Simulation Exam Name:	University of the Ryukyus			
3-rd year undergraduate No:	Faculty of Engineering			
2006-2-13	Department of Information Eng.			
Time: 90 minutes (write answers in boxes)	Prof. M.R. Asharif			

Use the table-look-up method to simulate random variables X from U(0,1).

Where the p.d.f of X is: $f(x)=3 x^2/(1+x^3)$, $0=< x=<(e-1)^{1/3}$ 10% Also, find the value of X when U=0.1 (Hint: see page 95)

2- Simulate a Binomial random variable X with B(8,0.35) from a set of uniform random variables U (0,1), by using Bernouli random variable, where: U1=0.82, U2=0.24, U3=0.36, U4=0.45, U5=0.34, U6=0.76, U7=0.28, U8=0.56 10%

(Hint: See page 82)

p=0.35

3- In randomised response technique (RRT), if we have p₀ for answering [N],
(1-p₀) for answering [E] and Pr[Yes|N]=0.9, and total probability from survey is:
Pr[Yes]=0.9, find the Pr[Yes| E] =?
(Hint: See page 51)

4- In the mixed congruential generator: EMBED Equation.3
 Simulate the first five numbers with seed EMBED Equation.3 . Then find the correlation between two successive numbers.
 5%

5%

(*Hint: See page 60-61*)

5- Simulate the normal distributed random variables (N1, N2) by using Polar-

Marsaglia method (rejection method) from each pair of the following uniform distributed random variables: (Hint: See page 80) (V1,V2)=(0.8,0.7), (V1,V2)=(0.6,0.8), (V1,V2)=(0.3,-0.4)

10%

6- If y=exp(-x) and x is a random variable with the exponential p.d.f f(x)=exp(-x), then find the probability density function (p.d.f) of random variable, f(y).

10%

(*Hint: See page 33*)

7- Simulate the Gamma distributed random variables, G, with EMBED Equation.3 for n=5, EMBED Equation.3 from the following uniform distributed random variables, U(0,1): U1=0.453, U2=0.906, U3=0.543, U4=0.679, U5=0.271 10%

U1=0.453, U2=0.906, U3=0.543, U4=0.679, U5=0.271 105 (*Hint: See page 82*)

8- Simulate a Poisson distribution random variable, K, with parameter EMBED Equation.3 from the following uniform random variables: U1= 0.95, U2= 0.89, U3= 0.78, U4= 0.69, U5=0.72

10%

(*Hint: See page 84*)

9- Simulate the random variable X with the following probabilities:

(Hint: see page 93)

10%

From a U(0,1) in the following table:

Ι	0	1	2	3	4	5	6	
Pr [X <i]< td=""><td>0.212</td><td>0.327</td><td>0.687</td><td>0.917</td><td>0.923</td><td>0.924</td><td>0.956</td></i]<>	0.212	0.327	0.687	0.917	0.923	0.924	0.956	
X= X u=0.1 =								
(N1,N2)= , (N1,N2)=					, (N1,N2)=			
EMBED Equation.3								
X=								
U	0.954	0.945	0.329	0.689	0.678	0.326	0.211	
Х								

x(0)=1, x(1)=,x(2)=,x(3)=,x(4)=,x(5)=

Pr[Yes E] =	
f(y) =	
G=	
K=	