
CHAPTER

3
SIMULATION
SOFTWARE

Recommended sections for a first reading: 3.1 through 3.4

3.1 INTRODUCTION

In studying the simulation examples in Chaps. 1 and 2, the reader probably
noticed several features. needed in programming most discrete-event simulation
models, including: .

• Generating random numbers, that is, random values from the U(O,l)
probability distribution

• Generating random values from a specified probability distribution (e.g.,
exponential)

• Advancing simulated time
• Determining the next event from the event list and passing control to the

appropriate block of code
• Adding records to, or deleting records from, a list
• Collecting and analyzing data
• Reporting th-e results
• Detecting error conditions

234

SIMULATION SOFIVIARE 235

As a matter of fact, it is the commonality of these and other features to most
simulation programs that led to the development of special-purpose simulation
languages. Furthermore, we believe that the improvement, standardization,
and greater availability of these languages has been one of the major factors in
the increased popularity of simulation in recent years.

We discuss in Sec. 3.2 the relative merits of using a simulation language
rather than a general-purpose language such as FORTRAN or C for pr9gram
ming simulation models. Most simulation languages in use today employ one of
two modeling approaches or orientations. These two orientations, called the
eyent-scheduling and the process approaches, are discussed in Sec. 3.3. Desir
able features for simulation software, including animation, are described in
Sec. 3.4. In Secs. 3.5 through 3.8 we present brief descriptions of GPSS,
SIMAN, SIMSCRIPT II.S, and SLAM II, which are probably the most widely
used simulation languages in the United States. A simulation model of the
MIMl1 queue (see Sec. 1.4.3) is also given in each language. These languages
are compared in Sec. 3.9, followed by a discussion of other simulation software
(e.g., application-oriented simulators) in Sec. 3.10.

3.2 COMPARISON OF SIMULATION
LANGUAGES WITH GENERAL· PURPOSE
LANGUAGES

One of the most important decisions a modeler or analyst must make in
performing a simulation study is the choice of a language. An inappropriate
choice may in itself cause a simulation project to be unsuccessful if it cannot be
completed on time. The following are some advantages of programming a
simulation model in a simulation language rather than in a general-purpose
language, e.g., FORTRAN, C, Pascal, or BASIC: .

• Simulation languages automatically provide most of the features needed in
programming a simulation model (see Sees. 3.1 and 3.4), resulting in a
significant decrease in programming time.

• They provide a natural framework for simulation modeling. Their basic
building blocks are more closely akin to simulation than are those in a
language like FORTRAN.

• Simulation models are generally easier to change when written in a simula
tion language.

• Most simulation languages provide dynamic storage allocation during exe
cution.

• They provide better error detection because many potential types of errors
have been identified and are checked for automatically. Since fewer lines of
code have to be written, the chance of making an error will probably be
smaller. (Conversely, errors in a new version of a simulation language itself
may be difficult for a user to find.)

236 SIMULATION MODEUNG AND ANALYSIS

On the other hand; many simulation models (particularly for defense
related applications) are still written in a gen~ral-purpose language. Some
advantages of such, a 'choice are as follows:

• Most modelers already know a general-purpose language, but this is often
not the case' with a simulation language.

• FORTRAN or BASIC is av~ oil virtually every computer, bUt a
particuhif simulatiOn language, may not be accessible on the computer that
the ~~aly~t wants to use. "

• An' efficiently written FORTRAN or C program may require less execution
time than thy,corresponding program written in a simuhiiion language. This
is because a sirri'uiation language is desigjled to model a wide variety of
systems with on,e set of building blocks, whereas a FORTRAN program can
be tailored to' the particular application. This consideration' has, however,
becbme less important with the availability of relatively inexpensive, high
speed mlcrocomp~i~rs and engineering work stations.

• General-purpose languages'may allow great~r programming flexibility than
certain simulation languages. --- -

• Software cost may be lower (but npt necessarily project cost).

Although there are clear advantages to using both types of languages, we
believe, in general, that'a modeler would be prudent to give serious considera
tion to using a simulation language. If such a decision has indeed been made,
the criteria discussed in Secs. 3.4 and 3.9 may be helpful in deciding which
particular simulation language to .choose. ' ' .

3.3 CLASSIFICATION OF SIMULATION
SOFTWARE

In this section we discuss vadous aspects of simulation software, including two
different ways in whi~h it can be' slassified: , --

'3.3.1 Simulation Languages "s. Simulators

There are currently two major classes of simulation software: languages and
simulators. A simulation langu'!E.e is a computer package that is general in
nature but may have special features for certain types of applications. For
example, SIMAN and SLAM II' have manufacturing modules for conveyors
and automated guided vehicles. A model is developed in a simulation language
by writing a program using ,the language's modeling constructs. The major
strength of most languages is their ability to model almost any kind of system,
regardless of the system's operating procedures or control logic. Possible
drawbacks of simulation languages are the need for programming expertise and
the possibly long coding and debugging time associatea With modeling complex
systems (relative to simulators, if applicable).

SIMULATION SOFTWARE 237

A simulator is a computer package that allows one to simulate a system
contained in a specific class of systems with little or no programming. For
example, there are currently' simulators available for certain types of manufac
turing, computer, and communication systems. The particular system of,inter
est (in the domain of the package) is typically selected for sin\ulation by the use
of menus and graphics, without the 'need for programming. The major advan
tage of a simulator is that "program" development time may be considerably
less than that for a simulation language. This may be very important given the
tight time constraints in many business environments. Another advantage is
that most simulators have modeling constructs related specifically to the
components of the target class of systems, which is particularly desirable for
operational personnel. Also, people without programming experience or who
use simulation only occasionally (e.g., a manufacturing engineer in ~ factory)
often prefer simulators because of their ease of use. The major drawback of
many simulators is that they are)imited to modeling only those system
configurations allowed by their standard features. This difficulty can be some
whilt overcome if the simulator has "programming-like" commands to model
complex decision logic; most of the model' would' still be developed using
menus and _graphics. (This capability might be available in the simulator itself
or iIi external routines called by the simulator.) Simulators are currently most
often used for high-level. analyses', where the system is modeled at an aggregate
levehvithout including d\;tails of the control logic.

3.3.2 Modeling Approaches

Almost all simulation languages use one of two basic approaches to discrete
event simulation modeling; these approaches are also used by modelers using a
general-purpose language. ,'In the event-scheduling approach, used in the
programs in Chaps. I'and 2; a system is modeled by identifying itscharacteris
tic events 'and"then writing a set of event' routines that give ,a detailed
deSCription of the state changes taking place at the time of each event. The
simulation evolves over time by executing the 'events in increasing order of
their time of. occurrence. Here a basic property of an event routine is that no
simulated time passes during its execution. The event-scheduling approach is
available in SIMAN, SIMSCRIPT II.S, and SLAM II.

, A J?!'ocess is a time-ordered sequence of interrelated events separated by
passages of time, which describes the entire experience 'of an "entity" as 'it
flows through a "system," The process corresponding to an elitity arriving to
and being served at a single server is shown in Fig. 3,1. A system or simulation
model may have several different types of processes. Corresponding to each
process in'the model, there is -a process "routine" that describes the entire
history of its "process entity" as it moves through the corresponding process. A
process "routine" explicitly contains the passage of simulated time and general
ly has multiple entry points.

To illustrate the nature of the process approach more succinctly, Fig. '3.2
gives a flowchart for a prototype customer-process routine in the case of a

o

238 SIMULATION MODELING AND ANALYSIS

Entity Entity begins
arrives service

)()(

Event

1

"Event"

Possible
passage
of time

in queue

FIGURE 3.1

Passage
of time

for serving
of entity

Process describing the flow of an entity through a system.

Entity completes
service

)(

Event

TIme

!

single-server queueing system. (This process routine describes the entire
experience of a customer as it progresses through the system.) Unlike an event
routine, this process routine has multiple entry points at blocks 1, 5, and 9.
Entry into this routine at block 1 corresponds to the arrival event for a
customer entity that is the most imminent event in the event list. At block 1 an
arrival event record is placed in the event list for the next customer entity to
arrive. (This next customer entity will arrive at a time equal to the time the
current customer entity arrives plus an interarrival time.) To determine
whether the customer entity currently arriving' can begih. service, a check is
made (at block 2) to see whether the server is idle. If the server is busy, this
customer entity is placed at the end of the queue (block 3) and made to wait'
(at block 4) until selected for service at some undetermined time in the future.
(This is called a conditional wait.) Control is then returned to the "timing
routiqe" to determme what customer en.tity's event is the most imminent now.
(If we think of a flowchart like the one in Fig. 3.2 as existing for each customer
entity in the system, control will next be passed to the appropriate entry point
for the flowchart corresponding to the most imminent event for some other
customer.) When this customer entity (the one made to wait at block 4) is
activated at some point in the future (when it is first in queue and another
customer com~service and makes the server idle), it is removed from the
queue at block 5 and begins service immediately, thereby making the server
busy (block 6). A customer entity arriving to find the server idle also begins
service immediately (at block 6); in either case, we are now at block 7. There
the departure time for the customer beginning service is determined, and a
corresponding event record is placed in the event list. This customer entity is
then made to wait (at block.8) until its service has been completed. (This is an
unconditional wait, since its activation time is known.) Control is returned to
the timing routine to determine what customer entity will be processed next.
When the customer made to wait at block 8 is activated at the end of its

SIMULATION SOFTWARE 239

Routine) customer

~ 1

Schedule an arrival
event for the next

customer entity

3 4

<~ Place this Wait until
" the s:rver 2 No

idle
customer entity selected for

"
in the queue service

Passage of I

y" simulated time .. 5

Remove this
customer entity

6 from the queue

Make the server busy

! 7

Schedule a departure
. - event for this·

customer entity;

.
8

Wait until service
is~~pleted

FIGURE 3.2
Prototype customer~process routine for a single-server queueing system.

service, it makes the server idle at block 9 (allowing ~he first customer in the
queue to become active immediately), and ,then this. customer is removed from
the system at block 1Q. [Pi. more detailed explanation of the process approach
in the context of SIMSCRIPT U.S may be found in Law and Larmey (1984).]

A simulation using the process approach also evolves. over time· by
executing the events in increasing order of their time of Occurrence. Internally,
the t"ko approaches to simulation are very similar (e:g.: both approaches use a

240 SIMULATION MODEUNG AND ANALYSIS

simulation clock, an event list, a timing routine, etc.). They differ mainly in the
language constructs that they make available to model a system. Process
statements are more '~' in nature and automatically translate certain
situations commonly occurring in a simulation model, e.g., customers arriving
to a queueing system, into the corresponding event logic.

The process approach has several advantages over the event-scheduling
approach. For many types of systems the process approach is more natural in
some sense, since one process routine describes the entire experience of the
corresponding process entity. Furthermore, a process simulation model of a
system usually requires fewer lines Qf code than the comparable Program using
the event-scheduling approach. On the other hand, the process approach as
implemented in some simulation languages is less flexible than the event
scheduling approach. -

---n1e process approach is the major modeling orientation in GPSS/H,
GPSS/PC, SIMAN, SIMSCRIPT II.S, and SLAM II.

3.3.3 Common Modeling Elements

There are a number of modeling elements common to the simulation packages
(languages or simulators) discussed in this chapter. An ~(or transaction) is
a person or object that arrives to a syst.em, is "serviced" in some manner, and
then usually departs. Examples of entities are a customer arriving to a
barbershop, a part in a factory rand a message for a communication system. An
attribute (or parameter) is a piece of information that describes or characterizes
an entity, such as haircut typ~for a customer, due date for a part, or the length
of a message. A queue (or file or set) is a collection of entities ,with some
common charactenstlc, such as parts waiting to be processed on a machine.
Entities in a queue may be processed in a FIFO or UFO manner, or based on
the value of some entity attribute. A resource is a person or "machine" that
provides service to an entity While it is present in a system. Examples are a
barber, a worker or machine in a factory, and a node or link in a communica
tion system.

3.4 DESIRABLE SOFTWARE FEATURES

In Sec. 3.1 we discussed some basic features or capabilities needed in program
ming a simulation model. We now continue this discussion by presenting a
number of additional features that should be available in a contemporary
simulation package, with these features being grouped into five categOIjesjSee
Law and Haider (1989), and also the discussion of material-handling modules
in Sec. 13.3.]

3.4.1 General Features

Perhaps the most important feature for a simulation package to have is
modeling flexibility, because no two systems are exactly the same. If the

SIMULATION SOFTWARE 241

simulation package does not have the necessary capabilities for a particular
application then the system must be approximated, resulting in a model with
unknown validity. Entities .should have general attributes (e.g., due date,
message length, etc.), which can be appropriately changed; this capability is
generally available in simulation languages but is less common in simulators.

Ease of model develooment is another very important feature, due to the
short time frame for many projects. The accuracy and speed of the modeling
process will be increased if the package has good debugging aids; such as an
interactive debngger, on-line input error checking, and on-line help.

Fast model execution speed is particularly important for very large models
(e.g., certain military applications) and when the simulation model is to be run
on a microcomputer. For a· complicated simulation model of a 40-machine
food-packaging plant, it took 7 hours to simulate 2 weeks of production on a
16-megahertz microcomputer.

. The maximum model· size allowed by the simulation package may be an
important factor when the model is to be executed on a microcomputer. For
some packages, the maximum model size is currently less than 100 K bytes.
This potential difficulty will become less. important as many vendors are
begimiing to offer versions with extended model sizes.

It is also desirable for a simnlation package to be available' for a number
of different computer classes (i.e., microcomputer, work station, and minicom
puter/mainframe), and for the software to be compatible across these classes.
Thus, for example; a model could be developed on a microcomputer and then
uploaded to a minicomputer or mainframe for execution of the production
runs.

Finally, in some applications (e.g., steel manufacturing) it is convenient
for the software to have capabilities for combined discrete-continuous simula-
tion (seeSe".' 1.8.2). .if?i; .

3.4.2 Animation

Easy-to-use animationjs one of the main reasons for the increased popularity
of simulation modeling. In an animation, key elements of a system (e.g.,
machines and parts) are represented on a CRT by icons that change shape,
color, or position when there is a change of state in the simulation. Thus, a
system can be seen graphically to change overtime. Most contemporary
animation packages operate in a concurrent mode, where the animation is
displayed while the simulation is actually running (perhaps slowed down to
allow for visual comprehension). On the other hand, some animation packages
function in a playback mode, where the animation is displayed after the
simulation is completed from state changes recorded in a disk file. Several
examples orammation and graphics are given in color Plate 1. . .

The major reason for the popularity of animation is' its ability to
communicate the' essence of a simulation model (or of simulation itself) to
managers and otlier key prOJect personnel, greatly increasing the model's
credibility. Other potential benefits of animation are:

242 SIMULATION MODELING AND ANALYSIS

• Debugging a simulation computer program
• Showing that a simulation model is not valid
• Suggesting improved operational procedures or control logic for a system
• Understanding the dynamic behavior of a system
• Training operational personnel

Animation also has certain ~hortcoming[or disadvantages. In particular,
it is not a substitute. for a careful statistical analysis of the simulation output
data. One cannot conclude that a system is ."well defined" by watching an
animation for a "short" period of .time since, if the simulation were run for a
longer period of time; a crucial· piece of equipment might fail and cause a
major system bottleneck. Animating a simulation model increases model
development time, and simulation packages with an aniination capability are
often considerably more expensive. Finally, only part of a simulation model's
logic can actually be :seen in· an animation; thus, a "correct" animation is no
guarantee of a valid or debugged model.

There area number of desirable.ieatures for an animation package. First
and foremost, since animation is primarily a communication tool, it is im
portant for it to look realistic (particularly for presentations to high-level
managers). The user should be able to create high-resolution icons using
bit-mapped rather than character graphics. There should be smooth movement
of icons acrOSS the computer screen, rather than "jumpy" or "pulsating"
movement. It should be possible to store icons in a library for use in a future
model, and the library should come with standard icons to facilitate animation
development. The animation should be I;..asy to develop, relying inore on menus
and graphics that on programming. There should be the capability for multiple
~ru.JaY1lll.t, since soine models will not "fit" on a single standard computer -
screen. Additional animation features are discussed in "Law and Haider (1989).

A useful graphical companion to animation is dynamic eresentation
quality graphics, where histograms, level meters, dials, etc., are updated as the
siml!iati()~rogresses through_Q.me. ---' ----

3.4.3 Statistical Capabilities

Since most real-world systems exhibit some sort of random behavior, a
simulation package must contain good statistical capabilities that should actual
ly be used. In general, each source of system randomness (interarrival times;
service times, machine operating times, etc.) needs to. be modeled· by a
probability distribution, not just its mean (see Sec. 4.7). A ,simulation package
should contain a wide variety of standard distributions (e.g., exponential,
gamma, and triangular), should be able to use distributions based on observed
system data (see Sec .. 6.2,4), and should contain a multiple-stream random
number generator to facilitate comparing alternative system designs (see Secs.
7.1 and 11.2).

SIMULATION SOFTWARE 243

Since random samples from the input probability distributions "drive" a
simulation model through time, simulation output £lata (e.g., daily throughputs
in a factory) are also random and appropriate statistical techniques must be
used to design and interpret the simulation runs. A simulation package should
contain a single command to make independent replications of the model
automatically, with each replication using different random numbers, starting
in the same initial state, and resetting theStatlStical counters to zero. We
should be able to specify a warmup period (at the end of which statistical
counters are reset to zero) and to construct confidence intervals for desired
measures of performance (e.g., mean daily throughput) in order to determine
the statistical precision of the simulation results.

3.4.4 Customer Support

Most users of simulation software require some level of ongoing support from
the vendor. First, the software vendor should present public seminars on the
use of the software on a regular basis. Also, the .vendor should provide timely
technical support for specific modeling problems encountered by the user. (A
toll-free phone number is desirable.) Good documentation, including a well
written textbook, a user's manual, and numerous detailed examples, is im
portant for software use as well as initial installation. Free software trials and
demo disks are helpful to the prospective user in evaluating the software for
their particular needs.

3.4.5 Output Reports

A simulation package should provide time-saving standard reports for common
ly occurring performance statistics (e.g., utilizations, queue sizes and delays,
and throughput), but should also allow tailored reports to be developed easily.
For example, standard reports are often not suitable for management presenta
tions. Furthermore, it is often of interest to obtain (static) presentation-quality
graphical displays [e.g:, histograms, bar charts, pie charts, or time plots of
important variables (see Sec. 9.8)] and to have access to the individual model
output observations (rather than just the usual summary statistics) so that
additional analyses can be performed. For example, one might want to export
the output observations (e.g., daily throughputs) to a graphics package, a
spreadsheet, or a statistics package.

3.5 GPSS

GPSS (Qeneral-Purpose Simulation§.yste~ is a process-orieJlIJ:~Ei?n
languag~ [see, for example, Gordon (1975) and Schriber (1974)] that is well
suited for gueueing systems. Originally developed by Geoffrey Gordon at the
IBM Corporation in 1961, it evolved through a numbe~ of versions, with the
most recent IBM version being GPSS V. In the 1960s and 1970s, GPSS was a
very popular simulation language, probably due to the queueing nature' of

244 SIMULATION MODEUNG AND ANALYSIS

many simulation models, IBM's strong influence on the. computer industry, and
GPSS's, being taught in many university simulatiOJ) ,courses. IBM stopped
enhancing and actively supporting, GPSS in 1972; with the void eventually
being filled by the introduction of GPSS/H and ,GPSS/PC by other vendors.
These improved versions of ,GPSS are described in the following sectio!) •.

3.5.1 GPSSIH

GPSS/H [see Banks, Carson, and Sy (1989) and Schriber.(1990)] was ,de
veloped by James HenrikseJ)in .1977 and is marketed byWqlverine Software
(Annandale, Virginia). GPSS/H is a compiled langua~ compared with the
interpretive approach of GPSS V, and is reported to run, on the average, five
times faster [see Abed, Barta, imd McRoberts (1985)]. It has a ,number of
other significant enhancements relative to GPSS V, including a real-valued
clock, ability to read and write external files, tailored output reports, improved
control statements (e.g., DO loops and IF-THEN-ELSE logic), mathematical
funCtions; and a limited number of routines for generating random values from
probability distributions. Because of these capabilities and, the basic nature of
GPSS statements, most GPSS/H'models do not require the' use of external
routines (in FORTRAN or other languages). The random-number generator
has also been improved, allowing for'an essentially unlimited number of
nonoverlapping'stteams. PROOF [see Bruimer and Henriksen (1989)] is a
playback-oriented animation package that is marketed by Wolverine Software.
It has several interesting featiIres, such as the ability tq change quickly from a
plan (top) view to an isometric view and the capability to be used 'with
simulation packages developed by several different vendors. '.
, The GPSS/H language consists of more than iib standard statements,

many of which have a corresporiding pictorial representation (called a block)
that is intended to be suggestive of the operation pertorined by the statement.
Building a GPSS model can' be thought of as combining a set of standard
blocks into a block diagram that represents the path taken by a typical entity as
it progr~sses through 'the sysiem., After the block-diagr!'m nio~el has been,
constructed, it is translated by the user into the corresponding set, of GPSS
statements for execution on tlJe computer. However, the block diagram itself
may be us.eful in explaining the nature of the model to a manager,who may
not be familiar with any programming language. Customers or entities that
require service of some kind froni the-system of interest are' call~d transactions
in GPSS, and their attributes are called parameters. The servers or resources
that provide the service required by the transactions are called facilities or
storages, corresponding to a single server or a group of parallel servers,
respectively. '

3.5.2 Simulation of the MIM/1 Queue

A block diagram and a'statement listing for a GPSS/H program of the M,IMIl
queue (see Sec. 1.4.3) are given in Figs. 3.3 and 3.4, respectively. (The

LVEQ

ADVANCE

RVEXPO(2, O.~),

(STOP) RELEASE

Create
arriving
customers

Enter the
queue

Seize
the server

Leave the
queue

Test forthe·
ter~ination

of the run

Delay for
service

Release the
server

Customers
depart

SIMULATION SOFTWARE 245

FIGURE 3.3
GPSS/H block diagram, queueing
model.

program was provided by Professor Thomas Schriber of The University of
Michigan.) In Fig. 3.4, statements with an asterisk (*) in column 1 are
comments. Also, in lines 5 through 16 the words after position 37 are
comments. line numbers are not part of the program ..

The SIMULATE statement (line 4 of the program) is a control statement
necessary for program execution. The GENERATE statement (line 5) creates
transactions representing customers with exponential (RVEXPO) interarrival
times having mean 1.0 and using random-number stream 1. The SEIZE

246 SIMULATION MODELING AND ANALYSIS

1 * 2 * SIMULATION OF THE MIMll QUEUE
3 *
4 SIMULATE
5 GENERATE RVEXPO(l, 1. 0) Create arriving customers
6 QUEUE SERVERQ Enter the queue
7 SEIZE SERVER Seize the server
8 LVEQ DEPART SERVERQ Leave the .queue
9 TEST L N$LVEQ,lOOO,STOP Test for termination of the rUl

10 ADVANCE RVEXPO(2,0.S) Delay for service
11 STOP RELEASE SERVER Release the server
12 TERMINATE 1 customers depart
13 *
" * CONTROL STATEMENTS
15 *
16 START 1000 Make 1 simulation run
17 END

FIGURE 3.4
GPSS/H program, queueing model.

statement (line 7) and the RELEASE statement (line 11), which define a
facility called,SERVER, correspond to a transaction's seizing the server when
it is (or becomes) idle and releasing the server after the transaction's service
has been completed.. (Transactions. arriving when the server is busy join a
queue thatIS automatically defined by GPSS.) The actual service time of a
transaction, which is in this case generated from an exponential distribution
with mean 0.5 (using stream 2), is experienced at the ADVANCE statement
(line 10). The transaction is destroyed (removed from the system) at the
TERMINATE statement (line 12). The QUEUE statement (line 6) and the
DEPART statemeni (line 8) are used to gather statistics on transactions
waiting in the queue (called SERVERQ) "in front of" facility SERVER, and
correspond to a customer's entering and leaving the queue, respectively.

The TEST statement (line 9) is used to determine when to end the
simulation run. If the number of transactions, N$LVEQ, thai have entered the
DEPART block labeled LVEQ (equivalently, have left the queue) is less than
1000, the tqmsaction proceeds to the ADVANCE 'statement in a normal
manner. Otherwise, the transaction is sent to the RELEASE statement labeled

\ '. .
STOP, where th~ server is. released without a service time's occurring. Each of
the .1000 'transactions that. enter the TERMINATE statement decrement a
counter by 1. Since the termination counter was initially set to 1000 by the
START (control) statement (line 16), the 1000th transaction's decrementing
the counter reduces the coiJnter value to 0 and results in the termination of the
simulation.

The GPSS/H standard output report for this program is given in Fig. 3.5.
Note that the'average delay is 0.614 (see "AVERAGE TIME/UNIT" for
queue SERVERQ). Also, the time-average number in queue (see' "AVER
AGE CONTENTS" for queue SERVERQ) and server utilization (see
" ... TOTAL TIME" for facility SERVER) are 0.605 and 0.516, respectively.
Server utilization is automatically provided when a facility (e.g., SERVER) is

~

RELATIVE CLOCK: 1014.1565 ABSOLUTE CLOCK: 1014.1565

BLOCK CURRENT
1
2
3
LVEQ
5
6
STOP
8

TOTAL
1000
1000
1000
1000
1000

999
1000
1000

··AVG·UTIL-DURING-
FACILITY TOTAL AVAIL UNAVL

TIME TIME TIME
SERVER 0.516

ENTRIES AVERAGE
TIME/XACT

0.523

CURRENT PERCENT SEIZING PREEMPTING

QUEUE

SERVERQ

RANDOM
STREAM

1
2

FIGURE 3.5

MAXIMUM
CONTENTS

8

ANTITHETIC
VARIATES

OFF
OFF

AVERAGE
CONTENTS

Q.605

INITIAL
POSITION

100000'
200000

1000

TOTAL
ENTRIES

1000

CURRENT
POSITION

101001
200999

GPSS/H standard output report, queueing model.

STATUS AVAIL XACT XACT.
AVAIL

ZERO
ENTRIES

454

.SAMPLE
COUNT

1001
999

PERCENT
ZEROS
45.4

CHI-SQUARE
UNIFORMITY

0.71
0,69

AVERAGE
TIM.EfUNIT

0.614' -
$AVERAGE

TIKEfUNIT
1.124

QTABLE
NUMBER

CURRENT
CONTENTS

o

248 SIMULATION MODELING AND ANALYSIS

defined by the SEIZE and RELEASE statements. The other two statistics
result from the use of the QUEUE and DEPART statements.

",-\,
3.5.3 GPSS/PC

GPSS/PC [see Minuteman (1988)] is a simulation language designed specifical
ly for use on the IBM PC and compatibles. It was developed by Springer Cox
in 1984 and is marketed by Minuteman Software (Stow, Massachusetts). It has
several nice debugging features, including on-line input error checking, on-line
help, and the ability to see transactions flowing through the block diagram
graphically. Because GPSS/PC is not a compiler, changes made to a model are
seen "immediately," witho')t waiting forthe program to be recompiled. There
are also useful graphical displays for facilities, storages, and histograms, which
are updated dynamically during the execution of the simulation. GPSS/PC
comes standard with concurrent character-graphics animation. An optional
three-dimensional, bit-mapped graphics ~animation capability is also available
for use in a playback mode. On the other hand, it has limited facilities for
generating random values from probability distributions. One is more likely to
need external routines in GPSS/PC than in GPSS/H to perform complex
decision logic or produce tailored reports. Also, GPSS/PC is not completely
compatible with minicomputer and mainframe versions of GPSS. GPSS/PC
has the same basic modeling elements (e.g., transactions and facilities) as
GPSS/H.

3.6 SIMAN/Cin~ma
SIMAN (SIMulation ANalysis) is a simulation language in which one can build
a process-oriented model, an event-oriented model, or a combination of the
two [see Pegden, Sadowski, and Shannon (1990)]. In a typical application,
most of the simulation model is developed using the process orientation.
Complicated decision logic, which is impossible or inconvenient in the process
approach, can be coded in event routines and then called from the process
model. SIMAN was developed by Dennis Pegden in 1982 and is distributed by
Systems Modeling Corporation (Sewickley, Pennsylvania). SIMAN gained
quick acceptance because it was the first major simulation language to be
available for microcomputers and also because of its special features for
manufacturing, including work stations, transporters (e.g., a fork-lift truck),
conveyors, and automated guided vehicles. Cinema is a simulation language
that contains all of the features of SIMAN and, in addition, the capability to
produc~ high-quality animation. The latest releases of these languages are
called SIMAN IV and Cinema IV.

A SIMAN process simulation model is broken into two distinct parts, a
model frame and an experimental frame, which are kept is separate files. In the
model frame, modeling constructs called blocks are used to describe the logic
by which the model's entities and resources interact dynamically. Each block

SIMULATION SOFTWARE 249

has a corresponding pictorial representation, and these symbols can be com
bined into a linear top-down block diagram, which graphically describes the
flow of entities through the system. Some analysts prefer to construct a block
diagram before coding the actual model-frame statements:

In the experimental frame, modeling constructs called elements are used to
specify the particular parameter values (e.g., mean service time) for the
present simulation runes), to define resource types and quantities, and to
delineate the output statistics desired. This modeJ/experiment dichotomy may
allow the analyst to make two distinct runs of the simulation, perhaps differing
only in some parameter value, y;ithout recompiling the model frame .

. The SIMAN Output Processor allows one to perform certain statistical
procedures such as confidence intervals and hypothesis tests on the output data
produced by simulation runs from the same or different system configurations.
Additionally, it can be used to produce presentation-quality graphical displays
such as time plots of variables, histograms, and bar charts. Furthermore, the
analyst can choose the desired output data treatments after the simulation runs
have been made.

SIMAN is available for all major classes of computers. However, with the
microcomputer version, it is possible to use an interactive graphical prepro
cessor called BLOCKS to build the (process-orientation) block diagram. The
diagram is then automatically translated into the statement model for execution
on the computer. A similar program called ELEMENTS can be used to
develop the experimental frame. This capability can increase the speed and
accuracy of the model-development process. .,

The major modeling building blocks in SIMAN are entities (with attri
butes), queues (or files), and resources.

3.6.1 Simulation of the M / M /1 Queue

This section shows how to simulate the MIMll queue considered in Sec. l.4J
using the process orientation of SIMAN. A block diagram is given in Fig. 3.6
and the corresponding model-frame statements are given in Fig. 3.7, where the
line numbers are for expository purposes and are not part of the program. The
CREATE block (line 2) places new customers in the system with exponential
[EX(l,l)] interarrival times, with the first "1" in the parentheses specifying
,that the mean interarrival time is given by parameter set 1 (see the "1.0" in line
5 of the experimental frame in Fig. 3.8) and the second "1" giving the
random-number stream. The modifier MARK(l) stores the time of arrival of a
customer in its attribute 1 for later use.

When a customer actually arrives to the system, it temporarily passes
through the QUEUE block (line 3) and attempts to seize the resource
SERVER (line 4), which is defined in line 4 of the experimental frame. By
default, there is one unit of SERVER available. If the server is available, the
customer has its zero delay in queue computed and recorded by the TALLY
block in line 5 (as the current time minus its time of arrival in attribute 1) and

250 SIMULATION MODEUNG AND ANALYSIS

CREATE.
Create arriving customers

EX(I.I)

J .

1)) Wait for server

'~

SEIZE
Seize the server

SERVER

!
TALL~, ..

l,INT(I)
Tally delay in queue

!
COUNT'

Count total delays
I, I

l
DELAY

Delay for service
EX(2.2)

!
RELEASE

Release the server

SERVER

~
FIGURE 3.6
SIMAN block diagram, queueing model.

1 BEGIN:
2 CREATE"EX(l,l) :EX(l,l):MARK(l):
3
4
5
6
7
8
9 END:

FIGURE 3.7

QUEUE,l;
SEIZE:SERVER;
TALLY:l,INT(l) ;
COUNT:l,l;
DELAY:EX(2,2) :
RELEASE: SERVER: DISPOSE:

SIMAN model frame, queueing model.

Create arriving customers
Wait for server"
Seize server
Tally delay in queue
Count total delays
Delay for service
Release server

1 BEGIN;
2 PROJECT,M M 1 QUEUE,A. LAW,7/12/89;
3 DISCRETE,100,1,1;
4 RESOURCES:l,SERVERi
5 PARAMETERS: 1,1. 0:
6 2,0.5:
7 TALLIES:1,DELAY IN QUEUE;
8 COUNTER:1,CUSTOMER DELAYS,1000:
9 DSTAT:1,NQ(1),NUMBER IN QUEUE:

10 2,NR(1),SERVER UTIL.;
11 REPLICATE, 1;
12 END;

SIMULATION SOFTWARE 251

FIGURE 3.8
SIMAN experimental frame, queueing
model.

the COUNT block (line 6) adds one to counter 1 to indicate that one more
delay has been' observed. When this counter reaches 1000 delays, as specified
by the COUNTER element in line 8 of Fig. 3.8, the simulation terminates. The
customer actually experiences its service time at the DELAY block (line 7); in
this case, service times are exponentially distributed with the mean of 0.5 given
by parameter set 2 (see line 6 in Fig. 3.8) and are generated using random
number stream 2. [If the server is busy when the above customer arrives, the
customer is placed at the end of the queue (file 1) in line 3.] When the
customer completes its service, it releases the resource SERVER (line 8) and is
removed from the system by the DISPOSE modifier. If there are any custom
ers in the queue, then the first of these is removed, seizes the server (line 4),
has its positive delay computed in line 5, etc.

The PROJECT element (line 2) of the experimental frame states the
project name, the analyst, and the date. The DISCRETE element (line 3)
specifies the computer storage requirements for the model, here being 100
entities (customers) simultaneously in the model, a maximum of 1 attribute for
any entity, and 1 queue (file) for the model. The elements in lines 4 through 6
have been explained above. The TALLIES element (line 7) places a label of
"DELAY IN QUEUE" on the discrete-time statistics produced by the TALLY
block in line 5 of the model frame. The DSTAT element (lines 9 and 10)
computes continuous-time statistics (e.g. ,the time average and the maximum)
for the number in queue 1 [NQ(l)] and for the number of busy units of
resource 1, NR(l); these functions are referred to as DSTAT variables 1 and 2,
respectively. Thus, for example, the time average of variable 2 will be the
server utilization. The REPLICATE element (line 11) specifies that one
replication of the simulation is to be made. A more general form of this
statement can be used to specify multiple replications, a simulation run length,
and a warmup period.

The simulation results are given in Fig. 3.9. Note that the average delay
in queue isOA9558 (see "Tally Variables"). Also, the time-average number in
queue and server utilization (computed by the DSTAT element) are 0.50658
and 0.51872, respectively (see "Discrete Change Variables"). The "Standard
Deviation" results in the output report are not reliable, in general, since they
are based on formulas that assume independent output data, which will not be
satisfied in practice (see Sec. 4.4).

252 SIMULATION MODELU~G AND ANALYSIS

project:
Analyst:
Date

M M 1 QUEUE
A. LAW

7/12/1989

Run ended at time

Number Identifier

1 DELAY IN QQEU~

Number Identif~er

SIMAN Summary Report

Run Number 1 of 1

.9783E+03

Tally Variables

Average

.49558

Standard Minimum
Deviation Value

. 80138 .00000

Discrete change Variables

Average standard , Minimum
Deviation Value

Maximum
Value

Number
of Obs.

4.04199 . . 1000

Maximum' Time
Value Peri'od

--------~--------------------------------~--------~-----------~~~~------~------
1 NUMBER IN QUEU~
2 SERVER UTIL.

Number 'Identifier

1 PUSTOMER DELAYS

FIGURE 3.9

.50658

.51872

Count

1000

SIMAN output report, queueing mo~I.el.

1.14931
.49965

Counters

Limit

1000

.00000 10.00000

.00000 1.00000
978.28
978.28

Observe that the output statistics for GPSS/H and SIMAN'are somewhat
different due to differences in the random-number generators used (see also
Sees. 3.7 and 3.8). This points out the importance of proper design and
analysis of simulation runs, as discussed in Chap. 9.

3.7 SIMSCRIPT 11.5

SIMSCRIPT II.S is a process-oriented or event-oriented simulation language
[see Law and Lalmey (1984) and Russell (1983)]; however, because of the
generality of the process approach in SIMSCRIPT, the use of the event
scheduling approach is not necessary. SIMSCRIPT was developed by Harry
Markowitz and others at the Rand Corporation in 1962. It evolved through a
number of versions, with the latest one, SIMSCRIPT U.s, being marketed by
CACI Products Company (La Jolla, California).

SIMULATION SOFIWARE 253

SIMSCRIPT I1.S is actually a general programming lauguage containing
th" capabilities for b"ilding discrete-flvent, continuous, or combined simulation
models. (It has the' progiammirig features'ofFORTRAN, ALGOL, and PUl.)
Furthermhre, its Englisli-like' and free-fom' 'syntax make sIMSCRIPT I1.S
simulation progi~ins'easy to read and almost' self-documenting. Because of its
general process approach, its sophisticated' data stru~t\ires, and its powerful
control statenients, SIMSCRIPT II.S is often used forhirge, complex simula
tion 'models, 'p~rticularjy when" th" system is nbt queueirtg-oriented. For
exa:m~,e:,.rt~s(' military,' cO!,\b,ai' models have b~en, written either ,in
SI~SCRIPT II.S orF,o,RT%N.: , , , '

: 'SIMSCRIPT ItS 'is available for microcomputers, work stations, and
miiii;,omputers/in'a:inframes'. The IBM'PC and compatibles version is embed
ded in the, SIMLAB padb.ge;\vhich 'is an interactive, muItitaskinitprogranJ.~
ming envrroriinentitir f~¢ilitating the use ofSIMSCRIPT. It'contaiiisari editor,
tlie SIMSCiUIT iI.S<cOmpii~i", 'a debugget, '>ind on-line help. ' ". ' "
, "Th,'" nii~~';'20ihp;'ter 'and ",ork station' versions irichide the SIM:

1 ., < •• _ \ " .',.t -,. . i' _ " . ': . '

GRAPHICS animation ,md graphiCs package. ,It can be used to produce both
dyniUnic and .itatic p~es¢htation;<ltiality 'graphicS, such as histowams, pie' and
bar charts, level meter~';md diiils, arid"tim" plots of variables. Animations of
thesimulatt6Ii oritP!1t ~r~ also 'con~tructed using SIMGRAPHICS. Finally,

, .) • ,. ~ 't -'). 1 _. ,- , ' ' • ' • - I

SIMGRAPHlCS.Can beused'toproduce interactive graphical "front ends" (or
fomis)'; for. ~~h;ri~g"niodelinp'ut data. An' iriput f6tm:may include such

'f. I: ',;' 'r' I ' , '. . . ,. _ '

graphicalelement(as meiiubam (with pull-down menus), text or data "boxes,"
, I ,,' ',' '. : - t"i. . . , ' . ' • , ' .'

and "buttons" that are clicked on with a mouse to select an alternative. The
graphical model frolltena alio~s o~e t~: lnake ~,certaiU:set of modificatio!ts to
the 'model without prograniming, Which' facilitates model use by people who

, j •• - i, ,., ' , -' . "
are not programmmg experts.

The major modeling elements of the process part of SIMSCRIPT II.S are
processes (or process entities), resources, and sets (similar to queues). A
process entity flows through its corresponding process aud may have attributes.
To construct a simuhition', model in SIMSCRIPT II.S, the analyst must write a
preamble, a main program, and a process rq"tine corresponding to each
process. The preamble, which does not contain any executable statements, is
used to define the bUilding 'blodcs, for the, simulation, such as processes and
resources. It is also used to define global variables, the basic unit of time for
the simulation clock, and the'desired output 'statistics. In the latter case, the
TALLY and ACCUMULATE statements are used to specify discrete-time and
continuous-time ,~tati,sti~" respectively. The main progr!'llI,is ""here the exesu
tion of a SIMSCRIPT program begins. This routine is, used .to read input
parameters for the simulation, to specify the number of availatlle ,units for each
resource, and to piace'ihe '''initial'' event records (called proces; notices) into
the event Jist using the' ACTIVATE statement. The simulation actually begins
by executing the START SIMULATION statement, which is actually just a
call to the timing routine. The timing routine is part of the SIMSCRIPT II.S
language and does not have to be written by,the modeler.

254 . SIMULATION MODELING AND ANALYSIS

3.7.1 Simulation of the MIMI1 Queue

This section shows how to sim~iate the MIMI 1 queue of Sec. 1.4.3 usi~g the
process orientation of SIMSCRIPT II.5. (The line numbers in Figs. 3,.10
through 3.14 are fO!~ expository purposes and are not part of the actual
program.) The pre~mble is given in Fig. 3.10. Three, types of processes,
ARRIVAL.GENERATOR, CUSTOMER, and REPORT, are defined in line
3. 'Process (routine) CUSTOMER describes the flow of a typical c~stomer
as it moves through' the system. On' the other hand, 'prqcess' (routine)
ARRIVAL.GENERATOR creates new customers, and proFess, (routine)
REPORT is used to print the final report at the end of, the, simulation after
1000 delays in queue have been completed. Similarly, SERVER is ~efined to
be a resource in line 5, and has ih" two associat'ed sets, Q.SERVER (customers
in queuefor SERVER) andX.SERVER(custome'rs executing9n SERVER),
automatically specified. The three quantities in lines 7 and 8 are,defined to be
global real variables. (If a variable is not defined 'in the preamble, it is a local
variable. Also, all variables are by defaulfreal, regardless of the letter they
begin with,) "[he desired simula,tion run length in delays, TOT. DELAYS', is
defil1ed to be a global integer variable in line 10. In line 12, MINUTES is
defined (il) effect) to be the basic unit of tiine for int~rnal program calcula
tions; the default is days. The TALLY statement (lines 14 an,d ,15) is used to
obtain discrete-time statistics for the variable DELAY.IN.QUEUE. In particu
lar, NDM,DELAYS will be the number of delays observed(r.~:, thenumber
of times that a statement with DELAY.IN.QUEUE on the left-hiuld side of an
equal sign i~~xecuted), aiId AVG.DELAY.IN.QUEUE will be the 'sample
mean of these delays. The ACCUMULATE statement'(line)7) is 'used to
compute continuous-time statistics on the'system-defi'ned variable, N.Q:SER-

1 PREAMBLE
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
'17
18

PROCESSES INCLUDE ARRIVAL.GENERATOR, CUSTOMER, AND REPORT

RESOURCES INCLUDE SERVER

PEFINE DELAY.IN.QUEUE, MEAN. INTERARRIVAL. TIME, AND
MEAN. SERVICE. TIME AS REAL VARIABLES

DEFINE.TOT.DELAYS AS AN INTEGER VARIABLE
, .

DEFINE MINUTES. TO MEAN UNITS

TALLY AVG.DELAY.IN.QUEUE AS THE AVERAGE AND NOM.DELAYS AS
THE NUMBER OF~ DELAY. IN. QUEUE ~.

ACCUMULATE AVG.NUMBER.IN.QUEUE AS THE AVERAGE OF N.Q~SERVER

19 ,. ACCUMULATE UTIL.SERVER AS THE AVERAGE OF N.X.SERVER
20
21 END

FIGURE 3.10
SIMSCRIPT 11.5 preamble, queueing model.

SIMULATION SOFIWARE 255

VER, which is the number of customers in the set Q.SERVER at a particular
point in time. The quantity AVG.NUMBER.IN.QUEUE will be the time
average of N.Q.SERVER over the length of the simulation. The system
defined variable N .X.SERVER in line 19 is thenumber of customers in the set
X.SERVER at a particular point iri time, which can be 1 or 0 in our case.
Thus, if we use the ACCUMULATE statement to compute the time average
of this variable over the length of the simulation, we obtain the proportion of
time UTIL.SERVER that the server is busy.

The main program is listed in Fig. 3.11. In line 3, a free-format READ
statement is used to read in the input parameters MEAN.lNTERARRIVAL.
TIME (=1.0), Mr:;\N.SERVICE.TIME (=0.5), and TOT.DELAYS (=1000).
The CREATE statement (line 5) specifies that there is one type of the resource
SERVER. (Each type ota resource is fed by a single queue'.) In line 6 the
number of available 'units of the first (and in this case only) type of resource
SERVER, namely, U.SERVER(l)"is set to 1. The AcIIVATEsiatemeni
(line, 8) place~ an ARRIVAL. GENERATOR' process notice into the event list
witii an event time (called an activation time) of "NOW." Time "NOW" means
that the process notice has an activation time equal to the' current value of
simulated time, TlME.V(=O in this instance), and that this process notice is
placed "first" in tlie" event list. This process notice is used to initialize the
ARRIVAL.GENEry,.tO~ process routine at time O. The START SIMULA
TION statement (line 10) calls thetiming routine and begins the execution of
the simulation'. The timing tOJItine will remove the first process notice' from
the event list, which in this' case will be the one corresponding to the
ARRIVAL.'GENERATOR process. " ,

The ARRIVAL.CiENERATOR process routine is listed in Fig. 3.12. [We
will not explain its exact operation here; see Law and Larmey (l,984,.pp. 2-12)
for details.] It is used to 'cause new customers to arrive to the system with
expo~ential interarrival times having meap MEAN.INTERARRIVAL.TIME
minutes usi,lJg r'andom-number stream '1 (line 5). At the time inst,mtthat a
particular customer is to arrive, the ARRIVAL. GENERATOR routine places
a CUSTOMER process notice in the event list with an activation time of NOW
(line 6). This causes the timing routine to call the CUSTOMER process

1 MAIN
2
3 READ MEAN.INTERARRIVAL.TIME, MEAN.SERVICE.TIME, AND TOT. DELAYS
4
5 CREATE EVERY SERVER(1)
6 LET U.SERVER(1) = 1
7
8 ACTIVATE AN ARRIVAL. GENERATOR NOW
9

10 START SIMULATION
11
12 END

FIGURE 3.11
SIMSCRIPT II.5 main program, queueing model.

256 SIMULATION MODELING AND ANALYSIS

1 PROCESS ARRIVAL. GENERATOR
2
3 WHILE T'nm. V >= 0.0
4 DO
5 WAIT .. EXPONENTIAL.F(HEAN .INTERARRIVAL.TIME, 1) MINUTES
6 ACTIVATE A CUSTOMER NOW
7 LOOP
8.
9 END

fiGURE 3.12
SIMSCRIPT 11.5 process routine ARRIVAL. GENERA TOR. queueing model.

• ',.1 .

routine immediately in order to process the. newiy arriving customer. The
SIMSCRIPT II.5 ARRIVAL. GENERATOR routine corresponds to the
CREATE statement in SIMAN ~nd SLAM II and to the GENERATE
stateme~t in (JPSS, ,.'

. : The proces~ routine for process C~~TOMER is giv~n inFig. 3.13, al}dis
called each time a process notice fo~a: cust.?wer prcic~~s' ~ntity: is remove!) ~'?Ih
the event list, coiT~sponding to the arriyal iif' a new,9lst()mer. [This routine is
also called in severJll other situations, 'such as when'a customer departs; see
Law and Lafmey (1984) for details.] The DEFINE siatement in line 3 specifies
that TlME:OF.ARRIVAL isa local real variable(~ss6fi~,ied, with .each cus
tomer). pte time of arrival of the currently arriving customer is set to the
current value of the simulation clock, TIME.V, iIi line 5. The customer then
requesis'~ne unit ~f the resource SERVER(I) in line 6. If tile server is'iilready
busy 'serving another customer entitY;' the arrivmg ~ustomer joins the queue

,'.. .,' ." . .' , " 1\ .<

Q.SERVER(1) and waits to be served at some point in the future. If the server
is idle, the 'delay inqueue of the arriving customer is; set to 0 in line 7 alld a
check for termination of the simulation run is madein liries 8 through 10 (to be
discussed below). The server then works on the seivice request of the ~ustomer
(line 11); whose servic~ duration is generatedfn?m an exponential distiibuti<:m
with mean MEAN.SERVlCE.TlME minutes usingstfeam 2. After thiscus
tomer's ~¢rvice has been completed, the customer reli".q'f~hes. the s~rve~ in line

, " " .

1 PROCESS CUSTOMER
2
3
4
5
6
7
8
9

10
11
12
13
14

DEFINE TlME.OF.ARRIVAL AS A REAL VARIABLE

LET TlKE·.OF.ARRIVAL = TIME.V
REQUEST 1 SERVER(l)
LET DELAY.IN.QUEUE = TIM£.V - TIME.OF.ARRIVAL
IF NOH.DELAYS = TOT. DELAYS

ACTIVATE A REPORT NOW
ALWAYS
WORK EXPONENTIAL.F(MEAN.SERVICE.TIME,2) MINUTE?
RELINQUISH 1 SERVER{1}

END

FIGURE 3.13
SIMSCRIPT u.s process routine CUSTOMER, queueing model.

\

SIMULATION SOFTWARE 257

12 and is then removed from the system. If any customers are in
Q.SERVER(l) when the server' becomes available, the first customer is
removed and experiences a positive delay in queue in line 7, etc.

Lines 8 through 10 of process routine CUSTOMER are used to de
termine when to terminate the simulation run. If NUM.DELAYS (defined in
the preamble) is equal to TOT. DELAYS (=1000), then a REPORT process
notice is placed in the event list with an activation time of NOW. Control is
then returned to the timing routine, which immediately calls the REPORT
process routine to terminate the simulation run.

The REPORT process routine is listed in Fig. 3.14, and is called by the
timing routine when 1000 customer delays have been completed. The PRINT
slatement (line 3), Which contains no variables, specifies that the five lines
following this statement (the first three of which are blank) are printed out
exactly as shown. The PRINT statement in lines 9 and 10 says that the three
specified variables will be printed out in eight lines exactly as shown. The
formats for the,three variables are given by the three successive asterisk
groups. Thus, the format for MEAN.INTERARRIVAL.TIME is " ••.•• ,"
which means that,the corresponding printed value ,will bereal-valued, have two
places to the right of the decimal point, etc. The PRINT statement in lines 19
and 20 is similar. Note, however, that the resource type is specified explicitly in

1 PROCESS REPORT
2
3 PRINT 5 LINES THUS

SIMULATION OF THE M/M/l QUEUE

9 PRINT 8 LINES WITH MEAN.INTERARRIVAL.TIME, MEAN. SERVICE. TIME,
10, AND TOT _,DELAYS THUS

;1, '

MEAN INT~,VA;r..- ,TIME

MEAn- SERVICE'TIME < '

NUMBER OF CU.STOMERS

.

.

19
20

PRINT 8 LINES WITH AVG.DELAY.IN.QUEUE, AVG.NUMBER.IN.QUEUE(l),
AND UTIL.SERVER(l) 'THUS
"', • , ' ',I.

AV~9_E; 'JIDMBER. ,:r,f QUEU~

SERVER UTILIZATION

29 STOP
, 30

,,,;q END

FIGURE 3.14

***.**

***.**

*.**

"

SIMSCRlPT U.S process routine REPORT, queueing model.

258 ~ SIMULATION MODELING AND ANALYSIS

SIMULATION OF THE MIMl1 QUEUE

MEAN INTERARRI.VAL TIME 1.00

MEAN SERVICE TIME ·.50

NUMBER OF CUSTOMERS 1000

AVERAGE DELAY IN QUEUE .43

AVERAGE NUMBER IN QUEUE

SERVER UTILIZATION

·43

.50
FIGURE 3.15
SIMSCRIPT 11.5 outp~t report, queueing model.

the output. For example, AVG.NUMBER.IN.QUEUE(l) is the time average
of Q.SERVER(l). Finally, execution 'of the STOP statement (line 29) will
terminate the simulation, as desired.

The SIMSCRIPT II.S output report, as printed by process routine
REPORT, is given in Fig. 3.15.

3.8 SLAM II AND RELATED SOFTWARE

SLAM II (~imulation)"anguage for ~lternative ~odeling) is a simulation
language in which one can build a process-oriented model, an. event-oriented
model, or a combination of the two [see Pritsker (1986)). In a typical
application, most of the simulation model is developed using the process
orientation. Complicated decision logic, which is impossible or inconvenient in
the. process approach, is coded in event routines and then called from the
process model. SLAM was developed by Dennis Pegden and Alan Pritsker in
1979 and is distributed. by the Pritsker Corporation (Indianapolis, Indiana).

The building of a process model often begins witli'tile analyst developing
a graphical network diagram for the system. This diagram is,cQnstructed by
combining a standard set of symbols,cafled nodes and branches, into an
interconnected network that represents the flow of an entity througIi its
corresponding process. A node may corr"spond; forexample, to the cr"ation
of entities or to a queue, while a branch mhy correspond "to the passage of time
(e.g., a service time). The network model of the system is then t~a~slat"d i~to
an equivalent set of SLAM II program' statements for execuiion . on the
computer. The program statements could also be coded directly;'without a
network diagram. 'J.' ' .. '

SLAM II is available in several different forms, depending on the
computer platform and whether an animation capability is desired. The basic
SLAM II language is available for all computer classes, but does not include
animation. SLAMSYSTEM is a microcomputer version of SLAM II that is
integrated with Microsoft Windows. It ·provides animation, presentation-qual-

SIMULA nON SOFTWARE 259

ity graphics (e.g:, time plots of variables, histograms, bar charts, and pie
charts), and a user-friendly environment. SLAM II/TESS is available for
engineering work stations, minicomputers, and mainframes. It has animation
and graphics capabilities similar to SLAMSYSTEM and, in addition, contains
an integrated database for model input/output and enhanced statistical fea
tures such as confidence interVals.

With SLAMSYSTE~;or SLAM II/TESS, one can graphically build the
SLAM II network diagram" on a CRT, which is then automatically translated

" into the corresponding program "statements for execution by SLAM II. This
feature can increase the speed and accuracy of the modeling process.

There is a Material Handling Extension to SLAM II that allows one to
simulate automated guided vehicle systems, cranes, and automated storage and
retrieval systems.

A SLAM II process simulation model is coded in a single integrated
subprogram. Discrete-time statistics (e.g., average and maximum delay) are
obtained in SLAM II using the COLCT node., On the other hand, continuous
time statistics on queues (e.g., average length) and resources (e.g., utilization)
are provided automatically. The major modeling "elements in SLAM II are
entities (with attributes), files (or queues), and resources.

3.8.1 Simulation of the M / M /1 Queue

This section presents a SLAM process model for the M / M /1 queue of Sec.
1.4.3. The network diagram and statement model are given in Figs. 3.16 and
3.17, respectively; the line numbers in Fig. 3.17 are for expository purposes
and are not part of the program. The GEN (general) control statement in line
1 states the analyst, the project name, the date, the number of runs (Le., 1),
and the number of columns for output reports (i.e., 72), respectively. (The
successive commas represent accepted defaults.) The LIMITS control state
ment (line 2) declares that the model will contain 1 file (queue), a maximum of
1 attribute per entity, and that no more than 100 entities will be present in the
model simultaneously. The NETWORK and END statements in lines 4 and 17
signify the start and end of the process (network) model.

The RESOURCE block in line 6 defines a resource named SERVER
with a capacity of 1 unit as specified in the parentheses. The second "1" states
that when the SERVER is available, it will serve the first customer in file 1 (see
line 9) next. (Lines beginning with semicolons are comments.) The CREATE
node (line 8) places new custome"rs in" the system with interarrival times
2,3, ... being exponentially (EXPON) distributed with a mean of 1.0 and
using random-number stream 1. The first 1 after the right parenthesis states
that the first interarrival time is exactly 1. (The CREATE node in SLAM II
does not allow the first interarrival time to be a random variable; this difficulty
could be overcome by adding two additional lines of code.) The next 1 places
the time of arrival of each arriving entity in its attribute 1. The AWAIT node
(line 9) corresponds to the resource SERVER and its preceding queue. If a

,
~

c

EXPON(l.O)

SERVER DELAY IN QUEUE
2' EXPON(O.5)

r~;Fll

FIGURE 3.16
SLAM II network diagram, qu~ueing model.

/

1 GEN,A. LAW,M M 1 QUEUE,7/13/1989,1",;,,72;
2 LIM,l,l,lOO;
3

• • 6
7
8
9

10
11
12
13

" 15
16
17
18
19
20

NETWORK;

DONE

,
CNTR

INIT;
FIN;

FIGURE 3.17 .

RESOURCE/SERVER(l),l;

CREATE,EXPON(l.O,l) ,1,1;
AWAIT(l),SERVER;
COLCT,INT(l),DELAY IN QUEUE, ,2;
ACTIVITY,EXPON(0:S,2)"DONE;
ACTIVITY",CNTRi
FREE, SERVER;
TERM;

TERM,lOOO;
END;

SLAM II program, queueing model.

SIMULATION SOFIWARE 261,

Define the resource server

Create arriving customers
Wait for/seize server
Collect delay in queue
Delay for service
Send "dummy" entity to counter
Release server
Customers depart

End simulation after 1000 delays

customer arrives and the SERVER is available, the customer seizes the server
immediately and moves to the next line of the program .. Otherwise, the
customer is placed last in the FIFO queue (file 1). The COLCT node (line 10)
computes and records the delay in queue of each customer as the current time
minus its time of arrival in attribute 1. Strictly speaking, it is not needed here
to compute the average delay in queue, since this will be done automatically by
the AWAIT node. However, the COLCT node is needed in general to obtain
discrete-time statistics (e.g., maximum delay in queue) and is included here.to
illustrate its use. The' 2 at the end of this line creates a duplicate copy of the
entity, with one entity's being Touted to line 11 and the other to line 12 (to be
discussed after line 14). The entity arriving to line 11 corresponds to the actual
customer moving through the system. The ACTIVITY branch there is where
the customer. actually .. experiences its service time, which is generated from an
exponential distribution with mean 0.5 using stream 2. When the customer's
service is completed, the entity is routed to the statement labeled DONE (line
13). At this line, the FREE node causes the entity to release the server and to
move on to line 14 for removal from the system (termination). If there are any
customers in the queue (file 1), then the first of these is removed and seizes the
server in line 9, etc.

The "dummy" entity arriving to line 12 is used to terminate the simula
tion in.the appropriate manner. Il'is immediately. sent to the TERMINATE
node in line 16 (labeled CNTR), which adds one to a counter to indicate that
One more delay has been observed. When this counter reaches 1000 delays, the
simulation is terminated.

The simulation results are given in Fig. 3.18. Note that the average delay
in queue is 0.608· (see "STATISTICS FOR VARIABLES BASED ON OB
SERVATION"), as computed by the COLCT node. (See also "AVERAGE

262 SIMULATION MODELING AND ANALYSIS

S LAM I I SUMMARY REPORT

SIMULATION PROJECT M M 1 QUEUE

DATE 7/13/1'989

CURRENT TIME '. 91 71E+O 3
STATISTICAL ARRAYS CLEARED AT TIME

BY A. LAW

RUN NUMBER

.OOOOE+OO

STATISTICS FOR VARIABLES BASED ON OBSERVATION

1 OF 1

MEAN
VALUE

STANDARD COEFF. OF MINIMUM MAXIMUM NO.OF
DEVIATION VARIATION VALUE VALUE OBS

DELAY IN QUEUE .608E+OO .100E+01 .165E+011. OOOE+OO .589E+Ol 1000

FlLE STATISTICS

FILE
NUMBER LABEL/TYPE

AVERAGE STANDARD MAXIMUM CURRENT AVERAGE
LENGTH DEVIATION LENGTH LENGTH WAIT TIME

1
2

AWAIT
CALENDAR

.662
1.555

RESOURCE STATISTICS

1. 354
.497

9
3

o
2

.608

.285

RESOURCE RESOURCE CURRENT AVERAGE STANDARD MAXIMUM CURRENT
NUMBER LABEL CAPACITY UTIL DEVIATION UTIL UTIL

1 SERVER 1 .55 .497 1 1

RESOURCE RESOURCE CURRENT AVERAGE MINIMUM MAXIMUM
NUMBER LABEL AV~ILABLE AVAILABLE AVAILABLE AVAILABLE

1 SERVER 0 .4452 o 1

FIGURE 3.18
SLAM II outpu~ report, queueing model.

WAIT TIME" for file number 1.) In addition, the time-average number in
queue (see "AVERAGE LENGTH" for file number 1) and server utilization
(see "AVERAGE UTIL" for resource number 1) are 0.662 and 0.55, respec
tively. These statistics are automatically cowputed and written out when the
AWAIT node is used. The "STANDARD DEVIATION~' results in the output
report are not reliable, in general, since they are based on formulas that
assume independent output data, which will not be satisfied in practice (see
Sec. 4.4).

SIMULATION SOFTWARE 263

3.9 COMPARISON OF SIMULATION
LANGUAGES

In this section we briefly discuss and compare the simulation languages
presented in Sees. 3.5 through 3.8. These languages actually have very similar
basic modeling constructs, due to language cross-fertilization over the years.
This can be seen in Table 3.1, where we show the GPSS (H or PC),
SIMAN/Cinema, SIMSCRIPT II.5, and SLAM II/SLAMSYSTEM language
statements for creating new entities, for entities to seize and release resources,
for a passage of time (e.g., a service time), and for collecting discrete-time and
continuous-time statistics.

Many simulations have a queueing orientation, and GPSS and the process
parts of SIMAN and SLAM II have modeling constructs well suited for these
types of problems. SIMAN and SLAM II also have constructs for the more
basic event-scheduling approach. This should allow them to model conveniently
a somewhat larger class of non-queueing-oriented systems than GPSS. On the
other hand, there is some indication that GPSS/H has the fastest compilation
and execution times [see Abed, Barta, and McRoberts (1985)].

SIMSCRIPT II.5 has the most general process approach of the major
simulation languages; thus, virtually any system can be modeled without using
the event-scheduling approach. However, because of its general structure, it

TABLE 3.1
Implementation of basic simulation capabilities

Language

GPSS SIMAN/ SLAM 11/
Feature (11 or PC) Cinema SIMSCRIPT 11.5 SLAMSYSTEM

Create new GENERATE CREATE ACTIVATE CREATE
entities

Seize and SEIZE/ SEIZE/ REQUEST/ AWAIT/
release a RELEASE RELEASE RELINQUISH FREE
resource

Passage of ADVANCE DELAY WORK, ACTIVITY
time (e.g., WAIT
a service
time)

Discrete- QUEUE/ TALLY TALLY COLer'
time DEPART,
statistics - TABULATE

Continuous- QUEUE/ DSTAT ACCUMULATE TIMST"
time DEPART,
statistics ENTER/

\ LEAVE,
TABULATE"

~ Some statistics provided automatically.

N
~ ...

TABLE 3.2
Comparison of the simulation languages

Feature

Event (E) or
process (P)
orientation

Available for
which computer
classes?

Animation for
which computer
classes?

Graphical
model input

Combined discrete-
continuous simulation

Number of
random-number
streams

Standard
probability
distributionsh

Single command for
automatic multiple
replications

Confidence-interval
proceduresl

" Microcomputer.

b Work station.

GPSS/H

P

MICRO,Q WORK,b
MIN/MAIN'

MICRO

No

No

Essentially
unlimited

Ex, N, T, U

No

None

(Minicomputer/mainframe.

J Cinema only.

e Using SLAM IIITESS.

[Microcomputer only.

r Ex~,"!·' :'lble.

GPSS/PC

P

MICRO

. MICRO

No

Ye,

Essentially
unlimited

U

No

R,BM

SIMAN/
-Cinema

E,P

MICRO, WORK,
MIN/MAIN

(MICRO, WORK)'

Yes!

y.,

10'

Be. Ef, Ex,
Ga, L, N,
P,T, V,-W

Ye,

R. BM, STS

------"~----'--~'----

Language

SIMSCRIPT 11.5

E,P

MICRO, WORK,
MINIMAIN

MICRO, WORK

No

y"

10'

Be, Bi, Ef,
Ex, Ga, L,
Nt P, T, V, W

No

None

SLAM II

E,P

MICRO, WORK,
MIN/MAIN

(WORK,
MIN/MAIN)'

Yes~

Ye,

10'

Be,- Ef, Ex,
Ga. L, N,
P,T, V, W

Ye,

(R, BM)'

SLAMSYSTEM

E,P

MICRO

MICRO

Ye,

Ye,

10

Be, Ert Ex,
Ga, L, Nt
P,T, U, W

Ye,

None

(c)

Speea: 25.110 ,

(a)

SIMULATION SOFTWARE 265

may require more lines of code than GPSS, SIMAN, or SLAM II for
"standard" queueing problems. For "complicated" simulation models (particu
larly those that are large or non-queueing-oriented), SIMSCRIPT II.5 is an
attractive choice because it is a general programming language with sophisti
cated control statements and data structures.

In Sec. 3.4 we discussed a number of features to consider when selecting
simulation software. There are two levels at which' such a decision could be
made. At the first level, an organization must decide what languages or
simulators to purchase (or lease) for its general use. The reader should be
aware that there is no simulation package that is convenient and appropriate
for all applications. Thus, organizations that do a large amount of simulation
may want to consider having several simulation packages, to be used for
different types of applications and by people with different backgrounds. At
the second level, an analyst must decide what simulation software to use for a
particular study.

Many important simulation software features are quite SUbjective in
nature (e.g., ease of model development and vendor technical support) and,
thus, will not be used to compare the simulation languages discussed above. As
an alternative, we present in Table 3.2 a comparison of the simulation
languages based on nine quantitative features or factors. This list is not
exhaustive, and whether a feature is important could depend on the particular
application. For example, most simulation studies do not require capabilities
for combined discrete-continuous simulation. In Table 3.2 a simulation lan
guage is said to have a particular feature if it is part of the software usually
distributed by the vendor.

Note in Table 3.2 that SIMSCRIPT II.5 does not explicitly provide
automatic muitiple replications and confidence intervals. However,. this
capability (including replication and batch-means confidence intervals) is avail
able from CACI in free, optional software [see Law (1979)]. Also, multiple
replications can easily be obtained in GPSS/H using a DO loop.

Some additional information on the above simulation languages is given
in Banks and Carson (1985). In particular, they provide GPSS/H, SIMAN,
SIMSCRIPT II.5, and SLAM II programs for a simple. manufacturing system.

3.10 ADDITIONAL SIMULATION SOFTWARE

In addition to the simulation languages discussed in the previons sections, there
are several others of note, namely, INSIGHT [SysTech (1985)], PCModel
[White (1988)], and SIMPLE_1 [Sierra (1989)]. In addition, MODSIM II
[Belanger et a1. (1989)] and SIM + + [Jade (1989)] are recently introduced
simulation languages based on object-oriented programming that promote
greater simulation software reusability and will also run on parallel processors.

A large number of simulation packages have been developed specifically
for manufacturing applications, including AutoMod II, ProModel, SIMFAC-

SIMULATION MODELING AND ANALYSIS

TORY II.S, WITNESS, and XCELL+; these products are described in Sec.
13.3.

NETWORK II.S is a simulator for computer systems and local-area
networks [see Cheung, Dimitriadis, and Karplus (1987) and CACI (1988a)]. Its
basic building blocks are processing elements (e.g., a CPU), transfer devices
(e.g., a bus), storage devices (e.g., a disk drive), and software modules.
COMNET II.S, on the other hand, is a simulator for wide-area telecommunica
tion networks [CACI (1988b)]. Its building blocks are the network topology
(nodes and their connecting links), network traffic (source, destination, and
size of messages), and network operations (strategies for choosing message
routes). Both simulators are distributed by CACI Products Company.

REFERENCES

Abed, S. Y., T. A. Barta, and K. L. McRoberts: A Quantitative Comparison of Three Simulation
Languages: GPSS/H, SLAM, SIMSCRIPT, CompUf. Ind. Eng., 9: 45-66 (1985).

Banks, J., and 1. S. Carson: Process-Interaction Simulation Languages, Simulation, 44: 225-235
(1985).

Banks, J., J. S. Carson, and J. N. Sy: Getting Started with" GPSSIH, Wolverine Software
Corporation, Annandale, Va. (1989).

Belanger, R. F., B. Donovan, K. L. Morse, S. V. Rice, and D. B. Rockower: MODSIM II
Reference Manual, CACI.Products Company, La Jolla, Calif. (1989).

Brunner, D. T., and J. O. Henriksen: A General Purpose Animator, Proc. 1989 Winter Simulation
Conference, Washington, D.C., pp. 155-163 (1989).

CAC! Products Company: NETWORK II.5 User's Manual, La Jolla, Calif. (1988a).
CACI Products Company: COMNET II.5 User's Manllal, La Jolla, Calif. (1988b).
Cheung, S., S. Dimitriadis, and W. J. Karplus: Introduction to Simulation Using NETWORK II.5,

CACI Products Company, La Jolla, Calif. (1987).
Gordon, G .. : The Application of GPSS V to Discrete System Simulation, Prentice-Hall, Englewood

Cliffs, N.J. (1975).
Jade Simulations International Corporation: SIM++ Release 2.0, Calgary, Alberta (1989).
Law, A. M.: Statistical Analysis of Simlliation Output Data !Vitli SIMSCRIPT IJ.5, CACI Products

Company, La Jolla, Calif. (1979):
Law, A. M., and S. W. Haider: Selecting Simulation Software for Manufacturing Applications:

Practical Guidelines & Software Survey, Ind. Eng., 31: 33-46 (May 1989).
Law, A. M., and. C. S. Larmey: Introduction to Simulation Using SIMSCRIPT JJ.5, CACI

Products Company, La Jolla, Calif. (1984).
Minuteman Software: GPSSIPC Reference Manual, Stow, MaSS. (1988).
Pegden, C. D., R. P. Sadowski, and R .. E. Shannon: Imrodllctioll to Simulation Using SIMAN.

Systems Modeling Corporation, Sewickley, Pa. (1990).
Pritsker, A. A. B.: Introduction to Sinmfatioll and SLAM JI, 3d ed., Halsted, New York (1986).
Russell, E.,.C.:· Building Simfllation Models with SIMSCRIPT IJ.5, CACI Products Company, La

Jolla, Calif. (1983).
Schriber, T. ,j.: Simulation Using GPSS, John Wiley, New York (1974).
Schriber, T. J.: All Introduction to Simulation Using GPSSIH. John Wiley, New York (1990).
Sierra Simulations & Software: SIMPLE_l Version 4 Reference Manual, Canaan, N.H. (1989).
SysTech, Inc.·: INSIGHT User's Maiwal, Indianapolis, Ind. (1985).
White, D. A.: PCModel User's Guide, Simulation Software Systems, San Jose, Calif. (1988).

