Simulation \quad (Solutions)	University of the Ryukyus
3-rd and 4-th Year Undergraduate	Faculty of Engineering
Mid-Term Examination	Department of Information Eng.
2010-11-26 time: 90 minutes (score: each 10)	Prof. Mohammad Reza Asharif

1- What is a system?
A1 : The facility or process of interest is usually called a system.

2-What is an iconic model?

A2 : A physical model which represents actual system is called iconic model. EX: a cockpit disconnected from airplane.

3-In a single server, what are the "state variables"?
A3 :
1 - The status of the server : idle/busy
2 - The number of customers waiting in queue.
3 - The time of arrival of each customers waiting in queue.
4- What are the "events" in a single server model?
A4 : Events:
1 - The arrival time of customer.
2 - The departure time of customer after being served.

5- What is the simulation clock?

A5 : A variable or a mechanism that keeps track of the current time in a simulation, is called simulation clock.

6- Which models use random number? A) Deterministic B) Stochastic
A6 : B) Stochastic model

7- Name two approaches for the simulation clock advancing.
A7:
1 - Next-event time advance.
2 - Fixed-increment time advance.

8-Find the value of the following integral by using the Monte-Carlo method (use 6 points).
$I=\int_{0}^{2 \pi} e^{(\sin x)} d x$
a) Generate $U(0,1)$ by computer or any means (if you cannot use the following $R N G$): $U=0.480 \quad 0.615$
0.352
$0.730 \quad 0.189$
0.281
b) Use the relation: $X=(2 \Pi) U$ to map from $U(0,1)$ into $X(0,2 \Pi)$
c) Then use $g\left(x_{i}\right)=e^{(\text {sin } x i)}$ to find $g\left(x_{i}\right)$ and fill the following table:

Table 1

i	1	2	3	4	5	6
x_{i}	3.015	3.864	2.211	4.586	1.187	1.765
$g\left(x_{i}\right)$	1.133	0.516	2.23	0.371	2.528	2.667

Using Monte-Carlo with 6 points: $I=9.89$
$I=2 p a i(9.445) / 6=9.89$
$I=(b-a)\left(\sum i=1\right.$ to $\left.6 g(x i)\right) / 6$
9-In the following single server queuing MM1 system, find:
a) Average delay in queue.
b) Average number of customers in the queue.
c) Efficiency of utilization of the server.
($\left\lceil\mathrm{i}\right.$ means $\mathrm{i}^{\text {th }}$ arrival and $\downarrow \mathrm{i}$ means $\mathrm{i}^{\text {th }}$ departure)

Departure
a)
$D 1=0, D 2=5.4-1.2=4.2, D 3=6.6-1.9=4.7, D 4=8.6-4.4=4.2, D 5=0, D 6=12.6-10.6=2$, D7=13.9-11.4=2.5
$d(n)=\sum i=1$ to $n \mathrm{Di} / n=(0+4.2+4.7+4.2+2+2.5) / 7=17.6 / 7=2.51$ ADQ (time)
b)

```
\(T 0=1.2+(10.6-8.6)+(15-13.9)=1.2+2+1.1=4.3\)
\(T 1=(1.9-1.2)+(8.6-6.6)+(11.4-10.6)+(13.9-12.6)=0.7+2+0.8+1.3=4.8\)
\(T 2=(4.4-1.9)+(6.6-5.4)+(12.6-11.4)=2.5+1.2+1.2=4.9\)
\(T 3=(5.4-4.4)=1\)
\(q(n)=\sum i=0\) to \(\infty\) i \(T i / T(n)=(0 \times 4.3+1 \times 4.8+2 x 4.9+3 \times 1) / 15=(4.8+9.8+3) / 15=\)
\(q(n)=17.6 / 15=1.17\) ANCQ (men)
```

 c) \(u(n)=\sum t=0\) to \(15 B(t)\)

$u(n)=[(9.2-0.6)+(15-9.8)] / 15=(8.6+5.2) / 15=13.8 / 15=0.92=92 \%$ server utility (busy)\%

