| Simulation $\quad$ Solution | University of the Ryukyus |
| :--- | :--- |
| 3-rd and 4-th Year Undergraduate | Faculty of Engineering |
| Mid-Term Examination | Department of Information Eng. |
| 2011-12-2 time: 90 minutes (score: each 10) | Prof. Mohammad Reza Asharif |

1- What is a simulation?
A : In a simulation, we use computer to imitate or simulate the operations of various kinds of real-world system by using its numerical model.

2- What kind of problems are with simulation?
A :
1 - complexity of writing computer programs.
2 - Large amount of computer time.
3 - Not considering of all aspects of real model

## 3- Classify simulation models into three different dimensions.

A :
1 - Static vs. dynamic simulation models.
2 - Deterministic vs. stochastic simulation models.
3 - Continuous vs. discrete simulation models.
4- Name two approaches for the simulation clock advancing.
A3:
1 - Next-event time advance.
2 - Fixed-increment time advance.

## 5- What is the Monte Carlo simulation?

A : A simulation methodology which employs random numbers, $\mathrm{U}(0,1)$, for solving certain stochastic or deterministic problems.

6- What are the three measures of the system performance in a single server queuing system?

A :
1 - The average delay in queue
2 - The time-average number of customer in queue .
3 - The proportion of time the server is busy .
7-In which simulation model, a) time is considered? b) random numbers are used?
A:
a) Dynamic models.
b) Stochastic model

8-Find the value of the following integral by using the Monte-Carlo method (use 6 points).

$$
I=\int_{0}^{2 \pi} e^{(\cos x)} d x
$$

a) Generate $U(0,1)$ by computer or any means (if you cannot use the following $R N G$ ): $\begin{array}{llllll}U=0.711 & 0.520 & 0.144 & 0.929 & 0.291 & 0.468\end{array}$
b) Use the relation: $X=(2 \pi) U$ to map from $U(0,1)$ into $X(0,2 \pi)$, then compute $\cos (x i)$
c) Then use $g\left(x_{i}\right)=e^{(\cos x i)}$ to find $g\left(x_{i}\right)$ and fill the following table:

Table 1

| $i$ | 1 | 2 | 3 | 4 | 5 | 6 |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- |
| $\cos \left(x_{i}\right)$ | -0.24 | -0.99 | 0.617 | 0.902 | -0.254 | -0.980 |
| $g\left(x_{i}\right)$ | 0.786 | 0.370 | 1.853 | 2.464 | 0.775 | 0.375 |

Using Monte-Carlo with 6 points: I=6.935
$I=(b-a)\left(\Sigma_{i=1}{ }_{1} g(x i)\right) / 6$
$I=2 \pi(6.623) / 6=6.935$

9-In the following single server queuing MM1 system, find:
a) Average delay in queue (d(n): ADQ).
b) Average number of customers in the queue (q(n): ANCQ).
c) Efficiency of utilization of the server ( $u(n)$ : \%).
( $\left\lceil\right.$ i means $\mathrm{i}^{\text {th }}$ arrival and $\downarrow$ i means $\mathrm{i}^{\text {th }}$ departure) ( $\mathrm{n}=7, \mathrm{~T}(\mathrm{n})=14$ )


Departure
a)
$D 1=0, D 2=4.5-1.1=3.4, D 3=5.5 .-2.1=3.4, D 4=6.8-3.3=3.5, D 5=0, D 6=12.4-10.5=1.9$, D7=12.9-11.5=1.4
$d(n)=\sum i=1$ to $n \mathrm{Di} / n=(0+3.4+3.4+3.5+0+1.9+1.4) / 7=13.6 / 7=1.94$ ADQ (time)
b)

```
\(T 0=1.1+(10.5-6.8)+(14-12.9)=1.1+3.7+1.1=5.9\)
\(T 1=(2.1-1.1)+(6.8-5.5)+(11.5-10.5)+(12.9-12.4)=1+1.3+1+0.5=3.8\)
\(T 2=(3.3-2.1)+(5.5-4.5)+(12.4-11.5)=1.2+1+0.9=3.1\)
\(T 3=(4.5-3.3)=1.2\)
\(q(n)=\sum i=0\) to \(\infty i T i / T(n)=(0 x 5.9+1 x 3.8+2 \times 3.1+3 \times 1.2) / 14=(3.8+6.2+3.6) / 14=\)
\(q(n)=13.6 / 14=0.97\) ANCQ (men)
```

c) $u(n)=\sum t=0$ to $14 B(t)$

