Simulation Exam Name:	University of the Ryukyus
3-rd year undergraduate No:	Faculty of Engineering
2007-2-5 Last Term Examination	Department of Information Eng.
Time: 90 minutes (write answers in boxes)	Prof. M.R. Asharif
$* *$	

1- The Fibonacci sequence is defined as follows:

$$
\begin{aligned}
& \operatorname{Fib}(1)=\operatorname{Fib}(2)=1 \\
& \operatorname{Fib}(n)=\operatorname{Fib}(n-1)+\operatorname{Fib}(n-2) \quad \text { for } n>=3
\end{aligned}
$$

It can be shown that:

$$
\operatorname{Fib}(n)=\left\{[(1+\sqrt{ } 5) / 2]^{n}-[(1-\sqrt{ } 5) / 2]^{n}\right\} / \sqrt{ } 5
$$

Find Fib(10), both by direct method and using the above equation. 10%

2- Simulate the Gamma distributed random variables, G, with EMBED Equation. 3 for $n=3$, EMBED Equation. 3 from the following uniform distributed random variables, $U(0,1)$:

$$
U 1=0.95, U 2=0.23, U 3=0.60,
$$

$$
10 \%
$$

(Hint: See page 82)

3- In the following chaotic system:
10%

$$
x(n+1)=4 r x(n)[1-x(n)]
$$

If $r=0.5$, find the attractor of this chaotic system.
(Hint: See chap. 6, page 130)

Use the table-look-up method to simulate random variables \boldsymbol{X} from $\boldsymbol{U}(0,1)$.
Where the p.d.f of X is: $f(x)=e^{-x} /\left(1+e^{-x}\right)^{2},-\infty<x<\infty \quad 10 \%$
Also, find the value of X when $U=0.5$
(Hint: see page 95-96)

5- Simulate a Binomial random variable X with $B(8,0.65)$ from a set of uniform
random variables $U(0,1)$, by using Bernouli random variable, where: $U 1=0.48, U 2=0.89, U 3=0.76, U 4=0.45, U 5=0.02, U 6=0.82, U 7=0.44, U 8=0.62$
(Hint: See page 82)
$p=0.65$
6- In randomised response technique (RRT), if we have $\boldsymbol{p}_{\boldsymbol{0}}=0.4$ for answering $[N]$, $\left(1-p_{0}=0.6\right)$ for answering $[E]$ and $\operatorname{Pr}[Y e s \mid N]=0.9$, and total probability from survey is: $\operatorname{Pr}[$ Yes $]=0.72$, what is the $\operatorname{Pr}[$ Yes $\mid E]$?
(Hint: See page 51)

$$
10 \%
$$

7- Simulate the normal distributed random variables (N1, N2) by using PolarMarsaglia method (rejection method) from each pair of the following uniform distributed random variables: (Hint: See page 80)
$(V 1, V 2)=(0.1,-0.2),(V 1, V 2)=(0.5,0.9), \quad(V 1, V 2)=(0.8,-0.6)$

$$
10 \%
$$

8 -Simulate random variable X with geometric distribution and $p=0.2$ from $U(0,1)$ $=0.486$

9- In estimation of $\pi b y$ integral method. Compare the variances of Hit-or-Miss Monte Carlo and Crude Monte Carlo methods. Which one has the lower variance. (Hint: See page 162-165)

```
X=
X|u=0.5 =
(N1,N2)= , (N1,N2)= ,(N1,N2)=
x(\infty)=
X=
Var (R)=
Var(I)=
Pr[Yes |E]=
```

$\mathrm{X}=$
$\operatorname{Fib}(10)=$

$$
\mathrm{G}=
$$

