Simulation
 3-rd and 4-th Year Undergraduate
 University of the Ryukyus
 Mid-Term Examination
 Faculty of Engineering
 2009-12-7 time: 90 minutes (score: each 10)
 Department of Information Eng. Prof. Mohammad Reza Asharif

1-What kind of problems are with simulation?

2-What are the events in M/M/1 queue.

3 What is the Monte Carlo simulation.

4- In a Bank, what is state of the system?

5- Classify simulation models in to three different dimensions.

6- Name two approaches for the simulation clock advancing.

7- Write the differential equations for predator-prey problem.

8-Find the value of the following integral by using the Monte-Carlo method (use 6 points).
$I=\int_{\pi / 4}^{3 \pi / 4} \log _{e}(\sin x) d x$
a) Generate $U(0,1)$ by computer or any means (if you cannot use the following $R N G$):

$$
\begin{array}{llllll}
U=0.012 & 0.238 & 0.123 & 0.880 & 0.813 & 0.763
\end{array}
$$

b) Use the relation: $X=(\Pi / 2) U+\Pi / 4$ to map from $U(0,1)$ into $X(\Pi / 4,3 \Pi / 4)$
c) Then use $g\left(x_{i}\right)=\log _{e}\left(\sin x_{i}\right)$ to find $g\left(x_{i}\right)$ and fill the following table:

Table 1

i	1	2	3	4	5	6
x_{i}						
$g\left(x_{i}\right)$						

Using Monte-Carlo with 6 points: I=

9-In the following single server queuing MM1 system, find:
a) Average delay in queue.
b) Average number of customers in the queue.
c) Efficiency of utilization of the server.
(\prod_{i} means $\mathrm{i}^{\text {th }}$ arrival $\underset{(\mathrm{n}=7, \mathrm{~T}(\mathrm{n})=14.2)}{ } \mathrm{i}_{\mathrm{i}}$ means $\mathrm{i}^{\text {th }}$ departure)

Departure

