SimulationUniversity of the Ryukyus3-rd and 4-th Year UndergraduateFaculty of EngineeringMid-Term ExaminationDepartment of Information2014-12-5 time: 90 minutes (score: as written)Prof. Mohammad Reza Asha		
 <i>In M/M/1 queue with single-server:</i> <i>a)What are events?</i> <i>b)What are state variables?</i> 	(10)	
A(a) : <i>Events:</i> <i>1</i> - The arrival time of custom <i>2</i> - The departure time of custom		
A(b) : State variables 1 - The status of the server: idle, bus 2 - The number of customers waitin 3 - The time of arrival of each custor	g in queue.	
2- Define the Monte Carlo simulation.	(10)	
A: A simulation methodology which emplo certain stochastic or deterministic problem	•	
3- What is iconic model?	(10)	
A: A physical model which represents act EX: a cockpit disconnected from airplane.		
4- In which simulation model, a) time is consid	dered? b) random numbers are used? (10)	
A: a) Dynamic model.b) Stochastic model		
5- Explain simulation clock and two approach	es for the simulation clock advancing. (10)	
 A: A variable or a mechanism that keeps t a simulation, is called simulation clock. <i>1</i> - Next-event time advance. <i>2</i> - Fixed-increment time advance. 		
6- Classify simulation models into three differe	ent dimensions. (10)	
 A: 1 - Static vs. dynamic simulation mode 2 - Deterministic vs. stochastic simulati 3 - Continuous vs. discrete simulation i 	ion models.	

7-Find the value of the following integral by using the Monte-Carlo method (use 6 points). (15)

$$I = \int_{1}^{e} \sin[\pi \log_{e}(x)] dx = \int_{1}^{e} g(x) dx$$

a) Use the following uniform distributed random number U(0,1): $U_i = 0.742, \quad 0.514,$ 0.631, 0.818, 0.364, 0.257

- b) Find $1 < x_i < e$ from: $x_i = (e-1)u_i + 1$, e = 2.72
- c) Find $log_e(x_i)$
- d) Then find $g(x_i) = sin[\pi \log_{\theta} (x_i)]$, and fill the following table:

i	1	2	3	4	5	6
x_i	2.28	1.88	2.08	2.4	1.63	1.44
$log_e(x_i)$	0.82	0.63	0.73	0.88	<i>0.49</i>	0.37
$g(x_i)$	0.52	0.92	0.75	0.38	1.0	<i>0.91</i>

Using Monte-Carlo with 6 points: I=1.28

Use the following equation: $I=(b-a)(\sum_{i=1}^{6} g(xi))/6$ I = (e-1)(0.52+0.92+0.75+0.38+1.0+0.91)/6

I=(1.72)(4.48)/6 = 7.7/6=1.28

2014/11/28 a)	
D1=0,	
D2=3-1=2,	
<i>D3=5-2=3</i> ,	
D4=6-4=2,	

 $d(n) = \sum_{i=1}^{4} Di/n = (0+2+3+2)/4 = 7/4 = 1.75 \text{ ADQ (time)}$ b) T0 = 1 + (7-6) = 1 + 1 = 2 T1 = (2-1) + (4-3) + (6-5) = 1 + 1 + 1 = 3 T2 = (3-2) + (5-4) = 1 + 1 = 2 $q(n) = \sum_{i=0}^{\infty} i \text{ Ti}/T(n) = (0x2 + 1x3 + 2x2)/7 = (3+4)/7$ q(n) = 7/7 = 1 ANCQ (men) $c) u(n) = \sum_{i=0}^{7} B(t)$ u(n) = (7-0.5)/7 u(n) = 6.5/7 = 0.93 u(n) = 93% server utility (busy)%