Simulation Exam Name:	University of the Ryukyus
3-rd year undergraduate No:	Faculty of Engineering
2008-2-18 Last Term Examination	Department of Information
Eng.	
Time: 90 minutes (write answers in boxes)	Prof. M.R. Asharif

1- If the sequence $x(n)$ has the following properties:
$x(0)=0, x(1)=x(2)=1$
where: $\quad x(n)=x(n-1)+x(n-2)-x(n-3) \quad$ for $n>=3$
Then, find $\mathbf{x}(100)$, by regression or simulation method. 10%

$$
x(100)=
$$

2- In randomised response technique (RRT), if we have:
$\operatorname{Pr}[$ Yes $]=0.7$ (total probability from survey).
$\operatorname{Pr} / \operatorname{Yes} \mid \boldsymbol{N}]=0.8$ (answering probability to non-embarrassing question).
$\operatorname{Pr} / \operatorname{Yes} \mid \boldsymbol{E}]=\mathbf{0 . 3}$ (answering probability to embarrassing question).
Find: $1-\boldsymbol{p}_{0} \quad$ (condition for answering to embarrassing question).
(Hint: See page 51)
10%
$1-\mathrm{p}_{0}=$

3- In the following chaotic system:
10%
$x(n+1)=4 r x(n)[1-x(n)]$
If $r=0.7$, find the attractor of this chaotic system by simulation or direct computation.
(Hint: See chap. $\mathrm{x}(\infty)=$

4- Simulate the normal distributed random variables (N1, N2) by using BoxMuller method from the following pair of uniform distributed random variables: $(\boldsymbol{U} 1, \boldsymbol{U} 2)=(0.9,0.2) \quad$ (Hint: See page 78 use Eq. 4.1)
10%

$$
(\mathrm{N} 1, \mathrm{~N} 2)=
$$

5-Simulate the Gamma distributed random variables, \boldsymbol{G}, with $\Gamma(n, \lambda)$ for $\boldsymbol{n}=\mathbf{4}$, $\lambda=0.25$ from the following uniform distributed random variables, $U(0,1)$: $U 1=0.80, U 2=0.90, U 3=0.71, U 3=0.72$
(Hint: See page 82)

6- Two independent uniform random numbers with $\mathbf{U (0 , 1)}$ are given in the binary form as below: $\mathrm{U} 1=\mathbf{0 . 0 1 0 1 0 1 1 0}$

$$
\mathrm{U} 2=0.11010101
$$

Simulate the binomial distribution $\mathrm{B}(8,1 / 2)$ random variables, X 1 , from U1 and X 2 , with $\mathrm{B}(8,1 / 4)$ from U 1 and U 2 .
10%
(Hint: See page 83) \qquad

7- Simulate a Poisson distribution random variable, K, with parameter $\lambda=0.9$ from the following uniform random variables:
$\mathrm{U} 1=0.9, \mathrm{U} 2=0.7, \mathrm{U} 3=0.8, \mathrm{U} 4=0.4$
(Hint: See page 84)
10%

```
K=
```

8 - Simulate random variable X with geometric distribution and $p=0.3$ from $U(0,1)=0.7$
(Hint: See page 93 Eq. 5.4)

10%

```
X=
```

```
X=
```

```
X=
```

9- Use the table-look-up method to simulate random variables X from $U(0,1)$. Where the p.d.f of \boldsymbol{X} has Caushy distribution as follows:

$$
f(x)=1 / \pi\left(1+x^{2}\right)
$$

Also, find the value of \boldsymbol{X} when $\boldsymbol{U}=0.75$
(Hint: see page 95-96)

