Simulation Exam Name:	University of the Ryukyus
3-rd year undergraduate No:	Faculty of Engineering
2014-1-31 Last Term Examination	Department of Information Eng.
Time: 90 minutes (write answers in boxes)	Prof. M.R. Asharif

**
1- In the mixed congruential generator:

$$
x_{n+1}=201 x_{n}+11,(\bmod 100)
$$

Simulate the first ten numbers with seed $x_{0}=1$.
Can you find a rule in sequence, and estimate the cyle length? 10\%

$$
\begin{aligned}
& x(0)=1, x(1)=12, x(2)=23, x(3)=34, x(4)=45, x(5)=56 \\
& x(6)=67, x(7)=78, x(8)=89, x(9)=0 \text {, There is a clear rule for } \\
& \text { successive sequences and the full 100 lengths will be generated. }
\end{aligned}
$$

(Hint: See page 58-61)
2- If $y=\arctan (x)$ and x is a random variable with the standard Cauchy p.d.f, that is:

10\%

$$
f(x)=\frac{1}{\pi\left(1+x^{2}\right)}
$$

Then, find the probability density function (p.d.f) of random variable, $y, f(y)$.

$$
\begin{aligned}
& \text { (Hint: See page 33) } \\
& f(y)=f(x)|d x / d y|, y=\arctan (x), x=\tan (y), d x / d y=1 / \cos ^{2}(y) \\
& f(y)=\left[1 / \pi\left(1+x^{2}\right)\right]\left[1 / \cos ^{2}(y)\right]=\left[1 / \pi\left(1+\tan ^{2}(y)\right)\right]\left[1 / \cos ^{2}(y)\right] \\
& f(y)=1 / \pi
\end{aligned}
$$

3- In Randomised Response Technique (RRT), if we have:
$\operatorname{Pr}[Y e s \mid N]=0.8$ (answering probability to non-embarrassing question).
$\operatorname{Pr}[$ Yes $]=0.8$ (total probability from survey).
$p_{0}=0.5 \quad$ (probability for answering to non-embarrassing question).
Find $\operatorname{Pr}[Y e s \mid E]=$? (answering probability to embarrassing question).
(Hint: See page 51)
$\operatorname{Pr}[$ Yes $]=\operatorname{Pr}\left[\right.$ Yes \mid N] $p_{0}+\operatorname{Pr}[\operatorname{Yes} \mid E]\left(1-p_{0}\right) \quad \operatorname{Pr}[\mathrm{Yes} \mid \mathrm{E}]=0.8$
$0.8=0.8 * 0.5+\operatorname{Pr}[$ Yes $\mid E] * 0.5$
$\operatorname{Pr}[$ Yes $\mid E]=0.4 / 0.5=0.8$
4- Simulate random variable X with exponential distribution from $U(0,1)=0.5$
(Hint: See page 81 or page 24)
$X=-\log _{e} U=-\log _{e} 0.5=0.69$

$$
X=0.69
$$

5- In the following iterative function (Julia Sets):

$$
a(n+1)=[a(n)]^{2}-0.39
$$

If $a(0)=0.2 i$, where $i=\sqrt{-1}$, find the attractor of this function, $a(\infty)$.
(Hint: See Julia Sets)
$a(1)=(0.2 i)^{2}-0.39=-0.04-0.39=-0.43$

```
a(\infty)=-0.3
```

$a(2)=(-0.43)^{2}-0.39=0.1849-0.39=-0.2051$
$a(3)=(-0.2051)^{2}-0.39=-0.3479$
$n=\infty, a(\infty)=x, x^{2}-x-0.39=0, x=(1-1.6) / 2=-0.3$

6- Simulate a Binomial random variable X with $B(8,0.54)$ from a set of uniform random variables $U(0,1)$, by using Bernouli random variable, where: $\boldsymbol{U} 1=0.8, \boldsymbol{U} 2=0.3, \boldsymbol{U} 3=0.5, \boldsymbol{U} 4=0.1, \boldsymbol{U} 5=0.4, \boldsymbol{U} \boldsymbol{6}=0.1, \boldsymbol{U} 7=0.6, \boldsymbol{U} 8=0.7 \quad 10 \%$
(Hint: See page 82)

U6,U4 U2 U5 U3 U7 U8 U1

$$
X=\Sigma B_{i}=5
$$

| 0 | 0.1 | 0.2 | 0.3 | 0.4 | $0.5 \uparrow$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $p=0.54$ | 0.6 | 0.8 | 0.9 | 1 | |

7- Simulate the normal distributed random variables (N1, N2) by using PolarMarsaglia method (rejection method) from each pair of the following uniform distributed random variables: (Hint: See page 80) $(V 1, V 2)=(0.3,0.2),(V 1, V 2)=(-0.6,-0.9),(V 1, V 2)=(0.6,-0.8)$
$(\mathrm{N} 1, \mathrm{~N} 2)=(1.12,1.68),(\mathrm{N} 1, \mathrm{~N} 2)=$ Reiected $\quad,(\mathrm{N} 1, \mathrm{~N} 2)=(0,0) \quad 10 \%$

```
W=V12}+V\mp@subsup{2}{}{2}=0.09+0.04=0.1
N1=V2[(-2log}\mp@subsup{e}{e}{W})/W\mp@subsup{]}{}{0.5}=0.2[(-2\mp@subsup{\operatorname{log}}{e}{}0.13)/0.13] ].5= 0.2[(-2*-2.04)/0.13] [.5 =0.2*5.6=1.12
N2=V1[(-2 (og}e\textrm{e})/W]\mp@subsup{]}{}{0.5}=0.3[(-2\mp@subsup{\operatorname{log}}{\textrm{e}}{}0.13)/0.13] [.5=0.3[(-2*-2.04)/0.13] 0.5 =0.3*5.6=1.6
W=V1 }\mp@subsup{}{}{2}+\textrm{V}\mp@subsup{2}{}{2}=0.36+0.81=1.17>1 > Rejected
```

$\mathrm{W}=\mathrm{V} 1^{2}+\mathrm{V} 2^{2}=0.36+0.64=1$
$\mathrm{N} 1=\mathrm{V} 2\left[\left(-2 \log _{\mathrm{e}} \mathrm{W}\right) / \mathrm{W}\right]^{0.5}=-0.8\left[\left(-2 \log _{\mathrm{e}} 1\right) / 1\right]^{0.5}=0 \& \mathrm{~N} 2=0$
8- Use the table-look-up method to simulate random variables X from $U(0,1)$. Where the p.d.f of X has logistic distribution as follows:

$$
f(x)=e^{-x} /\left(1+e^{-x}\right)^{2},
$$

Also, find the value of X when $U=0.5$
(Hint: see page 95-96)
$U=F(x)=\int_{-\infty}^{x} f(x) d x=\int_{-\infty}^{x} e^{-x} /\left(1+e^{-x}\right)^{2} d x=\left[1 /\left(1+e^{-x}\right)\right]^{x}{ }_{-\infty}$
$1+e^{-x}=1 / U, \quad X=\log _{e}[U /(1-U)]$, for: $U=0.5, \quad X=0$
9- Simulate the random variable X with the following probabilities:
(Hint: see page 93, 94)
10\%

I	0	1	2	3	4	5	6
$\operatorname{Pr}[\mathrm{X}<\mathrm{I}]$	0.143	0.256	0.472	0.614	0.721	0.843	0.976

From a $U(0,1)$ in the following table:

U	0.632	0.934	0.811	0.148	0.201	0.480	0.971
X	$\mathbf{4}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{3}$	$\mathbf{6}$

