Simulation Exam. Name:
3-rd year undergraduate No:
2009-2-9 Last Term Examination
Eng.
Time: 90 minutes (write answers in boxes) Prof. M.R. Asharif
$* *$
1-In the mixed congruential generator:

$$
x_{n+1}=101 x_{n}+11(\bmod 100)
$$

Simulate the first five numbers with seed $x_{0}=1$. Can you estimate a rule for $\mathbf{x}(\mathbf{8})$?
(Hint:
See page 58-61) 10%

$$
x(0)=1, \quad x(1)=\quad, x(2)=\quad, x(3)=\quad, x(4)=\quad, x(5)=\quad x(8)=
$$

2- In randomised response technique (RRT), if we have:
$\operatorname{Pr}[\mathbf{Y e s} \mid \mathbf{N}]=\mathbf{0 . 1} \quad$ (answering probability to non-embarrassing question).
$\operatorname{Pr}[\mathbf{Y e s} \mid \mathbf{E}]=\mathbf{0 . 9} \quad$ (answering probability to embarrassing question).
$\mathbf{p}_{\mathbf{0}}=\mathbf{0 . 2}$ (probability for answering to non-embarrassing question).
Find $\operatorname{Pr}[\mathrm{Yes}]=$? (total probability from survey).
(Hint: See page 51)
10%

$$
\operatorname{Pr}[Y e s]=
$$

3- In the following chaotic system:

$$
x(n+1)=4 r x(n)[1-x(n)]
$$

If the attractor of this chaotic system will be $x(\infty)=0.6$, find " r " by simulation or direct computation [for any value of $x(0)$].
(Hint: See chap \square

4- Find the probability of $S=k$, if we have the following relation:

$$
\mathbf{S}=\mathbf{X}+\mathbf{Y}
$$

Where both random variables X and Y have the Geometric distribution:

$$
\operatorname{Pr}[X=i]=\boldsymbol{q}^{i-1} \boldsymbol{p} \quad \text { and } \quad \operatorname{Pr}[\boldsymbol{Y}=i]=\boldsymbol{q}^{i-1} \boldsymbol{p} \quad \text { (see page } 16 \text {) }
$$

(Hint: See page 38)

5- Simulate a Binomial random variable X with $B(7,0.75)$ from a set of uniform random variables $\boldsymbol{U}(0,1)$, by using Bernouli random variable, where:
$U 1=0.6068, U 2=0.4860, U 3=0.8913, U 4=0.7621, U 5=0.4565$, $U 6=0.0185, U 7=0.8214$
(Hint: See page 82)
10%

6- Use the table-look-up method to simulate random variables X from $U(0,1)$. Where the p.d.f of \boldsymbol{X} has logistic distribution (see page 28) as follows:

$$
f(x)=e^{-x} /\left(1+e^{-x}\right)^{2}
$$

10%
Also, find the value of \boldsymbol{X} when $\boldsymbol{U}=0.5$
(Hint: see page 95-96)

$$
\begin{aligned}
& \mathrm{X}= \\
& \mathrm{X} \mid \mathrm{u}=0.5=
\end{aligned}
$$

7- Simulate the normal distributed random variables (N1, N2) by using BoxMuller method from the following pair of uniform distributed random variables: $(\boldsymbol{U} 1, \boldsymbol{U} 2)=(\mathbf{0 . 6 0 6}, 0.25) \quad$ (Hint: See page 78 use Eq. 4.1) 10%

```
(N1,N2)=
```

8-Simulate the random variable X with the following probabilities:
(Hint: see page 93-94)
10%

I	0	1	2	3	4	5	6
$\operatorname{Pr}[\mathrm{X}<\mathrm{I}]$	0.2311	0.4860	0.6068	0.8913	0.9218	0.9568	0.9797

From a $\mathbf{U}(0,1)$ in the following table:

U	Q.2523	0.8757	0.7373	0.1365	0.2987	0.8939	ф.4692
X							

9- Simulate random variable X with geometric distribution and $p=0.1$ from $U(0,1)=0.5$
(Hint: See page 93 Eq. 5.4)
10%

```
X=
```

