Simulation Exam(B) Name:	University of the Ryukyus
3-rd year undergraduate No:	Faculty of Engineering
2004-2-16	Department of Information Eng.
Time: 90 minutes (write answers in boxes)	Prof. M.R. Asharif
$* *$	

1- In the mixed congruential generator: EMBED Equation. 3 simulate the first seven numbers with seed EMBED Equation. 3 . Then find the correlation between two successive numbers.

$$
5 \%
$$

10%
(Hint: See page 60-61)
2- Simulate the normal distributed random variables (N1, N2) by using Polar-Marsaglia method (rejection method) from each pair of the following uniform distributed random variables: (Hint: See page 80)

$$
(\mathrm{V} 1, \mathrm{~V} 2)=(0.4,0.6),(\mathrm{V} 1, \mathrm{~V} 2)=(0.5,0.9), \quad(\mathrm{V} 1, \mathrm{~V} 2)=(0.6,-0.8)
$$

$$
10 \%
$$

Use the table-look-up method to simulate random variables X from $U(0,1)$.
Where the p.d.f of X is: $f(x)=\log _{e} x$ (implicit form)
(Hint: see page 95)
Simulate the random variable X with the following probabilities:
(Hint: see page 93)

From a $\mathrm{U}(0,1)$ in the following table:
10%

5- Simulate a Binomial random variable X with $B(9,0.72)$ from a set of uniform random variables $\mathrm{U}(0,1)$, by using Bernouli random variable, where:

$$
\mathrm{U} 1=0.9, \mathrm{U} 2=0.7, \mathrm{U} 3=0.6, \mathrm{U} 4=0.2, \mathrm{U} 5=0.4, \mathrm{U} 6=0.5, \mathrm{U} 7=0.3, \mathrm{U} 8=0.8, \mathrm{U} 9=0.1
$$

(Hint: See page 82) 10%

$$
\mathrm{p}=0.72
$$

6-Simulate random variable X with geometric distribution and $p=0.8$ from $U(0,1)=0.9$

7- Simulate a Poisson distribution random variable, K , from the following exponential random variables: $\mathrm{E} 1=0.1, \mathrm{E} 2=0.7, \mathrm{E} 3=0.3, \mathrm{E} 4=0.2 \quad 10 \%$
(Hint: See page 84)
8- In randomized response technique (RRT), if we have $\mathrm{P}_{0}=0.5$, and $\operatorname{Pr}[\mathrm{N} \mid \mathrm{Yes}]=0.8$, and total probability from survey is: $\operatorname{Pr}[\mathrm{Yes}]=0.6$, find the $\operatorname{Pr}[\mathrm{E} \mid \mathrm{Yes}]=$? (Hint: See page 51) 10%
9- Describe control variates in the variance reduction techniques. 5%

I	0	1	2	3	4	5	6
$\operatorname{Pr}[\mathrm{X}<\mathrm{I}]$	0.01	0.21	0.31	0.48	0.56	0.58	0.62
$\mathrm{X}=\ldots \log _{\mathrm{e}} \ldots-\ldots$							
$\operatorname{Pr}[\mathrm{E} \mid \mathrm{Yes}]=$							
$(\mathrm{N} 1, \mathrm{~N} 2)=$,$(\mathrm{N} 1, \mathrm{~N} 2)=$						

EMBED Equation. 3

```
X=
X=
    U Ullllllll
    X
K=
x(0)=0,x(1)= ,x(2)= ,x(3)= ,x(4)= ,x(5)= ,x(6)= ,x(7)=
```

