
Chapter 3 

Generating Uniform Random 

Variables 



Generating Uniform Random Variables 

 

In any kind of simulation, we need data, or 
we have to produce them. Especially in 
Monte Marco simulation we have to use 
random number that fits to real data as 
one consider the probability density 
function (pdf).  

Fro example, I’ll give you and example that 
we need to used a random number. 



The randomized response techinque 

In conducting surveys of individuals regarding an 

embarrassing question such as driving, sex, tax, 

and drugs, we make the following procedure: 

 E : embarrassing question (driving offence) 

 N : Non-embarrassing  question that we know 

positive (do you like response with probability p 

among this population) 



 0 : Random digit simulator with  

probability :  to answer N  

 1 : Random digit simulator with  

probability :  to answer E 

 

 Of course the interviewer does not see 

the random digit . So if answer to 

question is yes it is not embassing  for 

interviewee.  
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 Even 45 % of survey said yes, but , we 

can see that no positive response is for 

embarrassing question .  
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Form this equation one can estimate  when we 
know  and  and we can find  form the survey.  

 So, here we see how a random number is useful 
to conduct this problem. 

In the above example, we can use a random 
number with any distribution. However, if we 
have a supply of  U(0,1) (uniform random 
number), we can generate any distribution 
random number.  



Dice and Machines 

The simplest random number generators are coins, dice 
and bags of colored balls.  

Thus in the RRT example above, the interviewee could be 
given a well-shaken bag of balls. 

 : white balls with probability  to answer N question. 

 : Black balls with probability  to answer E question. 

 Other machines are used in games, such as roulette and 
lotteries.  

 A fair coin is tossed four times. If we record a head as 
“0” and a tail as “1”, then the result of the experiment is 
four digits, abcd, for example 0110, so we can generate 
a random number: 6 



In our example : 

0110 We can reject a number when it is larger 
than 9. 

This is a simple method to generate a random 
number with uniform distribution. 

Using a physical device such as dice or coin to 
generate random digits, one has to test the 
generated random number to ensure its 
randomness. 

If dice or coin are biased, then the number may not 
be a true random number. 

dcbaR  222 23



 By reading the last three digits of 

successive telephone numbers directory, 

is another generator of random numbers.  

 Large scale simulations are conducted by 

using computers. 

 Isida in 1982 presented a compact 

physical random number generator based 

on the noise of a Zener diode. In modern 

had- calculator now we have RND button 

for generating U(0,1). 



Pseudo-Random Numbers : 

By using a recursion formula such as : 

                                                    for        

We can  generate a random-like numbers which 
are generated one after each. 

We say random-like because they were generated 
by a certain formula. We call them a Pseudo-
random number. They are pseudo, because by 
selecting a “seed”                     , all numbers of 
sequence are determined.  

5

1 )( nn uofpartfractionalU   0n

10 0  u



They are most suitable for use on computers and 

calculators. Their properties could be 

investigated mathematically. If the result of tests 

are satisfied . 

Then additional test is not necessary. 

By applying the same seed, se can generate the 

same sequence, which is useful for some 

application. 

This ‘re-run’ facility is not of course possible with 

physical generators such as coin or dice.  



Congruential  Pseudo-Random 

Number Generators : 

An alternative mathematical representation of 
above formula is : 

                                                       for        

In general, the recursion formula is : 

                                                       for                   

           : is an integer called seed. 

 a, b, m are integer constants. 

When                   : called “multiplicative” 

When                   : called “mixed” 
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 By setting            , we can generate Formula (1) 
may not give a true random number, however 
(2) is more reliable. 

 Example:  

               a=1573, b=19, m=1000 

 

 

 etc. 

 for computer arithmetic,  is commonly used. 

 “m” should be large number. Because the 
formula (2) can produce no more than m 
different number before the cycle repeats itself. 
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 The maximum possible cycle length m is 
obtained if and only if the following three 
conditions are hold: 

1. b and m have no common factors other 
than 1. 

2.           is a multiple of every prime 
number that divides m. 

3.           is a multiple of  4 if m is a multiple 
of 4. 

If            , then a=4c+1, b= any odd positive 
number. 

If              , for multiplicative generator the 
cycle length of  may be obtained. 
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Wichmann man Hill in 1982 present a 

generator with a cycle length greater than. 

If one uses 1000 numbers/second, it 

would take more than 800 years for the 

sequence to repeat. 

The choice of parameters a, b, m should be 

such that the generated successive 

numbers have small correlation. 

 



Greenbeger has shown that an approximation to 

the correlation between  and  is given by: 

 

 

Two examples are: 

 

 

 
But by choosing a, b, m to ensure small p can result in a poor generator 

cycle.Any way, it is worthwhile to choose constants a, b, m in order 

to  have good generator, choosing both, full cycle and randomness 

test. 
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 Also, in generating pseudo random number, by computer, 
one can has to consider the arithmetic involved in 
operating the formula, with round off error. 

 The correlation between  and  can be large more 
depending as we can see in the following example: 
(multiplicative) 

 EX:  )(mod51 mxx ii 

This formula can be written as : 

 So, there are fine lines for pair (        ,      ), 

 Because   

 The larger, the m, the sequence will remain on one line 

more, before moving to another line.  
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If 

 

 

 

 

 

So, each time the generated number is on a 
different line (so we have less dependency).  
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 Now, if         but m=1000 (which is a big value) 

Then  

 

 

 

 

So, always are located on line And after the 

sequence is degenerated into a simple alternation. 
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In mixed congruential generator of the following 

example: 

 

We have full cycle of length 1000. (Fig 3.2) 

Since in this generator, we can see a kind of 

pattern, that may show some dependency, 

we prefer to shuffle them before use.  

After shuffling, the result is shown in Fig. 3-2 

that shows randomness.  
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Other method for pseudo-random number 

generator is given by Miller and Prentice (1968), 

for instance, use the third-order recurrence  

 

p  is a prime number  

 Computer word length dependency for 

determining modulus m is not a desirable 

feature, as difficult for reproducing. 

 An alternative approach is given by Wichmann 

and Hill (1982) who combine three multiplicative 

of the individual cycle-length. 
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A portable generator, with cycle-length  is 

obtained. As well as in FORTRAN and 

HP-67 hand calculator. 
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In all kind of simulation, it’s important to specify the 

algorithm for random number. The result of 

simulation should be verified using different 

generator of random number. 

 In minimal BASIC, we have two statements: 

10  RANDOMIZE 

20  U=RND 

The first statement select a seed in a random 

fashion. Without that, the sequence is always 

the same. 



Chapter 4 

Particular Methods for Non-

Uniform Random Variables 



Here we want to use some transformation in order 

to convert uniform random variables into other 

distribution.  

 By using control limit theorem, we can 

convert the uniform distribution to normal 

distribution. 

If we simulate n independent U(0,1) random 

numbers ,                           then  
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Then as             the distribution of N tends to 

be a normal distribution. 

If        , N has a triangular distribution. 

If        , N has a nice bell-shaped distribution. 

With n=12, since                 and  

Then                   is approximately normal 

random variable with  

A BASIC program is given in Fig.4.1 which 

is very simple. 
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The Box-Muller Method: 

If       and        are two independent, 

Then in 1958 (Box abd Muller) showed that  

 

 

 

are two independent  random variable 
(exactly). 
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 If we have two      ,      with          and define 

point  (    ,    ) in Cartesian plane (coordinate), 

then in the polar coordinate we have:  

 

 

              are two independent variables with     

having             distribution and  with     

exponential distribution of mean 2.  

Then to simulate     we need take           and to 

simulate     we take                 . 

So, from            we go to generate                   . 

 

The BASIC program is given in Fig.4.1 
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The Polar Marsaglia Method:  

If          then: 2U is U(0,2)  and V=2U-1 is V(-1,1) 

Then specify a point at random in the sequence with : 

 

)1,0(U

R


1V

2V

2

2

2

1

2 VVR 

1

2tan
V

V




By repeating of selection of  such point and 

rejection of points outside unit circle, the polar 

coordinates (        ) are independent with    has                                                       

               and     has.  

So this pair is the same as required in Box-Muller 

method.  

 

 

So a pair of      ,     are given by,  
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If :  

 

 
 

 

 

The rejection proportion is  

A BASIC program for polar Marsaglia (Marsaglia and Bray 
1964) is given in Fig.4.3. and is used in IMSL routine 
GGNPM . 
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Exponential variables 
Random variables with exponential and gamma 

distributions are frequently used to model 

waiting times in queues of various kind. 

The simplest way to produce an exponential PDF 

of       for         is to set :  

Where: U(0,1) 

If :    

Then Y has exponential p.d.f of  
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Gamma variates  
To produce Gamma distributed random variables, 

first we choose                   with p.d.f           for  

Then :  

has a Gamma                 distribution  

Then, to generate Gamma from uniform 

distribution, we set: 

 

Where                are independent U(0,1).  

We can also write : 
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Chi-square variables 

For Chi-square        distribution, we simply set  

For m, even, we use the above approach. 

For m , odd, we can obtain           , at frist, 

By :  

Then adding to it , where N is an independent 
N(0,1) normal random variable. 

Both NAG and IMSL computer package use 
convolutions of exponential p.d.f in their routine 
to simulate of Gamma and Chi-square random 
variables. 
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Binomial Variables 

A binomial             random variable X can be written 
as: 

 

Where, the     are independent Bernoulli random 
variables, each taking the values            with 
probability p , or , with probability (1-p). 

Thus to simulate an X, we need just to simulate n 
independent U(0,1) random variables,                    , 
and set           if             and set           if            . 

In IMSL routine, and GGBN for n<35, re-use of 
uniform random variable is employed  
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Belles (1972) simulate B(n,p) by simply count how 
many of      are less than p, (for n>35). 

 If n is large, we can first ordering the {    } and 
them observe the location of p within the 
ordered samples. 

 For n=7 and p=0.5 we denote the ordered 
samples {    } 

 

 

 

 

 In this example X=3 as a realization of B(7,    ). 
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If we write U in binary form to n places, the 

probability of 0,1 is     . Then we add number of 

1 to generate of B(n,   )=9. 

EX:     =0.10101011100101100 

To generate B(n,   ), we generate another 

independent  

U(0,1):     = 0.10101101100110101 

Then take place-by-place multiplication of the 

binary digits  

0.10101001100100100 

X=7 with B(17,   ) 
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14.4.2 Poisson variates 

 If Ei is random variables with exponential  

Distribution: λ=e-λx  then Sk  =Σ   i=1  
k  Ei   has 

Γ(k,λ) distribution. If Sk  <=1<Sk+1  then K has 

Poisson distribution with λ. 

S1=E1, if S1>1 then K=0 otherwise; 

S2=E1+E2, now if S2>1 then K=1, and so on. 

The Basic program is shown in Fig.4.4. 
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Chapter 5 

General Methods for Non-

Uniform Random Variables 



 In this chapter, we are presenting general 

   methods to generate random numbers with 

   any distribution by: 

 

 Table-Look-Up for Discrete Random 

Numbers 

 Table-Look-Up for Continuous Random 

Numbers 

 

 

 



 

Table-Look-Up for Discrete  

Random Numbers 

 
 Suppose X is a random number that takes 

    0,1,2,3… with: 

Pi=Pr[X=i], X could be binomial or Poisson etc. 

To simulate X with Pi, let’s U(0,1), then: 

Set X=0 if  

Set X=j if                        for j>=1 

 

 

 


 



1

0 0

j

i

j

i

ii pUp

00 pU 



 As it is shown in the figure U is mapped to 

(0,1) depending on the place of mapping 

we can obtain the value of X. 

   If                            Then: X=2 

 

 U 

 

  0     p0          p1           p2                                   1 

   This  is general form for simulating Bernoulli 

random variables. 

 

 

 
 


1

0

2

0i i

ii pUp



 We see why X=i with probability pi as 

below: 

Since we have: 

 

 

Then: 
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Example 5.1 

 To simulate a random variable X with 

Geometric distribution: 

 

Then: 

Thus: X=j 

 If:    

Or:       
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 U has U(0,1) uniform distribution, so does 

(1-U), then: 

 

Because: loge (1-p)<0, then X=j if: 

 

 

Thus X can be obtained as follows: 

 

 

Where [y] means integer part of y. 
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 This example is unusual in that the cumulative sums 

of probabilities have a simple form.  

 The next example is far more typical. 

 EXAMPLE 5.2 

 If X has a Poisson distribution of  λ＝２, its CDF 

is given below to four places of decimals:  
   

  

      i                   0          1          2         3           4         5         6         7          8           9 
 

Pr(X <= i)       0.1353     0.4060    0.6767    0.8571     0.9473    0,9834   0.9955    0.9989    0.9998      1.000 



 Using this table and the table-look-up 

algorithm, the following eight U (0, I) random 

variables can be seen to give rise to the 

indicated values of X: 
                          U                                                 X                 

   

                    0.0318                                              0 

                    0.4167                                              2 

                    0.4908                                              2 

                    0.2459                                              1 

                    0.3643                                              1 

                    0.8124                                              3 

                    0.9673                                              5 

                    0.1254                                              0  



5.2  The 'table-look-up', or inversion 

method for continuous random variables 

  Suppose we wish to simulate a continuous 

random variable X with CDF F(x) i.e.  

F(x) = Pr(X < =x), then we have: X = F-1 (U) 

Then: Pr(X<= x) = Pr(F-1 (U)<= x)  

Since F(x) is CDF, it is monotonic, then: 

Pr(F-1 (U)<=x)=Pr(U<=F(x))=F(x)= Pr(X < =x) 

Therefore: X = F-1 (U) has the required  

Distribution. 



 EXAMPLE 5.3 

 If X has an exponential density with λ 

Then: f(x) = λ e- λｘ  and F(x) = 1- e- λｘ  

To simulate X, we set X = F-1 (U) or U=F(x) 

U= 1- e- λｘ and solve for X: 

This gives: 

 

We can replace 1-U by U. 

This method is used in the IMSL routine  

GGEXN and the NAG routine  GO5DBF 
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