Simulation Exam Name:	University of the Ryukyus
3-rd year undergraduate No:	Faculty of Engineering
2006-2-13	Department of Information Eng.
Time: 90 minutes (write answers in boxes)	Prof. M.R. Asharif
$* *$	

Use the table-look-up method to simulate random variables X from $U(0,1)$.
Where the p.d.f of X is: $f(x)=3 x^{2} /\left(1+x^{3}\right), 0=<x=<(e-1)^{1 / 3} \quad 10 \%$
Also, find the value of X when $U=0.1$
(Hint: see page 95)

2- Simulate a Binomial random variable X with $B(8,0.35)$ from a set of uniform random variables $U(0,1)$, by using Bernouli random variable, where: $U 1=0.82, U 2=0.24, U 3=0.36, U 4=0.45, U 5=0.34, U 6=0.76, U 7=0.28, U 8=0.56$

10\%
(Hint: See page 82)

$$
p=0.35
$$

3- In randomised response technique (RRT), if we have \mathbf{p}_{0} for answering [\mathbf{N}, $\left(1-p_{0}\right)$ for answering $[E]$ and $\operatorname{Pr}[Y e s \mid N]=0.9$, and total probability from survey is: $\operatorname{Pr}[\mathrm{Yes}]=\mathbf{0 . 9}$, find the $\operatorname{Pr}[\mathbf{Y e s} \mid \mathbf{E}]=$?
(Hint: See page 51)
10\%

4- In the mixed congruential generator: EMBED Equation. 3 Simulate the first five numbers with seed EMBED Equation. 3 . Then find the correlation between two successive numbers.

5\%

(Hint: See page 60-61)

5- Simulate the normal distributed random variables (N1, N2) by using Polar-

Marsaglia method (rejection method) from each pair of the following uniform distributed random variables: (Hint: See page 80)
$(V 1, V 2)=(0.8,0.7),(V 1, V 2)=(0.6,0.8), \quad(V 1, V 2)=(0.3,-0.4)$

$$
10 \%
$$

6- If $y=\exp (-x)$ and x is a random variable with the exponential p.d.f $f(x)=\exp (-x)$, then find the probability density function (p.d.f) of random variable, $f(y)$.

$$
10 \%
$$

(Hint: See page 33)

7- Simulate the Gamma distributed random variables, G, with EMBED Equation. 3 for $\mathbf{n}=5$, EMBED Equation. 3 from the following uniform distributed random variables, $\mathbf{U}(0,1)$:

$$
\begin{array}{rl}
\mathbf{U} \mathbf{1}=\mathbf{0 . 4 5 3}, \mathbf{U} \mathbf{2}=\mathbf{0 . 9 0 6}, \mathbf{U} \mathbf{3}=\mathbf{0 . 5 4 3}, \mathbf{U 4}=\mathbf{0 . 6 7 9}, \mathbf{U 5}=\mathbf{0 . 2 7 1} & 10 \% \\
& \text { (Hint: See page } 82)
\end{array}
$$

8- Simulate a Poisson distribution random variable, K, with parameter EMBED
Equation. 3 from the following uniform random variables:
$\mathrm{U} 1=0.95, \mathrm{U} 2=0.89, \mathrm{U} 3=0.78, \mathrm{U} 4=0.69, \mathrm{U} 5=0.72$
10%
(Hint: See page 84)

9- Simulate the random variable X with the following probabilities: (Hint: see page 93)

From a $\mathbf{U}(0,1)$ in the following table:

I	0	1	2	3	4	5	6
$\operatorname{Pr}[\mathrm{X}<\mathrm{I}]$	0.212	0.327	0.687	0.917	0.923	0.924	0.956
$\mathrm{X}=$							
$\mathrm{X} \mid \mathrm{u}=0.1=$							
$(\mathrm{N} 1, \mathrm{~N} 2)=$,$(\mathrm{N} 1, \mathrm{~N} 2)=$,$(\mathrm{N} 1, \mathrm{~N} 2)=$			

EMBED Equation. 3

```
X=
\begin{tabular}{llllllll}
U & 0.954 & 0.945 & 0.329 & 0.689 & 0.678 & 0.326 & 0.211
\end{tabular}
    X
```

$x(0)=1, \quad x(1)=\quad, x(2)=\quad, x(3)=\quad, x(4)=\quad, x(5)=$
$\operatorname{Pr}[$ Yes $\mid E]=$
$f(y)=$
$\mathrm{G}=$
$K=$

