < Po, and 
j-l, j 

set X =j if L Pi ,;; U < L Pi' for j:2: 1. 
i=O i=O 

We can think of the probabilities {Pi' i;;': O} being put end·to-end and, as 
L;"= 0 Pi = 1, filling out the interval [0,1] asillustrated in Fig. 5.1. We can now 
see that the above algorithm works by selecting a value U and observing in 
which probability interval U lands. hi thdllustration of Fig. 5.1 we have 

. . 
l' . 2--

L Pi ,;; U < L Pi 
i=O i=O 

and so we set X = 2. 
This' algorithm is simply a generalization to more than two intervals of 

the rule used to simulate Bernoulli random variables iii Section 4.4.1. The 
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. program to simulate random varlables;'for integral 
n > L This result is sometimes used. to explain the frecjU'enf use of the 

d'istiibudbn for' des'cdbirig: discrete mila when the 
Poisson distribution is unsatisfactory. The' is a 
'contagious' distribution, and much more relevant material is provided 
by Douglas (1980). An algori,thm using the waiting-time definition of 
thedlstrioution is given in ApPendix 1). 

, , .• ' ;"1,.';" _ '. ',. _,1:_. 

·l!se.the transformation, theory of Section 2.1210 show thatthe random 
variable y,;, eX,'where X, has a N(/1, 0"2) distribution, has the density 
function I, 

exp - /1)2) 
yO" .J (21t) 2 0" 

.,for' y ,'" 0 

Y is said to have a log-normal distribution. The p.d.f. has the same 
qualitative shape as that of the r(2, 1) p.d.f. of Fig. 2.6, and the log-
normal, distribution is often.used"to describe' incubatiol), periods for 
diseases (see also Morgan and Watts, 1980) and sojourn times in more 
general states. We- 'shall, in fact, encounter such a use for this 
distribution in Eiample 8.3. Section A1.1 gives IMSL and NAG 

(o,r fX;qtn this distribution. full ;details, see 
Aitchison and Brown (1966). 

. (Kemp, 1981) ThegenerarIogarithmic'distribution is 

Show that its moinent generating function is:' 
,.: . .\ . 'Co: 

log (1 :- o:e')/log (1 0:). 

and that successive probabilities can be generated from: 

Pk = o:(I-I/k)pk_' for k '" 2 
Show 'that if X his the conditional geometric distribution 

and if 

Pr(X =x!Y y) = (1 _ y)yX-I 

log (I - y) 
5; y) = 10g(I..,-0:) 

forx",l 

for05;y5;!'" 

then X has Eltplainhow you can make use 
of this result to simulate from the logarithmic distribution. 

i 
\ 

:< '.'" 

5 
GENERAL METHODS 
FOR. NON-UNIFORM. 
RANDOM VARIABLES 

(' For. many uses, simple algorithms, such as those which may arise from 
parhcular methods oflhe. kind de,scrilled in the last chapter; will suffice. It is of 

to conSIder also which may be used for any 
that no.w.do.Jn ·general.methods can 

resul.t In algonthms whIch, while they are more those 
con.sldered,SQ far,.are·appreciably more. efficient. 3 . :":'. 

5.1 The 'table-look-up' method for discrete random variables 
For ease of notation, let us suppose we have a random variable X that 

trye valuesO, .1,.2. 3, etc., and With Pi. = iHQr.i "',0: Thus Xcould 
be Or Poisson, for example. . 

A general algorithm' for siml!!a'ting X is as follows: 
Select a U (0, 1) raI:1dom variable, U . . ,. 

, Set X'= O"il b 5; U < Po, and 
j-I j 

set X = j, if L Pi 5; U < L Pi for j '" 1. 
i=O i=O 

We can think of the probabilities {Pi' i '" 0) being .put end-to-end and as 
Lr.o Pi = I, filling out.the interval [0, I] asillustrai6d in Fig: can 
see/hat the .algorithm works by selecting avalue U and'Qbserving in 
whIch mterval U lands. III the illustration of Fig. 5.1 we have 

I 2 

L Pi 5; U < L Pi 
1=0 (=0 

and so we set X;';' 2. " 
This algofithm,is'sirr!Ply' a. generaliZAtion io "more than'two of 

the rule' used to simlilateBernouIli random &etian' 4.4.1. The 
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u 

I 1 1 1 , , I ----, 
, ' t. 

Figure 5.1 An illustration of how for simulating a 
discrete random variable with 'probability distribution {Pi' j O}.' 

reason the algorithm works is readily explained. We want to simulate the 
random variable X so that Pr (X = i) = Pi for i;;' O. As U is U(O, I), then 
for any 0 oS a oS b, Pr(a oS U < b) = (b -0) (see Section 2.8) and so 
Pr(O oS U < Po) = Po = PrIX = 0), and 

. ':;.i pr( ProS U < PI) = Pi = Pr(X = 11 ! for j;;' I 

Thus,' forj ;;, 0, the algorithm returns the_ value X ;"'.j with' probilbility Pi' as 
required.' T .',' " .' 

The above algorithm' is readily modified to'cope wiih discrete random 
variables with different ranges from that considered above, (i.e. X;;, Oland one 
suchexample now follows. 

r" 
EXAMPLE 5.1 

. We' want to'simulate the geometric random variable X, with distribution 

.. t-

.' h 

Pi = PrIX = i) = (l_p)i-lp fOf,i,;;' I, 0< P< 1 

In order to operate the above algorithm we need successive of 
the {Pi}, and in this case, because Pi is ofa simple geometric form, then these 
cumulative sums are also of a simple form. Here, 

f, p(I_(I_p)l) I-(I-p)i 
L.., Pi = I _ (I _ p) 

i"" 1 
forj;;'1 

ThUS'. the algorithm becomes: 

'''Set" X =j if I - (I - p)J-l oS U < I - (I - p}i 'for j;;' I 

which is equiva'ient to: - (I - p)i-l oS U i < -(1- p)i 

i.e. (I - p)i- 1 ;;, (I - U) > (I - p)i (5.1) 

Before proceeding, we can here observe that the selecting a 
U (0, 1) random. and then.checkiI).g.,the.range.qL<! -;- U). Now it is 

",!,intuiMeJl that if U is a U(O, I) then sois (1-" U2:and 
. -" -

, 
\ 

'I 
J 

5.1 The 'table-look-up' method/or discrete random variables . , , . . 93. 
this result can be, readily, verified by change-of-variable theory of 
Section 2.12 (see Exercise 5.1). ".. ' 

;Herice we can the labour if we replace (5.1) by 
, the equivalent test" ' , 

, (1":' pJi-l ;;, U ;;' (1 - p)l (5.2) 

Ofcours<for any pariicular reaiization of U, (5.1) and will usually give 
different results; however, the random variable X resulting from using (5.2) 
will have the same geometric distribution as,the random·. variable resulting 
from using·(5.1). Continuing from' (5.2), we set X = j;;' 1 if, and only if, 

(j -1) log, (1 - p) ;;, log, U > j log, (1 - p) 

so that, recalling thilt log, (1 - p) < 0, we have X = j if 

(j-;-I) oS,log.U , <j 
" ' 10g,(I-,p) 

for j;;' 1 

Finally, we note' that we can express (5.3) very simply by setting 

X, ' I" '[ 10g,U ] - + ' , 
. ',-, 10g,(I,,... p) . 

(5.3) 

(5.4) 

This example is unusual in that the cumulative sums of probabilities have a 
simple form, The next example is far more typical. 

.' 
EXAMPLE 5.2 
If X has a P9,!§son distribution of parameter 2, its cum'!!.ative distribution 
fun_ction is given. below to four places of decimals: , 

2 3 4 5 6 7 8 9 

Pr(X ,; i) 0.1353 0.4060 0.6767 0.8571 0.9473 0,9834 0.9955 0.9989 0.9998 l.CXXJ 

Using this table and the table-look-up algorithm, the following eight U (0, I) -
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random variables can be seen to give rise to the indicated values of X: . -. . , 

u X 

'0.0318' ,0, 
0.4167 2 
0.4908 2 
0.2459 1 
0.3643 r 
0.8124 ,3 
0.9673 5 
0.1254 0 

This example the method is so called. Given a 
table of the cumulative distribution of any discrete random variable, and a 
supply of Uta, 1) random variables, we can use this method to simulate that 
random variabie. By iheir very naiure, such tables are finite, and if the random 
variabkij", question has an infinite range, then the range would have to be 
truncated for the method to be used. This was done in the above example, 
where using accuracy of only four decimal places resulted in the range of 
X being truncated to [0,9]. , 

Human beings can ,operate th.e table-look-up method quite easily, but its 
implementation.on a computer poses some intriguing problems. First of all we 
can remark that for 'a computer implementation it is not necessary to store 
cumulative sums of probabilities-they can bE: computed each time, as 
required. Random,variables of infinite range need not, their range 
truncated, but this approach is usually far too costly in,drort b,eeause of the 
repeated duplication of arithmetic each time a new simulation is run. More 
usually ranges are tiu'ncated if riecessary, and the 'resulting finite tables are 
stored within tlie'tomputer.The·riext problem that arises iS'how to read such 
stored tables. Computers need specified algorithms which could, for instance, 
involve reading the table of the cumulative distribution in 'Example 5.2 from 
left to'right. In such a case, the:computer would return X = ° when 
U = 0.0318, with liie ,greatest of ease; but, when U = 0.9673 it would 
laboriously" cneck wliether U < 0.1353, U < 0.4060; and so on 
0.94Ti <: U < 0.9834. Human 'beings Iieed n'ot be so rigid and have the 
advantage over computers Orbcing able to change their strategyin the light of 
superficial evidence on the size of U. By analogy, when looking up a word such 
as 'wombat' in the,dictionary, notmany of us would start at the front, with the 
letter 'A' and then skilt"> through from A to W; raiher, we would start from the 
middle; or near the' end, possibly even working bacKwards as well 
as forwards. A ma'y resultifib'e' range of X 
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were initially subdivided; for example, if Pr(X ,.; 0) =.p'" 0.5, say, for some 
knO\vnO,then ifU > pit would not be necessary to cliek U against L'_ p. for 
J ,;; Such an approach is utilized in the IMSL routine GGDT and ih":NAG 
routme G05EYF (see Section AU) and was encountered earlierln 
SectIOn 4.4.1. 

5.2 The 'table-look-up', or inversion method for continuous 
random variables 

We shall now consider the analogue of the above method for continuous 
random variables. Suppose we wish to simulate a continuous random variable 
X WIth cumulative distribution function F(x), Le.'F(x) = Pr(X < x), and 
suppose.also that the mverse function, F-I (u) is well-defined for 0 ,.; u ,;; 1. 

. IfU a Uta, I) random variable" then X = F-I (U) has the required 
dIstrIbutIOn. We can see this as follows: 
If X=F"l(U) 
then Pr(X"; x) = Pr(F"' (U)"; x) 

and because F(x) is the cumulative: distribution function of a continuous 
random :variable, F(x) is a-strictly monotonic increasing continuous function 
of x. ThIS fact enables us to write 

" 

But, as U is a U (0, I) 'random variable' , 
Pr(U"; F(x» = F(x) (see Section 2.8) 

I.e. Pr(X ,.; x) = F(x) 

and so the X obtained by. setting X = F -I (U) has the required distribution. 
The above argument, which was given earlier in Equation (2.1), is perhaps 

best underst?od by considering·a few examples. Figure 5.2, illustrates one 
for a variable. 

We the rule F- I (U) by simplyctaking'valuoS'of'U (O;-\-) variates 
and prolectIng down .on the x-axis as shown, using the graph o!'Y _ P(x). 

We shall now conslqer two further examples in more detail. 

EXAMPLE, 5.3 ", . 
In the untruncatedform, if X has de';si;ywith.parameter ;" 
then, . 

J(x) = ).e-" for x <: 0; ..l > 0, 
and' ,F(x) = 1-e-" 
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{l-e-X } 

(1 __ 

1.01-r-----------,-.,:----...,.---;>I 

'0.5 

v - - ... 

t 

0.0)'-1 L----L......:...---r---------:-o 0.0 x 0.5 1. x 

Figure 5.2 Operation of the table-look-up met1hod fOf.acontinuous 
The curve has the equatiori' (l-e-")f(1-e-) and IS the cumulative dIStnbutlOn 
functionofa truncated exponential random variable. with probabiIitydensity function, 
el-X(e-l)-l 1. ' 

To simulate X we set X = F- 1 (U), i.e., set t..I"O F(X) 
U = 1 - e -'x, and solve for X. 

'1 . 
This gives X= -1log,(I- U) 

., ... , ., .. and for. the' sarr:e as ,in Example 5.1, we obtain the desired 
distribution for X from setting 

1 
X = -Ilog,U (5.5) 

A verification of this result is the solution to.Exereis.e 2.1, and this 
method is used in the'lMSL routine GGEXN.and the NAG routine G05DBF 
(see Section ALl). - -. - - -

As with Example 5.1, the result of (5.5)·is deceptive in its simplicity, and it is 
no coincidence that the geometric and exponential dis.t,:ibutions play similar 
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rOles, the former in the discrete case and the latter in the continuous case, as 
discussed in Section 2.10, 2.23 'and Exercise 5.12. It is unfortunately 
the case that it is often not simple to form X = F -1 (U). The prime example of 
this occurs with the which has led to a variety of different 
approximations to both the normal cumulative ·distribution function and its 
inverse. We shall return to the subject of these approximations later in 
Section 5.7 and Exercise 5.9. 

We conclude this section with an example of how this method can be used, in 
a 'table-look-up' fashion to 'simulate standard normal random variables. 

EXAMPLE 5.4 
Ifwe take the same U(O, 1) values as in Example 5.2 then we can use tables of 
the standard normal cumulative distribution function, <I1(x) to give the 
following realizations of an N(O,!) random variable X: 

u x (to two places 

0.0318 
0.4167 
0.4908 
02459 
0.3643 
0.8124 
0.9673 
0.1254· 

-1.85 
-0.21 
-0.02 
-0.69 
-0.35 

0.89 
1.84 

-U5 

Thus, for example, 0.8124 =<1>(0.89), to the accuracy given. 
. Two points should bema-a. here: 

(a) Because of the symmetry of theN (0, I) distribution, the tables usually only 
give values of x 0 and, correspondingly, values of<l> 0.5, and so 
when u < 0.5 we have to employ the following approach which is easily 
verified to. be correct: 
We want x for which u = <I>(x). 
If u < 0.5, then by the symmetry of the normal density, x = - <I> - I (I - u). 

(b) The accuracy of the numbers'produced (in this to two decimal places) 
depends on the accuracy of the tables, which determines the degree of 
the truncation involved. --:-- . 

The inethod for cOntinuous random is often called 
the inversion method, and a general algorithm is provided by the IMSL routine 
OGVCR (see Section AU). We shall: use these terrns iniercharigeably, though 
strictly they'describe different v.:aysdimplemeriting the Same basic method. 
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5.3 The rejection method for :continuous random variables 
" Suppose we have a method for sprinkiing points uniformly at random under 

any probability density functionJ(x), and which may-give rise to the pattern of 
points in Fig. 5.3. What is the prObability that the abscissa, X say, ofany oneof 
these points lies in tnerange rJ. :5: X < p, for any rJ. < p? 

Figure 5.3 An illustration of points x uniformly and randomly distributed under-
. neath the probability density function/(x). For illustration we have used the B. (2.5, 3) 
distribution. -

The event, rJ. :5: X < p is equivalent to the point being in the shaded area 
shown in Fig. 5.3, and so, because of the assumed uniform distribution of the 
points, this event has probability . 

area of shaded area 
total area under J(x) 

This is J: J(x)dx /[J(X)dX 

i.e. J:f(X)dX as L:J(X)dX= I, 

since J(x) is a probability density function. 
Thus we are saying that 

Pr (rJ. :5: X < p) = J>(X) dx, .for any rJ. < p 

r 
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where f(xJ'js a probability. density function, i.e. X"has .density 
function J(x)(seeSection 2.3), " '. " " ,., " 

Thus,- for any probability density functiot.!:lhl we, can, .simula\e random 
'variables X 'from this 'density. function.'as',long,as we .ha1o'e ,a, for 
uniformly and randomly sprinkling pointsmnder. f(x);'Thpse o,yh, . 

silua.tion, 1, 
bell)g 10 that, case "to enclosevilthm a.square the ,area ,to, by .spr.., 

It isa simple-matleHodistribute pOll)ts unifoflnly at ra\! ;',',,' 
square, and in -Section 4.2.2, those points-not withjn,the area of iJ . _', ,. 
rejected. The same principle for. any density f\lOction1(;) results ..... ....... 
rejection method, attributed' to: VOn Neumann (1951). .the rejection 
method (sometimes also :cilled ,the ,method)' may be 
used for discrete random,variables (see Rishman,1979,·for·exaIl,1ple), it is 
usually employed for continuous random variables,the case being investjgated 
here. ' . .... 

If the probability density function J(x) is OYr! onlY,a range, 
then it is easy to box it in, as shown in Fig. 5.4. D,sing.U(O, l)random variables 
it, is a. simple matter to '.sprinkle. points. uniformly and, over 

, the' rectangle shown, simply by taking points: "'ith, air.tesia\! co-ordinates 
(8+(rJ.-8)U"oU2 ), where,U, and U2 ·:areindependent U(O, 1) mndom 

. landing above J(x) are rejected, while for points landing 
below J(x), we take e + (;=ej U 1 as, a realization of X:" ' -

f(xl • 0 • 0 

0 0 0 x x 

0 
0 0 x 0 0 

0 0 x 
0 0 

x x x 
0 x x x 

x x 
x x 

x • x x 
x x 

x 
x x 

x 
x 

0 e a x 

Figure 5.4 Simulating from the probability density function/Ix), which is non-zero 
over the finite range [8, ci]. The method generates'points (denoted.by 0 and x) 
uniformly at random over the rectangle shown.-Poihts denoted bY.9f are rejected (cf. 
Fig. 4.2), while of the points x are afi,cepted as realizations-of the random 
variable witl:!. density' function /(x).' For:iIlustration we have used the 
B. (3,2.5) distribution, or w1iiCh B _ 0, a-I, 8 = 0.3435. 
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, " As the area ofthe'rectangle in Fig. 5.4 is I) (a 0), and the area under the 
curve is unity, we see that the probability of accepting a point is 1/(I)(a - 0) ), 

'and so :the'smaller I) is" the larger, is the probability of, acceptance and, 
correspondingly; the mOre efficient the method. This is, of course, why a larger 
value of I)' was' not used in Fig. SA. . ' 

There are1t\voJsnags-with the"above approach.-A is, as we have seen, 
a convenIent' shape, within whiCh to simulate 'a random uniform spread of 
points, but 'it Clearly cannot' be used if the density f (x) has an infinite range, 
as we Can; hnly 'simulate'- uniform over· a finite -range. 
Furtheriri6re; the probability of .rejeetion' could become quite large: if the 

, :' density of Fig: 5.4 was replacedbya spiked density, for instance, such as would 
ies'ult'from'a caplace distribution, truncated to have a 'finifeTange. In such a 
case"the simplicity' gained' from distributing' points unifqrmly over a ree-

'-0 ,tangulai'region:could be more than offset by the cost of frequent rejection. 
Both of these ,snags can be overcome by using as the enveloping curve a 

, 'suiiable'multiple ofa"different probability density Junction from J(x), as we 
shlill how .. ee: Consider: ... p.d.f. h (x), with the same range as f(x), butfrom which 
it is relatively-easy to siinulat'e: It is theri simple to obtain a'uniform scatter of 

", points 'under 'h (x), by taking points (X,Y) such,that X has density h (x), while 
the eodaitional'densityofY'given X = x is V (0; "(:x», For, a uniform scatter 

"'oT poinis; c6nditional p.d.f. of Y clearly 'must be of thidorm, while the 
X co-ordinate must have' the property that for any pair (a, P), with a < p, 
Pr(a ,;; X < P) - J! h (x) dx, i.e. X must have probability density function h(x). 

Ifit were possible to choose h(x) to be ofa roughly similar shape to J(x) and 
then to envelop I(x) by h (xl, we would obtain the desired scatter of points 
under f(x) by first obtaining a scatter of points under h (x) and then rejecting 
just those which were under h (xl but not under J(x). While it is often possible 
to choose an appropriate h (x) to be of similar shape to J(x), it is clearly not 
possible to envelop J(x) by h (x), so that, for all x, f(x) ,;; h (x), since both J(x) 
and h(x) are density functions, and so = = I. 
However, the solution to this last obstacle is easily obtained by, effectively, 
plotting h(x) and the scatter of points obtained under h(x) on stretchable 
paper, arid then uniformly stretching the paper in a direction at right angles to 
the x-axis until h (x) :? J(x) for all x. Such stretchin clearly does not change 
the uniformity of the scatter of the points. athematically this stretching is 
done, very simply, by taking as the conditional density of Y given X = x, 
V (0, kh (x», where k ;, 1 is the stretching factor, and where X has probability 

' •. density function hW:-
: Thus fOfcSuitable. h(x) and k, we_have the following a,lgorithm:jf we write 
9 (x) = kh (x), 

=x,from probability density, h(x); 
(ii) simulate Y to' be Vg(x), where V iS,an independent V (0, 1) random 

variable; 
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(iii) aqceRt "X = x as a realizatioll.of a random variable with probability 
, density function f(x) ifand only ifY <J(x). 

The situation is illustrated ,in Fig. 5.5. 

f(x) 
O.lO 

0.15 

, 

, 
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, , , , , , 
" . , 

, . , , , 
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, 
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· . 

• 
• 
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x • 

'\. 
• 
• 
, • • 
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----- g(x) 
--fIx) 

8 
x, 

Figure 5.5 The points x and 0 are uniformly and randomly distributed under the 
curve g(x) = kh(x). where k > 1 is a constant, and hex) is a density from which it is easy 
to The points 0 lie above the density function/(x) and so are rejected. The 
pomts x are aGCepted and their abscissae are realizations of a random variable with 
probability density function f(x). See Exercise 5.22 for an explanation of the p.d.f.'s 
used. ' . 

At first sight this algorithm seems unusual and confusing since the test in 
(iii) concerns Y, but if the test is sati'sfied then it is X = x w'hich is accepted. 
However, in the light of the above discussion, we can now see that'(iii) is just a 
component of testing whether a point constructed randomly and uniformly 
under 9 (x) is also under J(x). 

The probability of rejection here is 

(g(x) -J(x»dx 
I 

g(x)di· = I-'k 

reflecting the importance of small k, subject to k> 1: 
We choose h (x) with shape and convenience in mind. The next two examples 
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provide two approaches for selecting k. The first-example use,s an exponential 
envelope to simulate normal random'variables. An exponeniial,enve1ope can 
only envelop halfof the standard normal density, but it can enve1,op the 'half-
normal' density, given by 

[(x) = JG)e -x'/2 for x 0 

i.e. f(x) = 21> (x), for x 0_ If K has density function J(x), then the random 
variable 

- _ { X with probability ! 
X - _ X with probability ! 

clearly has the standard normal density 1>(x) for - 00 :<; x < 00. We shall 
therefore simulate from 1> (x) by first simulating from J(x), and then applying 
the above transformation, from i to X. 

EXAMPLE 5.5 A rejection method Jar N(O, 1) variables 

Here 

and g(x) = ke- x for x 0 

One way of choosing k is to consider the condition for equal roots arising from 
setting 

as the roots in x of this equation correspond to the intersection of g(x)andJ(x). 
If this equation has no real roots, then If the equation has two 
distinct roots, then k is too small. The case of two equal roots corresponds to 
the smallest possibleValUeof k, and the two curves touch, as shown in Fig. 5.6. 

Setting k J('-i) = e x - x '/2 
, . 

results in a quadratic equation in x: ' 

. x, -2X+210g,( k J (I)) = 0 

which has equal roots if and only if " 

, '1=210g,(kJ(I)) 
i.e. 

5.3 The rejection method for continuous random variables 

1.50 
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Figure 5.6 ! ,An 9fth(j optimum choice of k. Here we illustrate of the 
exponential e-;OC probabjlity density function as the basis bf an envelope: for the half-

normal density The by (dashed 

line). illustrated for x :<; 4; as is !(x)_ 

i.e. k= + 1.3154892 

the equal roots occurring at x = I, which is, in fact, also the point ofinflexion 
for the half-normal density. 

I,.,'. .. 

The, algorithm therefore proceeds as follows:, 

i.e. 
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Le. U I U2 < exp( - (1 + X2)j2), 

since 

Thus ultimately the algorithm does not involve k directly. ,.,t 
Finally, of course, we must convert the half-normal random variable X to 

the standard normal random variable i. While Ws'fiiststage can always be done 
by selecting a new U (0, 1) random Variable, and then testing whether it is 
greater or less than 1, we note that as Y is U(O,g(X», then conditional on 

Y has a U (0, J ) e -x';Z ) distribution, 

and the sign of i can be decided by considering whether or not 
e _Xl/2 

Y<--. J (2,,) 
, _ This is idea that was exploited in Exercise 4.2 and Section 4.4.1. 
. ,,' A BASIC p:ogn,m for this algorithm is shown in Fig. 5.7. 

The reason for using e- x as the p.d.f:for the basis of the envelope here, 
rather than any other ;.e-).x p.d.f. can be found from a consideration of the 
probability of rejection, 1 -ljk, and we see in Exercise 5.21 that}. = I 
minimizes this rejection probability. 

10 RANDOMIZE 
20 INPUT M 

;g 
50 , REM WITH A HALF-NORMAL PDF ENVELOPED BY A 
60' REM MULTIPLE OF·THE EXPONENTIAL PDF WITH 
.70. REM PARAMETER 1 
00 FOR I = 1 TO M . 
90,; .. LET .uJ. = RND 
100 Lf.T U2 = RND 
110 LETX=-LOG(Ul) 
120 LET B = .S+EXP(-.5-X"XI2) 
130 LET C =-U1."U2· 
140 IF C < B THEN 170 
150 IF' C < 2-8 THEN 190 
160 GOTO 90 
170 PRINT-X 
180 GOTO 200 
190 PRINT X ' 
200 NEXT I 
210 END 

Figure 5.7. BASIC program for tne rejection method iIlustraled in Fig. 5.6. 
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The exponential function provides a suitable envelope for the half-normal 
probability density function .. as the rate at which e -:-x tends to zero as x -+ 00 is 
less than the rate at which e-..x1/2 tends to zero as ,'X·-+ '00.' 

A general way of finding k is to note that we want k to satisfy kh(x) > r6:) for 
all x, and that we cannot have equality here for all x, k is therefore given 
by 

k = max- (f(X) ) 
x h(x) 

if a finite maximum can be found,'as then kh(x) :?f(x) for all x, with equality 
for at least one x. ' 

A finite maximum will not result if h(x) is unsuitable as a basis for an 
envelope 'off(x). For instance, we could have h(xl';" 0 whenf(x) > 0, or we 
might try settingf(x) = e- x and h(xl this lat'!,er case, 

x 2 

log (f(x)jh(x» = '2 - x 

which increases without bound as x -+ 00. 

This app'fOach should work, however, if a suitable h(x) has been found. In 
this example we have 

f(x) = e -:'/
2 

= eX- x'/2 
h(x) "e x " 

y = log (f(x)jh(x» = log ( J ) ) + x _ x; 

dy 
-= I-x 
dx 

,d2y 
dx2 = -I 

Thus we. maximizef(x)jh(x) by setting x = 1, to give, as before, k = J ). 
In Section 4.3 we have already seen one way of simulating r(n, ,l) random 

variables, when n isa positive integer. The next example provides an alternative 
approach, for thecaSeli'>I, using rejection, and an exponential envelope as in 
the last example. This approach may also be used when n > 1 is not integral. 
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Here we take A = I for simplicity: If a random X results, then the new 
random variable Y = X/A will have a I(n, A) distribution, from the theory of 
Section 2,12 (see "Exercise.2,2), . 

'EXAMPLE 5.6 [(n', I) variables. 

Here 
, ,,-1 -x 

X e. 
!(x)=-' -

l(n) 
for x :2: 0,. and n > I 

g(x) = ke-X'"/n. for x:2: O. 

As n> 1, then as x ':"',Q that g(x) is a 
suitable enveloping functio l1 ,for:/(x). '., -. 

Let}' = f(x)/h(x), We seek k by maximizing}' with respect to x. 
-- x log, y = (n - 1) log, x - x + - + log, (n/I(n» 

n 

d n -1 I 
- (log y) = -- - 1 + --dx e x n 

dZ l-n 
dxz (log, y) = Xl 

Thus, as n > 1, we maximize y.when 

i.e. when x = n. and so ----
/I -I 1 
-= 1---

x /I 

k = /I"'e'-"/l(/I) 

It is now a simple matter to derive the following algorithm. Let U be a U(O, 1) 
random variable, and let E be an independen t exponential random variable 
with parameter /1-', If 

t (x) = (; r' exp [ (1 II) (; - I) ] for x :2: 0 

'. then conditional on tiE) ;2: U, E has the required gamma p.d.f. 
, . 

The above, method, due originally to G. S. Fishman, is described by 
Atkinson and Pearce (1976): Of course; any density function f(x):can be 
enveloped by a variety of alternative functions, and an alternative rejec-
tion method for gamma rand'om variables is given in Exercise 5,22, 

i.4. ,The method 107 . :., ',.: 
For distributions over a finite range, an alternative approach is to envelop 
the distribution with a suitable polygon and then use the method of Hsuan: 
(1979). A generalization of the rejection method is given in Exercise 5.29. 

5.4 The composition method 

Here again we encounter a general method suitable for discrete and 
continuous random variables. We.shall begin our discussion of this method 
with an illustration from Abramowitz and Stegun (1965, p. 951). 

For a binomial B(5,0.2) distribution we have the following probabilities, 
given to four places of decimals: 

o 
I 
2 
3 
4 
5 

If we take Po as an example, we can write 

P, 

0.3277 
0.4096 
0.2048 
0.0512 
0.0064 
0.0003 

3 2 '7 7 
Po = 0.3277. = 0.9 x --9 + 0.07 x -- + 0.027 x -2 + 0.003 x -3 . 7 ,7 0 

d" 
and similarly, 

, . .... 4 0 9 6 
p, = 0.4096 '= 0.9 x "9 + 0.07 x "1 + 0.027 x 27 + 0.003 x 30 

2 0 '4 ·8 
Pz = 0.2048 = 0.9 x "9 + 0.07 x "1 + 0.027 x 27 + 0.003 x 30 

and so on, so that in general, 

P. 0.91'" +0.07r.z'{-0.027 r,,·-.l-0.003r;4' for 0 S; is; 5 (5.6) 
, • _ .' J ." _. i. - ' __ . ' . .'." .". . ..• 

where {rill, {r,,} and {rf4}' are- all' probability diStributions over;th.e 
same 9 ::s; i ::s;, 5., . 

We can soetliat in (5.6), 

x (SUIl) of digits in first de.cimal place of the p,) 
0.07'= 'lO- z x (sumcif digits.in ,pla,,;of Pi) 

,and ,so on 
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while, for example, 

0.2 2" 
r" = 0.9 =9 

0.02 2 
ro, = 0.07 = '7 
etc. 

This explains the derivation of (5.6). We can now use (5.6) to simulate from the 
{Pi} distribution as follows: 
(i) Simulate a discrete random variable, R, say. according to the distribution: 

j Pr(R = j) 

1 0.9 
2 0.07 
3 0.027 
4 0.003 

(ii) If R = j, simulate from the {r,j} distribution for 1 5.j 5. 4. If the 
random variable is denoted by X, 

4 

Pr(X = i) = L Pr(R = j)ru (see for example ,4BC, p. 85) 
j= 1 

i.e. Pr(X = i) = Pi 
i.e. X has 'the required bin'omial distribution. 

Of course, a small amount of approximation has taken place here, as we have 
written the {p;} only to four places of decimals. Nevertheless, this approach 
may be used for any discrete distribution: While one has to simulate from two 
distributions {Pr(K= j); 1. 5. j 5. 4} and, { rU), most (97 %) of the time one is 
simulating from {ril } and {ri'), and these component discrete distributions 
are ofa very simple form. A disadvantage of this met,hod is tile need' (ostore 'the 
component distributions. In (5.6) we have written the {Pi} dis'iributioil as a 
mixture, qr 'composition, of the {rij} distributions;·a further example of this. 
kind is to De found in Exercise -5.42. We,shall now,consider .the analogous 
procedure for continuous random variables. 

It is not unusual to encounter probability density functions' which are 
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of other ,probability density functions, say 

f(x) = exf, (x) + (1 -ex)f,(x) O<ex<1 (5.7) 

In psychology, for example, bimodal histogramS' of, reaction times are 
s.ometimes encountered, which may reflect a tendency for subjects to behave in 
some standard fashion a proportion ex of the time., producing reaction times 
with probability density function f, (x), say, but the remainder of the time, 
possibly due to a loss in concentration, to produce. reaction times that tend to 
be longer than before, with probability density functionf,(x), say. Cox (1966) 
provides further discussion of this example. , ' 
, is provided by human height histograms, which could be 

bimodal due to' a mixture of differenr male and' female height, histograms. 
However, samples from such mixtures may nbt'obviously reflectthe mixture 
form of the underlying p,d,f., as is the case in the histogram of Fig. 5.8, 
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Figure 5.8 Histogram describi}lg the heights of some undergraduates at the 
University of Kent (taken from Fuller and Lury, 1977, p. 14), For the 142 male 
undergraduates, heights range from 63 to 77 inches, witha modal height of70 inches; 
for the 69 female undergraduates, heights range from 60 to 70 inches, with a modal 
height of 65 inches. 

.Indeed, we shall see .that in many:applications in simulation the mixture 
formof (5, 7)).s adopted convenience, even for'unimodal distribu.tions 
such as the normal distribution. Theconvenience arises if ex is fairly large and 

. . ..' 'f 
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Methods for Non-uniform Random Variables , 
f. (x) is a probability density function is appredablY siniu,late 
from thanf(x) itself. lfwe sample fromf. (x).with probability a, and from!2(x) 
with probability (I-a), then because of \h;: relationship of (5.7) we obtain a 
random variable, X, with probability density functionf(x);We see this simply 
as follows: . ---

Pr(X:S; x) = aPr(X:S; xl sample fromf,(x»+ (l-a)Pr(X:S; xl 
, sample from f2 (x» 

= a (I"':a) L>(Y)dY 
t:f<Y)dY', by (5.7) 

Let us now consider two examples which illustrate the use of the method. -, ' 
. , 

Suppose Vfe want to simulate random variables 'with the p:dJ. of Fig. 5.9. 

I(x) 

ArtQ-· (1-9) 

e - - -- - ---

Ana - 9. 

o· x 

Figure 5.9 An unusual probability density functionj(x), from wl1ich'we shall simulate 
using a composition. the first density,!, (x), of which is the .U(O, 1) density. 

',I, 

We note here that we can write 

f(x) = e + f(x) - B for any O:S; x :S; 1 

i.e., (5.8) 

",5.4 ", ' III 

As =.1" then e < I, and (5.8) is Qf,the S!'me form as (5.7). To simulate 
fromf(x), with probability e we simply a U (0: 1) random v';':;'iible','{,ihile'" " ' 
with probability from the p.dJ., " ',,' •. ;c. 

J,(x) = l-e 
.r'·, .. 

which has subsumed the off(x) which' p.d:f. from" 
which to simulate. We can simulate from bothf(x) andJ, (x) using';; rejection 
method, but the advantage of the composition of (5.8(;5 th,,c one' onlj ,;'.' ' 
simulates fromJ,(x) with' probability (1-8), and in the illustration of Fig. 5.9, 
(I-e) is appreCiably 'less than 0.5. -;-- " , 

; : 

EXAMPLE 5.8 
A random variable X with the simple beta probability density function 

. ,. for 'o:s; x"; 1 

can be ,easiiY'bY either the method; ,q; the, 
rejection method (see Exercise t5!l8). ,F;igure 5.1O·shows how we a',," 
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Figure 5.10 The ,beta density- function, f(x) = 6x(1-x) 
composition. " 

and the" basis "for .C!" 
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composition method. Here;}; (x) is simply the symmetric' triangular density 
over (O,li,i:,,: "." .. ' ·--"L·· -.c .. · .. ' " .. 

for: '0 s; x:S 0.5 ' 
for 0.5:S x :S I 

, , 

From simple geometrical consideration we see that we must have a :S tand as ... '" .. ')-;,., .... .' 
we want.a to be' as large'as'possihle,\\ie take ci = l. The second density in the 

giyen!by '. . --.:-" .-(. ... : . -,' ., ' " 

.' ,. f(x) -a}; (x)· ,{12X(I":2X) : 
hex) = . = I-a 12(l-2x)(x-l) 

for 0 ;;; >: ::S,O.5 
. 0.5 :S x :S I. for 

We shall leave the reader to consider how we might simulate fromh(X). 

In general, suppose we have a probability density functionJ(x), and that 
JI (x) is a probability density function of roughly 'similar shape, but that it is 
appreciably eaMer tosimulateifromfi (x). than fromJ(x). We shall.see,shortly 
why we wabtJ(x),and};(x),td'be orSimilarcshape" .. " .. 

We can formally write, for any a in the range ° < a < I, 

f(x) = "f. (x) + (1-,,) (J(x) -af. (X») 
\ I -a 

and from the above discussion We see that we can simulate from J(x) by 
simulating frdin jJic) with probability a, and from h (x) = (f(x)'- a}; (x»/ 
(I-a) with probability (1-,,). As };(x) is chosen to be relatively easy to 
simulate from, we clearly want a to be as large as possible. The constraint on" 
is that for all x we must haveJ(x) -af. (x) ;;:: 0, in orderto ensure thath (x) is 
also a probability density function (it is easy to see that its integral is 
Now if 

. (I(X») 
a = m:n JI (x) 

and a pOSItIve, non-zero minimum can be found, then a,:SJ(x)/f. (x), 
i.e. f(x) - af. (x) ;;:: 0, as required, and there is at 'least One x for which 
af. (x) = ((xl, so that a larger value of" cannot found. This1approach to 
finding a is, of course, analogous to the general approach given in the last 
section for finding k. Here we can consider a as shrinkingf. (x) so. that it just fits 
completely underf(x), as we have seen in the last two examples:'This of course 
explains why we s.·ok anf. (x) to.be of roughly similar shape tof(,:):the more 
similar in shapej(x) and J, (x) are, then the larger the shrinking parameter a can 
bi'. fdr fejectioH, then, weenvelopJ(xl, but forcomposition;itisJ(x) itselrthal. 
plays the enveloping rOle. The method generalizes in a straightforward way;so 
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that we cOllld repeat the Procedure forl2 (x), and so on, with 
the mixture:,' '.'. ;'. '., . . _ 

, : I ,n+ . 
lex) I; a,}i(x) 

• • 1 " i= 1 .. 

in which 

and for I:S i:S n + I, 
all thel(x) are probability density functions, and 

f.+dx) = (J(X) - JI aJ;(x») I (l-JI ",) 
In choosing n, one has to counterbalance difficulty of simulating from the 
final densityJunction,J.+ I (x), with the size oJ ".+ I' and the general desirability 
of keeping n small. . . 

In the last two examples, all the p.dJ.'s considered had a finite range. As we 
shall see in the,next ,section, it sometimes happens thatf(x) has an 
range, but}; (x) has a finite range. In such a case; we have 3: range of;; for which 
}; (x) = 0, buth (x) > 0. In fact, as is shown in the next section, we can also have 
h (x) = ° and}; (x) > ° for certain x. • 

*5.5 Combining methods for simulating normal random variables 

In recent years much ingenuity has been devoted to devising composition 
methods for the standard normal probability density function. These ap-
proaches have also employed rejection. table-look-up and particular methods, 
and it is fascinating to see all of these different tools put to work on the one 
problem. As with the rejection method, many different compositions can be 
formed for any one density function, and here we shall just 
consider one, for the N (0, I) density. Due to Marsaglia and Bray (1964). the 
method gives rise to what has been termed their 'convenient' algorithm. Other 
methods are discussed in Exercises 5.36-5.38. 

What many ofthe.differentmethods proposed for the N (0, 1) p.d,f. have in 
common, however, is the initial isolation of the tails of the normal density 
function, and the first composition is: . 

(5.9) 

in which 
for . -3 :S x:S 3 

. for' Ixl > 3 
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and 

where 

General Methodsfor Non-uniform Random Variables 

, . { I '.-x'li" for, Ixl > 3 
4>,(x) = (I -, a;. ) .... : 0)(21<) .. ' 

. for -35:x5:3 

. f- 3 e-x'(2 
I-a; =2 '-.-- "" 0.0027 

, - )(21<) , 

to 4 places of decimals. Here, then, is an instance of the two compo'neht p.d.f.'s 
in (5.7) having different ranges. lxi' > 3 is used to define the normal p.d.f. tails as 
3 is suitably large and, as we shaU see, ties in conveniently with the approaches 
adopted in what follows. 

The composition of (5.9) means that most of the time we simulate from the 
expanded normal density, 4>, (x), over the finite range Ixl 5: 3, while with the 
very smaU probability (I-a;) we simulate from the p.d.f. 4>,(x), formed by 
expanding the tail areas from the standard normal p.d.f. 

Let us consider 4>,(x) first of aU. A random variable X with probability 
density function ",,(x) is simply an N (0; 1) random variable, conditioned to be 
IXI ;<: 3. Such random variables result from the Box-MuUer or Polar 
Marsaglia methods of Section 4.2 as follows: in the Box-Muller notation of 
Equation (4.1), if the exponential variable -210g, V, > 9, then from the 
geometrical explanation of Section 4.2.1, there is a good chance that at least 
one of N, and N, is greater than 3 in modulus, as required. Certainly, if 
- 2 log, V, < 9 then neither of N, and N, will be greater than 3, and so the 
standard approach of Section 4.2 towards constructing the conditioned 
normal variables that we require would be very wasteful. However, as is 
discussed in Exercise 5.24, Y = 9 - 2 log, V, is a random variable with the 
required exponential distribution, but conditional on being greater than 9. We 
can therefore simulate from the p.d.f. 4>,(x) by replacing -2 log, V, in 
Equation (4.1) by (9 - 2 log. V,), but only accepting a resulting N, or N, value 
if it is greater than 3 in modulus. Correspondingly, we can modify the 
Polar Marsaglia method by replacing (- 210g.W) in Equation (4.2) by 
(9- 210g.l¥), and proceeding in the, same fashion .. 

There is more discussion of tail area simulation in the solution to Exercise 
5.38. So far we have used the particular approaches of Section 4.2, and the 
table-look-up method to give exponential random variables of mean 2. Now 
we shaU return to .p, (x). 

Figure 5.11 lUustrates "', (x) and also the prohability density funCtion of the 
random variable 

Y = 2(V, + V, + V, -1.5) -35:Y:;;3 

5.5 Combining metho,dsfor simulating normal random variables liS 

, , , 

-, 

, 

, , , 
I , , 

OA 

o 

, , , , , , , , , , , , , , 

Figure 5.11 The preliminary to a composition method. Here we want to simulate 
from tb 1 (x) (denoted by a solid line) the standard normal p.d.f. conditioned to the range 
Ixl " 3. It is proposed to use as the first p.d.f. in the composi;io.1\, J. (-\,) (dashe.d .line),the . 
dens,ty of r. = 2(V, + V, + V, -1.5), where V" V, and V, are independent V (0, 1) 
random vanables. -

in which .0,; V, and, V, are independent U(O, I) .random, variab)es,.(See., 
Exercise 4.8). The two curves are of similar shap.e, and Y is c\eady"",\sy_to. 
simulate: We now;therefore; seeka,compositionJor, <p,.(x), wi\h)he.lirst 
p.d.f.in the· composition being .. f.,(x), the probability.density. function, q.t:..Y" 
given' by (see Exercise 4.8) , '. , 

. { (3 -x')J8 
f. (x) = (3 -lxl)'/16 o . 

-15:x5:1 
15:lxl5:3 
Ixl 5: 3 

" 

Using the approach outlined in the last section, we want to mInImIze 
q(x):= with respect to xvarying over the range Ixl 3. Because 
f.(x) ts spectfied dtfferently over'different ranges, for' x, we shall deal with these 
different ranges separately. 

First let us consider 0 5: x 5: 1. Here, 

8 e -;c2f2 
q(x) = 

«(3 -x'»)(21t), 
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x' 
l(x) = log q(x) = constant -"2 - log (3 -x') 

d . 2x 
- l(x) = - x +-;;;-.....,,-
dx (3 -x') 

= 0 when x =0 and when 3 - x' = 2, i.e. x = I 

d'l(x) 2 4x' 
-- = -1 + +."-......",, 

dx' (3 -x') (3 -x')' 
. d'l(x). . hOd . . h 1 I.e. IS negatIve w en x = ,an posItIve w en x = . 

Next we shall consider the range 1 ;,;; x ;';;,3. 

Here, 
16e- x1/ 2 

q(x) = ,,(3 -x)' .j(2,,) 

x' l(x) = log q(x) = constant -"2 - 210g (3 -x) 

d 2 
-l(x) = -x+--
dx (3 -x) 

= 0 when 3.x-x' = 2 

i.e: when x ='1 and when x= 2. 

d' 2 
dx' l(x) = -I + (3 -x)' 

Le:Jd'l(x)/dx' is negative when x = I, and· positive when x = 2, revealing a 
minirinl'm i6 q (x) when x ;= 2. . 
; Thus fo'nhe'case 0; q(x) has 'a maximum when x.=.O, a saddle-point 

wheh'x'id'1', and a'minimum when x =·2. We need.not consider the casex;';; 0 
separately because of the symmetry present, and so we can conclude that q(x) 
has minima at x = ± 2 in the range Ixl ;,;; 3. 

Hence if we write 
<I> !Ix) = "If, (x) + "'I, (x) 

; .. 
<1>1(2) 16e-' a l =--= 
f, (2) a .j (2,,) ,. 

and .. overall,- from 'considering the compositions for .j (2,,) and <1>1 (x), 
we simulate from f, (x) with probability . 

aa
l 

= 16 e-' "" 0.8638 
,)(2,,) 

Here we see a dramatic' demoristration of the possible power of the 
comoosition method: over 86 per cent of the time we can expect to simulate an 
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N (0,1) random variable by simply taking a linear function of the sum of three 
independent U (0, I) random variables. 

In fact there is still more of interest remaining in this. example. With 
probability"", we must simulate from the probability density function 

I, (x) = (<I>I (x) - "If, (X») 
1 - "I . -3:S; x:S; 3 

i.e. with probability"", = ,,(1 -"I) = (0.9973 -0.8638) = 0.1335. 
Figure 5.12 presents a graph of <I> I (x) - "If, (xl, imdthe form .of the graph 

suggests proceeding further with the composition for <1>1 (x), by now using a 
triangular p.dJ., ,and setting 

-, 

I, (x) = fig (x) + (1 - fi)h (x) 

4>1 (xl-a1 tj (x) 

o.oa 

o 3 
x 

Figure 5.12 The residual cuI've' <PI (x) -aJI (x) following the composition method 
envisaged in Fig. 5.11. 

where g(x) = (6 -4'lxll/9 

=0 

for 1x.1 ;,;; 1.5 
forlxl > L5 

g(x) is simply the probability density function of 

Y = l.5(UI + U, -1) 
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where U, and U, are independent U(O;I) random variables (see Exercise 4.8). 
In this case, with the aim of determining P,fz(x)/g(x).cannot be minimized 
explicitly, but a 'nbmerieal method such as Newton-Raphson readily pro-
vides us with p,," 0.8292, the' ininimum occurring at x = ± 0.8739. We 
thus simulate from g(x) with probability·",(l -"") f3 = 0.1107, so that over 97 
per cent of the time we use the ·two simple p.d.f. 's.li (x) and g(x). 

The three that have dealt with here"can be written as one, to 
give e _x1/2 . -_. 

--= 0.8638.1i (x) + 0.1107 g(x) + 0.0027 I(X) + 0.0228 rex) .j (21[) . , 
for - 00 x 00 

(5.10) 

where L (x) is the p.d.f. which we considered earlier, and rex) is the p.d.f. 
that remains for Ix! 3. 

We simulate from the p.d.f. rex) only with probability 0.0228,and as rex) is of 
a fairly complicated form (shown in Fig. 5.18)we can simulate from it by means 
of simple rejection, using a rectangular env,e,loping region over the finite range 
I x I 3, with, it can be shown, probability 0.53 of rejection (see Exercises 5.16 
and' 5.39). 

The above derivation of (5.10) should not disguise the fact that (5.10) is a 
description of one way of dividing up the area under the N (0, I) probability 
density function'; 'precisely as was'done in-a different Cllse in Example 5.7. 
end-result is shown in Fig. 5.13. 

05 
[J]] 0.8638 

0 ...... 0.1107 

• 0.0228 

-3.0 -2.5. -2.0 -1.5 d.O 0.0 0.5 1.0 . 1.5 2.0 2.5 3.0 

Figure 5.13 A' representation of the: composition given in Equation (5.10) for the 
range Ix\ 3. The regions shown have the areas indicated· above. 
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'5,6 an,d furtber, reagjnll 
"1.' 

The cha:pter ... , 
many interesting and com'plica:ted'approaches.that have been.devised in,recent.", 'i 

For instance; having obtained a 'normal random,variable"then Rlle ."'\J1," 
even as an '":.' 
example,A\lrens ana Dieteill974) andAtkinson (1979). More examples are to . 
be f(mflci'""iti tHe' .: ;. ,-'- ...... ;-1 i' -:' .. .'- ,- :',; , 

We U(O; I) random variables are the building,biocks·,j 
for th,e simulatloi(of any other' raIldom, variable.Complicatedya!gorithms",., . 

nijection methods, and"sometimes requiring. the ,- ',,-. 
storage 'of a -iiun:iHe"f ofc8rlstants. 'are for,use 
work tb" 1; 

code and tend the most'effiCient: They are therefore most suitable if one is 
seeking to'provide a' computer with an' efficient·package.loCprograms {or .. 

a 'vaiiefy 'of random'numbers, '·which will be.used.frequ,en!lyJ,ia· 
large nurriber'of tndividuak ;Comparisons-ofdifferent algorithms. 
and efficiency, have been undertaken by a number: oLauth.ors-,see, ,(q,", 
example, Atkirison 'lDd'Pearce,(1976); Kinde<man;and, 
Ripley (1983b);"Appleton (1976)·pointed out that cer.tain '. 
programmed in tIl.programming language,APL, to take ady'!,oil\ge;of,Ap,L's,::;', 

capabilities, land 'as an' example.,he,found, the it 

method to'be 30 iimes faster than the Marsaglia and Bray 
when both were programmed in APL.:This is partly. due. to tl),!-i; ft"PL 
programs are interpreted,'fatherthancompiled, as are,FORTRA,N.'programs .. ' .. 
Using ',FORTRAN,"Atkinson and Pearce' (1976)' found Box-;Ml,lller to b, 
roughly twice as slow as 'the convenierit;method: Distributed.ar;ray,prop'ssing 
is another factor which could influence the comparison ofdifferent,algqri!h,?,s" 
(cCExerCise'3,16)."" ,," ,_' . 'jC;" .. 

Ripley' (1983b) provides a list of relatively efficient simple,algorith,ms, fop _'. 
variety Of distributions. Mosfusers of main-frame computers',will be:likely.!<;>\ 
use library suoroutines such'aslhose'describediil SectionAl.LBecause !'lObe,;" 
time-lag before library subroutines are changed to accommodatecI),e,w '. 
developments:'these' programs:may not ·always, be the ·most. efficjent,p.c.h 
individual clearly has to experiment with the-facilities availablej(-it ,. 
that long generation times of random variables could rendet a simulation 
impractical. . . . """.',, . . . 

Of course, the simplest way' for hun,'1D lieiiigs 
is to use tables of realizations of such random variables, such as, those by,Wold 
(1954);'providing normal random variables, and those by Barnett .. 
provide random variables. In'the absence .. ,. 
look-up aplmjach is alsO' easily performed by hand if one has 
cumulative distribution' functions, 'and only·a· small-scale.' simulation is. 
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envisaged. Some such tables can be found in Harter {1964); Lieberman and 
Owen (1961), Mardia and Zemroch (1978), Neave (19.78)"Odeh, e/ al. (1977), 
Williamson 'and Bretherton (1963).and Worsdale " 

Simulation· of discrete random variables table-Iook-up'method can 
be very,:time consuming.' This occurs, with the Poisson distribution, for' 
example, if it' has large mean; in which· case the particular method for' this 
distribution, described in the last chapter, will also be There is 
further 'discussion 'of ihis point in Exercises 5.3 and 5.4., The range-dividing 
technique, discussed in Section. 5.1, can,pe.generalized. by dividing the range 
into d ->'2 parts; as in, Neave. (1972), who provides ALGOL programs for 
several discrete distributions: A faster'search,proced;;re is the optimum binary 
tree search described inKnuth,(1968,p. ALl, 
the NAG library of computer programs simulates all discrete"disiribuiions by 
firsr'of all establishing,a reference· vector of cumulative and then 
performing an indexed search by means of.thexoutine G'o'5EyF. The 1MSL 
routine fot the table-look-up method· for a general discrete distribation is 
GGDT{see SectionAl.l). , 

The polar Marsaglia method of Section 4.2.2 shows that the V, / V, of 
the co-ordinates Ofa point uniformly distributed over a disc of unit radius and 
centred on the origin has a Cauchy distribution (see Exercise 5.8). Kinderman 
'and Monahan (1977) have generalized this result to provide a new general 
method' for simulating randomvariables;.viz" th,e ra!io_method-see Ripley 
(1983b) for illustrations'ofits use. A further.new ge,neral method is the alias 
metliod fo! discrete random variables, described in Exercise 5.42 

In this chapter we have only considered univariate random, but 
table-look-up; 'rejection' and' composition,. methods ,may. also, be used for 
multivatiate'-random .variables. 'Kemp :and Loukas (1978a, ,b), consider. the 
table-look-up method for a bivariate Poisson distribution, and the iable-Iqok-
up"metho,!" for bivariate Poisson and normal distributions is discussed in 
Exercises 5 .. 10 and 5:11.'Bestand Fisher,(1979) use a rejection method'o'n the 
Circle, . enveloping the von Mises distribution with 'a wrapped Cauchy 
distribution .. 

this chapter with some further discussion of methods for 
simulating ·normal random variables. 

'. *5.7. for normaI random variables 
J. 

The table-Iook-up method for normal random·variables is diffic.\'.lt to program 
for computers because ·of the intractable form of the standard normaI 
cumulative ',distribution function, <l>(x), and its Various 
authc5!:s have, approached this probIemby providing 
see, for' example;JZelen,'and:Severo (1966).and Wetherill Wetherill's 
approach employs the attractive idea that an efficient algorithm can result 
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from using one approximation to <l> -, (x) in the middle of the range for x, but 
another, more complicated algorithm in tails, which would be used far less 
frequently. This idea is simplyprovidirig a composition the com-
ponents of which are simulated using approximate table-look-tip 'methods. 
Some other approaches are described below.· 

Because of the similar shapes of the normal andJogisticprobability density 
functions, it is natural, to try to approximate the. normal cumulative 
distribution function by the simple logistic cumulative distribution' function. 
In order to . obtain a good match over the middle of the range, the logistic 
cumulative distribution function that may be used'is 

F,(x) = -co5x5co 

as this curve has the same slope at x = 0 as does <l>(x). An alternative possibility 
which might be considered is the logistic. cumulative distribution function, 

corresponding to a random variaole with zero mean and unit variance. F, (x) 
and F, (x) are illustrated in Fig. 5.14, for 0 5 x 5 3. 

Table 5.1 is taken from· Page (1977), who tries to improve a logistic 
approximation by adding an extra parameter, resulting in the cumulative 
distribution function 

G(x) = (l+exp[-2a,x(l+a,x'l])-' -oo:::;;x:::;;oo 

Note that as the coefficient of the new parameter, a2 , is x 3, and not x2, which 
may have been considered a more natural choice, then we preserve the 
property G(x)+ G( -x) = I, and the corresponding probability density func-
tion is symmetric about x = O. ' 

If a, = ../(2/n), and Q, is chosen_by least squares, then a value of 
a, = 0.044715 is obtained. A slightly better approximation is obtained by 
allowing both a l and a2 to be chosen by least squares, but the advantage of 
keeping a, = ../(2/n) is that if one wanted to approximate <l>(x) this way on a 
hand-calculator, only one ccinstant needs to be remembered, most calculators 
having a 'n' key. To simuIate approximate N(O, 1) random variables we need 
X = G -, (U) (see ExerCise 5.9). Some examples are given: in Table 5.1. 

Hamaker (1978) and Schmeiser (1979) provide further approximations that 
are suitable for computation on a hand-calculator, and more recent work is 
described in Bailey (1981) and Lew (1981). 

Kinderman and Ramage (1976) use an even simpler p.d.f. for J.. (x), the first 
p.d.f. in a composition for the standard normal density, than that resulting 
from the sum of three U (0,. I).random variables. In their case, they used the 
p.d.f. of the sum of just two U(O, 1) random variables, as,iilustrated in Fig. 5.15. 
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Figure 5.14 An illustration for o.s; x .s; 3 of two· logistic cumulative distri-

bution functions, (_._): and (---): 

F, (x) = [I + exp(- :p )T', eithe; of which may be used as a appro*imation 

to the normal cumulative distribution function, denoted by (---). 

Table 5.1 Approximating the standard normal distribution function 
<I> (x). Two possible approximations are F, (x) and G(x), explained in the text. x results 
from inverting G(x) (from Page, 1977): ,'" , ' " 

x 1 -: <I>(x) I-:F,(x) I-G(x) x 
0 0.5 0.5 0:5 0 
0.1 0.4601722 0.4601902 0.460172 5 ' 0.1 
0.3 0.3820886 0.3825519 0.3820969 0.3 
0.5 0.3085375 0.310478.2 ,0.3085720 0.5001 
1.0 0.1586553 0.1685738 0.1588080 1.0006 
1.5 0.0668072 0.0836579 0.0669523 1.5011 
2.0 0.022750 I 0.0394854 0.0227012 1.9991 
2.5 0.0062097 0.Oi81740 0.0060337 24901 
3.0 0.0013499 0.0082660 0.0012125 2.9693 
3.5 0.0002326 0.0037390 0.0001761 3.4332 
4.0 0.0000317 0.0016871 0.0000176 3.8800 

Figure 5.16 illustrates </>(x) -rJ.h (x) for - 3 ;0; x ;0; 3, .. which may be 
simulated by means of rejection, the details of which are discussed in the 
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Figure 5.15 The standard normal density function q,(x) (-'--) the range, 
(-3, +3), and a); (x) (------), in the notation of the composition method of the 
Section 5.4::Here/i'{x) is the probability density function of P(U1+ U1 -:l). where HI 
and U, are independent'U (0,1) rando,lI)"ariables. a is chosen so that,a/dO) 7. 11 J (21<), " 
and (3 must· be chosen tP giye the, triangle the . 
triangle with height If J .which can, b,e fitted under <I>(x). ' 
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Figure 5.16 A graph of <I>(x) -at, (x) for \x\ ;0; 3, resulting from the curves 5.15. 
The dotted lines relate to a particular approach used for the rejection metliod employed 
to simulate from the probability density,function is a mUltiple. of this 
curve, as discussed in the solution to Exercise 5.38. 
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solution to Exercise 5.38. Also presented in Exercise 5.38 is the full algorithm 
of Kinderman and Ramage (1976). 

5.8 Exercises and complements 

(a) General 

5.1 Use Equation (2.3) to show that when U is a U(O, I) random variable, 
then 1 - U is also a U (0, 1) random variable. 

5.2 When X has the half-normal p.d.f. 

Ix(x) = J (De- X '/2 for x;;'; ° 
show that i, defined by: 

{
X = X with probability 
X,,= - X wIth probability 

has the standard normal p.d.f. 
, ..' 

5.3 Simulating Poisson random, .variables -witlJ" large . mean. can be time 
consuming, whether one uses'a-particular as inlChaptcr 4, or 
a gerieral, table-look-up approach. 'way of tackling this 
problem, in the context of the distribution of the sum of two 
independent random variables, each with Poisson distributions. See 
Exercise 2.8(b). 

(b) Table-look-up methods 

'5.4 Select a Poisson distribution 'l'ith mode different from zero. 
(a) Simulate from,this distribution using the table-Iook,up method. 
(b) Repeat (a), but employ a8, as suggested in Section 5.1. 
(c) Repeat (a) but employ two such.8's, thus dividing the range into 

three parts. ' 
(d) Repeat (b) after having first ordered the probabilities in increasing 

order. 
Compare the efficiencies of these four approaches (cf. also Exercise 5.3, 
and Kemp, 1982). 

• r. 

'5.5 (a) Write a computer program to simulate aTandom variable, X;from. 

5.8 Exercises ar:4 complements 

the triangular distribution defined by: 

x'J2 

( 
° 

F(x) = 2x _ (X;f2)-1 

x<o 
Osxsl 
Isxs2 

x>2 

125 

using the inversion method. Here f(x) is the probability density 
function of x, and F (x) is the cumulative distribution function of x. 
This is the method used in the IMSL routine. GGTRA (see Section 
AU). 

(b) Compare the efficiency of this program with one which simulates 
such a random variable by simply summing two independent 
U(O, I) random variables. 

5.6 Use the table-look-up method to simulate 10 random variables: 

(a) from the binomial distribution B(6,IJ3); and 

*5.7 

*5.8 

(b) from the normal distribution N(1,2), using tables of the standard 
normal cumulative distribution function. 

Use the table-look-up method to simulate random variables with the 
probability density function 

f(x) = 6x(1 -x) for 0 s x S 1. 
(a) Explain how to simulate random variables from the Cauchy 

distribution, with probability density function, 

f(x) 
1«1 + x') for - 00 s x S 00 

using tIie inversion method. An alg'orithm usinK this approach is 
provided by.the IMSL routine, GGCAY (see Section AU). 

(b) If NI and N,are independent standard· normal random variables 
then, as we saw in Exercise 2.15(b) and Exercise 4.5(b), their ratio 
C = NIl N, has the Cauchy probability density function of 
(a) above. Explain how this result may be deduced from (a) and an 
understanding of the Box-Muller method described in Section 
4.2.1. 

*5.9 The approximate for simulating N(O, ,1) random variables 
described in Section 5.7 involved .. setting x = G -I (u), where 
G(x) = [I + exp{ - 2a l x(l + a,x')}] -I. Solve for x. 

*5.10 Discuss how you wou'ld use the for simulating 
from the bivariate Poisson distribution of Exercise 4.7. 
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*5.11 Discuss how you would use the inversion method for simulating from 
the bivariate normal distribution. . 

5.12 If X is a random variable with the exponential, Ae- lx p.dJ., for x:2! 0, 
deduce the distribution of the integral parlor X, viz.,Y= [X]. Hence 
explaifl why, in .(5.4), we a geometric .variable by 
rounding up an exponential random variable.' . 

tS.13 Use the inversion method to simulate from the following distributions: 

(a) logistic:f(x) = .. ,ex 1 for -co:"; x ";,co. 
(I+,-X) 

Note that this method is implemented in the NAG routine: 005DCF 
(see' Section A:i.i).' "'. .' . 
(b) Weibull (see Exercise 2.3):/(w) = :pWP-1 exp{ -(wMP) '. for 

0, w < co, fJ > 0, y :> 0. 
Note that this method is implemented in the NAG'routine G05DPF 
and \he IMSL routine GGWIB (see Section AU). 

(c) Pareto distribution: 

Pr(X";x)= for a > 0, x :2! k > 0.' 

(d) Extreme-value distribution: 

PrIX ,,; x) ;, exp{ -exp«e - x)/e)} for x :2! 0. 

5.14 Provide a. detailed algorithm for simulating from. the logarithmic 
distribution of Exercise 4.22. 

*5:15 (1980) presents the bivariate uniform p.d.f.: 

flu, v) = (I -0:)[ (2uv - u - v)o: + 1] ('I'(u, v)) -3/' (5.11) 

where 'I'(u,'v) = (0: (u + v) - I)' + 40: (I - 0:) uv 'and 0: < I, ° ,,; u, v ,,; 1. 
This probability density function is illustrated in Fig. 5.17 for the case 
0: = - 4. It is constructed from a: bivariate distribution of Plackett 
(1965), which is given:implicitly by: 

(F(x,y)(I-Fx(;)-Fy(y)+F(x,y)} = 1-0: 
(Fx(x)- F (x, y) }{Fy (y) - F (x, y)} 

From Section 5.2 we can see that if we set U = Fx(X) then Uis U(O, I), 
and so is V = Fy (Y). This is an interesting reversal of the aim of Section 
5.2, which is to progress from U to X .. Verify that this subs.titution here 
results in the joint p,dJ.f(u; v) of Equation (S.ln Derive further 
bivariate uniform distributions in this manner from the following 
bivariate distributions also presented by Barnett (1980): 

, . 

5.B Exercises and comp.le11)ents . 
. " - .' .. ' '. \", ," .. ,' .'-' ,! - ,"' 

flu,v) 

.127 .... ) 

3.5 
3.0 
2.5 
2.0 
1.5 
1.0 
0.5 

Figure 5.17 Isometric projection of the bivariate uniform density of Equation (5.11), 
from Morgan (1983). 

(a) F(x, y) = Fx(x)Fy·(y)(I-o:(I-Fx(x))(l -Fy(Y))) 
for \0:\ < 1. " 

(b) fIx, y) = {(I + o:x)(l + o:y) -o:)exp( - x - y -o:xy) 
, forO<o:< 1. . 

(this is a bivariaie exponential distribution) . . 11 

, . I 
(c) f(x,y)=-(I+x'+i)-3 /'. 

2" 
(this is a bivariate Cauchy distribution) . 

(c) Rejection methods 
• '.. ; "1 

5.16. Figure 5.18·shows the probability density function r(x) of Equation 
(5.10), resldting from.thecomposition of (5.10); Explain.howyou would 
simulate froI)1 r(x) using a rejection method .. 

, '. ... , 
5.17·, -To simulate from. the probability density function given by J 

for -I ,,; x ,,; 1 

otherwise 
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r(x) *5.22 
0 .• . Cheng (1977) presented a method' for simulating from the 

rca, 1) distribution, where a ). 1. In his Case, 
." f1 f1 

/\ 
I 

. 

v j 
-3 o , 

x 

Figure.5.18 The p.d.f. r(x)for -3 :S; x :S; 3, which is sampled with probability 0.0228 
In the COnyement compos1tlOn method of Equation (5.10); 

we note that this is the probability density function of the random 
variable X = .cos (ltV), where V is a V(O, 1) random variable. Use this 
result to devise a rejection me'thod, based oIi the fitst quadrani ofa circle 
and similar to the Polar Marsaglia method; for generating the required 
random variables. 

5.18 Devise a rejection method, with acceptance probability of not less 
than 8/9, for simulating random variables from the beta probability 
density function I(x) = 6x(1 - x) for ° :s; x :s; 1. 

tS.19 Describe how to simulate a random variablewitii"ihe prob-
.. ability density ,function, e-'(1 + e-')-2 for :s; x ;;;00, using a 

rejection method based on the exponenliahnvelope, e-"for x:2: 0. 

5.20 Explain how to variables a rejection 
method with an enveloping function based ona logistic p.d.f. Derive the 
probability of rejection (cf. Exercise 5.31). 

tS.21 Repeat the approach adopted in Exampie 5.5 with kJ.e-" for x :2: ° as 
the enveloping, function. Show that, the probability of rejection is 
minimized if we take), = 1, as in Example 5.5. 

. I 

hex) = )'I'X'-' (l'+x,)-2 .' for x.:2: ° 
(a) you would sirnulaie from the density 

function, hex). ".. 
(b) If I' =a' and)"=.j(2a -1), determine the probability·ofrejection, 

and the mean" number of variable selections until acceptance. 
The Case a = J is illustrated in Fig. 5.5, for x < 8. 

*5.23 Compare the two rejectioniiieUlods fcirsllnulatin'gfrom a gamma 
distribution, given in Example 5.6 and Exercise 5.22. 

*5.24 Explain how you' would simulate a random variable that has an 
exponential distribution of mean 2, conditional on it being greater than 

· 9 (cf. Exercise 5.26). 

*5.25 Figure 5.16 presents a p.d.f. to'be'simulai'ed froni'by'meansofa rejection 
method. Kinderman and Ramage (1976) used the method of triangles 
(see Marsaglia, MacLaren, and Bray, 1964), which, in outline, is as 
follows. 

If a p.d.f. from which one wants to simulate can be sandwiched 
between two parallel lines, the X -value for the rejection method is 

· simulated from an appropriate triangular distribution corresponding to 
the upper of the 'parallel lines. When the corresponding uniformly 

· distributed Yvaltie is less than the appropriate value on the lower oflhe 
parallel lines, then X is accepted, and it is not necessary to compute the 
formula for the curve. If however; the Y value is greater than the ap-
propriate value on the line" then. it: is compute the 
formula for the curve in order -to decide on rejection or acceptance. 

Discuss the .objective of such an approach, and explain.j,ts use for the 
beta p.d.f. of Exercise 5.18 (ef. comments in the ,solution to Exercise 
5.23). 

*5.26 Marsaglia (1964) proposed the 'following . method for simulating 
standard normal random variables X, conditional upon X > a > 0. Let 
U" U2 be two U(O, 1) randomvariables. Set 

X = (a2 -210g,V,)"2. 

Accept X as a realization of the required random variable if V 2 X < a. 
Otherwise, reject V, ·and V2 ,. and, start again.' Verify' that X has the 
required 'distribution (cf. Exercise,5.24 and the comments of Section 

· 5.5) ... 
'. , ;.: '. '. " ,.-, '.. "'" - .. oj. . 

15.27 If V, and V2 are independent V(O, 1) random variables, show that, 
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conditional upon (2U, _I)' + ui ,;; I, then C = (2U, -I)/U, has the 
Cauchy distribution of Section 2.11. Note that this meth()d is im-
plemented in the NAG routine G05DFF (see Section AU).' 

, . . 
5.28 If X, and X 2 are independent, identically distributed 'exponential 

random variables with mean unity, show' that, upon 
(X, _I)' < 2X" then X, has a half-normal p.d.f.,:.der.ivei:(from an 
N (0, I) distribution. (This result is .due to von Kahn, 
1956, p.39.) 

*5.29 Suppose we have a probability. density fUIlcti011 J(x) which can be 
written in t,he f6;0\:' . 

J(x);=cg(x)r(x) 
where g(x) is also a p.d.f.; c > 0 is a constant, and over the range of x, 
0';; r(x) 5 m, for some frnife m. Show simulat,rX fromJ(x) 
as follows: ' 

(i) Simulate X from g(x) 
(ii) Accept X if Urn < r(X) 

where U is an independent U(O, 1) variable. Otherwise reject X and 
U and start again at (i): 

What is the rejection probability? An example is provided by Butcher 
(1960), in which J(x) is half-normal, and g(x) is exponential. This 
generalization of the rejection method can give rise to efficient 
'switching' algorithms, in which the r(lles played by g(x) and r(x) change 
for different parts of the x-range; see Atkinson and Whittaker (1976), 
and Atkinson (1979b). 

(d) Composition methods 

'5.30 Use the composition,'fPproach of Section 5.4, as applied in the example 
of Equation' (5.6), to; simula\e random variables with the Poisson 

, ,j - " ; - _ . II 
distribution, of Example 5.2 ,." ';" " . 

, ' :. .', .'. 

5.31 'it is to variables 
using a composition, the first element ofwhieh, J;(x),' is a logistic 
density. 

'5.32 A continuous random'variable X has the 'wedge-shaped' probability 
density function,J,(x) = (t.-ri.'''/l, for 0';; x';; 2/", and "'> 0: 
(a) Explain how you would simulate X. , , 
(b) It is desired to sirnulate froin the p.M. J(x) = J.e-'x 

for x 0 a,nd 21 ,> IX, llsi1)g,a somposition. first p.d.f. of which is 
to beJ, (x). Derive the shrinIdng fa?torforJ, (x), and deduce that, by 

'''5.8 Exercises and ·complements .\31. 

suitable choice of "', the probability of simulating fromJ, (x) in the 
composition can be made as large as 2/e. . , . 

5.33 (a) Show that the random variable X, with probability density function 
em-,x 

J(x) = (e -I) for (m -1) < x ,;; m, where m :2: 1 

is obtained simply by setting X = m -T, where Y has probability 
density function 

e' 
J(y) = (e -I) for 0 ,;; y < 1 

The cumulative distribution function for X when m = 1 is 
lustra ted in Fig. 5.2. 

(b) By expanding J(y) as a power series in y, show that we can 
simulate from J(y) by means of a composition, simulating from 
probability density function, (i + 1)/ for 0 ,;; y < I, with prob-
ability 

.(i+.l)!(e-l) 
for i:2: O. _ 

5.34 (continuation) We note that 

*5.35 

e- X 
'(e -l)e- m x em-x 

(e -1) 
for any m:2: 1 

Explain, with reference to Fig. 5.19, how this result may be used a 
basis fora' composition method fot simulatin'g from ·the 'probab,hty 
density function;:e-: x for o . 

. ,fol\l'?ying algoritp!p, ,giy;ep; 
(1961)\ fO,r siIl1ulat'l)g ff'n10m vau,}bh,s from the p.M .. 

(i) Simulate a discrete·randoniivariable; '1,' from the distribution 
I.. t· ".! ?: 

(i+l)!(e-l),.. -
-(ii) SetW=max(U"U,.'c.·."U1+,);- .' .. ! ,. 

-where the {UJ} are independent 'U(O:I) random variables. 
(iii)· Simulate a discrete random -variable, M; from the distribution 

for m :2: 1 
(iv) Set X = M -W. 

,*5.36 Consider how you would simulate standard normal'random variables 
using a composition metho,d;in whichthe'firs(p.d.Cirt,the composition, 
I, (x), is of trape,zoidal form .. See, Ahrens .' and ,Dieter (1972) 
for,an algorithm based _ on, this approach .. 
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.-x 
1.0 

0.5 

o.o+---.l-_--I-__ o 2 
x 

Figure 5.19 A breakdown of the p.d.f. e-:S: into sections o.farea. (e for m 1, 
for x::::; 4. 

,,;5.37 Figure .5.20 illus.trates' a portion· of the half"normal,p.d.'f . .14>(x), and 
0.97/, (x), in which I, (x) is a density composed ,of 97 rectangles, each of 

.' Ij97: Figure 5p 24> (x) -0.97J,(x). Discuss how .. these 

. curves rhiy be usedto siniiiHite standard n"orinal nirid6m variables.This 
, 'j 'mi:tli'odis aue (i980jiand is basbd a method of 

. Marsaglia"MacLaren ancj .. Bray.(1964) .. 

*5.38 Kinderman and,Ramage (1976) produce the algorithm, given below, for 
their method discussed in Section S.7. Explain how the method gives 
rise to this algorithm., (Note that '';'=,2:216035867·166471 and J(I) 

'. "..4>(1) ,,0;180025 191·06R563 for /1/ .. < e. Here we preserve 
. ,the !high accuracy of constants"given in'the origina1.source.) 

Algorithm from Kinderman and Ramage (1976)' 

" ,;; 1.. . Generate. u, If"u <0:884070402298758; generate v' andrefurn 
. '.n:.' 

. :.. .• :, -2:'. If-u ":-0.973;310'954173898, go Ito:'4 -belo"w_ 
3. Generate v, w. /2 -' 10g,'w."If v2 i).-- this step 

5:8 Exercises and compilim<ents . 

Figure 5.20 Part of the half-normal density • . 

2(Mx) =)We-x>/2, 
enveloping 97 rectangles, each of area 0.01. 

2t{x)-O.97 t,{x} 

',' 
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VIS" 
x 

Figure 5.21;,. ,A graph of 2.p(x),- 0.97.r. (x), from Fig. 5.20,';n which 0.97.r. (x) is the 
of. the rectangles shown in Fig. 5.20, 

again. Otherwise return x = (21)'/2 if u < 0.986655477086949 or 
returri x";: ':::'(21)'/2 if neit. .: '_. " 

, ' 4."It t'< O:95:l 720824 79046B,'goto 6 below . 
, , , " ."., .' ""'/'j' - '" . 

, 5'- v, ow:' Set' i-;;' v arid t = e...: 0.630 834 801921960 x 
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min (v, w). If max (v, w) S; 0.755591531667601, go to 9. If 
0.034240503 750 11llzl S;/(t), go to 9. Otherwise, repeat this step. 

6. If u < 0.911312780"388 703,go to 8. 
7. Generate v, w. Set z = v - wand 

t = 0.479727404 222441 + 1.105473661022070 min (v, w). ' 
If 

max (v, w) S; 0.872 834 976 671 790 

go to 9. If 0.049264496373 1281z1 S;/(t) go to 9. repeat 
this step. 
8. Generate v, w. Set z = v - wand 

t = 0.479727404222441-0.59550 7138015940 min(v,w). 
If 

max (v, w) S; 0.805577924423817 

go to 9. If 0.053 377 549 506 8861z1 S;/(t),go to 9. Otherwise, repeat 
this' .. .. ", ",' " 

9. If Z retu"in x = t; 'otherwise x = - t. 
• • r ; ,_ 

*5.39 For the· residual p.d.r. r(x)',fromthe composition of Equation (5.10), 
show that the probability_ofrejection is 0.53 when we simulate from r(x) 
using rejection and anlenveloping rectangle. . 

(e) Additional methods 

*5.40 Suppose W is U(<i, b), fOr'Some'b > Q, and suppose that for a S; x S; b, 
o S; g(x)'S; 1 for some 'functiori g'(x). Suppose N is the first integer 
:2: I such that 

where the {U.} are a of independent, identically distributed 
U (0, I) variabl,es. Thus N = I, if and only if g(W) < U 1 

N = 2, if and only if g(W) U, < U2 

etc. 

Show that 
g(w)' 

Pr(N = nlW= w) = (n-I)! n! for n :2: 1 

and deduce that 

Pr(N is odd iW = w) = exp( -g(w» 

5.8 Exercises and,complements,. . . _ ' 
_,_. ,".., - .'.,_: • . " ,. i - . 
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Finally, show that thp condition,!l p.d.f. of W is given by - ,. ". -. . -' 

, -. " , exp( -'g(w)) .• ,-
/w(wl,v, IS odd) ""'Jb'"'''' " .. 

" 
• 

(5.12) 

.•• ,! 

*5-41, (continuation). Use the;lastexercise'tQ provide a rejection 
,randqmrvariables wi,th the p.dLof.Equation (5.12) 

over the.ral1ge .(a,M. Thi,s .is. the 'basis of what is kn.own as' Forsythe's 
fOrsyth,e, 1972),. which. has; been used fOFa variety of 

, (seej A-tlcinson and 19 .. 76). Of course; ,the 
.met:1t :v,ery,restrictive; .restrIction 
F-'l';1'j by.>; uP;' ,.of>:x-:- into: ia,,;nun:ber of 

composll1on,tQ determme the 
, appropriate interval: if g(x) is an increasing function of x, over the range 

(0, (0), say, then if the interval (q" q,+.) is chosen by the first stage of the 
composition method, (g(q, + x) - g(q,J} plays the r5le of g(x) in the last 
exercise. The (q,) must be chosen so that 

OS; g(q,+x),-g(q,) S; 1 for 0 S; x S; (q'+l -q,) 

One such choice of {q,} gives rise to' what is called Brent's GRAND 
method for N(O, I) variables (see Brent, 1974). This is the method 
employed by the NAG routine, G05DDF (see-Section A1.1). Further 
discussion and comparisons with other methods are given by Atkinson 
and Pearce (1976). One advantage of Forsythe's method is that it avoids 
time-consuming exponentiation. 

*5.42 The random variable X takes the values 1,2,3,4 with the following 
probabilities: 

Pr(X = 1) = i = i(j +0+0+0) 
Pr(X = 2) = 11 = 
Pr(X = 3) = = +1) 
Pr(X = 4) = i = 

Thus, by analogy with Equation (5.6), we can write 
1 • 

Pr(X = i) = 4 r'i 

where the (rii' 1 S; i S; 4) are all probability distributions, for each j, 
1 S;j S; 4. The difference as compared with Equation (5.6) is that now 
random variables with any of the four (r'i' 1 S; j S; 4) distributions take 
just one of at most two values, and the distributions in the composition 
have equal probability of being used. Show that any discrete random 
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variable X over a" finite Lrange' by of such a 
composition (Kronmaland Peterson, 1979). This composition results in 
the alias method, so called because if the {f;j, 1 S; i S; 4} distributions 
do not select the'vahieX = j then the 'alias' value for X is chosen by the 
{r;j' 1 S; i S; 4} distribution. For example; in the above illustration with 

,probability:! the,component distribution; (';2, 1 S;'i''S;"4}is 
" ,and.theneIther:X =,2,"with 'ptooabiliiY'·"i'.:.dl; or X-"'; 3: ihe alias 

• ",value;,with probability r23 = For furthe'r discussion; see Peterson and 
. Kronmal'(1982). method isthat"itdoes not 

",.' "i' require more than'two uniform random for eaci.'valtie of X . 
• i ','" .Can:)'ou suggest a way in which only oile'uniforni raridom vaiialile need 

co(ibe.used?l(See'Kronmaland Peterson'; '1979.) An 'alg6tiihrlirdt'the alias 
,"methoa is'provided by the AU). 

_ 1.. ' ." , - . .. • " .. ' • " 
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r 6 
TESTING RANDOM 
NUMBERS 

6.1 Introduction 

The need testing of uniform was emphasized in 
Chapter 3. When tables of random digits were first produced, tests were 
employed for uniform random digits. More recently, with 'the development of 
pseudo-random-number generators, the numbers to be tested are continu-
ously distributed over the range (O,lkIn theilatter case,-!ests for digits are 
frequently applied to the digit occupying the·first·decimal place, while in some 
cases of detailed testing other decimal places are also considered, as in 
Wichmann and Hill (1982a). An alternative approach, given by Cugini et al. 
(1980), is described in Section 6.3. .. .. ' 

We have seen that congruential methods of random generation are 
convenient.and \videlY usee; but that they can produce sequences of numbers 
with certain undesirable properiies. For any particular application, theneed is 
to determine what may be 'undesirable', so that random numbers should 
always be tested with an application in mind. This is often easier said than 
done. but we can s,ee that it could entail testing not only uniform variables. but 
also 'variables of other distributions,'obtained by -methods such as those of the 
last two chapters. In Chapter 5 in particular, soUie oftlie algorithms given are 
very complicated, and in such ,"ses testing is needed quite simply as a check 
that there have been no programming errors. In Chapter 4 we saw that 
particular properties of random variables and processes can be used to 
generate particular random variables. By the same token, similar properties 
may be used to test particular random variables, as we shall see in Section 6.6. 

A room full of eternally typing monkeys will ultimately the plays of 
Shakespeare, and similarly, a large enough table of uniform random digits will, 
by the very nature of random digits, contain sections which, by themselves, will 
certainly fail tests for uniformity. This feature is noted in tli:eiio'J;; of 
and Babbington"':Smith .(1939a), which caotains:-lOO 000, digits. They tested 
their table as a whole. and also in Darts. down to blocks of 1000 dicits each. As 
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do not select the value)( = j then the 'alias' value for X. IS by t.he 

{ I < . < 4} distribution. For example, in the above dlustratlon, with 
rlj' - I - , . . . { 1 < . <4} is selected robability 1 the component dlstnbutlOD, 'i21 - 1 -' . ' 

P 4 . b b'l' - 1 or X = 3 the alms and then either X = 2, with pro a Iity T22 - ". ' 

1 'th babl'II'ty r _1' For further diSCUSSion, see Peterson and va ue. WI pro 23 - 3' .,.' d t 
Kronmal (1982). An attractive feature of thIs. method IS that It oes no 

. thO an two uniform random vanables for each value of X. reqUIre more . ' bl d , . ' h' h only one umform random vana e nee Can you suggest a waym w IC , r 
be used? (See Kronmal and Peterson, 1979.) An algorithm for the a las 
method' is provided by the IMSL routine GGDA (see SectIOn ALl). 

I 6 
TESTING RANDOM 
NUMBERS 

6.1 Introduction 

The needror stringent testing Ofuniform random variables was emphasized in 
Chapter 3. When tables of random digits were first pro(luced, tests were 
employed fa'r unifa'rm random digits. More recently, with the development of 

ge"nerators, the to. be ar"e',continu-
ously distributed: ovet'lhe ran'ge (0,1). 1n the for. clfgits are 
frequently applied to the digit occupying thefirst decimal place, while in some 
cases of detailed' testing other decimal places an;' also considered; as in 
Wichmann and HilI (1982a).' An alternative ap'proach, given by Cugini er al. 
(1980), is described in Section 6.3. 

We have seen that congruentia] methods of random number generation are 
convenient and widely that 'they can produce sequences of n,umbers 
with certain undesirable properties. For any parti'cular application, di.e need is 
to determine what may' be 'undesirable',' sci that random n'umbers' should, 
always be, tested 'with 'an' application in mirid. This is' often easier said than 
done, but we can'·s'ec'that it could entail testing not orily variables, but 
also variables of other distributions, obtained by methods such as those of the 
last two chLapters'. Tn Chapter·S in particular, some of'the algo'iithms' given are 
very complicated, and in such cases testing.is needed quite simply 'as 'a check 
that'there have been no programming errors. In Chapter 4 we saw that 

. particular properties -of random variables 'and- processes' can be used to 
. generate particular random variables. By·the" same token; 'similar'properties 
,·may be used ,to test partiCular random variables, as we shiillsee'in Section 6.6. 
" . A roorn full of eternally typing monkeys will ultimately produce of 

Shakespeare;'and similarly,'a large enou'gh 'table of uniform ran'dom digits will, 
. by the verynature of randqmdigits;contain sections which, by themselves, will 
certainly fail tests for uniformity.'This feature is noted in the table of Kendall 

,:and Babbington-Srnith(1939a), which contains 100'000, digits. They tested 
table as a whole, and also in parts; down to blocks of 1000 digits each. As 
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expected) some of these individual blocks failed certain tests) and a note was 
added to these blocks, to 'caution the reader from using them by themselves'. 

EXAMPLE 6.1 
As an illustration of this, let us consider the digits of Table 3.1.. Fpr the two 
halves of the table we obtain the follo;"'irig freqtlencies for single digits: 

': I; 
Digit 0 2 3 4 5 6 7 8 9 Totals 

(a) 17 16 13 16 17 16 36 16 20 13 180 
(b) 15 19 20 19 14 22 16 20 11 24 180 

(a) + (b) 32 35 33 35 31 38 52 36 31 37 360 

For the entire table, if the digits were random the expected number for each 
digit is 360/10 = 36, and so the departures from 36 obser.ved can be tested by 
the chi-square' test of Section 2:14. Here no geen estimated 
from the data, and so the number of degrees offreedom is 9. For the entire 
tahleweob'tain = 9.39, which is not significantat the 5 %level. However, if 
we take pi;t (a) of'the table above, we tind = 22, just sIgnificant at the 1 % 
ievel, for a: significance 2 % level for,a two-tail test. As we 
shall 'see later, t;"o-'tail t'ests used for testing ran'dom numbers. 

" In the context 'of pseudo-random. numbers" we already encountered 
this, same. point in, Chapter 3, since cqngruential generators. can be devised 
which have a Imv first-order serial correlation for tl)eir fuji cyde, but which 
result in much higher such correlations for fractions of the cycle (see Exercise 
6:1). A property o(a pseudo-random nn:mber generator for its entire cycle 
proyides, effectively, a test of that generator, and a test of a kind that is not 
possible, for physical random generators. As. well as, serial correlations, 

" and s.eeond-order m"ments of Exercise 3.13 can be interpreted in this 
way. Such tests,have come 10 be known as, theoretical t,sts, and an elaborate 

, such test is the spectral test of Coveyou and MacPherson (1967). Theoretical 
tests evaluate the generating, mechanisms used, and .. do, not make use of 
gerieniied numbers,. Knuth.(19,81, p. 89) sta,tes that all congruential generators 

" tha.t to pass the spectral test;.while.those that are'known to 
, . lish'ld fail ii., Oa,kenfull (1979) and Knuth (19.81, p. ·102)proyide the results of 

applying this test to a variety of congruential generators. Ultimately, however, 
we hav", to test ihe numbers produced by.a generator in the c()ntext of their use, 
and ,this is bY,a variety of empirical tests, which are. the subject of this 
chapter. Atkinson (1980) describes when the spectral test is appropriate, and 
for a number of generators compares the results of theoretical and empirical 

..J 
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tests. The same th.eor,etical/empirical comparison is· also made by Grafton 
(1981). ,." 

6.2 A variety' of tests 

When we are dealing ,with random variables such as Poisson or normal we 
want to check that the generated.values come from the distribuiions we think 

do. In the case of Poisson variables this could ,involve checking that the 
between of 2.3, for example,. are not significant, 

whIle. for we would be comparing. for instance, the density 
functlOn of FIg. 2.5(a) WIth the .hist9,gram of Fig. 2.5(b)., Methods for making 
these. compansons w!ll be conSIdered later .. In addition, .we may well want to 
conSIder the dependence '0(. the variables, as is done for instance by 

(1965) for exponential random variables.Obvious discrepancies Can 
somellmes be spotted by inspection ofa convenient graphical display, as can be 

for the figures of Chapter 2, but ultimately significance tests must be 
applIed. The scatter of Fig. 3.2 is 'obviously' non-random, but what can we 

of the scatter of FIg. 3.3? The same question can be asked of the plot of 
FIg. 6.1, produced by 'the generator of Equation (3.1). 

Figure 6.1 A scatter plot of u"+ I vs. u" for a sequence of length 2000 from the 
generator of Equation (3.1) . 
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Recently a sophisticated approach to judging the randomness of scatter 
plots has been provided by Ripley (1977, 1981), whose technique itself utilizes 
repeated simulations, and Atkinson (1977b) applied this technique to numbers 
resulting from the multiplicative congruential generator 

discussed earlier in Equation (3.4). 
In inspecting and testing scatter plots such as that of Fig. 6.1, we are 

implicitlY considering how often different one- and two-dimensional intervals 
are represented. This corresponds to the basic frequency and serial tests which 
we shall soon describe. Apart from these, however, what other empirical tests 
should we applY? Thus, hard on the heels of the earlier problems of generator 
·selection and, when' appropriate, which method to use for transforming 
uniform random yariables, is the problem of test selection. As mentioned 
earlier, the glib answer is that tests should be suggested by the use intended for 
the random variables, and this could result in the applicahon 01 very specific 
tests, over and above those already applied ·to a' basic source,'generator. 
Different producers of uniform random numbers have'answered this question 
in different ways, and batteries of tests are to be found, for example, in Kendall 
and Babbington-SIIiith (1939), Tausky and Todd (1956), Craddock 
and Farmer (1971), Miller and Prentice (1968) anel Wichmann ·and Hill 
(1982a). 

It is important to realize ihai there is nothingmagical or God-given about a . 
particular set of tests. Clearly an infinity of tests is possible, and as we shall see, 
numbers which pass one test may fail another. Kendall and Babbington-Smith 
used just four tests, designed to check frequencies and various forms of 
sequential dependence, and this basic is that adopted·by subsequent 
authors, though conventions have changed with time. We shall now 
describe certain standar.d tests for uniform random digits, and then the 
results of applying tests to resulting from a variety of 
generators. 

6.3 Certain tests. for uniform random digits' 
'! ,:" • - . . , '. - " . .. , . 

When presented with tables of digits such as those .of Tables 3.1,.3.2 and 
Exercise 3.10, the first reaction of most of us would be to count. up the 
frequencies of occurrence of,each'digit and compare the observed frequencies 
with what we would expect for random digits. The statistical that is 
usually used in making this comparison is the chi-square test of Section 2.14, 
and we have already seen such examples ofa frequency test in Example 6.1, and 
Exercise 2.24. . . ... 

Deterministic sequences. such as: ... 89012345678901 ... satisfy the 
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frequency test(ifaone-tail test is used-see later), but blatantIyJail tests which 
consider the. ordering ofthe elements in t!Jesequence: The si-;;'piest slfch test, 
the serial test, takes a sequence of digits: d j + 1. d i + 2, . .. : . and from 

n.on:-9yerlapp.ing pairs of digits. !=ompares matrix 
{Oll} with the expected {ell), 0:$ Ie, I :$ 9, in which digit I is observedto follow 
digit k, ()kI times, and e" is the corresponding number to be we have 

· a truly random sequence. If we have n non-overlapping pairs of digits, then 
e":",, n/l00, for 0 :5 k, I :5 9. The yardstick here is againa chi-square test, but 
this time on 99 degrees of freedom. An illustration of a serial' test is given in 
Example 6.2. 

Non-overlapping pairs of digits are taken so that the independence 
requirement.of the chi,squaretest is preserved.(see Sectio,! 2.14). If overlap-
ping pairs ar.e used, \hen a modified test,due to Good (1953), may beused. The 
Ily1SL routine.GTPST, of Section.A1.2 performs this test. Itis!in interesting 
footnote that. Kendall and Babbington-Smith (1939a) used overlapping pairs 
and t?en mcon:ectly ·appJied the .. test. Deterministic 
sequences. such as. that illl1strated above do in fact produce too good an 
.agreement with expecta.tiqn in the frequency. test, and this is indicated by 
significantly small values of the chi-square goodness-of-fit statistic. 
Consequently, Chi-square tests of randomness are often 'two-tail tests. unlike 
customa,ry c.hi,square tests in which only the upper tail is used as the. critical 

\region. An example of a seque,Dce of.digits that are)oo regular is provided by 
the first 2000 decimal digits of e "" 2.71828 .... Here the frequency test gives 

"" 1.06, a value which is significant at the 0.2 % level, using a twp-tail test. If 
the first 10.000 decimal digits of e are taken, then we obtain the satisfactory 
result: "" 8.61;·a lIJore detailed breakdown can be found in Stoneham (1965), 

· some of whose results are illustrated in Example 6.7 and Exercise 6.15. 
Of course, as stated in Section 2.14, the chi-square test is an asymptotic test, 

and so is not 'appropriate if expected cell values are 'small'. The serial test 
to the consideration of triples, quadniples and so on, of 

the number of increases geometrjcally. Thus, especially if 
one is non-overlapping n-tuples, care must be taken 'in tests of 
high-dimensional randomness to ensure that expected cell values are large 
eno'ugh for the chi-square test to be valid. An alternative test of randomness in 
high-dimensional space is the coUision test described by Knuth (1981, 
pp. 68-70),and for is given by Hopkins (1983b). 

We can;test.randorn digits in a less routine way, by looking for patterns. One 
rudimentary way of doing this is provided by the gap test, which is as follows: 

any, digit, e.g. 7: We can now consider any sequence as consisting 
· ofTs and 'not Ts', i.e., a binary sequence in which Pr(7) "" 1/10, and Pr (not 7) 

=; 9/ 10, is random, and digits then 
the dis\rib¥tion of the number of digits 'between Ts is (see 
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Section 2.6). Thus empirical and observed distributions of numbers of digits 
between 7's may be compared. For an illustration, see Example 6.2. Like the 
gap test, the 'coupon-collector' test is also based on a as it 
corislders the number 01 digits until at least one of each of the digits ()"'9 has 
appeared. This test treats all digits equally, and was . first 'proposed by 
Greenwood (1955), who found that the test was satisfied by the first 2486 digits 
in the decimal expansion of e = 2.71828 .. '. and by the first 2035 digits in the 
decimal exparision ofn = 3.14159 ... ; details of his test results can be found in 
Exercise 6.7.........-- .. 

A more obvious way of looking for patterns is provided by the poker test, 
which co'nsiders digits in sequences of length 5, and classifies the patterns 

'according to the conventions of the 'game of poker: all different, twO' pairs, etc. 
Further discussion of the coupon-collector and poker tests is' provided in 
Exercises 6.6, 6.7 and 6.15, and Example 6.7. The poker test may be performed 
by means of the IMSL routine-GTPOK·(see Section 1\'1.2). 

Example 6.2 gives the results of- applying the serial and gap tests to 
sequences produced by the random number generator of the Commodore 
PET microcomputer. This generator is not ofa standard form, and will not be 
described here. 

EXA MPLE 6.2 The result of applying the serial and gap tests to the 
. Commodore PET microcomputer random number generator 

(a) SERIAL TEST: 

Following value 
1 2 3 4 5 6 7 8 9 10 11 Totals 

1 15 17 18 27 20 16 21 18 21 20 14 207 
2 30 24 20 18 25 13 18 24 27 25 17 241 
3 25 18 19 23 28 15 14 16 16 16 22 212 

Preceding 4 14 24 23 14 22 16 17 16 18 19 19 202 
value 5 24 16 16 15 15 23 17 21 24 23 18 212 

6 22 24 22 27 18 8 17 19 31 ' '24 25 237 
7 26 22 21 15 19 24 13 20 19 19 17 215 
8 24 13 18 26 21 16 19 21 19 14 .20 211 
9 14 17 '24 22 18 18 17 15 18 18 21 202 

10 22 24 26 27 23 25 18 23 25' 16 23 252 
11 22 13 24 25 26 18 . 21 18 25 14 23 229 

Totals 238 212 231 239 235 192 192 211 243.'208 219. 2420 

Here we obtain XIzo = 108.8, which is clearly- not significant, and so on the 
basis of this test we would not reject the hypothesis thai the digits were 
uniform and random. 
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(b) GAP TEST 

Gap size, Actual count count 

0 36 25.90 
1 36 23.31 
2 23 20.98 
3 20 18.88 
4 17 16.99 
5 6 15.29 
6 15 13.76 
7 10 12.39 
8 11 11.15 
9 10 10.03 
2:10 75 90.31 

Totals 259 258.99 

Here Xio = 19.924, which is close to significance at the 5 % level (two-tail test), 
and .one would want to repeat this test to see if other samples produced similar 
results. 

Note that these and other test results .presented later in this chapter were 
oQtained using the suite of BASIC test programs of Cugini et al. (1980). Rather 
Ihan work with digits, they divided the (0, 1) interval into 11 sections for the 
serial test, while for the gap test, gaps were recorded between numbers lying in 
the (0.03, 0.13) interval. Thus for the gap test, 

r 

25.90 = 259/10, . 

23.31 = 25.9 x 0.9, etc. 

*6.4 Runs tests 

A striking feature of a table of digits can be the occurrence of rims of the same 
digit. If such runs occur with greater frequency than one would expect for 
random digits then one might, for example, expect this feature to result in a 
significant departure from the geometric distribution of the gap test. One can, 
however, look at distributions of other types of runs, and this was done by 
Downham and Roberts (1967). 

Runs tests are frequently applied to a sequence ofU(O, 1) variates. Here we 
shall just consider :runs up'. To illustrate what is meant by a :run up', consider 
the following sequence of numbers, given here to 3 decimal places: 

(0.1340.2790.886) (0.197) (0.011 0.923 0.990) (0.876) 

The 'runs up' are indicated in parentheses, so that here we have four such runs, 
oflengths 3,1,3,1, respectively. We see ;hat a 'run up' ends when the next item 
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in the sequence is less than preceding item, the next starting the 
next 'run-up'. Levene and Wplfowitz (1944)showed that In a random sequence 
of n U(O, 1) variates, the expected number of ' runs up' ofIength k;;;: 1; R" say, 
is given by: . . 
____ (k2+k-l)(n-k-l) 

g[R,J= (k+2)! for I k n 

(See also Knuth, 198-1, pp. 65-68, for a derivation of this result.) 
Typically, n is taken to be large, so that 

(k 2 +k -1) 
6" [Rk] '" (k + 2)! /I 

for k <1[ n 

Clearly, for fixed /I, E[R k ] decreases as k - n, and it is usual to consider 
the joint distribution of (R 1 • R 2 •• · . I Ri • Sj), for some j> 1, where 
Sj - _ i+ 1 Rk.; j = 5 is frequently adopted. Successive run lengths are not 
iooependent, and so a standard chi-square test for comparing observed and 
expected numbers of runs is inappropriate. The test-statistic used (see Levene 
and Wolfowitz, 1944) is 

(6.1) 

in which X, = R, for 1 :$: k:$: 5, and X6 = S6' 

the {Qij} form 'of the variance-covariance of the {Xk }, and 
for large n are gIven by: . 

4529.4 9044.9 13568 18.091 22615 27892 
18097 27139 36187 45'234 55789 

40721 54 :iiH 67852 83685 
A", . 72414 90470 111580 

113262 139476 
172860 

the lower half of this matrix being obtained from symml'!ry. The exact 
expression is given by Knuth (1981, p. 68). U is referred to o.n 
6 (not 5) degrees of freedom. As with the usriaLchi-square test;'an asymptot.lc 
approximation'is being made when this test is used, andXnuth 
taking n ;;;: '4000: An illustration of the outcome ofapplyinglhis test IS gIven In 

the following example. . .' 
EXAMPLE 6.3 The result oj applying the 'runs up' test to a sequence oj length 
n = 5000 Jrom the 'generator (131, 0; 

t Note that for convenience we shall henceforth use the notation:" (a, b; m) for the con,gwonti.t 
generator of Equation (3.2). -
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Run length (k) R, ..r[R,J ..___-," f"1-o"..... Eo 

I 824 833.3'4 
2 1074 . 1041.66 
3 440 458:33 
4 113 131.94 
5 42 28.77 

:2:6 7' 5:95 

= 18.10: significant at the:i % level, a two-tai!'test.Th'us the test 
rejects the hypothesis that the variables are random and uniform . - " "". 

Before the work of Levene and Wolfowitz (1944), incorrectly 
used, incorporating the standard chi-square Vnf6rtunately the 
algorithm by Downham (1970) omitted the {a,;} terms ofr:.quation (6.1). That 
this omission could possibly result in erroneous conc1usions.is "demonstrated 
by Grafton (1981), who provides a brief comparison between' the correct runs 
test and the spectral test. Grafton (1981) provides a FORTRAN algorithm 
which tests 'runs down' as well as 'runs up', though the two fests are not 
independent. See also Section Al.2 for the IMSL routinesGTRN and 
GTRTN. Accounts of the power of runs tests vary, and are: clouded by 
iiIcorrect uses of the tests. Kennedy and Gentle (1980, pp. 171-173) provide the 
theory for the case of runs up and down. 

6.5 Repeating empirical tests 

One might expect a poor generator to fail empirical tests, but a failure of an 
empirical test need not necessarily indicate a poorgenerator. Conversely, a 
poor generator can pass empirical tests, and both of these instances are 
illustrated in the following two examples. . 

EXAMPLE 6.4 
The frequency test was applied to the (781,387; 1000) generator, starting the 
sequence with L The full cycle was divided into 20 groups of 50 
numbers each. For any group the frequency test was satisfied but the 20 chi-
square"statistics took lust one of the three values, 10.(1, 8.8, 7.2. --

EXAMPLE 6.5 
The PET generator produced the borderline 5 % significance result of Example 
6.2{b) urider the' gap test. Nine subsequent gap tests produced the insignificant 

,statistics, of: 
. 9.49, 14.88,6.50, 13.73, 7.80,.7.80, 4.36, 8:12, 7.80 

A similar 'unlucky' start' is found with,the frequency test applied the decimal 
digits of e (Stoneham, 1965); 

,,/" 
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These difficulties can sometimes be resolved by repeating an empirical test, 
producing in effect aJIlore stringent ·values from repeating 
tests can be interpreted in a number bfways: a simple graphical representation 
can be obtained by probability (also called Q-Q) plots (see for example, 
Chernoffalld Liebermilii;-1956; Gerson, 1975; and Kimball, 1960), in which a 
sample of size n from some distribution (chi-square in our case) is and 
plottecfagainst the expected values of the order statistics. The expected order 
statistics for chi-square distributions are provided by Wilk et al. (1962), and 
two ilIustrations·are provided by the following two examples. 

EXAMPLE 6.6 . 
The RANDU generator, (65539,0; 2"), resulted in the probability plot shown 
in Fig. ·6.2 for 30·applications of the 'runs up' test, each applied to a sequence of 
5000 numbers. -----

10 

s 
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xxX 

x x 

5 10 

x 
x 

IS 20 25 
Expected order 

Figure 6.2 A probability plot of30 test-statistics up' test 
applied to the RANDU generator. The ordered sample IS plotted agamst the expected 
order statistics for a sample of size 30 from a ;d distribution. 
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EXAMPLE 6.7 
Stoneham (1965) made a study of the first 60 600 decimal digits of e. The results 

. of of the are illustrated in Fig. ·6::J";each test being 
applIed to a block of 5000 consecutive digits. Some of the detail is presented in 
Exercise 6.15. 

1;000-': 11. 

x 
x , 

x , , 
, , 

3 , 

, 

o 3 6 , 12 
order statistic 

Figure 6.3 A probability plot of 12 test-statistics resulting from the poker test applied 
to decimal digits of e. The ordered sample is plotted against the expected order statistics 
for a sample of size 12 from a 

Note, however, that Wilk et al. (1962) remark ·that it is difficult to interpret 
such plots for fewer than 20 points, reaching their conclusion after applying 
the plots to simulated data. -

Whether. or. not these plots indicate significant departures from the 
appropriate chi-square distribution can also· be judged by means of a further 
chi-square test, if the sample size permits, as demonstrated in the next example. 

EXAMPLE 6.8 
.The Cugini et al. (1980) program for the frequency test applies the test to 1050 
. numbers in the (0, 1) range, categorizing them according to 21 equal-length 

The test ii then repeated 60 times, and the resulting chi-square 
statistics are themselves categorized according to the percentile range into - - - -
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which the values fall. Applying this test to the PET generator produced the 
following result: 

% range Actual count Expected count 

0-1 4, 0.6 
1-5. 0 2.4 
5--10 2 3 

10-25 10 9 
25--50 18 15 
50-75 15 15 
75-90 7 9 
90-95 2 3 
95-99 2 24 
99-100 0 0.6 

60 60 

Combining the first three and. the last allows .us to perform a chi-. 
5 uare test now on 5 :degrees of freed.om, to th!s table. We,obtam the.value of 
7.£ = 1.82, ;"hich:is not· significant at the 10% level,.ard so these pass 
this empirical_ test. - . 

An alternative is to the Kolmogorov-Smirnov test, which is 
described by Hoel (1954, p .. 345) an.d, Knuth, (pp. 45-52) 
some interesting comparisons ,of power .. .-th,:, .an 
Kolmogorov-Smirnov tests. Categorization or the mdlVldual 
values is for the Kolmogorov-Smirnov test, and when apphed to 
the sample of size 12 illustrated in Fig. 6.3, the test does 

the,expected xi distribution at the 5 o level.; \Vhll.etp, .same 15 

for the sample oC size 30.2!lustratedm FIg. 6.2, m that case the result 15 

significant at the 6 % level. 
.-.--

6.6 Tests ,of 

We have already seen, in the last example, an illustration of the chi-:uare 
being used to test a non-umform (m thIS case also rando . 
The same approach may be used, with suitable combmmg ofcategor.,es 
necessary, for :a-ny see Exercise 6.1-9 for a.n 
Kolmogorov-Smirnov test may also be used for .any 
above does not crequire .. We shall now 

tests for non-uniform random variables. 

, 

6.6 Tests of non-uniform random variables , . 
f ," 
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6.6.1, Normal variables_ 

..l: 

Wold (1954) obtained 'standard normal random variables, to 2 decimal places, 
by transforming the digits of Kendall and Babbington-Smiih (1939);"the digits 
were initially. groupecj to correspond to U(O, 1) variates and then the table-

.look-up method of Section 5.2 was used (see Example 5.4). Except for normal 
variables in the tails of the distribution, for the two-place accuracyneeded, just 
four'de-clmlfl place.accuracy was. necessary for the U(O, 1) variates. The 
resultillg.table .had! 25 000 items"which.were .tested as a whole,. as'.well. as in -. groups of.500 and .5000. Four tests .. were employed: . . ..' 

(a) The numbers in ;a:groiip were summed, and the result to the 
appropriate normal disiributio'n (see Exercise 2.8(a)). 

(b) The squares of the numbers in a group were summed, and the result 
referred to the appropriate Chi-square distribution (see Exercise 2.5). As 
the grc;-up-sizes are ;;;:: can us'e the'apprc)xhrirtion·that if X'has a x; 
distribu.\ion, (J (2XT=7(2v 1)) is appro,,,mately,N (0, 1) (see Exercise 

., .' 6.24).-'-:::::-
(c) ... From, to 6.4 w.e ,see ,that if R- is the ,range: from a 

random sample of. size .n .from an N (0, 1) distribution, then 

:s; r)= n.[ (<I>.(x ... ' (6.2) 
. - .. ", 

and thus the ranges·.of such·samples ,of.size n can.be .obtained and 
compared with what One .would. expect,. using a chi-square "test. The 
distributi<inof:(6;2).is tabulated in Pearson and Hartley 17.?-183). 

. (d) II\. ·was 'applied .tothe runs ·of .signs only of .the sequence of 
numbers. 

As with·iIieKendall and Babbington-Smith (1939a) tables, a note was 
, appended ti, .eo',,!' set of numbers that test. .. ' .' 
.. - -Other for no'rniality ire. discussed' by Pearson et a'/.(19il) and 

Wetherill et al. (1984, chapter 8). One of these tests; 'by Shapiro' and Wilk 
(1965), tests for departures from linearity in the appropriate probability plot. 

*6.6.2 Multivariate norma] variables 

If (X I; N,) has the bivariate normal density function of Section 2.15; then the 
derived univariate statistic, 

D' = 1 2 {(XI -Ill)' -2p (XI -IlI)(X, -Il,) + (X, -Ill)'} (6.3) 
(l-p ) 0'1, 0'10'2 0'2 

has a xi distribution (Le. exponential of mean 2}:--see .,Exercise 6.5. Healy 
(1968a) proposed using sample values of D' and comparing them withihe chi-
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square distribution they would have if(X " X 2) is. indeed .bivariate norm.al. 
Once again a graphical examination can be made ':'Ilth the ala ofla 
plot, the expected order in a sample of SIze n a X2 dlstnbutlOD 
being: .' -. . 

+ U+ +H 
(see Cox and Lewis, 1966, p.27). In t?e of (6.3) have to 
estimated from the data, and there is diSCUSSion of thiS m Barnett'and LeWIS 
(1978, pp. 212-215 and 226). This appro.ach;:an :also be'extended general 
multivariate normal distributions. For addltlOnal tests see Mardm (1980), 
Gnanadesikan (1977, p. 161) and Royston (1983). 

6.6.3 Poisson variables 

A random sample from any exponential density may be illustrated by usi?g 
the order·statistics of the last section after a preliminary scaling (see ExefClse 
22). Tests for exponential.random variables were \!sedby (1965), 
in contrast to Wold, 'transformed pseudo'random vanables, usmg a 
cative congruential generator with m = 227

, and t?e of 
Equation (5.5). Five tests were then applied to the resultmg numbers,mcludmg 
an extension of the test of Cox (1955) for the presence of first"Order 
serial correlation in a sequence of exponential-variables: Barnett (1965) also 
generated and·tested X1 variates by squaring N(O,l) by the 
Box-Muller methodof Section 4.2; 1. In connectJOn' With some of !;is tests, 
Barnett. was confident that only the - right-hand .. tail of the chl-square 
distribution need be used for. the test critical region. ., . 

The mean and variance of Poisson random a:e and the 
index of disDersion test makes use of this result to provlde a partlcular for 

If-(x},., "," J xn) is a sample from a POIsson 
distribution of parameter then . . -' " L (Xi- X)2 

i= 1 

X 

is, approximately. a realization ofaX!_l random variable; where 

for exainple ABC, p. 314. 

" 
LXi 

_ i= 1 x=--
n 
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6.7 Discussion 

The very first tabulation, by Tippett (1927), of random digits did not include an 
account of any systematic testing. By contrast, the testing of random variables 
has now become a standard procedure, and a of a variety of 
computerized algorithms which may be used is given in Section A1.2. A suite of 
test programs such as that of Cugini et al. (1980) indicates the kind of compro-
mise that may be reached in the choice of a suitable subset of empirical tests. 

The need to match tests of numbers to the intended application for those 
numbers is graphically illustrated by the insignificant result of the 
Kolmogorov-Smirnov test of Example 6.6. The RANDU generator that is 
tested here has very poor properties when one considers successive triples of 
numbers, as explained by Exercise 3.25, yet the generator does not fail at the 
5 % level the repeated runs test of Example 6.6. 

The RANDU generator failed the extension of the serial test to three 
dimensions when this test was applied by Dieter and Ahrens (1974, p. A8): each 
time the test was applied the resulting chi-square test statistics were roughly 
100 standard deviations from the expected chi-square mean for the test. 
However, only one (a poker test) of the many other empirical tests applied 
indicated that the generator had poor properties. Caution is clearly the key 
word. The possible problems with pseudo-rando'm numbers are evident, and 
true random numbers could be biased in unexpeCted ways: For instance, 
Kendall and Babbington-Smith (1938) selected digits from the London 
telephone directory and found appreciably fewer 5's and 9's than One wOUld 
expect (seeExercise 6.8). They attributed this to the high acoustic confusion 
between five' and (airline pilots use 'fife' and 'niner' respectively), ana 
telephone engineers selecting numbers to try to reduCetlliS effect (for related 
work, see Morgan et aI., 1973, and Exercise 9:10). 

'Neave (1973) showed that when' certain pseudo-random variables were 
transformed by tlie Box-Muller transformation of Section 4.2.1, the resulting 
vari.;bles displayed unusual characteristics. For instance, observed frequencies 
in the·intervals ( co, 3.3)·and (3.6, co) were zero,· compared with expec-
tations (for 106 generated vallies) of 483 ana 159 respectively. However, it has -------been pointed out subsequently (see, e.g., Golder and Settle, 1976) that this 
effect is mainly due to the (131,0; 235 ) generator used, which was considered 
earlier in Example 6.3 (see also Exercise 6.25). Atkinson (1980) in fact uses the 
Box-Muller transformation combined'with a test of normal random variables 
as a test of the underlying generator. 

6.1 

6.8 Exercises and complements 

Compare the bounds on the first-order serial correlation given by 
Equation (3.3) for a mixed congruential generator with empirical iirst-
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'6.2 

'6.3 

Testing Random Numbers 
. :'.. . " 

order serial correlations obtained for a sequence of length 1000, for the 
following generators: 

(781,387; 103 ) 

(6941, 2433; 104 ) 

(5 17 ,0;242) 

Note that an additional test of random numbers is provided by 
comparing empirical serial with their expectation for a 
random sequence (see, e.g., Cugini el al., 1980). 

Perform the index-or-dispersion test for the Poisson distribution using 
the following sample statistics obtained using the PET generator and 
the program of Fig. 4.4 

,[ n X 5' 

5 500 4.960 4.804 
2 500 1.856 1.679 
1 500 1.060 1.140 
1 500 0.974 1.076 
1 500 1.018 1.080 
0.5 500 0.438 0.463 

• 
Here S2 = I (xi-xl'/(n-l).' 

i=1 . 

Two dice were 216' times, and the number of at each throw 
were: 

No. of sixes '0 Total 

Frequency 130 76 10 216 

Test the hypothesis that the probability of a six,is p = 1/6. . 
Explain how this test would be modified if the hypothesis to be tested 

is that the distribution is binomial with the parameter p unknown. 
(Based on an Oxford A-level question, 1978). , 

6.4 Verify the formula for the distribution function of Equation (6.2), 
the range of a random sample' of size n from an N (0, 1) distri!Jutiorl:) 

*6.5 Use the formula of Equation (2.4) to verify that the random variable 
Equation (6.3) has a distribution. 

*6.6 
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proble--:ndpplied 10 the digils 0-9) Th"e prob-
a?dlly, that theJull of digits .is for the first time at the jth 
digit of a sequence is given by: 

Pr(j) = J,( -It>' 1}1O -:-v)j: 1 for j 10 . 

. TW9 different' ways :of proving this ;esult are suggested below. 
(i) If the number of digits until the first occurre';ce ofa complete set is 

denoted by S, then (verify) we can write ' , " 
10 

S= 1+ I Xi 
f=2 

'where Xi has the geometric distribution of Section 2.6, with 
p = ((11 ""i)/1O), 2 i 10. 

Show that the probability generating function (see Section 2.16) 
of S is given by: . 

9' Z10 
G(z) = -'.0--' --

n (10-iz) 
i = 1 

which, further, be written as: 

G) 9z
10

, .' i
8 (8) (z =, lOS (-1) -, (10:"" '7) . l' 

. i-I . .. l! •. 

"; . . Finally, by expa!1ding this expression as a power series in z, verify 
"tliedistributional"form'of S given above.';:' ,', ' " 

"(iiYAn alternativ,:appioach uses the'theory or-occupancy problems, in 
,which r balls are thrown at random into n cells, with r n. In our 
case, each digit corresponds to a ball and each type of digit 
(0, 1, ... ,etc.) 'is a cell. 
If u(r, n) = Pr(no cell is empty when r balls'are thrown at random 

then we see that 
in to n cells), 

u(r, 10) ",; r), 

,and so PreS = r) = u(r, 10) - u(r -1, 10). , 
. Use this approach, coupled with the fact that 

Pr(no cell is empty) = 1 - Pr(a! least one is empty) 
to obtain PreS = r). 
.. NOTE (Feller, 1957, p. 59) that the median of the distribution of S 
is 27; Pr(S> 5<if> 0.05; PreS > further that 
u(r, n) may be used to, solve the 'birthday problem': n = 365, 
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.1 

Testing Random Numbers, 

r = number of people ina room; if e;g:, r = 1900, Pr(no day is not 
represented as a birthday) "" 0.135. 

Greenwood (19551.0btained 'the from the coupon-
collector-test applied to the first 2486 digits in the deCImal expans.!On of 
e = 2.71828 ... and the first 2035 digits in the decimal expansIOn of 
,,= 3J-4159 .:.. (reproduced by permission of the Amencan 

Society) . " 

1t e 
Number of digits' to 
the full colle!=tion Observed Expected, Observed Expected 

IG--19 13 11.604 '12 14.202 
2G--23 13 11.720" 11 14.344 
24-27 9 11.491 14 14.064 
28-32 5 11.480 15 14.050 
33-39 13 10.195 17 12.477 
40+ 14 10.510 13 12.863 

x2 values: 6.436 2.826 

Verify the expected values given above and discuss the non-significance 
of the result fbr e in relation to the failure of the frequency test by these 

. digits (see Metropolis et aI., -1950). " . . 
(i) Kendall and Babbington:;Smith,.,(1938)'lbtamed the followmg 
"distribution of 10000 digits from the Lonflon ,telephone dIrectory: 

Digit o 2 3 6; '7 8 9 Tot.1 

FrequencY' 1626 "1107 -997 9'66 1075' 933 1107 972 964 853 10000 

Verify that the frequency test in ;d = 5.8.582: .. . 
(ii) Fisher and 'Yates (1948) obtained the followmg of 

digits obiained from suitably reading tables of'loganthms: 

Digit o 2 3 4 5 6 8 9 Total 

Frequency. H93 1441 1461 1552 1494 1454 1613 

Verify that the test results inA = 15:63,and discuss 
decision to remove at random 50 of the 6's, and then replace 
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with other digits. chosen at random. For additional discussion, see 
Kendall and .Babbington-Smith (1939b). 

6.9 Comment on the following test statistics reSUlting from applying the 
'runs up' test to sequences of 5000 numbers from the generators 
indicated: 

6.10 

Sequence 
Generator 2 3 

(131,0; 2") 9.89 2.70 18.10 
(65539,0; 231 ) 13.16 5.59 12.70 
(23,0; 10' + I) 6.83 14.62 11.90 
(3025, 0; 67 108 864) 10.87 3.53 3.75 
PET- 5.16 2.26 8.20 
The generator of Equation (3.1) 5.03 4.23 6.90 

Verify that for the sequence of numbers from the (781, 387; 10') 
generator there are no runs 'up of length greater than 4, and discuss this 
result. 

,6.11 Apply tests of this chapter to the digits of Tables 3.1 and 3.2, and of 
Exercise 3.10. For many years the established decimal expansion for" 
was that of William Shanks, computed over a 20-year period to 707 
decimal places. It was noted that 7 appeared only 51 times. In 1945 it 
was noticed that Shanks made an error on the 528th decimal, and all 
subsequent decimals are wrong. In the correct series the frequency ofTs 
is as one would expect (Gardner, 1966, p. 91). 

6.12' Consider how you might construct a sequence of numbers which pass 
the frequency test, but which fail the serial, gap, poker and coupon-
colIector tests. . 

6.13 A test which is sometimes used (see, e.g., Cugini et' aI., 1980) is the 
. 'maximum.:.of-t' test. Here numbers are taken in disjoint groups of size t, 
and the ·largest number is recorded, for each group. The resulting 
maxima are then compared with the expected distribution. 

If M = max(U I , Uz, . .. ,U,) 

where the {V;} are independent; identically distributed U(O, 1) random 
variables, show that M has the density function 

fM(x) = nx,-I 

What is the distribution of M'? 

for 0 S; x S; 1. 
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,Testing Rondo11) Numbers 

A further test is tl)e permutation .test, inwhich, again, numbers afe taken 
in groups of size t. Here the ordering of the numbers is and. the 
empirical distribution or the orderings co.mpared: with ex!?"ctatlOn, 
which allots a probability of l/t! for independent umformly dlstnbuted 
numbers., (The possibility of tied values is not considered.) The 
following resuIts were obtained for the PET generator and the case 
t = 4. " 

Permutation Number of cases Permutation Number of cases 

I 9 13 II 

2 17 14 12 
3 16 15 10 
4 9 16 7 
5 6 17 9 
6 6 18 13 

7 10 19 9 
8 12 20 12 
9 10 21 7 

10 10 22 8 
11 8 23 10 
12 11 ,24 8 

Assess the significance of these results using a chi-square test. 

(Stoneham, 1965) detail of six of the poker test results presented 
in Example 6.7 and Fig. 6.3 is given below: 

Block 

1 
2 
3 
4 
5 
6 

Theoretical 
frequencies 
for random 
digits 

Hands 

All One Two One 
different pair pairs . triple 

316 506 98 70 
307 499 108 80 
317 503 90 72 
299 51l 114 58 
299 498 99' 84 
307 503 III 67 

302.4 504 108 72 

One triple 4 or 5 of 
and one the same 

pair kind 

5 5 
6 0 

13 5 
12 6 
18 2 
8 4 

9 4.6 

Verify the theoretical frequencies and the resulting chi-square 

, :. 
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Block 2 3 4 5 6 

xl 3.42 6.62 5.53, 4.61 5.32 7.05 

6.16 ,Invent a test'of your· own for· uniform random . numbers. 

6:17 : and test that. are available to 
. This can bC revealing. . 1977b), and Bremner 

{i981i:l have rev1"'led errors ill: Texas, hand,calculator ;.';'ultiplicative· 
congruential generators . .F,!rthermore, Bremner has pointed out that 
the RND functi.on available in the University of Kent implementation 
of is {3025, 0; 67108 864), and not (3125,0; 67108864), as 
intended, for which,teslresuIts were available.! and Hill, 
1965). 'Nevertheless, the (3025,0; 67108864) generator passes the 
empirical tests of Cugini et 01. (1980). Exerdse'6.27:) . 

6.18 (Cooper, 1976) The Box-Muller method invo.1ves' computing the 
functions, log, square-root, sin and cos, for each pair of normal random 

.. variables generated, If (as .hi. 'Barnett, 1965) the aim 'is to si';"ulaie xi 
variables, show how the numberoffu-nctions computed can be reduced. 

6.19 Use a chi-square test to compare the p:d.f. and histogram of Fig: 2.5. 
The frequencies illustrated by' the histogram are: 

4, 8, 18, 19, 12, 14, 14, 5, 2,.2 

Repat this approach 'for' other appropriate"figures from 
readingt,he frequenciesJrom the histograms/bar,{Oharts. -, .' ,;.--- .. ) ... -... -" -,.;-' ". . .... ' . '. 

Chapter 2, 

6.20' Wold defined the P-value for each test as the two-tail probability of 
being as, or more, extreme as the resulting value 6t:the'test-statistic. 
Thus, for example, the sum of the first 500 numbers was S = 159.97, 

. <1>(159.97/ J5000) = 0.9882, and P 2(1-0.9882) = 0.0237. In ad-
dition to the tests a,lready described, -he wrote; 

'For each type of test, tpe distribution of P-values obtained from the 
50 page sets has been compared with the expected distribution, which 
is rectangular over the interval (0,'1). On' tlie wliole, th:e agreement 
with the" expected distribution is good. The deviations have been 
tested by the X' method, ,grouping the distribution in 10 equal 
intervals. The P-valuesobtained for' the 4 tests are 49.4,13.7,29.0 and 
91.1 % respectively. The agreement was also tested byihe method of 
Kolmogoroff, mentioned above, a method not involving grouping, 
with the resuIts P = 15.5, 42.6, 26.6 and 98.9 %'. 

Discuss his approach and conclusions· (cf. Section 6.5). 
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6.21 The 30 test statistics iUustrated in Fig. 6.2 are given below: 
0.84 1.82 2.92 3.01 3.06 
4.74 5.02 5.09 5.61. 5.64 
6.47 6.52 7.09 7.62 10.20 

3.43 
5.73 

11.84 

3.51 
5.77 

11.88 

3.84 
6.11 

16.93' 

4.43 
6.12 

17.32 

4.45 
6.33 

24.59 

Use a.chi;squ.re.test to:.ssess whether thesev.lues come from. 
distribution. The Kolmogorov-Smirnov test ofEx.mple /i.6, applied to 

. : these data, was made with the NAG 'FORTRAN routine 
:' GOIBCF; which ·.;vahiaies ihe riglit:hand iall these 

' .. ", c" 'Values'fo"rIua random'sample fiom i1iia"C;08cAF; using the option: 
nuU'= I which p<!rforins of whether these 
tail are;. 'are' uniform (ef.' Exercise' 6.20):'raii chi-square 
densities 'are also given' in Pearson a'rid Hartley"(1972, 'p.160). For 

. COrripuiational formullie see Kennedy and ,Clende 5.7). 

622 Use .. the results" oLExercise 2.8 to particular tests for 
'exponential and Poisson' variables. How might you make use of the 

"1'Tesultof'Exercise 4.1 7? ' . . 
- '. ',. ' . 

. *p.23 .. Use the, results of Exercise 4.14 to simulate bivariate.normal random 

*6.24 

*6.25 

'. variables, and test.them,using the approach ofSection·6.6.7 -" , " .. 

In Section 6.6.1 we.used the result: 
IrX has a x; disiribution, ior large v, then' 
N = .j(2X) - .j(2v -I) is approxhpately N(O, I). 
Why is this? (Note that the results of S'ection 2.12 are exact, while here 

. we are seeking ,an. approximate 
(197:i)eonibined a with 

only the sine form of the Box-M uUer transformation (see Secti6n 4.2.1), 
obtaining 

N·'=.1-210g. U,)1/2 sin'(2nUz) , 

in which X, = ax,(inod m), 

, and U, = x,fm; U, = x,/m. 

Show, that we can write N in the form: 

N = (-2 log. U)'/l sin 

aI. the. {U,}frQm ,the multiplicative 
in the opposite order. to. that above, resulting in: 

'N = (-2 log; U,),/, sin (2ftU,) 

Show that X, = a*x, (mod m) 
where aa* = 1 (mod m) 
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so that the 'Chay interchange',js'equivaJent to changing the multiplier in 
the generator,and keeping'to the original sequence. Kronmal (1964) 
applied the Box-Muller transformation to pseudo-random numbers 
from two congruential'generators, One for Uland another for 
Uz, and found that the'resulting numbers passed a variety of tests. 

6.26 Write computer programs to perform the tests considered in this 
chapter . 

t6.27· Conduct empirical tests of, the (25173, 13 849; 2'6) generator. 
T. Hopkins has pointed out that this generator, proposed by Grogono 
(1980), performs badly on the spectral test. The choice of multiplier here 
appears to be pai:ticularly unfortunate, as literally hundreds of alterna-

- tive multipliers give rise to a much better result on the spectral test. 
Consider, for example, (13 453, 13849; 2'6), 

6.28 What will the result be if the frequency test is applied to the entire cycle 
of a full-period mixed congruential generator? What are the impli-
cations of this result? 

*6.29 Given a sequence of pseudo-random numbers, how would you test 
whether or not a cycle was present? 
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VARIANCE REDUCTION " 
AND INTEGRAL ESTIMATION 

7.1 Introduction 

In the preceding chapters, .we: haY,?,. g;nerate 
variables and we have considered ways of transform 109 these to produce other 

Having rapdom •.. ,,:ell'" 
prepared for using them in a,simulation on 
in a bull-at-a-gateFashion it is worth whIle of a)l cpnslden,ng whether the 
efficiency of the approach to be could Andrews (1976) 
writes: 

'In a recent Monte Carlo study of a regression problem the computing cost, 
was about £250, The cost of generating the required 160000 Gaussian 
[normal] deviates was SOp, a negligible amount relative,1o)he cost I 
have found that variance reduction methods often apply. As these affect 
sample size they affect the remaining Mod,est gains in 
result in large savings; very efficient m.eth6ds can often be found. 

Thus variance reduction is a way of improving valueJor it can 
result in much greater savings than those involved 10 just changin,g, one 
algorithm to another for generating variates, As we shall see.' there many 
different variance-reduction techniques, and a ready way 9f Illustratmg these 
techniques arises in the context ofintegral estimation ,random numbers. 
The above quotation used {he term .'Mol'te ,C'fri,O'; thIs IS ,nowJreqtl,ently , 
employed as a more evocative synonYI? for :andom 
are employed, 'Monte Carlo' frequently also'has an lmphed connotallon'of 
some variance-reduction method having been used. (See, for example, Cox and 
Smith, 1961, p, 128; Gross and, Harris, 1974, p,' 383; and Schruo:n and 
Margolin, 1978, for related discussion,) It is an item of folklore that thIS 
was introduced as a code-word for secret simulation work in connectlDn WIth 
the atomic bomb during the Second World War (RUbinstein, 1981, p, 11), 

The idea of variance reduction is contained in the following example, J 

7.1 bilroduclion, 161 

(;:XAMPLE 7.1 Buffon's cross 
The Buffcin needle, experiment has been described in Exercise 1.2 If a 
thin needleofldrigth lis'thrown at random 'on to ari:infinite horizontaHa\>le: : 
with paralleHines a:distance d;;,; I 'apart'; then the probability,that the"nee<;ile 
will cross a lirie is given'by 21/1td:This probability 'maybe estimated by 
proportion of crossings in an' experiment consisting ora number of successiye 
throws of a needle;and 'linoWiedgeoCl and d then enables,us to, estimate n., 
From the daia of Eilereise 1:2; we see' that " is not very ,precisely estimated in 
this way (cr: ihe precision of Exertise 3,10), even for as many,as 960 throws of 
the needle, Soldiers recovering from wounds sustained during the American 
Civil War had' thbime!'aild: apparently also the interest (Hammersley,an,d, 
Handscomb;:1964,.p:'1), 'for'multiple repeats of the needle experiment, but 
present-day experimenters'are unlikely to beso;patienL 

One way to speed thO'process up isto throw more than one needle each time, 
and then' the pitkirig' up o(the ,needles is facilitated if the needles are joined 
together, In its simplest form, this,;s accomplished. by fusing two ,needles of"" 
equal length at right-angles at their centres, to form a ,cross,Jf Z denotes the 
total number oflines intersected from a single throw of the cross, we can write 
Z = X + Y, where X and Y separately denote the number of crossings of each 
of the two,needles: The ,distribution of X, equivalently Y, is 
by the preserice of the'other needle, and soC[X]= C[Y] =,21/,(nd), and, 
C [Z] = 411(nd), Tlie best approach is to take I = d (see Exercise 1.2), and let us, ' 
in this case sere =;2/n, X and Yare simple binomial random variables and S,O" 
(see Table 2,1),Var(X)=, Var(Y;)= ej, 

It can be shown that the distribution of Z is given by: , 
?.j? , 

) Pr(Z "" 0) = I - " - ; .Pr(Z = I) = 4( ../2 1)/n; , 

t ' ,Pr(Z = 2) = 4(1 1/ ../'J)/n , .;: .. 

This evaluate Var(Z) = VarIX) + Var(Y) + 2 Cov(X, Y), yield. 
.'" <, .• , I,· " " . . ing, ultimately,' ,', .' . . , . . " . , .. . 
, 'Cqv(x;i');;' "" 

, . ,; '., .. _---
"'reflecting the fact'tha:t the rieedles' are fixed together; and X and Yare not' 

. ;: 

' .. '. 

,.; 

',',independent: Corr(X,y) = -- ,c, 
, ",' ,'In the original Buffon expedment, Var(lJ) "" 0.2313/n; where n denotes,the " 
,.' of throws of the needle, In the case of the cross, from'one throw; ,', .... 
}<O:= -\ (X + Y), and so, because of the term { we immediately have a reductiOnTri 
'yar(lJ), for 

., '"Var(lJ) = -i (Var(X) + Var(Y) + 2Cov(X, y)) =t Var(X}+tCov(X, Y) ,,' 

: COv,(X,y.) <: 0 .-l 
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r- Thus fixing the two needles together has a utility over and above the added 
ease of collecting the needles. For n throws of the cross, Var(Oj", 0.0995/n. So 
we see that using a cross; rather than a single needle, is a variance-reduction 

results in greater precision, l.e. an estimator of smaller 
Against=nlls gain must be offset the-labour of correctly fixing the:needles to , . 
form a cross (though this is more easily done by etching a crO.55 on a clear 
perspex disc), and the computation of the new theory. These losses occuronce 
only, and- would clearly be worth while if a very large experiment were 
envisaged.J'fhere is no reason why further gains should not be obtained from 
the use of more two Kendall and Moran (1963, p. 72) 
provide the result for the case of a star shape; see· Hammersley and Morton 
(1956) for details: In the case of a star, further additional labour (small for a 
cross) is involved in counting the number of crossed lines. The. to 
changing 'the -needle is changing the grid, and Perlman and Wichllra (1975) 
provide the' theory for the case of square and triangular grids .• Further 
discussion and elaboration are to be found in Mosteller (1965, pp}6-88) and 
Ramaley(1969), as well as Exercises 7.1-7.4. 

The extended example above illustrates the basic features ()f a 'variance8 , 

reduction method, and we shall encounter these- features-again in th, next 
section. Of course the above example is artificial in that we know n, 
which permits a simple the variance-reduction achieved. 

A fundamental aspect of the above example, and others to follow, is the, 
estimation of a parameter e by an estimator 0, with ' - -S[O] = e and oc n- 1 

In both the needle and the cross cases, 0 is proportional to a sum of random 
variables, and hence for large n (and typically n is large in such experiments), 
central limit theorems apply, so that 0", N (e, K/n), for appropriate 1<. Thus as 

" .A" . • _ • .' .·1 '" 
well as simply producing the estimate e, we can also obtain approximate 
confidence intervals for e; for example, a 95 % confidence interval is 
(0 ± 1.96 Kl/' /n'/2), when the normal approximation IS valid. The width of this 
interval is oc n-'/', so that, for instance, to halve an ,interval width has to: 
quadruple iheDumber of observations. Because ,of this feature it is clearly 
desirable to employ a variance-reduction technique that results in as small a 
value for -K as possible. 

7.2 Integral estimation ,! 
A definite integral; such as <1>(;<), which'cannot be explicitly evaluated, can be .. 
obtained by a variety of numerical methods. Some of these are described by 
Conte and de Boor (1972), and algorithms are available for programmabIe-
hand-<:alculators, as well as within computer subroutine libraries such as 
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NAG. For numerical evaluation ofintegrals in a small number of dimensions 
one would therefore be unlikely to use simulation. However, simulation 

, methods can be viable for higl)-dimensional integration, say in the dimensional 
range 6-12 (Davis and Rabinowitz, 1975, p. 314). In this section we refer solely 
to simple one-dimensional integrals, as they provide a convenient vehicle for 
illustrating some basic methods of variance reduction. TIt is in any case 
interesting to see how random numbers may be used to eva.Iuate deterministic 
integrals. In the following we shall,again consider estimation of 1[, but now 
through the representation: 

1[ I' 4' = 0 .j(I-x')dx (7.1) 

each side of (7.1) being the area of a quadrant of a circle of radius 

r7.2.1 Hit-or-miss Monte Carlo 

The integral of (7.1) is the area ofa quadrant pftbe-circle, radius I and'centre O. 
If that quadrant is endosed by a unit square, and points thrown independently 
at onto the then the proportion R/n orn points thrown that -=. 7T 
land wlthm the quadrant can be used as an estimate orthe probability, 1[/4, of '!" 
any point landing within the quadrant; see Fig.'7.1 (a). Thus 4R/n can be used as B(>'1" ) 
an estimate R is a random variablC with a B(n, rr./4) distribution, is inoro,l-( 
with Var(R) = so that Var(4R/n) = 16 Var(R)/n· _ ,,(4 -1[)/n 
", 2.697/n. _, \\ P'l' .-l 

7.2.2 Crude Monte Carlo 

As i = J: .j(I_x2 )1 dx,"';'e can write 

1[/4 = S [ .J (1 - U 2)], where U is a U(O, 1) random variable, and so if we 
take a random sainple, UI> U2 , ••• , U.: we can estimate ,,/4 by: 

• 
1= L .j(I-Uf)/n 

i= 1 

This approach is termed 'crude' Monte Carlo. 

Clearly, Var(I) = n-' Var (.j(1 - U ')) 

=n-'O: (l-x2)dX-{ .j(I-X2 )dX)') 

",0'0498/n 
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Figure 7.1 A graphical demonstration of variance reduction 
(a) --y )(I-x'); _.-. y )(1-(1-.<)') 
(b) y r,){1 -.<')+' ,)(1- (I_x)')) 
(c) y H,)(1 -x')+ ,)(1 - (1 -x)')+ ,)(1 - (t -x)')+ ,)(1- (! + x)')} 

x 

The under the curves of (a) and (b) is 1[/4; the area under the curve of (c) is x/S. 

1-: 
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To construct a point at random within a unit sguare,.y!e a 
point with Cartesian co-ordinates (U I , U,), where Uj and U, are independent 
Urn, 1) variables. In <?fder.t(Ycomparethe 'hit-or-miss' arid crude Monte Carlo' 
approaches to 'estimating" wecitidake 2n U{O; 1) variables' in 'each 'case, 
resulting in'tli.i respective variantes of estimators of 1[: . . 

'2.697;;" ·a'ndO.0498x 16/2n 
So we see that the variance in the hit-or·miss case is roughly seven times larger 
than in the crude that crude Monte Carlo is much more 
efficient. 

7.2.3 Using an antithetic r_ariate 

Let .J(I-(I-U)'l}, 

where. U is l!'{0, I) .. {I - ri) is the 'antithetic' variateto U. As both U and 
(I- U) are U'{O, I) random . .. .. . 

C[H] 1[/.4, but now 

Var(H) !{Var{.,j (I - U ')) -1; Var{.J (I - (I -.U )'») 
+2Cov (.J(I-,-U'); ..J{I-{I-U)'»}. 

(I - U '») + Cov(.J (I - U '), .J (I - (I - U)'))} 

- 1[') .J«U +I)U(U -I)(U -2)) - 1['J. 
2 3 16. 2 . . . . '. .16 

It can be shown that 

CU{W+ 1)U(U-l)(U-2»)] f (2k-3)!(2k-l)!(12)-:2k} 
4 96 .=, (k-2)!{k-l)!k!{k+l)! 

"" 0.5806 

leading to: Var{H) = 0.0052. 

Thus if 2n U(O, I) variates were used to estimate 1[ using this antithetic 
approach, the resulting estimator would have variance 0.042/n. The crude 
estimator variance is just over nine "times larger £han this, while the hit-or-miss 
estimator variance is roughly 64 times larger. In real terms this means that to 
obtain the same precision using the hIt-or-miss and antithetic approaches, we 
need 64 times as many uniform variates in the hit-or-miss approach. Of course 
there may be losses in the differen t types of arithmetic involved between these 
two different approaches. We on this aspect comparison of 
the Buffon need,Ie and cross, and we can now see that the second needle of the 

. cross produced an" antithetic variate. resulting in the negative correlation 
between X and Y in Section 7.L The idea of using antithetic variates was 
formally introduced by Hammersley and Morton (1956), who explained the 
idea through the example of Buffon's needle. 
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*7.2.4 Reducing variability ... 

The in·.va;iabilitYobtained by the use o( antithetic. variate as 
above is,simply se.en [ram a comparison oCth. c'urYes . 
the ranges of the y-values are, respectively, 1;{ )3. -1)/2, 
the curves are each 1(/4. We can clearly reduce vanabIlity even further by using 
the curve of Fig:7:f(C[ enabling us to estimate 1t using: 

•. 'H =f.j(I-,U')+ .j(I':"'(I':"'(:I)')+ .j(I-(f-U)2) 
+ .j(I-(:\ + U)')) 

'(7.2) ." 

where now U is U(O, 0.5). This process can be continued without end, rather 
like the testing of random numbers. Again a compromise has to'be'reached; in' 
this case between va,fiance reduction and increase in c9mputation. For more 
discussion of this approach, see Morton '(1957) and Shreider (1964, p. 53) . 
. The variability iny = .j (I -x') can be reduced in a number of ad'ditional 
ways. For instance, we can write . . 

Y= {I -x'} + { .j(1 _x2 ) - (1 -x')} for ° s; x s; 1 . (7.3) 

as suggested in Simulation I (1976, p. 41). In (7.3), of course; both the 
coml'onents of v can be integrated explicitly, but if one knows how to integrate 
{l-x'} and not j(l-x'), then the decompositipn of (7.3) replaces the 

variability of .j(I-x2 )bythesmallervariabilityof{ .j(I-x2)-(I-x2)}.A 
decomposition of y can also be.obtained without introducing a new function, 
simply by splitting up the range of x, and evaluating the integrai'as the sum of 
the integrals over the separate parts of the x-range. This is called ,stratified 

is .familiar. to students of sampling theory (seeIiarnett; 1974, p. 
78). For the function to be integrated is y = f(x), over the 
range (0,1), (see Fig. 7.2). 

y 

, , ,. 
, , . , , , 

0' at a, a, a.k-1 
x 

.', 

Figure 7.2 .. Stratified for' Monte Carlo integral estimation. 
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.We shall break the range of integration into k pieces, of length (ai-aJ- l ), 
for 1 S; j S; k, with ° = ao < a, < . , . < ak = 1. Clearly, the variability of y 
within each piece is less than the variability of y over .the fuII range. Estimation 
of the sub-integralS may be done in each case by. for example, crude Monte 
Carloi If we use nj U(O, I) variates for thejth interval, then we can estimate 
e = Jof(x) dx by: 

k ", ( ). /l- '\' '\' ai-ai - l 
- L. L. f(ai-l + (ai-"i-,)U,) 

j=li=l. nj 

in which the Uij are independent U(O, 1) random variables. Thus 

Y,i= "i-l + (ai-";-tl U,; is U(a1_ 1 ,a) 

as required for crude Monte Carlo estimation within the jth interval. The 
terms (ai-ai-I) are weights which are needed to ensure that il is unbiased. 

We see that 

J, t/(X)dX = [f(X)dX 

In order to examine the precision of this approach we need the variance 

(a;-a1_,)2 . 
L. L: 2 Var(j(aj_l +(a1-aj _,)U,» 

j=l i:=l nj 

which leads readily to: 

Va;(il) = J, {(a1-ai - 1 ) L>' (x)dx - dx )'} (7.4) 

In using sampling, one has to choose k, {a i }, {n i }. Increasing k, the 
number of pieces, or strata, is likely to increase precision, but results in more 
a,ithmetic labour, and as before, a compromise is usualIy reached. For gIven k 
and (ai},one can try to choose the {ni}to minimize the variance of (7.4). 

We can write 

say, and we want to choose the {nj} to minimize Var(iJ), subject to a restriction 
such as. 1 ni = n, for fixed n. We can incorporate the constraint by 
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introducing a Lagrange multiplier; 1, and then'minimizing the Lagrangian: 

L= i a, -l(n- i nj ) 
j=l nj j==l 

Stationary values are obtained Iby settiJ),g . 

i.e. aj = 

8L =0 
an) 

for l:Sj:S k. 

for 1 :S j :S k, 

Standard theory (see Exercise 7.6) verifies that this stationary value is indeed 
a minimum, obtained by selecting the ,-

"jet:: a)12 = + (aj-aj-;.dUij)} ,(7.5) J Unfortunately. as we can see" from (7.4), aJ invoives the-very integral.we 
seeking. and 50- is unknown. the messa-ge of (7.5) is clear, suggesting 
that the larger strata; andstni\a with more variable function values, should 
receive relatively'more variates, as one 'would expect. ,Thus one'could', as,a ' 
rough rule of thumb; choose' the, {a j } to' correspond,. as closelya's possible"to 
parts of the curve with' a constant range of y-values, and then 'allot the {ni}.in, 
proportion to {(aJ.:c aj _ i) r Alternatively, one 'could conduct a, preliminary, 
experiment to estimate the unknown variances in.(7.5), and then use thoseh 
estimates in' deCiding:upon the {n j}' for a full, subsequent investigation. 

, ,. 
*7 .2.5 sampling 

'. ".!. ' . -I ,-, .'.. : " _'. i , .:. r " h • 

'!. 

In stratified sampling, proportions"j/n ofn.o(O, 1) variables are tr.ansform.ed" 
to the range (O:j_l rtj ). !1;'his. ts, _ the ,'Vij . _;" _. 
which go to form,.8,from., thecomposition,.density function: " , , : 

'¥(x) = i (nj 
j= 1 n 

for rt j - 1 <rtj 

otq.erwise ,. ' 

(7.6) 

for l:Sj:S k. 

The continuous analogue of (7.6) is f<?und in importance'sampling, so 
because, as with (?'.6),J(x) is evaluated at the 
frequently than ,otherwise. Continuing'with the, abo.ve illustration, letou". 
further suppose!(x) > 0 focO ,,.; x :S 1, and also tl)ai.g(x) is a propability' 
density function over this range. ' -" . 

II fl J(x)' 
8 = J(x) dx ,-() g(x) dx 

o o' g x,." . 
= .... U(X)/g(X)], when X has probability density function g(x). 

'. 
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(X""" X.)constitut.es .. a, random sample. from g(x), then estImate 8 by: . . . -Sf-n .. 

which has variance given by 

Var(iJ) = {'fl J2 (x) dx _ 82} 
, . ,,!, 0 g(x) 

'= 0 if g(x) = 8- 1J(x) 

which would clearly be a good form to adopt for g(x). 
entaIls knowledge of the unkn?:wn;8 before g(x) However, if 
g(x) IS of roughly the sam; shape asf(.x) then (7.7)will1jold appr,Dximately, and 
so we would expect the e that results to have smalL variance. 

EXAMPLE 7.2 An illustration oj importance sampling 

Evaluation of <1J(X),c="f: e
-
Y
'/2 dY.=!'% 4>(y)dy 

. , -00 • " . . - , .. . 
We seen in Example 5,4 how this distrib'1tjon function may be 
used. I? and we kno'!V that it is not t9 the integral 
exphcltly. A denSIty curve of similar shape to 4>(yjiS'the logistic: 

'-. -" . 

flY).",; nexp( 
'" .j3(1 +.,;;xp<:""ny/ ,," ". 

with. mean 0 and variance 1, already- iOn '. t :-. : 

, C,', 

, '; 00 d; .. 
where,k is chos.e.n.sothatf(y)k-l isa density function "ver (- co, xh." 

Thu&. '" J(y)k-1 = n exp( -ny/ .j3}(1 + exp( -nx/ .)3) 
., 'i, .j3(1 +exp( -ny/ .j3))2 

, and ifYis a,pndom variable with the density function:'of (708) then," 

'<1J(x).= (1 + -exp( -nx/ i .... [ 4> (y)IJ(Y)] 
We can therefore estimate-cl,(x) by: 

" "" 

AI" 
8 = - (1 +exp( -nx/.)3 ))-1 L: 4>CY,)/JCY,) 
" .n ", '[=1 

(7.8) 

where {Y" 1:S i:S n} is a random sample from the density of Equation (7.8); 
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conveniently simulated by means of the inversion method of Section 5.2 as 
follows. If U is a U(O, 1) random variable, 

set U = F (Y) = (1 + exp( -xxi ..}3) )/(1 +exp( -xYI ..}3» 

then we seek Y = F -, (U), resulting in: 

A BASIC program to evaluate <I>(xj in this 'way is given in Fig. 7.3 for 
a selection of x-values, and results from using this program are shown in 
Table 7-1. 

10 . RANDOMIZE 
20 REM PROGRAM TO CALCULATE PHI (X) 

SAMPUNG .' ·r'.' 

50 - :LET-Pl· = '1.813799364 
60 LET X = -2.5 
70 rOR K = 1 TO 4 
80 LET X = X+.5 
90 LETS=O 
,00 FOR I = , TO N "a LET R = (I+EXP(,X"PI»/RND 
120 LETY = -(LOG(R-Ill/P' ,., i' ,: 
130 LET P2 = (EXP(-Y"Y 12))/2;506628275 
140 I.E:T Q = (P2"(I+EXP(-Y"PI»-2)"EXP(Y"PI) 
150 . LET S = S+Q 
160NE:XT I . 
170 LET.S.=S/N 
,80 . LET S= S/(PI"(I+EXP(-X"PI))) 
190 . PRINT X;S,N. . 
200 NEXT K 
210 END 

Figure 7.3 A BASIC program using importance sampling. Note that 
xl ../3 '" 1.813 79V,64, and ,../ (21<) '" 2.506628275. 

An application of importance sampling in queueing theory is provided by 
Evans et al. (1965). ' 

Table 7;1 . 

Estimated <!lex) 
Actual <I>(x) (from, 

x n = 100 n = 1000 n = 5000 tables) to 4 d.p. 

-2.0 '0,0222 0.0229 0.0229 "0.0227 
-1.5 0.0652 0.0681 . 0.0666 0.0668 
-1.0 0.1592 0.1599 0.1584 0.1587 

0.5 0.3082 0.3090 0.3081·' "0.3085 

We shall not here consider Var (§) for this example, but see the solution ,,' 
to Exercise. 7.7.' , " 

I :.' 
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7.3 Further variance-reduction ideas . 

7.3.1 Control variates 

With antithetic variates, negative correlation was used to reduce variance. One 
elm also use positive (or negative) correlation with some additional, control 
variate. As with stratified sampling, comparisons can be made here with 
eIe;;;";;nts of sampling theory. 

Suppose X is being used to estimate a parameter e;and C[X] = e.lf Z is a 
random variable with known expectation )1., then for any positive constant c, 
.we can write . 

ThusY, like X, is an unbiased estimator ofe, as C [Y] = C[X] =e. Whether or 
not Y is a better estimator of ethanX depends On the relaMilship between X 
and Z.· ,Now ·"Var(y) == Var(X) + c' Var(Z) -,2c Cov(X, Z), and so if 
Cov(X, Z) >, cYar(Z)/2, then Var(Y) will be less.than Var(X), indicating that 
y is the better estimator. The,maxiillUm. variance reduction is obtained when 
c - Cov(X"Z)/Var(Z), and while ,Cov(X, Z) (and possibly also Var(Z» 
may not be known, it could be estimated, by means of a pilot investi-
gation. However, many investigators have simply taken c = ± 1 as appro-
priate. J 

We shall·see an example of the use ofa control variate in Section 9.4.2. More 
than one control variate may be used, and a variety of different approaches 
have been employed to obtain the desired correlation between the variate of 
interest, X, and the control variate, Z. See, for exam pie, ai:.iI Kelton (1982, 
Section·11.'4): Improveinents in the use: of control variates are considered by 
Cheng'imd Feast '(1980): A recent application is provided by Rothery (1982), in 
the 'context of estimating' the power of a non-parametric 'test, and an 
illustration from queueing .theory is given in the following example. 

EXAMPLE 7.3 (Barnet!, 1965, p. XVII): Machine interference 
A mechan.ic services· n machines down from time to ti.me. We 
suppose that machines break down independently of one another, and that for 
any'machine. bteakdowns are events in a Poisson, process of rate A. We 
sUI/pose ,tliat the'time taken to repair any machine is a constant,)1.. Ihe 

o interference arises if queues-of broken-down machines.form. This process can 
. be solved analytically, butit was' presented by Barnett as an illustration of the 
use of a control variate. It is clearly simple to simulate the process, and to 
estimate the 'machine over a time I?eriod of length t, by, 

A ' total cumulative running time for all machines 
S = ...' nt : . . 
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As the control variate, Barnett used the estimate, f, .of II A, given by 
" '. 

, total cumulative running time for all machines 
L=llx I I' .. r II h·' tota curnu atlve repaIr tIme lor a mac mes 

It was estimated empirically that the correlation between Sand i was :::: 
+ 0.95 for a variety of values of n, t and the productAll. Thus S was estimated bY- . 

,,= LJ' 1) 
and c was chosen as indicated above for maximum variance reduction. using 

second-order moments obtained from a pilot study. It was 
estimated that Var(S)fVar(S,) '" 9.87. (Further discussion of this' example is 
given in Exercises 7.22 and 7.23.)--

The standard approach for estimating e = C[X] is by forming 
• 1:: X, 

R _ ,=. 
0----

n 

where {X" \ S; i S; n} forms a random sample from the distribution of X. This 
is .completely analogous to the averaging approaches used inrthe previous 
examples in integral estimation. which is to be here 8 is a mean 
value which, [or-continuous random variables, can be:written-as-an integral, 
and vice versa. As was pointed out in Section 7.2,jntegraJs of-Jaw dimen-
sionality are probably best evaluated by a numerical method which does not 
involve simulation. However, while one can certainly think of'the estimation of 
a mean of a random"·.yarlable In terms'ofevaluating an integral, in this case the 
integrand is itself almost certainly going to be a functiQnof the (unknown) 
mean. and so simulation ,methods are then 

When a model is to -be simulated !loder.different conditions, _ 
parisons made between the'different then- the variat.ion1hetwee-n: . 
the sImulations can be reduced by using common random numbers in the 
different simulations. This is a very popul",r method of variance reduction and, 
as""" with many uses' of' control variates;: It relIes on an Induced ;positive 
correlation for We shaWreturn to the use ·of common, random' 
numbers in Chapter 9. A good example, involving the comparisOIi. of . 

que,!eing is.giveri by Law an'd Kelton (\982,p.'.J52). 

*7.3.2 Using.simple 
The principle here is best illustrated by means of an example. 
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EXAMPLE 7.4 (Simon, 1976)· 
Suppose'we'want to. estimate the mean value e of a random variable X; which· 
has the beta ·B,(W,w.,';+:l) distribution; where W itself is a random ,variable 

a- ,known-mean;-·t]. is 
sImulate n X-values and simply average them. However· this involves simu- . 

. latio'n P,<:>isson and beta distributions. and an appr.oach is -as ':.' 
follows.-

We know, that 

C[XIW = w] = wl(w2 + w+ I) 
<XI -'I w 

Furthermore, e 
w=o" ._. w·.' 

(here we are using a property of conditional expectation-see :Grimniett and 
StIrzaker, 1982, p. 44). .. 

So we may estimate e by 
, 1· e = - L wJ(wl + w, + I) n i= 1 . 

where the {w" I ,;; i S; n} form a random sample from' the Poisson distri-
butIOn, jl; a procedure which does not, in simulating X. 
Thus thIS approach certainly saves labour. Discussio.ri of of 
the above estimator may be further reduced is given inE"ercise 7:20. In a 
different context, Lavenberg and Welch (1979) use-condifiohir:ia 'td reduce 
variance in a particular queueing network, and their example is re;ro4uced by 
Law and Kelton (1982, p. 364). . . .. '. . 

7.3.3 The MIMII Queue 

. 

It is inte(es.ti_ng ,ho.w Y;lrian,ce-re9uc;tion tecl;miques that ,have, been 
clearly for simple"procedures, .. such. -as . 
dimensional integrals, 'may be 'employed in 
We shall here consider the MIMII queue. This model of a simple queue has 

been .. enc?untere.d j" Exercise 2.27, which .also provided a BASIC-
'. ..... . '. ' .. ". 

m customer t.ing-time in a quyue. The' 
tIme oeth.e nth c\istoI.Iler, from arrival at the queue until departure, W , , 

may.Ge very expressed as:' . .' . . ' - . . 

Sn is- t)le 0'[ customer nand; 
. I •. , is the "between· ihearrival p'r 

2: 

(7.9) 

,',' 

the nth and. (n,",::I)th 
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Note here that we take WI = SI' i.e., the first customer arrives to find an empty 
queue .. Figure 7:4 provides a BASIC program for simulating this gueue, for 
which the service and inter-arrival times are both exponential, with respective 
parameters J1 = I, A= 0.6. We see that the waiting-time is computed 
for 200 customers. The process is then repeated 100 times so as to provide an 
estimate of the variance of the average waiting time. The program of Fig. 7.4 
provides a much simpler way of estimating average waiting-time than direct 
use of the program of Exercise 2.27, and we shall return to this point in 
Chapter 8. 

10 REM BASIC PROGRAM TO ESl'IMATE THE A YERAGE 
:;:0 WAITING TIME OF THE FIRST 200 CUSTOMERS 
30 REM AT AN MlM/l QUEUE. STARTING EMPTY, USING (7.9) 
40 LETL=.6 . 
SO LET M=l 
60 RANDOMIZE 
70 Lh"TTl=O 
80 LETT2=O 
90 FOR J= 1 TO 100 
100 LET $2=0 
un LETW=O 
120 FOR 1= 1 TO 200 
]30 LET U=RNO 
140 LET S=(·LOG(U))/M 
150 LET U=RND 
160 I.,,'" T=H_OG(Ull/L 
170 IF W<TTI-IEN 200 
180 LET W=W+S-T . 
190 GOTO 210 
200 LETW=$ 
210 U:.'" S2=S2+W 
220 NEXT I 
230 LET Tl =Tl + (S2J2OOl 
240 LET T2=T2+(S21200 '2 
250 NEXT J 
260 LET ¥= (TI.(Tl·Tl)I1DD)/99 
270 PRINT "VARIANCE OF AVERAGE WAITING TIME "" 
280 PRINT = ",TIIlOD 
290 END 

Figure 7.4 A BASIC program to estimate the average waiting-time of the first 200 
customers at an'M/M/l queue, starting'empty. The procedure is repeated 100 times. 
Note that in lines 140 and 160 the method of Equation (5.5) is used. , 

is an'example where an antithetic-variate approach could prove usefuL 
Figure 7.5 provides another BASIC program for simulating this queue:1h this' 
case we dupliCate each block of 200 customers, and in the duplicate biock each 
original U is teplaced by (I - U), with the result that long service times' are 

. replaced by short services times, and vice versa, and similarly ·f6r inter-
arrival times. Each block average therefore still estimates the same average 
waiting time, but the two duplicate block averages might now be expected to 
have a negative correlation. Table 7.2 illustrates the results of the start ofa run 
of the program of Fig. 7.5, and we can see here the anticipated relationship' 
developing between the two sets ofW, vaiues. Proofs that variance'reduction 
will occur when antithetic variates are used in this, and more general, queueiitg 
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7.3 Further variance-reduction ideas 

REM ILLUSTRATION OF VARIANCE REDUCTION USING 
REM ANTITHETIC VARIATES IN AN M/M/l QUEUE 
DIM R(400) 
LET L = ,6 
LETM= I 
LET 11 =0 
RANDOMIZE 
LETUl=O 
LETU2=0 
LETT! = 0 
LETT2 = 0 
LETN=50 
FOR J = 1 TO N 
FOR I = 1 TO 400 
LET R(I) = RND 

NEXT I 
LETS2=0 
LETW=O 
LETK=O 
FOR 12 = 1 TO 200 
LETK=K+t 
LET U = R(K) 
LET S = (-LOG(U))/1d 
LETK=t<+l 
LET U = R(K) 
LET T = (-LOG(Ul)/L 
IF W < T tHEN 360 
LET W=W+5-T 
COTO 310 
LETW=S 
LET 52 = 52+W 

NEXT 12 
IF i1 = I THEN 360 
LET S5 = S2/200 
GOTO 400 
LET 55 = (55+52/200)/2 
LET Tl = 1'1 +55 
LET T2 = T2+55-55 
GOTO 460 
FOR I = 1 TO 400 
LET R(I) = I-R(J) 

NEXT I 
REM 'J'HIS FORMS THE ANTITHETIC VARIATES 
LETI1=1 
GOTO 170 
LETH =0 

NEXT J 
LETY = (T2-TI"TI/N)/SM-l) 

END . 
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Figure 7.5 A BASIC program to estimate the average waiting-time of the first 200 
customers in an M/M/l queue, starting empty, The. procedure is based upon Equation 
(7.9) and uses antithetic variates, as explained in the text 

models are provided by Mitchell (1971) and others (see 1974, p. 190), 
. who also provide empirical investigations, as do Law and Kelton (1982,-

p.356). 
A variety of results from running the programs of Figs 7.4 and 7.5 are given 

,in Table 7.3. We can see, by considering the results from different runs, that the 
estimate of efficiency gain Can vary appreciably, but in all comparisons there is 
a gain in efficiency. Use of equations (7.9) does in fact contravene a basic rule 

, for variance reduction, already encountered in (7.3) (see also Exercises 7.8 and 
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Table 7.2 An illustration of the use of Equation (7.9) to compute waiting times in an 
M/M/1 queue, the effect of replacing service (SII) and inter-arrival times by 
their counterparts. ' -, . 

Main block Antithetic block 
n S. T. W. n S, T, w;, 

1 1.35 1.35 1 0.30 0.30 
2 0.20 0.40 1.15 2 1.70 1.34 1.70 
3 0.75 1.89 0.75 3 0.64 0.22 2.12 
4 0.17 0.36 0.56 4 1.88 1.42 2.58 
5 0.43 0.97 0.43 5 1.05 0.60 3.03 
6 1.83 0.39 1.87 6 0.18 1.34 1.23 

7.20), as we shaIl now explain. We can write 

Wn=Qn+Sn for n ;;" 1 

where Q. is the time spent ,by the nth customer queueing.before being served: 
Q, and -:s:are independent, and Var(Q,) < Var(W.). ";fherefore in order to 
estimate 1/ W;; /,t ,s more efficient to estImate $1 Q,}and' then add on the 
known C [S.] = 1//1. This can be' seen from a comparison of Tables 7.3 (a) and 
(b). This comparison also suggests, however, that the use of (7.9) combined 
with an antithetic-variate approach can increase efficiency, relative to the use 
of (7.10) below combined with antithetic. variates. Note that 

Q, = max(Q,_. + S, -I" 0) (7.10) 

Table 7.3 (a) Sample variance of the estimator of the mean waiting-time of the first 
200 customers in an M/M/1 queue, startinR empty and with p. = 1. 100 replications 
were used in each case, with 50 matched pairs when antithetic variates were employed. 
In this case the waiting-times Were simulated including the service· times. i.e. using 
Equation (7.9) 

N"o variance reduction Using antithetic variates 

Run 
1 0.1338 0.0760 

0.5 2 0.1426 0.0736 
3 0.2174 0.0561 

0.1646 0.0686 

1 0.3102 0.1338 
0.6 2 0.4010 0.1851 

3 0.5233 0.1676 

0.4115. 0.1622 (eonld.) 

Table 7.3 (eonld.) 

0.7 

0.8 

1 . 
2, 
3 

1 
2 
3 
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No variance reduction Using"antithetic ' 

2.3254 
5.4315 
1.0977 

2.9515 

27757 
6.6679 
6.7081 

5.3839 

0.2434 
0.4734 
0.3401 

0.3523 ' 

1.2451 
1.6539 
2.1598 

1.6863 

Corresponding average waiting-times of the first' 200 

Run 
1 

0.5 2 
3 

1 
0.6 2 

3 -

1 
0.7 2 

3 

1 
0.8 2 

3 

No variance 
reduction 

1.889 
2.035 
2.030 
--" 
1.985 

2.513 
2467 
2.533 

2.504 

3.320 
3.49i 
1051 

3.289 

4.244 
4.416 
5.152 

4.604 

Using antithetic 
variates 

1.998 
2.020 
1.984 
-'-"-' 
2.001 

2.464 
2.408 
2.543 

2.472 

3.041 
3.199 
3.241 

3.160 

4.392 
4.404 
4.451 

4.416 

Theoretical value 
in equilibrium 

(see.Exercise 7.24) 

2.0 

2.5 

3.33 

5.0 
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(b) The following results are obtained by simulating the 
service-times, i.e. using.Equation (7.10). First arall we give the sample variances, as 
in (a).' 

No variance reduction Using antithetic variates 

Run 
I 0.1314 0.0927 

0.5 2 0.1547 0.0902 
3 0.1225 0.0466 

0.1362 0.0765 

I 0.3228 0.2487 
0.6 2 0.6141 0.1521 

3 0.5180 0.1182 

0.4850 0.1730 

I 0.8762 0.320i 
0.7 2 1.1808 0.5234 

3 0.9866 0.6251 
--

1.0145 0.4895 

'I 6.4527 1.3440 
0.8 2 ·3:2618 2.0066 

3 5.4324 1.6008 

5.049 1.6703 

Corresponding average of the first 200 in an MIMI! queue, 
starting empty and with J1. = I, as"above. Values are obtained by computing the average 

excluding service, and then adding on the known mean service-time. 

No variance 
reduction 

Run 
I 2.028' 

0.5 2 2.000 
3 1.936" 

1.988 

I 2.354 
0.6 2 2.550 

3 2.559 

2.488 
... - . 

Using 
variates 

1.019: . 
2.034' . 
1.989 

2.014 

2.533 
2.418 
2.401 

2A5!' 

Theo,retical values 
in equilibrium (see 

Exercise 7.24) 

2.0 

2.5 
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Theoretical values 
No variance Using- antithetic in: equilIbrium (see 

reduction variates Exercise 7.24) 

I 3.129 3.300 
0.7 2 3.134 3.165 3.33 

3 ·3.198 3.282 
3.154 3.249 

I 4.594 4.444 
0.8 2 4.447 4.445 5.0 

3 4.576 4.531 
4.539 4.473 

As one might expect, whether we are using Equations (7.9) or (7.10), the 
amount of variance reduction achieved depends on thJ 'relationship between A 
and 11: if.Lisappreciably smaller than 11, then the queue will frequently be 
empty, reducing th'e'negative correlation. The values of A,and'IL also affect the 
r!'Je at which'a steady-state'systemis reached '(for the case A < Jl. -see Exercise 
7.24). Barnett's (1965) tables ofexl'onential random variables provide values of 
-log, (1- U)'as well.as -log, U, with just such antithetic investigation in 
mind (see Example 7.22). --

An approach to antithetic variance reduction in simple queues 
was applied by Page (1965), who used the following idea. Suppose we are 
simulating an MIMII queue,' constructing service and inter-arrival times 

from: 
.1 S= --log,(U,), 

11 

for independent U(O, 1) variables U, and U,. 
A duplicate run can be made -

- 1 
S= --log,(U2 ) 

11 

In this case U, values giving rise to large service times in the original run will be Co'" __ 
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translated into large waiting times in the duplicate run, and vice versa. Page 
showed that 

Corr«S-T), (5-1'))= _2p/(\+p2) where p = )../!,. 

'7.3.4 A simple random walk example 

In random walks we are interested in the distribution of the p<lsition of a 
Rarticle which moves along a line according to probability rules. A simple 
example results when the particle moves between absorbing barrIers at 0 and Q, 

a being a positive integer, accoq:iing:tq, 7.6. Exercise 
1.4 provided ,an exam!'le of a ralldom walk wi.th a reflecting barrier at O. 

The particle position be m.ore 
such as the population'sizeof a colony particular 

example of Fig. 7.6 is often called the 'gambler's ruin' problem', as the partIcle 
position can be taken as the capital of one ,Of tw0..,gmblers, with 
capital of a units. In the game played by the gamblers, money changes hands m 
single units according to the probabilities p and q, and,the game ends when one 
of the gamblers loses all his/hi" capital. corresponding to the particle reaching 
one of the barriers. Various features of this walk are of interest, such as the 
values {elk' 1::; k a -l}, where. dk is the average number of steps to 
termination of this walk, when the walk starts at k. 

2 

q p 

--- la-Ii \ 
a o 

Figtlre 7.6 . Illustration ora simple random walk. When the at i (i.an 
in the range 1 i a - I), then, independently o,r the past, I,t moves to (! + ,1) with 
probability p. and to (i 1) with probability q - (1 - pl. Once either of 0 
and a then the walk terminates, ." 

It can be shown that the {d,} satisfy: 
d, = 1+ p. d'+1 +qd'_1 . for I ,,; k"; a-I 

(7.1I) 
do = d. = 0 

(see, e.g., Baiiey , j 964, p. 27, and 7.30). While these .. n 
explicit solution, in, Exercise ,7.31, cari be by 
(cr, 3.29). 'one can of k, .. 
starting at k, running until absorption. ",may then be esmnated by the sample 
mean time to A very simple' variance-reduCtion idea wli.ich inay be 
used hete is outlined by Barnett (1962a). Ifa walk starting at k passes through . 

, 7.4 - 'Discussion 181 

some point j at a later stage, say .after:r steps, then if it takes n:steps: fOLthe 
original walk to end, we also:have,'from this walk, an example ofa ",alk.ta\(ing:: 
(n - r) steps to absorpticlD, starting.from j:Thus a.single)'lall¢ starting fromany 
k can providednforrriation 'on, mean times· to absorption for walks starting 
from points other·than k. Clear!y'by this method the·mean-time estimators for. 
differ''"t valli"sidf k:will.not,bdndependent. For'discussion of this .. :-: 
(1962a), whQ'usedthis approae:h for a:two-dimensional randorl,walk without' . 
an explicit ·solution; and Morgan and (1980), who considered an 
intractable one-dimensional'problem (see Exercise 7.32). 

7.4 Discussion 

The aim of this' chapter ·has been, to underline .the .importance of variance 
reduction; and jntroduce of the methods' ,that are use& Further 
methods'. and: illustrations will', be ,encountered,later. Quite: apar.t.;from 1 its;, . 
importance;·vari'ance ... reduction because of the extra information': 
that can out -of single random variables,,,this" process:., 
frequently requiring a :fiash,of insight', in Barnett's (1976) wor.di. Because of 
the in value that tech'niques,_are" 
sometimes"'also termed :swinaling' (see' Simon, "1976, 'and ·.Schruben and 
Margolin,.1978,'p. 524).'.Of course, this idea ofc obtaining .. as much.value as: 
possible from'a ,random" vadable .has already been, for' 
instance in Exercise 4.2, and Example 5.5. We can also note the 
between the rejection method ofSectipn 5.3, and importance sampling and hit-
or-miss Monte Carlo, as welJ 'as·tietween' the composition method of Section 
5.4, and stratified sampling and the method of extracting an easier integraJ, in 
Section 7.2.4. . '. .. 

Much 'more:detail of variance reduction is· provided by. Law .• and Kelton 
(1982, chapter 11), and Kleijnen.(1974,.chapter 3). Frequently.itis.necessar.y to 
run a pilot. study in order to assess the possible of a 
techniq ue, for' in .complicated _systems· theoretica'! justifica tion,(oc,em ploying 
such a is usually-not ·possible.,Indeed, it is.unfortunatel:y.rthe,ca-se that 
in someapplications.variances have..inadvertently,been increased from' using a 

(1982) points.out,the importance of high negative 
correlation'-when antithetic,·variates",are· used,- and suggests a ,modified 
procedure. which has been applied successfully to a variety of models. 

We saw in Section 7.1 that in many applications simulation estimators of 
parameters are expressed as sums of independent random variables. In these 

related cases it:is asimple of.estirp.ators"which 

-7.2.2 the Qf;the 
.. .Ip, 

';"iIIulstr·ation. known.parameter. value. was used incalculati\lg .. the 
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while in practice the variance itself would only be an estimate. Knowledge of 
the answer. (x) has undoubtedly also affected the reporting of experiments 
involving Buffon's needle, as-well as the decision of when to stop. As Mantel 
(1953) points out, Lazzerini's experiment, conducted in 1901, pI:oduced 
'it = 3.1415929 after- 3408 throws. but ending ther,experiment"one throw 
sooner or ·Iater inevitably loses half the decImal place accuracy. When one is _ 
estimating- waiting-'times in queues •. -one is averaging1 dependent random 
variables, which complicates ;variance· A:number .of possible 
approaches for such cases are described and compared by Moran (1975), and 
we shall return to this topic in Chapter 8. 

Additional reductions in variance may be obtained by the judicious 
combination of different methods (see Exercise 7.23 and Schruben and 
Margolin, 1978), though here -again one must proceed with caution, as 
Kleijnen (1974, Section I1L8)' has shown. 'Proceed with care' is therefore 
clearly the. watchword for variance.reduction;as it'vias w'ith the use of pseudo-
random numbers. ,However, as with the ,use of pseudo-random n.umbers, the 
lienetIts trom using an appropriate variance-reduction technique can be 
substantiaL Finally, we may note that common random variables and 
antithetic variates are variance-reduction techniques of qelleral applicability; 
in so far as the same approach is adopted, whatever the problem. In contrast, 
methods such as importance sampling,. stratified sampling, and the use of 
control variates all have to be individually tailored' to particular problems. 

7.5 Exercises and complements 

(a) On Bu'ffon's 

7,1 

'7,2 

*7,3 

What is the' mean number of lines crossed if 1 > d? For discussion of this 
case; see Mosteller (1965, p. 88) and Mantel (1953) ... 
(Gani; 1980) Suppose the centre of the needle lands at a'distance x 
from a line,and that the needle makes an angle 8 with the direction of 
the lines. Map out the sample space for (x, 8), and by identifying the 
subset of the sample space corresponding to the needle crossing a line, 
show that,forl :<> d, Pr(needle crosses a line) = 21/nd. Whenl > d, show" 
that this probability must be corrected by the amount 

2 21 -cos- I (d/I)-- -.!(I-d 2 f/'). 
n xd. 

(Perlman and Wichura; 1975), The case ofa single needle thrown on to:. . 
a double grid. Here we have grids, A and B, say, each of parallel lines a 

. distance 'd apart; the 'grids being at right angles to each other. 
problem was originally studied 'by ·Laplace.Let r d/I, 
= Pr(needle crosses an A-line and a B-line),PAB = Pr(needle crosses an 

Exercises and complements 

A-line but not a B-Iine), etc. Show that 
r2 

PAS =-; 

4r' r2 
PAli= 1--+-x x 
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Separate evaluation of these probabilities may be used to estimate 11:, in 
different ways? and which one to use is an intriguing question. If in It 

throws orthe needle there are nAB. llAB. nAB and nAB throws in the four 
possible categories, then (verify)' 

11 . r2 
is an estimator of -

n n 
"Ali + nAB + 2n A• . 4r """-'-"'''''--'-'-:..:.<'-'' 15 an estimator of-

n x 

n-n-- 4r-r2 
is an estimator of ---

n n 

If r = 1, Perlman and Wichura show that the variances of the resulting 
estimators are, respectively, 5.63/11, 1.76/n, 0.466/1i. 

o '7.4 (Continuation) The following data were collected from class experi-
ments by E. E. Bassett: 

,7,5 

experiment 1 
experiment 2 

n 

400 
990 

16 
64 

112 
315 

125 
304 

147 
307 

Use these data and the estimators of the last exercise to provide a variety 
. of estimates of n. 

Further data are provided by Kahan (1961), who describes practical 
problems such as the blunting of the needle with use, and Gnedenko 
(1976, pp. who also considers the throwing of a convex contour. 
Historical background is found in Holgate (198i), who conjectures on 
how Buffon obtained his solution. Mantel (1953) obtains an estimator 

. of 11: from the estimation of a variance, rather than a mean . 

(Holgate,1981) Another problem. studied by BulTon was the 'leu du 
franc-carreau': a circular,coin of radius b is thrown on to a horizontal 
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square grid of side 2a. Show' that if b/a = (1 - rO.,) then the coin is as 
likely as not to land totally within a square. 

(b) Integral estimation 
*7.6 Show that the stationary value of the Lagrangian. 

L == ± ai_.«n - .± ni) 
j=.ll1j 1==1 

given by: n j oc a J 12 is a minimum. 
'7.7 When the computer program of Fig. 7.3 is run for'values of x = 0.5, 1.0, 

1.5 and 2.0, the following values result: 

7.8 

Estimated <I>(x) 
<I> (x) 

x n 100 n 1000 n 5000 to 4 d.p. 

0.5 0.6999 0.6905 0.6898 0.6915 

1.0 0.8477 0.8405 0.8423 0.8413 

1.5 0.9253 0.9386 0.9337 0.9332 

2.0 0.9867 0.9822 0.9761 0.9773 

We obtain better accuracy with the results of Table 7.1.. Use the 
argument of Section 7.2.4 to explain why we might expect this. 

Hammersley and Handscomb (1964, p. 51) define the relative efficiency 
of two Monte Carlo methods for estimating a parameter e as follows: 
the efficiency of method 2 relative to method I is: 

where method i la,kes nj units of time, and has variance ar, i = 1, 2. 
Write BASIC programs to estimate the,integral: 

I rl -"d = Jo e.' x 

by hit-or-miss, cr,ude and Monte Carlo and 
compare the efficiencies' of these three methods by .USIng a hmIng 
facility. Suggest, and investigate, a siinple prehmInary vanance-
reduction procedure. Investigations of variance reduction when 

J = fd g(x)dx are given by Rubinstein (1981, pp. 135-138). 
7.9 , Write a BASIC program to estimate the integral of Exercise 7.8 using a 

stratification of four equal pieces,and 40 sample points: How should 
you distribute the samplerpoints? 

... 

p.';:. 
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7.10 Explain. how the use of stratification and antithetic variates may be 
combined in integral estimation. 

*7.11 Verify that J {(x + I}x(x - I)(x - 2}) dx", 0.5806. 

7.12 Given the two, strata, (0, .)3/2), (.)3/2, I), for evaluating 
.)(1-x2 }dx, how would you allot the sampling points? 

'7.13 In crude Monte Carlo estimation of f .) (1 - x'}dx, how large 
be in of per that a 95 % confidence interval for the resulting estimator of 
" has width v? Evaluate such an n for v = om, 0:1, 

" 'j 

*7.14 Daley (1974) discusses the computation of integrals of bivariate and 
trivariate'! riormal variance-reduction 
techniques which may be employed in'the eval'uatiori or-such integrals 

related Simulation I (1976,:Section 
13.8.3) arid 'Davis and Rabinowiiz (1975, Section ·5.9). 

7.15 Repeat Exercise 7.8, using the pseudo-random number generator of 
Equation (n). 

(c) General 'variance reduction 

7.16 Show that the maximum variance reduction in Section 7.3.1 is obtained 
when c = Cov(X, Z}/Var(Z}. 

7.17 (Kleijnen, 1974, p. 254) Suppose One is generating pseudo-random 
unifopll fHim the (a, 0; m) generator, with seed Xo' Show that 
the corresponding antithetic variates result' from using (m - xo) as the 
seed . . I, " ,. " .. ' , 

7.18 Suppose one,wants to e ";'Var(X}, and 'X '" U.+ V, U, V 
" .. -!' '" 

are independent randoII). variables, and Var (.U ) is known. Clearly here a, 
simulation should be done to estimate V} < Var(X}. Use this 
resultto estimate Var(M i; where''M is the median o(a 'sample of size n 
from N(O, I} may assume (see Simon, '1976) that X 
and '("1,::'X) where X deri'otes the sample mean. 

7.19 (Continuation) Conduct an experiment to estimate the ,extent of the 
. variance reduction in Exercise 7.18. ., 

7.20 . (Simon, 1976} 

(i)Verify. (W' :W+l) = I) - I)' 
-. , - .-

(ii) If W lias the Poisson distribution of Example, 7.4" show that 
EO!(W + 1)] (I 
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(iii) Show that 

f. {(w,+l)(Wf+W,+IW' 
f1 ni=l 

is an unbiased estimator of e, and that Var(8) < Var(Il). 

(d) Queues 
*7.21 use of the mean service-time as a control vadate for the 

mean waiting-time in an MIMI 1 queue. 

7.22 For any simulatic)ll giving rise to the estimate S in ihe machine-
interference study of ExamPle 7.3 'we can construct an antithetic run, 
replacing each U(O,ll variate U in the first simulation by (1 - U) in the 
second. If we the second estimator of S by S', then a further 
estimator of Sis: 

S2 =:\(S+$'). 
Barnett (1965) found empirically that the correlation between Sand S' 
was:::::: -0.64, a high negative value, as one might expect. Estimate the 
efficiency gained (see Exercise 7.8) from using this antithetic-variate 
appn;>ach (cf. Fig. 7.5). , 

7.23 (Cominuation) Barnett (1965) considered the. further estimator of S: 

7.24 

S, =-l{(S+S')-k(l.+L'-2/AJ} 
, where l.' is the of II). from the antithetic run. Discuss this 

approach, which combines the uses of control and antithetic variates. 
Show how k should be chosen to maximize the efficiency gain, and 
compare the resulting gain in efficiency with that obtained from using 
control variates and antithetic·variates separately. 

, • I . ::.. • .' I 

In an MIMI 1 queue, when), < fl, the!' after a period since the start of 
the queue, the queue is said to be 'in equilibrium',or to have reaclied the 
'steady state'. The distribution of this period depends on A, fl. and the 
initial size. In equilibriuin the queue 'size Q has the geometric 
distribution 

Pr(Q = k) = p(1 _ p)' for k :2: 0 

where p = ),Ifl, and is called the 'traffic intensity'. Use this result to show 
that the customer waiting-time in equilibrium (induding service time) 
has the exponential density: (fl- ),)e<>-"', and hence check the 
theoretical equilibrium mean values of Table 7.3. Further, comment on 
the disparities" between the values obtained by simuljition and the 
theoretical equilibrium mean values. For related discussion, see 
Rubinstein (1981, p. 213) and 'Law and Kelton (1982,' p. 283). 
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it is the cases when p is near I, for p < 1, that are often of 
practical importance, but also the most difficult to investigate usino 
simulation. . I 0 

7.25 Exponential distributions are, as we have seen, often used to model 
inter-arrival and service-times in queues. Miss A. Kenward obtained the 
data given below during a undergraduate project at the 
University of Kent. lllustrate these data by means of a histogram, and 
use a chi-square test to whether, in this case, the assumption of 
exponential distributions is satisfactory (cf. Exercise 2.26). 

The following data were collected from the sub-post office in 
Ashford, Kent,between 9.00 a.m. and 1.00' p.m. on a Saturday In 

December, 1981. ' , 

I ncer·arrivals 

Time in 
seconds 

No. of 
arrivals 
Time in 
Seconds 

No. of 
arrivals 

Service rimes 
Time in 
minutes 

No. of 
customers 
Time in 
minutes 

No. of 
customers 

0-10 10-20 20-30 30-4040-S0 S(H;O 60-70 70-80 80-9090-100 

179 108 79 37 32 21 10 13 8 4 

100-110 1l0-l20 120-130 130-140 140-ISO lS0-16() 160-170 

S 3 2 0 2 

' 0-0.5 0,5-1 1-1.5 1.5-2 2-2.5 2.S-3 3-3.S 35-4 

63 32 21 10 7 6 0 2 

4-4.5 4.5-5 5-7 7-7.S 7.5-8 

0 0 

*7,26 (Gaver and Thompson, 1973, p. 594) Sometimes service in a queue 
takes a variety of forms, performed sequentially. For example; if one has 
two types of service: payment for goo'ds (taking time' T,), followed by 
packing of goods (taking time T2 ), then the service time S = T, + T,. It 
is an interesting exercise to estimate G[S] by simulation, using 
antithetic variates. In an obvious notation, this would result in: 

in which Tj; is an antithetic variate to 1j;,j = 1,2,1 :S i :S n. 1fT, and T, 
are independent, exponential variables, Y(ith density e -', then show that 
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the usual approach of taking, for example, T'" = log. (1 - U), where 
Tli = loge U, results in: 

Var(S) = HI + I log,x IOg,(I-X)dX} = H2 '" 0.36/11. 

Compare this value with that which results from a usual averaging 
procedure. Of course in this simple example the distribution of S is 
known to be r(2, 1) (see Section 2.10). However, we have here the 
simplest example of a network, and for.adiscussion of more complicated 
networks see Gaver and Thompson (1973;·p. 595), Rubinstein (1981, pp. 
151-153) and Kelly (1979). 

7.27 Investigate further the findings of Table 7.3 by means of a more 
extensive simulation. Validate your conclusions by also using the 
generator of Equation (3.1). 

7.28 Ashcroft (1950) provides an explicit solution to the machine-
interference problem with constant service-time, while Cox and Smith 
(1961, pp. 91-109) and Feller (1957, pp. 416--420) provide the theory 
and extensions for the case of service-times with an exponential 
distribution. Discuss how you would simulate such a model Bunday 
and Mack (1973) consider the complication of a mechanic who patrols 
the machines in a particular order. 

7.29 (Page, 1965) In the simulation of Fig. 7.5, let D. and D; be defined by: 

Show that Corr (D, D') = -0.645 (cf. Exercise 

(e) Gambler's ruin 

7.30 From a consideration of the first step taken by the particle in the 
gambier'S ruin problem of Section 7.3.4, verify the relationships of 
Equation (7.11). 

*7.31 Show that the solution of Equation (7.11) is given by: 

(i) the case p # q: 

d _ _ k ___ a_ (1-(qjp)') 
,- (q_p) (q_p) (I_(q/p)a) 0';;; k';;; a. 

(ii) the case p = q = 1: 
d,=k(a-k) 

*7 .. 32 
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a BASIC to simulate the gambler's ruin problem of 
Sec:lon 7.3.4, employmg the vanance-reduction technique of that 
sectIOn, .and .compare estimated values of {d,} with the theoretical 
values gIven m the last exercise. 


