Simulation Exam Name:	University of the Ryukyus
3-rd year undergraduate No:	Faculty of Engineering
2005-2-14	Department of Information Eng.
Time: $\mathbf{9 0}$ minutes (write answers in boxes)	Prof. M.R. Asharif
$* *$	

1 - In randomised response technique (RRT), if we have $\mathbf{p}_{0}=0.4, \operatorname{Pr}[\operatorname{Yes} \mid \mathrm{N}]=0.7$, and total probability from survey is: $\operatorname{Pr}[\operatorname{Yes}]=0.7$, find the $\operatorname{Pr}[\operatorname{Yes} \mid E]=$?
(Hint: See page 51)
10%

2- For the following two dimensional transformation:

$$
\begin{aligned}
& \mathbf{w}=\mathbf{x}-\mathbf{y} \\
& \mathbf{z}=\mathbf{x}+\mathbf{y}
\end{aligned}
$$

Find the joint pdf of $f(w, z)$, if the the joint pdf of $f(x, y)$, has the following Normal distribution:

EMBED Equation. 3

(Hint: See page 35)
10%

3- In the mixed congruential generator: EMBED Equation. 3
Simulate the first five numbers with seed EMBED Equation. 3 . Then find the correlation between two successive numbers.
5\%

$$
5 \%
$$

(Hint: See page 60-61)

4- Simulate the normal distributed random variables ($\mathrm{N} 1, \mathrm{~N} 2$) by using The BoxMuller method from the following U1, U2 uniform distributed random variables: $\mathrm{U} 1=0.3, \mathrm{U} 2=0.5$ 10%
(Hint: See page 78 Eq. 4.1)
for $\mathrm{n}=5$, EMBED Equation. 3 from the following uniform distributed random variables, $\mathbf{U}(\mathbf{0}, 1)$:
$\mathbf{U 1}=\mathbf{0 . 9}, \mathbf{U} 2=\mathbf{0 . 7}, \mathbf{U} 3=\mathbf{0 . 6}, \mathbf{U} 4=\mathbf{0 . 2}, \mathbf{U 5}=\mathbf{0 . 4} 10 \%$
(Hint: See page 82)

6- Two independent uniform random numbers with $\mathbf{U}(0,1)$ are given in the binary form as below: $\quad \mathrm{U} 1=\mathbf{0 . 1 0 1 1 0 1 1 0}$ U2=0.10111110
Simulate the binomial distribution $B(8,1 / 2)$ random variables, $X 1$, from $U 1$ and X 2 , with $\mathrm{B}(8,1 / 4)$ from U 1 and U 2 .
10%
(Hint: See page 83)

7- Simulate a Poisson distribution random variable, K, with parameter EMBED Equation. 3 from the following uniform random variables: $\mathrm{U} 1=0.8, \mathrm{U} 2=0.8$, $\mathrm{U} 3=0.6, \mathrm{U} 4=0.5$
10%
(Hint: See page 84)

8-Simulate the random variable X with the following probabilities: (Hint: see page 93)

From a $\mathbf{U}(0,1)$ in the following table:
10%

9-Simulate random variable X with geometric distribution and $p=0.5$ from $\mathbf{U}(0,1)$ $=0.3$
(Hint: See page 93 Eq. 5.4) 10\%

I	0	1	2	3	4	5	6
$\operatorname{Pr}[\mathrm{X}<\mathrm{I}]$	0.2	0.3	0.6	0.7	0.9	0.92	0.95
$\mathrm{X} 1=$							
$\mathrm{X} 2=$							

EMBED Equation. 3

$\mathrm{X}=$							
U	0.15	0.55	0.35	0.65	0.75	0.85	0.93
X							

$x(0)=1, \quad x(1)=\quad, x(2)=\quad, x(3)=\quad, x(4)=\quad, x(5)=$
$\operatorname{Pr}[$ Yes $\mid E]=$
$\mathrm{f}(\mathrm{w}, \mathrm{z})=$
$\mathrm{N} 1=\quad, \mathrm{N} 2=$
$\mathrm{G}=$
$K=$

