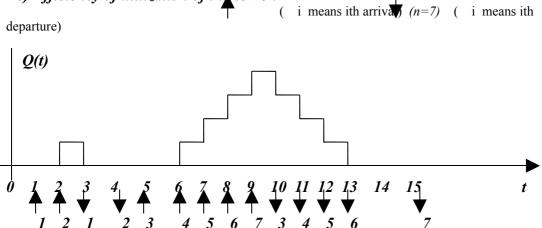
1- In M/M/1 queue, explain the events and the state variables.

2- Explain simulation clock and two approaches for the simulation clock advancing.

3- What is the Monte Carlo simulation.

4- What is iconic model?


5-Find the value of the following integral by using Monte-Carlo method and compare with the true value of the integral (use 11 points as shown in the table). $I = \int_{0}^{2} x^{3} dx$

	i	1	2	3	4	5	6	7	8	9	10	11
	xi	0	0.2	0.4	0.6	0.8	1	1.2	1.4	1.6	1.8	2
x	i^3	0	0.008	0.064	0.216	0.512	1	1.728	2.744	4.096	5.832	8

6-In the following single server queuing system, find:

a) Average delay in queue.

- b) Average number of customers in the queue.
- c) Efficiency of utilization of the server.

7- Suppose that X and Y are jointly continuous random variables with joint p.d.f. as follows: f(x,y)=24xy for x, y>=0 and x+y=1f(x,y)=0 otherwise Find marginal distribution of f(x) and f(y) and conclude whether X, Y are independent or not.

8-If y=exp(-x) and x is a random variable with the exponential p.d.f f(x)=exp(-x), then find the probability density function (p.d.f) of random variable, f(y).

9 – formulate predator-prey problem with x(t) and y(t) populations.