Simulation
 3-rd year undergraduate
 University of the Ryukyus
 2002-2-18
 Faculty of Engineering
 Time: 90 minutes (write answers in boxes)
 Department of Information Eng.
 Prof. M.R. Asharif

$* *$
Use the table-look-up method to simulate random variables X from $\mathrm{U}(0,1)$.
Where the p.d.f of X is: $\mathrm{f}(\mathrm{x})=1 /(1+\mathrm{x}) \quad 10 \%$
(Hint: see page 95)
Simulate the random variable X with the following probabilities:
(Hint: see page 93)

From a $\mathrm{U}(0,1)$ in the following table:
15\%

3- The mixed congruential generator: EMBED Equation. $3 \quad(\bmod 4)$
has full 4 cycle-length. With seed EMBED Equation. 3 , simulate 8 numbers, one after each.
15%
(Hint: See page 61)
4- Simulate the normal distributed random variables (N1, N2) by using Polar-Marsaglia method (rejection method) from each pair of the following uniform distributed random variables: (Hint: See page 80)

$$
(\mathrm{V} 1, \mathrm{~V} 2)=(-0.7,0.9),(\mathrm{V} 1, \mathrm{~V} 2)=(-0.2,0.4), \quad(\mathrm{V} 1, \mathrm{~V} 2)=(-0.6,-0.8)
$$

5- Simulate a Binomial random variable X with $B(8,0.6)$ from a set of uniform random variables $\mathrm{U}(0,1)$, by using Bernouli random variable, where:
$\mathrm{U} 1=0.1, \mathrm{U} 2=0.8, \mathrm{U} 3=0.9, \mathrm{U} 4=0.2, \mathrm{U} 5=0.3, \mathrm{U} 6=0.7, \mathrm{U} 7=0.5, \mathrm{U} 8=0.4 \quad 15 \%$
(Hint: See page 82)

$$
\mathrm{p}=0.6
$$

6-Simulate random variable X with geometric distribution and $p=0.2$ from $U(0,1)=0.5$

7- Suppose that we have a set of uniform random variables: $\mathrm{U}=\{0.7,0.8,0.9,0.5\}$ simulate the exponential p.d.f. random variables, Ei , by using: $\mathrm{Ei}=-\log _{\mathrm{e}} \mathrm{U}$. 5\%

Then, from this set $\{\mathrm{Ei}\}$, simulate a random number, K , with Poisson distribution.
(Hint: See page 83)
10%

$K=$

