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128 The Chaotic Motion of Dynamical Systems 

6.1 INTRODUCTION 
Most natural phenomena are intrinsically nonlinear. Weather patterns and the turbu­
lent motion of fluids are everyday examples. Although we have explored some of the 
propelties of nonlinear physical systems in Chapter 5, it is easier to introduce some of 
the important concepts in the context of ecology. Our goal will be to analyze the one­
dimensional difference equation 

XI1 +1 = 4rxll (1 - xn), (6.1 ) 

where XII is the ratio of the population in the nth generation to a reference population. 
We shall see that the dynamical properties of (6.1) are surprisingly intricate and have 
important implications for the development of a more general description of nonlinear 
phenomena. The significance of the behavior of (6.1) is indicated by the following 
quote from the ecologist Robert May: 

" ... Its stu(/y does not involve as much conceptual sophistication as does 
elementary calculus. Such study would greatly enrich the student's intuition. 
about nonlinear systems. Not 0111y in research but also in the everyday world 
of politics and economics we would all be betfe,. off if more people realized 
that simple nonlinear systems do not necessarily possess simple dynamical 
properties." 

The study of chaos is currently very popular, but the phenomena is not new and has 
been of interest to astronomers and mathematicians for about one hundred years. Much 
of the current interest is due to the use of the computer as a tool for making empirical 
observations. We will use the computer in this spirit. 

6.2 A SIMPLE ONE-DIMENSIONAL MAP 

Many biological populations effectively consist of a single generation with no overlap 
between successive generations. We might imagine an island with an insect population 
that breeds in the summer and leaves eggs that hatch the following spring. Because the 
population growth occurs at discrete times, it is appropriate to model the population 
growth by difference equations rather than by differential equations. A simple model 
of density-independent growth that relates the population in generation n + I to the , 
population in generation n is given by 

P,, + I =aP", (6.2) 

where PI1 is the population in generation It and a is a constant. In the following, we 
assume that the time interval between generations is unity, and refer to 11 as the time. 

If a > I, each generation will be a times larger than the previous one. In this 
case (6.2) leads to geometrical growth and an unbounded population. Although the 
unbounded nature of geometrical grbwth is clear, it is remarkable that most of us do 
not integrate our understanding of geometrical growth into our everyday lives. Can a 
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bank pay 4% inl crcs t each yea r indeflnitely1 C nn Ih e worl d 's hum'lJ1 ]Jo]luintion grow at 
a constant rnt e forever? 

It is nntural to formulnte a more reali s tic model in which the popu lati on is bounded 

by the finite carrying capncity of its env ironme nt. A simple model of dens it y-dependen t 
growth is 

(6.3) 

EguaLion (6.3) is nonlinear due to th e presence of the gundrali c term in P". The linear 
term represents Ule nntural growth of the population ; the quadrati c teml represents a 
redu ction of thi s natural growth caused, for example, by overcrowding or by the spread 
of di sease. 

It. is conveni ent to rescale the population by lelling P" = (a /b) x" and rewriting 
(6 .3) as 

X,,+ I = ox,,(1-x,,). (6.4) 

The replacement of P" by x" changes the system of units used to define the various 
parameters . To w rite (6.4) in the form (6.1), we define the parameter r = 0 / 4 and obtain 

X,,+I = I(x,,) = 4rx" (I - x,,). (65 ) 

The rescaled form (6. 5) has the desirabl e feature that its dynamics are determined 
by a single control parameter r. Note that if }On> I, X,,+I wi ll be negative. To avoid 
thi s unphy sical feature , we impose the conditions that x is restric ted to the interval 

o ::::: x :::::J. and 0 < r < I. 
Because the function I (x) defined in (6.5) tran sfomls any point on the one­

dimet.lsipnal interval [0, l) into another point in the same interval, the fun ction I is 
called a one-dimensional mOl~. The fonn of I(x) in (6.5) is known as the logistic map. 
The logi sti c map is a simple example of a dynomicol system , that is, a ci"e tennmIS!IC, 
mathematical prescription for finding the future state .of a system. 

The sequence of values Xo , XI , X2, ... is call ed the IrajeclOrv or the orbit. To check 
your understanding, suppose tiiat the initial condition or seed is Xo = 0.5 and r = 0.2. 
Use a calculator to show that the traj ectory is XI = 0.2, X2 = 0.128, Xl = 0.089293, ... 
In Fig. 6.1 the first thirty iterations of (6.5) are shown for two values of -;. -.--

Program i t erate_map computes the trajectory for the logistic map (6.5). The 

traj ectory is li sted in window I and p lotted in window 2. 

PROGRAM i t erate_map 
CALL set_up_windowse#1,#2) 
DO 

CALL initial ex,r,#1,#2,flag$) 
CALL map ex,r,#1 ,#2,flag$) 

. LOOP until flag$ = "st op" 
END 

! iterate l ogistiC map 
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Fig. 6.1 (a) Time series for r = 0.2 and Xo = 0.6. NOle that the slable lixed poinl is 
x = O. (b) Time series for r = 0.7 mrd"i :o'= 0.1. Note the initialtransienl 
behavior. The jines between q1C points are a gllide to th~ eye. 

SUB initial(xO,r,#1,#2,~lag$) 
\,INDoW #2 
INPUT prompt "growth parameter (0 < r <= 1) ". r 
LET xO = 0.3 
CLEAR 
BOX LINES 0 ,1000 ,0,1 
SET CURSOR 1,2 
PRINT "r ="; r 
LET fl ag$ = ,'" 

END SqB 

SUB set_up_windows(#1,#2) 
OPEN #1: screen 0,1,0,0.5 
OP~N #2: screen 0,1,0.5,1 
LET nmax = 1000 
LET margin = O.O l*nmax 

! text 

! graphics 

SET WINDOW -margin,nmax+margin,-0.01,1.01 
END SUB 

SUB map(x , r , #1,#2,flag$) 
LET iterations = ° 
DO 

LET x = 4*r*x*(1 - x) ! iterate map 
LET iterations = iterations + 1 ! number of iteration~ 
WINDOW #1 
SET COLOR "black/white" 
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PRINT USING "It. 111/11111111" : x; 
! period doubling implies convenient to start new line 
! every 2~n iterations, where n = 2 or 3 . 
IF mod(iterations,S) • 0 then PRINT I new line 
WINDOW #2 
SET COLOR "red" 
PLOT iterations,x 
IF key input then CALL change (ttl, 112, flag$) 

LOOP until flag$ = "stop" or flag$ = "change ll 

WINDO\, #1 
PRINT 
PRINT "number of iterations 

END SUB 

SUB change(1I1,#2,flag$) 
GET KEY k 

II; iterations 

IF (k • ord("c")) or (k • ord("C")) then 
LET flag$ • "change" 
SET COLOR "black/white" 

ELSE' IF (k • ord( "s")) or (k ord("S")) then 
LET flag$ • "stop" 

END IF 
END SUB 
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In Problems 6.1 and 6.3 we use Progr am map to explore the dynamical propert ies of 
the logistic map (6 .5). The program uses the GET key statement so that the key 'c' can 
be pressed to change the value of r and the key's' can be pressed to stop the program. 

ProBlem 6.1 Exploration of period-doubling 

a. Explore the dynamical behavior of (6.5) with r = 0.24 for different values of 
.1'0. Show th at x = 0 is a srable fixed point. That is, for suffic ientiy -s-mall r, 
the iterated values of x converge to x = 0 independently of the value of .1'0. If 
x represents the popu lation of insects, describe the qualita tive behav ior of the 
population. . 

b. Explore the c!ynamical behavior of (6 .5) fo r r = 0.26, 0.5, 0.74, and 0.748. A 
fixed poini is unstable if for almost all Xo near the fixed point, the traJectones 
diverge from it. Verify that x = 0 is an unstable fixed point for r > 0.25. Show 
that for the suggested values of r, the iterated va lues of x do obt change after 
an initial transient: that is, the long time dynamical behavior is period 1. In 
Appendix 6A we show that for r < 3/4 and for Xo in the interval 0 < .1'0 < 
I, the trajectories approach the al/raClOr at x = I - 1/ 41'. The set of initial 
points that iterate to the attractor is called the basiiiOflli'e attractor. For the 
logistic map, the interval 0 < x < I is the basin of attraction of the attractor 
.1'=1-1/41' . 

. - . .. . -
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c. Explore the dyn amical properties of (6.5) for r = Q.752, 0.76, O.S, ,mel 0.862. 
For r = 0.752 and 0,862 approximately 1000 iterations arc necessary to ob tain 
convergent resu lis. Show tha t if r is increased sl ightly beyond 0,75, x oscil­
lates between two values after an initial u',msient behavior. Tliat is, ins tead or 
;[ st able cycle of period I corresponding 1.0 one fixed point , the system has a 
swble cycle of period 2. The val ue of r ;11 which the sing le fi xed point x' spli ts 
or bifllrcales into two v;liues XI' and X2* is r = b l = 3/4. The pai r of x values, 
XI* ancl X2*, rorm a stable al/ractor of period 2. 

d. Describe an ecological scenario of an insect popula tion Ula t ex hibits dynami­
ca l behavior sim ilar to that observed in pari (c). 

e. What arc the stable auractors of (6.5) for r = 0.863 and 0.88? What is the 
correspond ing period? 

r. Wha t are the s table atlractors and correspondi ng periods for r = 0.89, 0.891, 
and 0.8922? 

Another way to determine the behavior of (6.5) is to plot the valu~s of x ~ 
fu nction of r (see Fig. 6.2). The iterated values of x arc p loued after the initial transient 
behavior is discarded. Such a plot is generated by Program bifurcate. For each value 
of r, the firs t ntransient values of x arc computed "bl1t not plotted. Then the next 
nplot values of x are plotted, w ith the fi rst half in red and the second half in blue. Th is 
process is repeated for a new value of r until the desired range of r values is reached. 
A typical val ue of ntransient shou ld be in the range of 100-1000 iterations. The 
magnitude of np l ot shou ld be at least as large as the longest period that you wish to 
observe. 

PROGRAM bifurcate 
! plot values of x for different values of r 
CALL initialex,r,rmax.nvalues , dr,ntransient,nplot) 
FOR ir = 0 to nvalues 

CALL output(x,r,ntrans i ent,nplot) 
LET r = r + dr 

NEXT ir 
! maximum value of r done separately to avoid r > 1 
CALL output(x,rrnax,ntransient,nplot) 
END 

SUB initial(xO,rO,rmax,nvalues,dr,ntransient .nplot) 
INPUT prompt lIinitial value of control parameter r 
! important that r not be greater than 1 
INPUT prompt II max imum value of r = II: rmax 
I suggest dr <= 0.01 
INPUT prompt It i ncremental change of r = ": dr 

II. rO 

I NPUT prompt "number of iterations not plotted = 1': ntransient 
INPUT prompt IInumber of iterat i ons plotted = II : nplot 
LET nvalues (rmax - rO)/dr ! number of r values plotted 
LET nvalues = int(nvalues) 
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LET xO = 0.5 
CLEAR 

~J;1i.tial value 
1-:'· 1 

LET xmax = 1 maximum value of x 
LET'mx = O. 05*xmax margin 
SET WINDOI, rO-dr, rmax+dr, -mx, xmax + mx 
BOX LINES rO,rmax,O,l 

END SUB 

SUB output (x, r ,ntransient, llplot) 
DECLARE DEF f 
SET COLOR "black/white" 
SET CURSOR 1, 1 
PRINT " 
SET CURSOR 1, 1 

" . erase previous output 
~. 

PRINT "r =11; r 
FOR i = 1 to ntransient 

LET x = fCx,r) 
x values not plotted 

NEXT i 
SET COLOR "red" 
FOR i = 1 to 0.5*nplot 

LET x = f(x,r) 
! show different x-values for given value of r 
PLOT r,x 

NEXT i 
! change color to see if values of 
SET COLOR "blue ". 
FOR i = (0.5*nplot + 1) to nplot 

LET x ="f(x,r) 
........ ·;~~I;..OT r IX 

NEXT i 
END SUB 

x have converged 

1 

.... 

Problem 6.2 Qualitative features of the logistic map 
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a. Use Program bifurcate to identify period 2, period 4, and period 8 behavior 
as in Fig. 6.2. It might be necessary to "zoom in" on.!,l portion of the plot. How 
many period-doublings can you find? t·.· , 

b. . Chan~¥' the sc~I~}o that you can follow ,the iterations of x from period 4 to 
. peri'od 16 behav'i'iir. How does the plot 10~,k on !hi's s.cale in compmison to the 
original scale? fi - ~ 

c. Describe the shape of the trajectory near the bifurcations from period 2 --+ 

period 4, period 4 --+ 8, etc. These bifurcations are frequently called pitchfork 
bifurcations. 
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Fig.6.2 Bifurcation diagram of the logistic map. For each value of 1', the iterated values of 
x" are plotted after the first 1000 iterations are discarded. Note the transition from 
periodic to chaotic behavior and the narrow windows of periodic behavior within 
the region of chaos. 

The final state or bifurcation diagram in Fig. 6.2 indicates that the period-doubling 
behavior ends at I' '" 0.892. This value of r is known very precisely and is given by r -
roo = 0.892486417967 ... At I' = 1'00, the sequence of period-doublings accumulate to 
a trajectory of infinite period. In Problem 6.3 we explore the behavior of the trajectories 
forI' >1'00' 

Problem 6.3 The chaotic regime 

a. For I' > roo, two initial conditions that are very close to one another can yield 
very different trajectories after a small number of iterations. As an example, 
choose I' = 0.91 and consider Xo = 0.,.5 and 0,5001. How many iterations are 
necessary for the iterated values of x to differ by more than ten percent? What 
happens for I' = 0.88 for the same choice of seeds? 

b. The accuracy of floating point numbers retained on a digital computer is fi· 
nite. To test the effect of the finite accuracy of your computer, choose I' = 0.91 
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LET xO = 0.5 
CLEAR 
LET xmax = 1 

initial value 

maximum value of x 
LET' mx = O. 05*xmax margin 
SET WINDOW rO-dr,rmax+dr,-mx,xmax + mx 
BOX LINES rO,rmax,0,1 

END SUB 

SUB output(x,r,ntransient,nplot) 
DECLARE DEF f 

SET COLOR "black/white" 
SET CURSOR 1,1 
PRINT" " . 
SET CURSOR 1,1 
PRINT llr =11; r 

FOR i = 1 to ntransient 
LET x = f(x,r) 

NEXT i 

SET COLOR "red" 
FOR i = 1 to 0.5*nplot 

LET x = f(x,r) 

erase previous output 

""" 
x values not plotted 

! show different x-values for given value of r 
PLOT r,x 

NEXT i 

! change color to see if values of x have converged 
SET COLOR "blue ", ~ 

FOR i = (0.5*nplot + 1) to nplot 
LET x = f(x,r) 

.,.. ... ~.£l;..OT r,x 
NEXT i 

END SUB 

DEF f(x,r) 

Problem 6.2 Qualitative features of the logistic map 
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a. Use Program bifurcate to identify period 2, period 4, and period 8 behavior 
as in Fig. 6.2. It might be necessary to "zoom in" on.a portion of the plot. How 
many period-doublings can you find? 

b. Change the scal~ so that you can follow the iterations of x from period 4 to 
period 16 behavio·r. How does the plot look on this scale in comparison to the 
original scale? --

c. Describe the shape of the trajectory near the bifurcations from period 2 -7 

period 4, period 4 -7 8, etc. These bifurcations are frequently called pitchfork 
bifurcations. 
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Fig. 6.2 Bifurcation diagram of the log istic map. For each value of r I the iterated values of 
x" are plotted after the first 1000 iterations are discarded. Note the transition from 
periodic to chaotic behavior and the narrow windows of periodic behavior wi thin 
the region of chaos. 

The final state or bifurcation diagram in Fig. 6.2 indicates that the period-doubling 
behavior ends at I" "" 0.892. This value of I" is known very precisely and is given by.L-= 
1"00 = 0.8924864J7967 ... At r = roo, the sequence of period-doublings accllmulate to 
a trajectory of infinite period . In Problem 6.3 we explore the behavior of the trajectories 
for I" > 1"00. 

Problem 6.3 The chaotic regime 

a. For I" > 1"00, two initial conditions that are very close to one another can yiel e 
very different trajectories after a small number of iterations. As an example 
choose I" = 0.91 and consider Xo = O.~ and 0.5001. How many iterations an 
necessary for the iterated values of x to differ by more than ten percent? Wha 
happens for I" = 0.88 fo r the same choice of seeds? 

b. The accuracy of fl oating point numbers retained on a digital computer is Ii 
nite . To test the effect of the finite accuracy of your computer, choose I" = 0.9 
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and .1'0 = 0.5 and compUie the trajec tory fo r 200 iter;Hions. Then modify your 
program so thai after each it eration . the ope r;lIi ons x = x/ l0 foll owed by 
x = 10 " x are performed . This combinati on of operalions trunca tes the last 
digit that you r computer reta ins. f\ sim ilar effec t can be obtn incd by usin g the 
True B.A.S1C truncate(x ,n ) function, which trunca tes the variable .r to /I 

dec imal places. Compute the trajectory again and compare your result s. Do 
you find the same di screpancy for r < roo? 

c. What are the dynamical propert ies for r = 0. 958? em you Ilnd other wi ndows 
of periodic behavior in the interval roo < r < I ~ 

6.3 PERIOD-DOUBLING 

The results of the numeri cal experiments that we did in Secti on 6.2 have led us to 
adopt a 11ew vocabulary to describe our observations and probably have convinced you 
that the dynamical properties of simple deterministic nonlinear systems can be quite 
compl icnted. 

To gain more insight in to how the dynamical behavior depends on r, we introduce a 
simple graphi cal method fo r iterating (6.5). In Fig. 6. 3, we show a graph of [(x) ve rsus 
x fo r r = 0.7. A diagonal line corresponding- to y = x intersects the curve y = I(x) 
at the two fixed poin ts x* = 0 and x' = 9/14", 0.642857. If .1'0 is not one of the fixed 
points , we can find the traj~ory in the foll owing-;nm;-ner. Draw a vertical line from 
(x = xo , y = 0) to the intersection with the curve y = I(x) at (xo. Yo = f(xo)). Next 
draw a horizontal line from (xo, Yo) to the intersection with the diagonal li ne nt ( 1'0, )'0) · 

On this diagonal line y = x , and hence the value of x at thi s intersection is the first 
iteration XI = Yo. The second iteration X2 can be found in the same way. From the point 
(XI, Yo) , draw a vertical line to the intersection with the curve y = f(x). Keep)' fixed at 
Y = YI =.,j{XI) , and draw a horizontal line until it intersects the di agonal line; the value 
of X at thi s in tersection is X2 . Further iterati ons can be fou nd by repeating this process. 

This graphical method is illustrated in Fig. 6.3 for r = 0.7 and Xo = O.9. lfwe begin 
with any Xo (except xo = 0 and Xo = I) , continued iterati ons will converge to the fixed 
point x* "" 0.642857. Repeat the procedure shown in Fig. 6.3 by nand and convince 
yourself thaI you understand the graphical solution of the iterated values of the map. 
For this val ue of r, the fixed point is stable (an attractor of period I). In contrast, no 
matter how close Xo is to the fixed poin t at X = 0, the iterates diverge away from it, and 
this fi xed point is unstable. 

How can we explain the qualitative difference between the fi xed point at x = 0 
and x* = 0.642857 for r = 0.7? The local slope of the curve y = f( x) determines the 
distance moved horizontally each time f is iterated. A slope steeper than 45° leads to a 
value of x further away from its initial value. Hence, the criterion for the stability of 
a fixed point is that the magnitude of the slope at the fixed point must be less than 
45°. That is, if Idf(x)/dxlx=x' is less than unity, then x* is stable; conversely, if 
Idf(x)/dxl.r=x' is greater than unity, then x * is unstable. lnspecti on of I(x) in Fig. 6.3 
shows that x = 0 is unstable because the slope of f(x) at x = 0 is greater than unity. In 

~?---_/ 
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Fig. 6.3 Graphical representation of the iterati on of the logistic 
map (6.5 ) with r = 0. 7 and Xo = 0.9. Note that 
the graph ical soluti on converges to the fi xed point 
x' '" 0.643. 

contrast, the magnitude of the slope of f(x) at x = x' is less than unity and the fixed 
point is stable . In Appendi x 6A, we use similar analytical arguments to show that 

and 

x * = 0 is stable for 0 < r < 1/ 4 

I 
x' = I - - is stable for 1/ 4 < I' < 3/ 4. 

41' 

Thus for 0 < I' < 3/ 4, the eventual behavior after many iterations is known . 

(6.6a) 

(6.6b) 

What happens if I' is greater than 3/4? From our observations we have foune 
that if I' is slightly greater than 3/4, the fixed point of f becomes unstable and give~ 

birth (bifurcates) to a cycle of period 2. Now x returns to the same value on I) 
after every second iteration, and the fixed points of f(J (x)) are the attractor: 
of f(x) . In the following, we adopt the notation f(2) (x ) = f (J(x)), and writ, 
f(II)(X ) for the 11th iterate of f(x). (Do not confuse f (II) (X) with the nth derivativ, 
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of fex).) For c~ ampl e , th e seeon el iterate /(2)ex) is given by the fo urth -o rele r poly­
nomial: 

f (2)(X) = 16r2 ",e l - x)[ 1 - 41'1'(1 - x)] 

= 16r 2x[-4rx 3 -I- 8rx 2 
- (I -I-4r)x -I- I]. (67) 

What happens if we increase I' s till fu rther? Eventually th e magnilllde of the slope 
of the fixed points of f(2)(x) exeeeels unity ;md the fixed points of /(' )(.r ) become un ­

stable. Now the cycle of f is perioel4, an d we can stud y th e stabi lity of the fix ed po int s 
of the fourth iterate f t4 )(x) = /(2) ( f(2)(x)) = f(f(IU(x))) . These fixed po int s al so 

eventuall y bifurcate, and we are led to the phenomena of period-dol/bling as we ob­
served in Problem 6.2. 

Program gr aph _sol im plements the graphi cal analysis of fix). The n th order it­
erates are defined in DEF f (x , r, iterate) using recursion. (The quantity iterate 
is 1, 2, and 4 for the fun cti ons fix), f(2)(x), and f(4)(X) respect ively.) Recurs ion is 
an idea that is simple once you understand it, but it can be difficult to grasp the idea 
initially. One way to und erstand how recursion works is to think of a stack, such as a 
stack of trays in a cafeteria. The first time a recursive function is called , the func ti on 
is placed on the top of the stack. Each time the function calls itse lf, an exact copy of 
the func ti on, with possibly different values of th e input parameters, is placed on top of 
the stack. When a copy of the function is fini shed, th is copy is popped off the top of 
the stack. To understand the function f (x, r ,i terate), suppose we wa nt to compute 
f (0 .4,0.8,3). First we write f (0.4,0 . 8,3) on a piece of paper (see Fig. 6Aa). Fol­
low the statements within the functi on until another call to f (0.4,0.8, iterate ) oc­
curs. In thi s case, the call is to f (0.4,0.8, i terate-l) which equals fCO. 4,0 . 8,2). 
Write f (0 . 4,0 . 8,2) above f(0.4,0.8,3) (see Fig. 6Ab). When you come to the 

f(l) f( l ) 

f(2) f(2) f(2) ...... f (2) 

f(3 ) f(3) f (3) f(3) f(3) ...... f(3) ~ answer 

(a) (b) (c) (d) (e) (fl 

Fig.6.4 Example of the calcul ation of f (0 .4,0.8,3) using the recursive 
function defined in Program graph_sol. The number in each box is 
the value of the variable iterate. The values of x'"' OA and I' = 0.8 
are not shown. The value of f(x, r, 3) = 0.7842 . 
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end of the definition of the function, write down the value of f that is actually n· ,tul11e, 
and remove tile function from the stack by crossing it out (see Fig. GAd). This 
value for f equals y if iterate> 1, or it is the output of the function for iterate = 
Continue deleting copies of f as they are finished, until there are no copies left on 
paper. The final value of f is the value retumed by the computer. Write a minin,ro"ra." 
that defines f (x, r, iterate) and prints the value of f (0.4,0.8,3). Is the answer 
same as your hand cakulation? 

PROGRAM graph_sol 
! graphical so~ution for trajectory of logistic map 
CALL initial(x,T,iterate) 
CALL draw_function(r,iterate) 
CALL trajectory(x,r,iterate) press any key to stop 
END 

SUB initial(xO,r,iterate) 
INPUT prompt "control parameter r = 11: r 
INPUT prompt "initial value of x = 11: xO 
INPUT prompt "iterate of f(x) = u; iterate 
CLEAR 
PRINT "r ""n; r 

END SUB 

SUB draw_function(r,iterate) 
DECLARE DEF f 

LET nplot = 200 
LET delta = 1/nplot 
LET margin = 0.1 

# of points at which function computed 

SET WINDOW -margin,l 
PLOT LINES: 0,0;1,1 

+ margin,-margin,l + margin 
draw diagonal line y = x 

PLOT LINES: 0,1;0,0;1,0 
PLOT 
SET COLOR "l.-ed II 
LET x = 0 
FOR i = 0 to nplot 

LET y = f(x,r,iterate) 
PLOT x,y; 
LET x = x + delta 

NEXT i 
END SUB 

SUB trajectory(x,r,iterate) 
DECLARE DEF f 
LET yO = 0 
LET xO· = x 
SET COLOR IIblue" 
DO 

LET Y = f(x,r,iterate) 

draw axes 
left pen 

PLOT LINES: .0,yO; .O,y; y,y 
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LETxO=y 
LETyO=y 
LET x = Y 

LOOP until key input 
GET KEY k 

END SUB 

DEF f(x,r,iterate) 
I~. iterate> 1 then 

! f defined by recursive procedure 

LET y = f(x,r,iterate - 1) 
LET f = 4*r*y*<1 - y) 

ELSE. 
LET f = 4*r*x*(1 - x) 

END IF 
END DEF 

Problem 6.4 Qualitative properties of the fixed points 

a. Use Program graph_sol to show graphically that there is a single stable 
fixed point of .f(x) for r < 3/4. It would be insu'uctive to insert a pause 
between each iteration of the map and to show the value of the slope at )Ill = 
f(x,,) in a separate window. At what value ofr does the absolute value of this 

. slope exceed unity? Let b l denote the value of r at which the fixed point of 
f (x) bifurcates and becomes unstable. Verify that bl = 0.75. 

b. Describe the trajectory of f(x) for r = 0.785. What is the nature of the fixed 
point given by x = I - 1/41"? What is the nature of tlle trajectory if Xo = 
1- 1/4r? What is the period of f(x) for all other choices of xo? What are 
the numerical values of the two-point attractor? 

c. The function .f (x) is symmetrical about x = ~ where f (x) is a maximum. 
What are the qualitative features of the second'iterate f(2)(x) = f(.r(x)) for 
r = 0.785? Is f(2)(x) symmeuical about x = ~? For what value of x does 
f(2)(X) have a minimum? Iterate X,,+l = f")(;,,) for r = 0.785 and find its 
two fixed points Xl' and X2" (Try Xo = 0.1 and Xo = 0.3.) Are the fixed points 
of j'l2)(X) stable or unstable? How do these values of Xl' and x,* compare 
with the values of the two·point attractor of I(x)? Verify that the slopes of 
1'(2) (x) at Xl" ancix2" are equal. 

d. Verify the following properties of the fixed points of f(2)(x). As r is increased, 
the fixed points of f(2)(X) move apart and the slope of 1(2)(x) at the fixed 
points decreases. \1Ilhat is the value of r = S1 at which one of the two fixed 
points of f(2) equals ~? What is the value of the other fixed point? What is 
the slope of .1'(2\\,) at~\· =~? What is the slope at the other fixed point? As r 
is further incre.ased, the slopes at the fixed points become negative. Finally at 
r = b2 '" 0.8623, the slopes at the two fixed points of f t') (x) equal -I, and 
the two fixed points of f(') become unslnble. (It can be shown that the exact 
value of b, is 1>, = (I + -/6)/4.) 
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e. Show that for r slightJy greater umn b2, e.g.,- r = 0.87, there are four 
fixed points of Ule function f (4 )(x). What is the value of r = s, when one 
ule fixed points equals 4? What are the values of the three other fixed points 
r =S31 

f. Estimate the value of r = b, at which the four fixed points of .r'4) belcorn, 
unstable. 

g. Choose r = S3 and estimate the number of iterations that are necess3I)' for 
trajectory to converge to peJiod 4 behavior. How does this number of iter.tiOllIS: 
change when neighboring values of r are considered? Choose several values 
Xo so that your results do not depend on the initial conditions. 

Problem 6.5 Periodic windows in the chaotic I'egime 

a. If you look closely at the bifurcation diagram in Fig. 6.2, you will see that 
region of chaotic behavior for r > roo is interrupted by intervals of oel·ioelic. 
behaviOl: Magnify your bifurcation diagranJ so that you can look at the inter-. 
val 0.957107:0; r:o; 0.960375, where a peliodic trajectory of period 3 occurs. 
(Period 3 behavior starts at r = (1 + .J8)/4.) What happens to the trajectory 
for slightly larger t, e.g., for r = 0.9604? 

b. Plot the map .r"\x) versus x at t = 0.96, a value of r in the period 3 Window.', 
Draw the Hne y = x and determine the intersections with f(3)(X). (Use Pro­
graJ/J graph_sol without calling SUB traj ectory.) The stable fixed points 
satisfy the condition x* = f1')(x*). Because fl'l(.r) is an eighth-order poly· 
nomial, there are eight solutions (including x = 1). Find the intersections or­
f(3)(x) with y = x and identify the three stable fixed points. What are the 
slopes of f1')(x) at these points? Then decrease r to r = 0.957107, the (ap­
proximate) value of r beJow which the system is chaotic. Dnl\"" the line y = x , 
and determine the number of intersections with ft:') (x). Note that at this value 
of r, the curve .1' = f")(x) is tangent to the diagonal line at the three stable 
fixed points. For this reason, this type of transition is called a 1angent b{filfCa­
liOll. Note that there also is an unstable point at x'" 0.76. 

c. Plot X,,+1 = f")(x,,) versus 11 for r = 0.9571, a value of r just below the onset 
of period 3 behavior. Ho,,".' \"Quld you describe the behavior of the trajectory? 
This type of chaotic motion is an example of i111ermil1t!1Ic.v, that is, nearly 
periodic behavior interrupted by occasional llTegular bursts. 

"d. Modify Program graph_sol so that you Can study the graphical solution of 
X,,+1 = f(3)(x,,) for the S3me value of r as in part (c). Thai is, "zoom in" on 
the values of x near the stable fixed poinls thm you found in pari (b) for r 
in the period 3 regime. Note the three narrow channels between the diagonal 
line y = x and the plot of f(3)(x). The trajectory requires many iterations to 
squeeze through the channeL and we see period 3 behavior during this time. 
Eventually~ tl)e trajectory escapes from the channel and bounces ;lround until 
it is sent into a channel at some unpredictable later time. 
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6.4 UNIVERSAL PROPERTIES AND SElF-SIMILARITY 

In Sections 6.2 and 6.3 we found that the trajectory of the logistic map has remarkable 
properties as a function of the control parameter 1". In particular. we found a sequence 
of period-doublings accumulating to a chaotic trajectory of infinite pedod at ,. = '-00' 

For most values of r > roo! we saw that Ole trajectory is very sensitive to t1le initial 
conditions. We also found "windows" of period 3, 6, 12, ... embedded in the broad 
regions of chaotic behavior. How typical is this type of behavior? In the following, 
we will find further numerical evidence that the general behavior of tile logistic map 
is independent of the details of the form (6.5) of .r(x): 

You might have noticed that the range of r between successive bifurcations 
becomes smaller as the period increases (see Table 6.1). For example, b2 - b l = 
O. I 12398, b3 - ~ = 0.023624, and b, - b, = 0.00508. A good guess is that the de­
crease in bk - bk_1 is geometJic, i.e., the ratio (bk - bk-I)/(bk+'1 - bk) is a constant. 
You can check that this ratio is not exactly constant, but converges 10 a constant with 
increasing k. This behavior suggests that the sequence of values of bk has a limit and 
follows a geomeu-ical progression: 

(6.8) 

where 0 is known as the Feigenbaum number. From (6.8) it is easy to show that 8 is 
given by the ratio 

(6.9) 

Problem 6_6 Estimation of the Feigenbaum constant 

a. Plot .Ik = (bk - bk_l) / (bk+ I - bk) versus k using the values of bk in Table 6.1 
and estimate the value of D. Are the number of decimal places given in 

k b" 

0.750000 

2 0.862372 

3 0.886023 
4 0.891 102 

5 0.892 190 

6 0.892423 

7 0.892473 

8 0.892484 

Table 6.1 Vall1e)'; of the c~lJltrol parameter bk for the onset of the kth bifurcation. Six decimal 
places ;Jfe shown. 



142 The Chaotic Motion of Dynamical Systems 

Table 6.1 for b".sufficient for all the values of k shown? The best estimate 
of 8 is 

8 = 4.669201609102991 ... (6.10) 

The number of decimal places in (6.10) is shown to indicate that 8 is known 
precisely. Use (6.8) and (6.10) and thev.lues of b" to estimate the value of 1"00. 

h. 1n P;·oblem 6.4 we found that one of the four fixed points of f(4)(X) is at 
x" = ~ for I" = -'3 "" 0.87464. We also found that the cOlwergence to the fixed 
pOints-of .r(4)(x) is more rapid than at nearby values of 1". 1n Appendix 6A we 
show that these superslable trajectories occur whenever one of the fixed points 
is at x = ~. The values of r = Sill that give superstable trajectories of period 
2m- J are nlUeh better defined than the points of bifurcation, r = bl;. The rapid 
convergence to the final trajectories also gives better numerical estimates, and 
we always know one member of the trajectOlY. namely:r = }. 1t is reasonable 
ihat 8 can be defined as in (6.9) with b" replaced by S"'. Use the values of s, = 0.5. s, "" 0.809017. and S3 = 0.874640 to estimate 8. The numerical val­
ues of Sm are found in Project 6.1 by solving the equation f(III)(X = 4) = ~ 
l1umerical1y; the first eight values of Sill m:e listed in Table 6.2. --

We can associate another number with the series of pitchfork bifurcations. From 
Fig. 6.3 and Fig. 6.5 we see that each pitchfork bifurcation gives birth to "twins" with 
the new generation more densely packed than the previous generation. One measure 
of this density is the maxinmm distance Mk between the values of x describing the 
bifurcation (see Fig. 6.5). The disadvantage of using b" is that the transient behavior of 
the trajectory is very long at the boundary between two different periodic behaviors. A 
more convenient measure of the density is the quantity dk = .l,'k * - ~, where ,:"1* is the 
value of the fixed point nearest to the fixed point x"" =~. The first t;,o vulues of d" are 
shown in Fig. 6.6. with ci, "" 0.3090 and d, "" -0. I I 64:The next value is d3"" 0.0460. 
Note that the fixed point nearest to ); = ~ alternates from one side of x = ~ to the olher. 
We define the quantity (X by the ratio - -

a = lim - -- . ( 
ch ) 

k-oo (J,.+I 
(6.11 ) 

The estimate, (X = 0.3090/0. I 164 = 2.65 for k = I and (X = O. 1164/0.0460 = 2.53 for 
k = 2 are consistent with the asymptotic limit (X = 2.5029078750%8928485 ... 

We now give qualitative arguments that suggest that the gener~'rbeh:1Vior of the lo­
gistic map in the period-dOllbling regime is independent of the detailed form of f(x). 
As '''.Ie have seen, period-doubling is charactelized by self-similarities, e,g,~ the period­
dOllblings look similar except for a chang.e of scale. \Ve can demonstrate these similnr­
ities by comparing .f tx ) for I" = "" = 0.5 for the superstabJe trajectory with period I 
to the function /'2) (x ) for r = .I, "" 0.809017 for the superstable trajectory of period 2 
(see Fig. 6.7). The function ftx. r = .I,) has unstable fixed points a\ x = 0 and.r = I 
and a stable llxed point at x = ~. Similarly the function .r 12)(x. /" = -'2) has a stable 
fixed point at x = ~ and an unstable fixed poilll at x '" 0.69098. Note the similar shape, 
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Fig. 6.5 Tlie first few bifurcntiol1s of the logistic equnlion :-;howing the scaling of the 
maximum distance M,; between the asymptotic values of x describing the 
bifufcmioll. 

but different .<cale of the curves in the' square box in part Ca) and part (b) of Fig. 6.7. 
This similarity is an example of scaling. That is. if \\le scale f('2) and change (rl'n()r~ 
1/1a/i::.e) the value of r, we can compare fl2l to f. (See Chapter 13 for n discussion of 
scaling and renonnalization in another context.) 

Our graphical comparison is meant only to be suggestive. A precise approach 
shows that if we continue the compmisoll of tht> higher-order iterates, e.g., fH)(x} 10 

II:?:l(x), etc., the superposition of ft1nction~ converges to a universal function that is 

independent of the form of the original function f(.r). 

Problem 6.7 Further estimates of the exponents 01 and 0 

a. \\1rite (\ subroutine to lind the approprinte scnling 1'nctor ancl superimpose f 
and the rescaled form of fm found in Fig. 6.7. 

b. Use arguments similar to those disclIssed in the text in Fig. 6.7 and compare 
the behavior of fHl(.r. r = s,) in the square about x = ,\ with J'"'(.r.,. = 
s~) in its square about x = ~. The size of the flquures nre -determined by the 
unstnbJe fixed point neare~t to .r = ~. Find the approprintt> scaling factor and 
superimpose fm and the rescaled form of ft.n. 
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Fig. 6.6 The qmlntity (h is the disHlllce from x* = J /2 to the nearest element of the 
attractor of peJiod 2k. It is convenient 10 llse this quantity to determine the 
exponent ct. 

]1 is easy to modify your programs to consider other one-dimensional maps. In 
Problem 6.8 we consider several Olfe-dimensional maps and determine if th~y also 
exhibit the period-doubling route to chaos. 

* Problem 6.8 Other one-dimensional maps 

Detel1l1ine the qualitative properties of the one-dimensional maps: 

.r(x) = xe,·ll-xl 

f(x)=rsinnx. 

(6.12) 

(6.13) 

The map in (6.12) has been used by ecologists (cf. May) to study a population that 
is limited at high densities by tile effect of epidemic dise"se. Allhough it is more 
complicated than (6.5), its advantage is lhnt the population remains positive no 
matter" \vhat (positive) value is taken for the initial population. There are no restric­
tions on the maximum value of r. but if r becomes sufficiently large . .\" eventually 
becomeR effectively zero, rendering the populntion extinct. \Vhat i."i the behavior of 
the time series of (6.12) for r = 1.5,2, and 2.7? Describe the qualitative behavior 
of f(x). Does it have a maximum'} 
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Fig. 6.7 Comparison of f(x, ,.) for ,. = s] with the second iterate .f('!.)(x) for r = s'!.. (a) 
The function .f(:r, r = s]) has unstable fixed points at x = 0 and x = 1 and a 
stable fixed point at x = ~, (b) The function j(2) (x , ,. = s]) has a stable fixed 
point at.x = ~. The unstable fixed point of .r(2)(.x) nearest to x = ~ occurs at 
.x ~ O.69098,-where the curve fl2)(:),') intersects the line)' = x. The upper right­
hand comer of the square box in (b) is located at this paint, and the center of the 
box is at (~. ~). Note that if we reflect this square about the point (~, ~), the 
shape of the reflected graph in the squme box is nearly the same as it is in part (n), 
but on a slllaller scale. 

The sine map (6.13) with a < r ::: 1 and a ::: x ::: 1 has no special significance. 
except that it is nonlinear. If time pe1111it~, estimate· the value of /j for both maps. 
What 1imits the accuracy of yonI' determination of 8? 

The above qualitative arguments and numerical results suggest thut the quantities 
(1 and Il are IIlliversal. that is, independent of the detailed form of lex). In contrast. the 
.values of the accumulation point roo and the constant in (6.8) depend on the detailed 
form of lex). Feigenbaum has shown that the period-doubling route to chaos and the 
values of 0 and 0' are universal property of maps that have a quadratic maximum. i.e., 
.f"<.r)h=.1111 = 0 and f'I(X)\."',,,.11II < O. 

Why is the universality of peliod-doubling and the numbers 8 and ex more than 
a cUliosity? The reason is that because this behavior is independent of the deulils, 
there might exist realistic systems whose underlying dynamics yield the same behavior 
as the logistic map. Of course. most physical systems are descIibed by dilTerential 
rather than difference equations. Can these systems exhibit period-douhling behavior? 
Several workers (cf. Testa et a1.) have constructed nonlinear RLC drcuits dliven by an 
oscillatory source voltage. The output voltage shO\,."s biful'Clltions, and the measured 
values of the exponents /j and ex nre consistent with the predictions of the logistic map. 
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Of more genera] interest is the nature of turbulence in fluid systems. Consider a 
streal11 of water flowing past sevel1l1 obstacles. V'le know that at low flow speeds, the 
water flows past obstacles in a regular and time-independent fashion, called laminar 
flow. As the f]0\J.,I speed is increased (as measured by a dimensionless parameter called 
the Reynolds number), some swirls develop, but the motion is still time-independent. 
As the flow speed is increased still further, the swirls break away and start moving 
downstream. The flow pattern as viewed from the bank becomes time-dependent. For 
still larger flow speeds, the flow pattern becomes very complex and looks random. We 
say that the flow pattern has made a transition from laminar flow to llwbuienl flow. 

This qualitative description of the transition to chaos in fluid systems is superfi­
cially similar to the description of the logistic map. Can fltlid systems be analyzed in 
terms of the simple models of the type we have discussed here? In a few instances 
such as turbulent convection in a healed saucepan, period doubling and other types of 
transitions to turbulence have been observed. The type of theory and analysis we have 
discussed has stlggested new concepts and approaches, and the study of ttlrbulent flows 
is a subject of much current research. 

6.5 MEASURING CHAOS 

How do we know if a system is chaotic? The most impOJ1ant characteristic of chaos is 
sel~s;t;l'ify to initial conditiolls. In Problem 6.3 for example, we found that the trajecto­
ries staning from Xo = 0.5 and Xu = 0.5001 for,. = 0.91 become ve,y different after a 
small number of iterations. Because computers only store floating numbers to a celtain 
number of digits, the implication of this result is that our numerical predictions of the 
trajectories are restricted 10 small time ·intervals. That is, sensitivity to initial conditions 
implies that even though the logistic map is deterministic, our ability to make numetical 
predictions is limited. . 

How can we quantify this Jack of predictably? In general, if we start two identi­
cal dynamical systems from different initial conditions, we expect that the difference 
between 111e trajectories will change as a function of 11. ]n Fig. 6.8 we show a plot of 
the difference I b,x" I versus /I for the same conditions as in Problem 6.3a. We see that 
roughly speaking, In 1 A.)"1I1 is a linearly increasing function of 11. This result indicates 
that the separation between the tn~ectories grows exponentially if the system is chaotic. 
This dh'ergence of the trajectoJies can be described by Ihe ~WIPIIll{}V exponent, which 
is defined by the relation: 

(6.14) 

where 6..\'/I is the difference between the In\jectories 3t tlme 11. If the Lynptmov expo­
nent ).. is positive, then nearby lrajectorie~ diverge exponentially. Chaotic behavior is 
chmactetizec1 by exponential divergence of nearby trajectories. 

A naive· way of meul'ltlring the Lyapunov exponent A is to run the ::;ame dynmnicaJ 
system l\>,'ice with slightly different initial conditions and meaSllre the di1Terenee of the 
trtljectories as a f1111c1ion of 11. \¥e used ·this method to generate Fig. 6.8. Becallse the 
rate of separation of the trnjec\ories might depend on the choice of Xlh n beller method 
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Fig. 6.8 The evolution of the difference fl.x" .between the trajectories of 
the logistic map at r = 0.91 for Xo = 0.5 and Xo = 0.5001. The 
separation between the two trajectories increases with 11, the 
number of iterations, if I) is not too large. (Note that 16xl1 '" 1 0-8 

and that the trend is not n1onotonic.) 
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would be to compute the rate of separation for many values of Xo. This method would 
be tedious, because we would have to fit the separation to (6.14) for each value of Xo 
and then determine an average vnlue of A. 

A more imp0I1ant limitation of the naive method is that because the trajectory is 
restricted to the unit interval, the separation IA)."II ceases to increase when 11 becomes 
sufficiently large. However. to make the computation of A as accurate as possible. we 
would like to average over as many iterations as possible. Fortunately, there is a better 
procedure. To understand the procedure, we take the natural logarithm of both sides of 
(6.14) and write A as 

A= -In --. 1 I tox" I 
11 Axo 

(6.15) 

Because we want to use the data from the entire trajectory after the transient behavior 
has ended, \\le use the fact that 

A,"'II fl.,,,'} AX2 AXil --=---- ... _-- (6.16) 



148 The Chaotic Motion of DynamiCcll Systems 

Hence, we can express A as 

1 ,,-I I A. I U"x"+J 
),=- LIn --' -. 

n ;=0 D.X; 
(6.17) 

The form (6.17) implies that we .can consider Xi for any i as the initial condition. 
We see from (6.17)-that the problem of computing A has been reduced to finding 

the ratio D.Xi+t!f).Xj. Because we want to make the initial difference between the two 
trajectOJies as small as possible. we are interested in the limit t::.x; --7 O. The idea of 

. the more sophisticated procedure is to compute the differential dXi from the equation 
of motion at the same time that the equation of motion is being iterated. We use the 
logistic map as an example. The differential of (6.5) can be written as 

dXi+1 I 
-- = .f (Xi) = 4"(1 - 2Xi). 

dx; 
(6.18) 

We can consider Xl for any i as the initial condition and the ratio dXi+l/dx;- as a 
measure of the rate of change of Xj. Hence, we can iterate the logistic map as before 
and use the values of Xi and the relation (6.18) to compute dXi+l/dxi at each iteration. 
The Lyapunov exponent is given by 

] 1/-1 

A = lim - "In \.f'(Xi) I ' 
Il-JoOO n ~ ,=0 

(6.19) 

where we begin the sum in (6.19) after the transient behavior is completed. We have 
included explicitly the limit n --> 00 in (6. I 9) to remind otmelves .to choose n suffi­
ciently large. Note tllat this procedure weights the points on the attractor conectly, that 
is, if a pm1icular region of the attractor is not visited often by the trajectory, it does not 
contribute much to 111e sum in (6.19). 

Problem 6.9 Lyapunov exponent for the logistic map 

a. ComlJute the Lyapunov exponent A for the logistic map using the naive ap­
proach. Choose r = 0.91. Xo = 0.5, and b.xo = 10-6, and plot In Ib.x,,/ b.xol 
versus n. What happens to In I b.x" / b.x,,1 for large,,? R'timate ), for r = 0.9 I, 
r = 0.97, and r = 1.0. Does your estimate of Ie for each value of r depend 
significantly on your choice of Xo or 6.xo? 

h. Compule), using the algorithm discussed in Ihe text for r = 0.76 to r = 1.0 
in steps of b.r = 0.01. What is the sign of A if the system is nol chaotic? Plol 
A versus r, and explain your results in terms of behavior of the bifurcation 
diagram shown in Fig. 6.2. Compare your re:mhs for A wi1h those shown in 
Fig. 6.9. How does the sign of Ie correlate with Ihe behavior of the syslem 
as seen in the bifurcation diagram? If Ie < 0, Ihen Ihe Iwo Ir'1ieClOries con­
verge and the system is not chaotic. If A = 0, then the ln~leclories diverge 
algebraically, i.e., as a pm:ver of 11. For whnt value of r is A a maximum? 
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fig. 6.9 The Lynpunov exponel1t calculated using the method in (6.19) 3S a tll1lction 
of the control parameter ,'. Compare the behnvior of ').. to the bifurcation 
diagram in Fig. 6.2. Note that j. <:. 0 for,. < 3/4 and approaches zero at a 
period doubling bifurcation. A negative spike corresponds to n .superstable 
tnUectory. The onset of chaos is visible nenr r :::: 0.892. where A first 
becomes positive. For r > 0.892. ').. generally increases except for dips 
below z.ero whenever a periodic window occur,c;;. Note tbe large dip due 
to the period 3 window near r = 0,96, For each value of r, the first} 000 
iterations were di~carded. and IO!'> value...; of In 1.1"'(-'"/I)! were used to 
determine ),' 

c. 1n Problem 6,3b we saw that roundoff errors in the chaotic regime make the 
computation of individual trajectoties meaningless, That is, if the systern's 
behavior is chaotic, then small roundoff errol'S are amplified exponentially 
in time, and the actun) numbers we compute for the trnjeclOry stU11ing from 
a given initial value m,e n01 "real:' Given this limitation, how me..-mingful 
is our computation of the Lyapunov exponent? Repeat your calculntion of A 
for r = I by chang.ing the roundoff en'or as you did in Problem 6.3b. Does 
your computed value of A change'? \Ve wilJ encounter a similar question in 
Chnpter 8 where we compule the tn\leClories of n system of many pm1icles, 
The answer appears to be th1:11 althougb the tr:ljectory we compute is 110t the 
one we thought we were trying 1O compute, the computed trajectory is close 
to a possible lrajeclory of the systern. Quantities such, ns ), that nre averaged 




