Simulation
 3-rd and 4-th Year Undergraduate
 University of the Ryukyus
 Mid-Term Examination
 Faculty of Engineering
 2015-11-27 time: 90 minutes (score: as written) Prof. Mohammad Reza Asharif

1- What is the Monte Carlo simulation. (10)
A simulation methodology which employs random numbers, $\mathrm{U}(\mathbf{0}, 1)$, for solving certain stochastic or deterministic problems

2- Classify simulation models into three different dimensions. (10)
1 - Static vs. dynamic simulation models.
2 - Deterministic vs. stochastic simulation models.
3 - Continuous vs. discrete simulation models.

3- Explain about kind of problems that exist with simulation method? (10)
1 - complexity of writing computer programs.
2 - Large amount of computer time.
3 - Not considering of all aspects of real model.

4- What is state of a system? Give an example. (10)
State of a system is the collection of variables necessary to describe a system at a particular time. EX: In bank system : The number of busy tellers, the number of customers in the bank, the time of arrival of each customer in the bank.

5- Write the differential equations for predator-prey problem. (10)

$$
\begin{aligned}
& \frac{d x}{d t}=r x(t)-a x(t) y(t) \\
& \frac{d y}{d t}=-s y(t)+b x(t) y(t)
\end{aligned}
$$

6- Name two approaches for the simulation clock advancing. (10)
1 - Next-event time advance.
2 - Fixed-increment time advance.

7- Find the value of the following integral by using the Monte-Carlo method (use 6 points).
$I=-\int_{1}^{e} \cos \left[\pi \log _{e}(x)\right] d x=\int_{1}^{e} g(x) d x$
a) Use the following uniform distributed random number $U(0,1)$:

$$
\begin{array}{llllll}
U_{i}=0.09, & 0.16, & 0.48, & 0.84 & 0.65, & 0.79
\end{array}
$$

b) Find $1<x_{i}<e$ from: $\quad x_{i}=(e-1) u_{i}+1, e=2.72$
c) Find $\log _{e}\left(x_{i}\right)$
d) Then find $g\left(x_{i}\right)=\cos \left[\pi \log _{e}\left(x_{i}\right)\right]$, and fill the following table:

\boldsymbol{i}	1	2	3	4	5	6
x_{i}	1.15	1.28	1.83	2.44	2.12	2.36
$\log _{e}\left(x_{i}\right)$	0.14	0.25	0.60	0.89	0.75	0.86
$g\left(x_{i}\right)$	0.9	0.71	-0.31	-0.94	-0.71	-0.9

Using Monte-Carlo with 6 points: $I=0.36$
Use the following equation:

$$
I=(b-a)\left(\Sigma_{i=}^{6}{ }_{1} g(x i)\right) / 6
$$

$I=-(e-1)(0.9+0.71-0.31-0.94-0.71-0.9) / 6$
$I=-(1.72)(-1.25) / 6=2.15 / 6=0.36$

8- In the following single server queuing MM1 system, find: (15)
a) Average delay in queue (d(n): ADQ).
b) Average number of customers in the queue (q(n): ANCQ).
c) Efficiency of utilization of the server ($u(n)$: \%).
(i^{i} means $\mathrm{i}^{\text {th }}$ arrival and \downarrow means $\mathrm{i}^{\text {th }}$ departure) $(\mathrm{n}=7, \mathrm{~T}(\mathrm{n})=14)$

Departure
a)
$D 1=0, D 2=4.7-1.2=3.5, D 3=5.4 .-2.2=3.2, D 4=6.5-3.4=3.1, D 5=0, D 6=12.5-10.6=1.9$, $D 7=12.8-11.4=1.4$
$d(n)=\sum i=1$ to $n D i / n=(0+3.5+3.2+3.1+0+1.9+1.4) / 7=13.1 / 7=1.87$ ADQ (time)
b)
$T 0=1.2+(10.6-6.5)+(14-12.8)=1.2+4.1+1.2=6.5$
$T 1=(2.2-1.2)+(6.5-5.4)+(11.4-10.6)+(12.8-12.5)=1+1.1+0.8+0.3=3.2$
$T 2=(3.4-2.2)+(5.4-4.7)+(12.5-11.4)=1.2+0.7+1.1=3$
$T 3=(4.7-3.4)=1.3$
$q(n)=\sum i=0$ to $\infty i T i / T(n)=(0 x 6.5+1 \times 3.2+2 \times 3+3 \times 1.3) / 14=(3.2+6+3.9) / 14=$
$q(n)=13.1 / 14=0.94$ ANCQ (men)

c) $u(n)=\sum t=0$ to $14 B(t)$
 $u(n)=[(8.3-0.5)+(14-9.6)] / 14=(7.8+4.4) / 14=12.2 / 14=0.87=87 \%$ server utility (busy)\%

