Simulation	University of the Ryukyus
3-rd year undergraduate	Faculty of Engineering
2003-2-17	Department of Information Eng.
Time: 90 minutes (write answers in boxes)	Prof. M.R. Asharif

Use the table-look-up method to simulate random variables X from $\mathrm{U}(0,1)$.
Where the p.d.f of X is: $\mathrm{f}(\mathrm{x})=2 \mathrm{x} /\left(1+\mathrm{x}^{2}\right), 0=<\mathrm{x}=<(\mathrm{e}-1)^{1 / 2} \quad 10 \%$
(Hint: see page 95)
Simulate the random variable X with the following probabilities:
(Hint: see page 93)

From a $\mathrm{U}(0,1)$ in the following table:
10%

3- The mixed congruential generator: EMBED Equation. $3 \quad(\bmod 8)$ has full 8 cycle-length. With seed EMBED Equation. 3 , simulate all cycles, one after each.
15%
(Hint: See page 61)
4- Simulate the normal distributed random variables (N1, N2) by using The Box-Muller method from the following $\mathrm{U} 1, \mathrm{U} 2$ uniform distributed random variables: $\mathrm{U} 1=0.4$, $\mathrm{U} 2=0.6$

15\%
(Hint: See page 78 Eq. 4.1)
5- Simulate a Binomial random variable X with $B(8,0.75)$ from a set of uniform random variables $\mathrm{U}(0,1)$, by using Bernouli random variable, where:
$\mathrm{U} 1=0.8, \mathrm{U} 2=0.2, \mathrm{U} 3=0.7, \mathrm{U} 4=0.5, \mathrm{U} 5=0.9, \mathrm{U} 6=0.6, \mathrm{U} 7=0.3, \mathrm{U} 8=0.4 \quad 10 \%$
(Hint: See page 82)

$$
\mathrm{p}=0.75
$$

6-Simulate random variable X with geometric distribution and $p=0.5$ from $U(0,1)=0.2$
(Hint: See page 93 Eq. 5.4)

7- Simulate a Poisson distribution random variable, K, with parameter $\lambda=1$ from the following uniform random variables: $\mathrm{U}=\{0.7,0.8,0.9,0.5\}$
(Hint: See page 84)
10%

8- In randomized response technique (RRT), if we have $\mathrm{P} 0=0.4$, and $\operatorname{Pr}[\mathrm{N} \mid \mathrm{Yes}]=0.8$, and total probability from survey is: $\operatorname{Pr}[\mathrm{Yes}]=0.9$, find the $\operatorname{Pr}[\mathrm{E} \mid \mathrm{Yes}]=$?

(Hint: See page 51)					10%		
0	1	2	3	4	5	6	

$\operatorname{Pr}[\mathrm{X}<\mathrm{I}]$	0.15	0.24	0.37	0.58	0.75	0.95	0.99

$\mathrm{X}=$
$\operatorname{Pr}[\mathrm{E} \mid \mathrm{Yes}]=$
$x(0)=1, x(1)=\quad, x(2)=\quad, x(3)=\quad, x(4)=\quad, x(5)=\quad, x(6)=\quad, x(7)=$
$(\mathrm{N} 1=\quad$, $\mathrm{N} 2=$
$\mathrm{X}=$
$X=$
$\begin{array}{llllllll}\mathrm{U} & 0.94 & 0.85 & 0.16 & 0.68 & 0.35 & 0.56 & 0.97\end{array}$

X
$K=$

