Simulation
 3-rd and 4-th Year Undergraduate
 Mid-Term Examination
 University of the Ryukyus
 2010-11-26 time: 90 minutes (score: each 10)
 Faculty of Engineering
 Department of Information Eng. Prof. Mohammad Reza Asharif

1-What is a system?

2-What is an iconic model?

3-In a single server, what are the "state variables"?

4- What are the "events" in a single server model?

5- What is the simulation clock?

6- Which models use random number? A) Deterministic B) Stochastic

7- Name two approaches for the simulation clock advancing.

8-Find the value of the following integral by using the Monte-Carlo method (use 6 points).

$$
I=\int_{0}^{2 \pi} e^{(\sin x)} d x
$$

a) Generate $U(0,1)$ by computer or any means (if you cannot use the following $R N G$): $\begin{array}{llllll}U=0.480 & 0.615 & 0.352 & 0.730 & 0.189 & 0.281\end{array}$
b) Use the relation: $X=(2 \Pi) U$ to map from $U(0,1)$ into $X(0,2 \Pi)$
c) Then use $g\left(x_{i}\right)=e^{(\text {sin xi) }}$ to find $g\left(x_{i}\right)$ and fill the following table:

Table 1

i	1	2	3	4	5	6
x_{i}						
$g\left(x_{i}\right)$						

Using Monte-Carlo with 6 points: I=

9-In the following single server queuing MM1 system, find:
a) Average delay in queue.
b) Average number of customers in the queue.
c) Efficiency of utilization of the server.
($\left\lceil\right.$ i means $\mathrm{i}^{\text {th }}$ arrival and $\downarrow \mathrm{i}$ means $\mathrm{i}^{\text {th }}$ departure)

Departure

