Simulation Exam Name: University of the Ryukyus 3-rd year undergraduate No: **Faculty of Engineering** 2008-2-18 Last Term Examination **Department of Information** Eng. Time: 90 minutes (write answers in boxes) Prof. M.R. Asharif ***** 1- If the sequence x(n) has the following properties: x(0)=0, x(1)=x(2)=1*for n>=3* where: x(n)=x(n-1)+x(n-2)-x(n-3)Then, find x(100), by regression or simulation method. 10% x(100) =2- In randomised response technique (RRT), if we have: (total probability from survey). **Pr/Yes/=0.7** *Pr*/*Yes*|*N*/=0.8 (answering probability to non-embarrassing question). *Pr*[*Yes*] *E*]=0.3 (answering probability to embarrassing question). (condition for answering to embarrassing question). *Find:* 1-*p*₀ (*Hint: See page 51*) 10% $1-p_0 =$

3- In the following chaotic system:

10%

x(n+1)=4 r x(n) [1-x(n)]

If *r*=0.7, find the attractor of this chaotic system by simulation or direct computation.

(*Hint: See chap.* $(x(\infty))=$

 4- Simulate the normal distributed random variables (N1, N2) by using Box-Muller method from the following pair of uniform distributed random variables: (U1,U2)=(0.9,0.2) (Hint: See page 78 use Eq. 4.1)

10%

N1,N2)=	
N1,N2)=	

5- Simulate the Gamma distributed random variables, G, with $\Gamma(n, \lambda)$ for $n=4$,		
$\lambda = 0.25$ from the following uniform distributed	l random variables, <i>U(0,1):</i>	
<i>U1=0.80, U2=0.90, U3=0.71, U3=0.72</i>	10%	
(Hint: See page 82)	G=	

6- Two independent uniform	random numbers with U(0,1) are given in the
binary form as below:	U1=0.01010110

U2=0.11010101 Simulate the binomial distribution B(8,1/2) random variables, X1, from U1 and X2, with B(8,1/4) from U1 and U2.

(<i>Hint</i> :	See	page	83)
(r	/

X1	=	
X2	2=	

7- Simulate a Poisson distribution random variable, K, with parameter $\lambda = 0.9$ from the following uniform random variables:

U1= 0.9, U2= 0.7, U3= 0.8, U4= 0.4 (*Hint: See page 84*)

10%

K=	

8- Simulate random variable X with geometric distribution and p=0.3 from U(0,1)=0.7

(*Hint: See page 93 Eq. 5.4*)

X=	

10%

9- Use the table-look-up method to simulate random variables X from U(0,1). Where the p.d.f of X has Caushy distribution as follows:

$f(x)=1/\pi(1+x^2),$	-∞< x<∞	10%
Also, find the value of X when U=0.75 (Hint: see page 95-96)	X= X u=0.75 =	