Simulation	University of the Ryukyus
3-rd and 4-th Year Undergraduate	Faculty of Engineering
Mid-Term Examination	Department of Information Eng.
2014-12-5 time: 90 minutes (score: as written)	Prof. Mohammad Reza Asharif

1- In M/M/1 queue with single-server:
a)What are events?
b)What are state variables?

A(a) : Events:
1 - The arrival time of customer.
2 - The departure time of customer after being served.
A(b) : State variables
1 - The status of the server: idle, busy.
2 - The number of customers waiting in queue.
3 - The time of arrival of each customers waiting in queue.
2- Define the Monte Carlo simulation.
A: A simulation methodology which employs random numbers, $\mathrm{U}(0,1)$, for solving certain stochastic or deterministic problems is called Monte Carlo simulation.

3- What is iconic model?
A: A physical model which represents actual system is called iconic model. EX: a cockpit disconnected from airplane.

4- In which simulation model, a) time is considered? b) random numbers are used?
A: a) Dynamic model.
b) Stochastic model

5- Explain simulation clock and two approaches for the simulation clock advancing.
A: A variable or a mechanism that keeps track of the current time in a simulation, is called simulation clock.
1 - Next-event time advance.
2 - Fixed-increment time advance.

6- Classify simulation models into three different dimensions.
A : 1 - Static vs. dynamic simulation models.
2 - Deterministic vs. stochastic simulation models.
3 - Continuous vs. discrete simulation models.

7-Find the value of the following integral by using the Monte-Carlo method (use 6 points).

$$
\begin{equation*}
I=\int_{1}^{e} \sin \left[\pi \log _{e}(x)\right] d x=\int_{1}^{e} g(x) d x \tag{15}
\end{equation*}
$$

a) Use the following uniform distributed random number $U(0,1)$:

$$
U_{i}=0.742, \quad 0.514, \quad 0.631, \quad 0.818, \quad 0.364, \quad 0.257
$$

b) Find $1<x_{i}<e$ from: $\quad x_{i}=(e-1) u_{i}+1, e=2.72$
c) Find $\log _{e}\left(x_{i}\right)$
d) Then find $g\left(x_{i}\right)=\sin \left[\pi \log _{e}\left(x_{i}\right)\right]$, and fill the following table:

\boldsymbol{i}	1	2	5	4	5	6
x_{i}	2.28	1.88	2.08	2.4	1.63	1.44
$\log _{e}\left(x_{i}\right)$	0.82	0.63	0.73	0.88	0.49	0.37
$g\left(x_{i}\right)$	0.52	0.92	0.75	0.38	1.0	0.91

Using Monte-Carlo with 6 points: $I=1.28$
Use the following equation:

$$
I=(b-a)\left(\sum_{i=}^{6}{ }_{1} g(x i)\right) / 6
$$

$I=(e-1)(0.52+0.92+0.75+0.38+1.0+0.91) / 6$
$I=(1.72)(4.48) / 6=7.7 / 6=1.28$
8-In the following single server queuing MM1 system, find:
a) Average delay in queue (d(n): ADQ).
b) Average number of customers in the queue (q(n): ANCQ).
c) Efficiency of utilization of the server (u(n): \%).

Departure

2014/11/28
a)

D1=0,
D2 $=3-1=2$,
$D 3=5-2=3$,
$D 4=6-4=2$,
$d(n)=\sum_{i=1}^{4}{ }_{1} \mathrm{Di} / n=(0+2+3+2) / 4=7 / 4=1.75 \mathrm{ADQ}($ time $)$

b)
$T 0=1+(7-6)=1+1=2$
$T 1=(2-1)+(4-3)+(6-5)=1+1+1=3$
$T 2=(3-2)+(5-4)=1+1=2$
$q(n)=\Sigma_{i=}{ }_{0}$ iTi/T(n)=(0x2+1x3+2x2)/7=(3+4)/7
$q(n)=7 / 7=1$ ANCQ (men)
 c) $u(n)=\sum_{i={ }_{0}}{ }^{n} B(t)$
 $u(n)=(7-0.5) / 7$
$u(n)=6.5 / 7=0.93$
$u(n)=93 \%$ server utility (busy)\%

