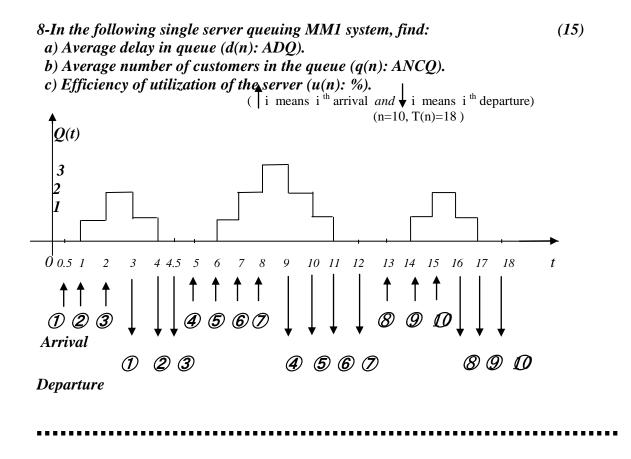
	-th Year Undergraduate Faculty of Engineering	
<i>1-What is system?</i>		(10)
A : The facility or process of interest is usually	v called a system.	
2- In the pilot training system, what is iconic mo	odel?	(10)
A : A physical model which represents actual s EX: a cockpit disconnected from airplane.	•	odel.
3- What is simulation clock? Name two approac clock advancing.	ches for the simulation	(10)
 A : A variable or a mechanism that keeps trace a simulation, is called simulation clock. <i>1</i> - Next-event time advance. <i>2</i> - Fixed-increment time advance. 	ck of the current time in	L
4-Explain about kind of problems that exist with	h simulation method?	(10)
 A: <i>1</i> - Complexity of writing computer progra <i>2</i> - Large amount of computer time. <i>3</i> - Not considering of all aspects of real model 		
5- What is the Monte Carlo simulation.		(10)
A : A simulation methodology which employs certain stochastic or deterministic problem		
6- In a post-office with single-server:a) What are events?b) What are state variables?		(10)
A(a) : Events: 1 - The arrival time of customer 2 - The departure time of custom		
A(b) : <i>1</i> - The status of the server: idle, busy.		

- 2 The number of customers waiting in queue.
 3 The time of arrival of each customers waiting in queue.

7-Find the value of the following integral by using the Monte-Carlo method (use 6 points).

$$I = \int_0^1 \left[\sin(x) \right] \log_e (1+x) dx = \int_0^1 g(x) dx$$

- a) Use the following uniform distributed random number U(0,1) for, x_i : U=0.327, 0.104, 0.436, 0.645, 0.785, 0.044
- b) Find $sin(x_i)$, where x_i 's are in Radiant.
- c) Then find $g(x_i) = [sin(x_i)] log_e(1+x_i)$, and fill the following table:


i	1	2	3	4	5	6
$sin(x_i)$	032	0.1	0.422	0.6	0.706	0.04
$g(x_i)$	0.09	0.009	0.152	0.298	0.409	0.0017

Using Monte-Carlo with 6 points: I=0.16

 $I=(b-a)(\sum_{i=1}^{6} g(xi))/6$

I = (0.09 + 0.009 + 0.152 + 0.298 + 0.409 + 0.0017)/6

I=(0.9597)/6 = 0.16

(15)

<i>a</i>)
D1=0,
<i>D2=3-1=2</i> ,
<i>D</i> 3=4-2=2,
D4=0,
D5=9-6=3,
<i>D6= 10-7=3</i> ,
<i>D7=11-8=3</i> ,
D8=0,
<i>D9=16-14=2</i> ,
<i>D10=17-15=2</i> ,
$d(n) = \sum_{i=1}^{10} \frac{Di}{n} = (0 + 2 + 2 + 0 + 3 + 3 + 0 + 2 + 2)/10 = 17/10 = 1.7 \text{ ADQ (time)}$
<i>b</i>)
T0=1+(6-4)+(14-11)+(18-17)=1+2+3+1=7
T1 = (2-1) + (4-3) + (7-6) + (11-10) + (15-14) + (17-16) = 1 + 1 + 1 + 1 + 1 = 6
T2 = (3-2) + (8-7) + (10-9) + (16-15) = 1 + 1 + 1 + 1 = 4
<i>T3=(9-8)=1</i>
$q(n) = \sum_{i=0}^{\infty} i Ti/T(n) = (0x7 + 1x6 + 2x4 + 3x1)/18 = (6+8+3)/18$
$q(n) = \frac{17}{18} = 0.94 \text{ ANCQ (men)}$ c) $u(n) = \sum_{i=0}^{18} B(t)$
u(n) = [(4.5-0.5)+(12-5)+(18-13)]/18
<i>u(n)=(4+7+5)/18=16/18=0.89</i>
u(n)=89% server utility (busy)%