Simulation (Solutions)
3-rd and 4-th Year Undergraduate
Mid-Term Examination
2010-11-26 time: 90 minutes (score: each 10)

University of the Ryukyus Faculty of Engineering Department of Information Eng. Prof. Mohammad Reza Asharif

# 1- What is a system?

A1: The facility or process of interest is usually called a system.

### 2-What is an iconic model?

A2 : A physical model which represents actual system is called iconic model. EX: a cockpit disconnected from airplane.

## 3-In a single server, what are the "state variables"?

### A3:

- *1* The status of the server : idle/busy
- 2 The number of customers waiting in queue.
- 3 The time of arrival of each customers waiting in queue.

# 4- What are the "events" in a single server model?

### A4: Events:

- 1 The arrival time of customer.
- 2 The departure time of customer after being served.

## 5- What is the simulation clock?

A5 : A variable or a mechanism that keeps track of the current time in a simulation, is called simulation clock.

# 6- Which models use random number? A) Deterministic B) Stochastic

A6: B) Stochastic model

## 7- Name two approaches for the simulation clock advancing.

### A7:

- *1* Next-event time advance.
- 2 Fixed-increment time advance.

8-Find the value of the following integral by using the Monte-Carlo method (use 6 points).

$$I = \int_0^{2\pi} e^{(\sin x)} dx$$

- a) Generate U(0,1) by computer or any means (if you cannot use the following RNG):  $U=0.480 \quad 0.615 \quad 0.352 \quad 0.730 \quad 0.189 \quad 0.281$
- b) Use the relation:  $X=(2\Pi)U$  to map from U(0,1) into  $X(0,2\Pi)$
- c) Then use  $g(x_i) = e^{(\sin xi)}$  to find  $g(x_i)$  and fill the following table:

Table 1

|   | i       | 1     | 2     | 3     | 4     | 5     | 6     |
|---|---------|-------|-------|-------|-------|-------|-------|
| - | $x_i$   | 3.015 | 3.864 | 2.211 | 4.586 | 1.187 | 1.765 |
| g | $(x_i)$ | 1.133 | 0.516 | 2.23  | 0.371 | 2.528 | 2.667 |

Using Monte-Carlo with 6 points: I=9.89

$$I=(b-a)(\sum_{i=1}^{n} to \ 6 \ g(xi))/6$$

- 9-In the following single server queuing MM1 system, find:
- a) Average delay in queue.
- b) Average number of customers in the queue.
- c) Efficiency of utilization of the server.

( i means i th arrival and  $\forall$  i means i th departure) (n=7, T(n)=15)



**Departure** 

a)

*D1*=0, *D2*=5.4-1.2=4.2, *D3*=6.6-1.9=4.7, *D4*=8.6-4.4=4.2, *D5*=0, *D6*= 12.6-10.6=2, *D7*=13.9-11.4=2.5

 $d(n) = \sum_{i=1}^{n} to \ n \ Di/n = (0+4.2+4.7+4.2+2+2.5)/7 = 17.6/7 = 2.51 \ ADQ \ (time)$ 

