Simulation
 3-rd and 4-th Year Undergraduate
 Mid-Term Examination Department of Information Eng.
 2012-12-7 time: 90 minutes (score: as written) Prof. Mohammad Reza Asharif

1- What is iconic model?

A physical model which represents actual system is called iconic model EX: a cockpit disconnected from airplane.

2- What is simulation clock? Name two approaches for the simulation clock advancing.

A variable or a mechanism that keeps track of the current time in a simulation, is called simulation clock.

1 - Next-event time advance.
2 - Fixed-increment time advance.

3- What are the events in a single server model?
Events:
1 - The arrival time of customer.
2 - The departure time of customer after being served.
4- In which simulation model, a) time is considered? b) random numbers are used?
(10)
a) Dynamic model.
b) Stochastic model

5- In a single teller Bank, what are "state variables" of the system?
State of a system is the collection of variables necessary to describe a system at a particular time.

EX: In bank system :
The status of the teller (server); 1- idle, 2-busy
The number of customers in the bank, waiting in queue.
The time of arrival of each customer in the bank.

6- What is the Monte Carlo simulation?
A simulation methodology which employs uniform random numbers, $U(0,1)$, for solving certain stochastic or deterministic problems.(10)

7-Find the value of the following integral by using the Monte-Carlo method (use 6 points).

$$
I=\int_{0}^{\pi} e^{(\sin x)} d x
$$

a) Generate $U(0,1)$ by computer or any means (if you cannot use the following $R N G$):

$$
\begin{array}{llllll}
U=0.393 & 0.746 & 0.166 & 0.220 & 0.503 & 0.827
\end{array}
$$

b) Use the relation: $X=\pi$. U to map from $U(0,1)$ into $X(0, \pi)$, then find $\sin (x i)$.
c) Then use $g\left(x_{i}\right)=e^{(\sin x i)}$ to find $g\left(x_{i}\right)$ and fill the following table:

Table 1

i	1	2	3	4	5	6
$\sin \left(x_{i}\right)$	0.944	0.716	0.498	0.637	1.0	0.517
$g\left(x_{i}\right)$	2.570	2.046	1.645	1.891	2.718	1.677

Using Monte-Carlo with 6 points: $I=6.57$
$I=(b-a)\left(\Sigma_{i=1}{ }_{1} g(x i)\right) / 6$
$I=\pi(12.547) / 6=6.57$

8-In the following single server queuing MM1 system, find:
a) Average delay in queue (d(n): ADQ).
b) Average number of customers in the queue (q(n): ANCQ).
c) Efficiency of utilization of the server ($u(n)$: \%).
($\dagger \mathrm{i}$ means $\mathrm{i}^{\text {th }}$ arrival and $\downarrow \mathrm{i}$ means $\mathrm{i}^{\text {th }}$ departure)

$$
(\mathrm{n}=7, \mathrm{~T}(\mathrm{n})=15.5)
$$

Departure
a)

D1 $=0$,
$D 2=4.0-1.2=2.8$,
$D 3=6.5 .-2.2=4.3$,
$D 4=7.5-3.0=4.5$,

D5=0,
$D 6=13.5-11.2=2.3$,
$D 7=14.6-12.0=2.6$
$d(n)=\sum i=1$ to $n D i / n=(0+2.8+4.3+4.5+0+2.3+2.6) / 7$
$d(n)=16.5 / 7=2.35 A D Q$ (time)
b)
$T 0=1.2+(11.2-7.5)+(15.5-14.6)=1.2+3.7+0.9=5.8$
$T 1=(2.2-1.2)+(7.5-6.5)+(12.0-11.2)+(14.6-13.5)=1+1+0.8+1.1=3.9$
$T 2=(3.0-2.2)+(6.5-4.0)+(13.5-12.0)=0.8+2.5+1.5=4.8$
$T 3=(4.0-3.0)=1.0$
$q(n)=\sum i=0$ to $\infty i T i / T(n)=(0 x 5.8+1 x 3.9+2 x 4.8+3 x 1.0) / 15.5=(3.9+9.6+3.0) / 15.5=$
$q(n)=16.5 / 15.5=1.064$ ANCQ (men)
c) $u(n)=\sum t=0$ to $15.5 B(t)$

$u(n)=[(9.0-0.5)+(15.5-10.2)] / 15.5$

$u(n)=(8.5+5.3) / 1.5=13.8 / 15.5=0.89$
$u(n)=89 \%$ server utility (busy)\%

