Simulation Exam Name:	University of the Ryukyus
3-rd year undergraduate No:	Faculty of Engineering
2010-2-8 Last Term Examination	Department of Information Eng.
Time: 90 minutes (write answers in boxes)	Prof. M. R. Asharif
$* *$	

1-In the mixed congruential generator: $x_{n+1}=17 x_{n}+3,(\bmod 8)$
Simulate the following cycles with seed $x_{0}=1$. How many cycles does it have?

$$
x(0)=1, x(1)=\quad, x(2)=\quad, x(3)=\quad, x(4)=\quad, x(5)=\quad, x(6)=\quad, x(7)=
$$

10%
(Hint: See page 60-61)

2- In Randomised Response Technique (RRT), if we have:
$\operatorname{Pr}[\operatorname{Yes} \mid \mathbf{N}]=\mathbf{0 . 8}$ (answering probability to non-embarrassing question).
$\operatorname{Pr}[$ Yes $]=\mathbf{0 . 9}$ (total probability from survey).
$\mathbf{p}_{\mathbf{0}}=\mathbf{0 . 4}$ (probability for answering to non-embarrassing question).
Find $\operatorname{Pr}[\mathbf{Y e s} \mid \mathbf{E}]=$? (answering probability to embarrassing question).
(Hint: See page 51)
10\%
$\operatorname{Pr} / \operatorname{Yes} \mid E]=$

3- In the following chaotic system:

$$
x(n+1)=4 \text { r } x(n)[1-x(n)]
$$

If $r=0.75$, find the attractor of this chaotic system.

(Hint: See chap. 6, page 136)

4- The Fibonacci sequence is defined as follows:
$\operatorname{Fib}(1)=F i b(2)=1$
$\operatorname{Fib}(n)=\operatorname{Fib}(n-1)+F i b(n-2) \quad$ for $n>=3$
It can be shown that:
$\operatorname{Fib}(n)=\left\{[(1+\sqrt{5}) / 2]^{n}-[(1-\sqrt{5}) / 2]^{n} \quad\right\} / \sqrt{5}$
Find Fib(10), both by direct method and using the above equation. 10%
$\operatorname{Fib}(10)=$

5- Simulate a Binomial random variable X with $B(8,0.6)$ from a set of uniform random variables $U(0,1)$, by using Bernouli random variable, where: $\mathbf{U} 1=\mathbf{0} .1, \mathbf{U} 2=\mathbf{0 . 8}, \mathbf{U} 3=\mathbf{0 . 9}, \mathbf{U} 4=\mathbf{0 . 2}, \mathbf{U} 5=\mathbf{0 . 3}, \mathbf{U} 6=\mathbf{0} .7, \mathbf{U} 7=\mathbf{0 . 5}, \mathbf{U} 8=\mathbf{0} .4 \quad 10 \%$ (Hint: See page 82)

$X=$

$4 \mathrm{p}=0.6$
6- If $y=\exp (-x)$ and x is a random variable with the exponential p.d.f $f(x)=\exp (-x)$, then find the probability density function (p.d.f) of random variable, $f(y)$.
(Hint: See page 33)

7- Simulate the Gamma distributed random variables, \mathbf{G}, with $\Gamma(n, \lambda)$ for $\mathbf{n}=5$, $\lambda=0.5$ from the following uniform distributed random variables, $\mathbf{U}(\mathbf{0}, 1)$: $\mathrm{U} 1=0.9, \mathrm{U} 2=0.7, \mathrm{U} 3=0.6, \mathrm{U} 4=0.2, \mathrm{U} 5=0.4$
(Hint: See page 82)

8 - Simulate a Poisson distribution random variable, K, with parameter $\lambda=1$ from the following uniform random variables: $\mathrm{U}=\{0.7,0.8,0.9,0.5\}$
(Hint: See page 84)

9- Simulate the normal distributed random variables (N1, N2) by using PolarMarsaglia method (rejection method) from each pair of the following uniform distributed random variables: (Hint: See page 80)

$$
\begin{aligned}
& (\mathbf{V} 1, \mathbf{V} 2)=(-\mathbf{0 . 7}, \mathbf{0 . 9}),(\mathbf{V} 1, \mathbf{V} 2)=(\mathbf{0 . 2}, \mathbf{0 . 4}),(\mathbf{V} 1, \mathbf{V} 2)=(\mathbf{- 0 . 6 , - \mathbf { 0 . 8 })} \\
& (\mathrm{N} 1, \mathrm{~N} 2)=\quad,(\mathrm{N} 1, \mathrm{~N} 2)=\quad,(\mathrm{N} 1, \mathrm{~N} 2)=
\end{aligned}
$$

