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1.2

L3

1.5
1.6

Chapter 1

(a} As n increases, the ratio rfn is seen to stabilize. The 'limiting
frequency’ definition of probability is in terms of the limits of such
ratios as n — co.

(b) See,e.p, Feller (1957, p. 84). Mote the occurrence of "long leads’, ie.
once (2r — n) becomes positive (or negative) it frequently stays so for
many consecutive trials.

Bufion's needle is discussed further in Exercises 7.1-7.4. Estimate
Prob{crossing) by: :

. no. of crossings/no. of trials
and solve o estimate n (i, say).

. 2 154‘,‘_

{l} E—ﬁ,ﬁ—?ﬁ?l
Lo 2 638

(ii) §=!_,‘W.ﬂ-3.00-51

Effects of increasing the traffic at a railway station, due to re-routing of
trains.

Effects of instituting fast-service tills a1 a bank/supermarket.

Effects of promoting more lecturers-to senior lecturers in universities
{see Morgan and Hirsch, 1976).

The improved stability, in high winds, of high-sided vehicles with roofs
with rounded edges.

Election voting patterns.

The story is taken up by MeArthur et al. {1976) (see Fig. 8.3)
Appointment systems are now widely used in British surgeries. For a
164
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If £ =1, as in the qucstmn, Z has an N(8, AA’) distribution. The
translation: Z = Z+p is readily shown to result in N (¢, AA'), a
required.

Pr(k events) = j A e Htg At @ ;‘) de  fork=0
0

k ® /‘{k}»
S o I I
1,08
= W for k=0

_ie. a geometric distribution.

Pr(YZm= 3 ("+ '") (1 —g)kgntm-*

k=n
- (n+m
— 1—6 u+k8m—k
k=0("+k)( )
while Pr(X Z ( 1) g1 — o)

Therefore we require
x fn+k—1 o {n+m
8 = 1_ kBm k
; ( ) kgo("“‘ )( ?

i.e. we require

("*:"1)= y (:i?)(mk i)(—n*-'"“ for 0 < i < m,
k=m-i -

and this follows simply from considering the coefficient of 2! on both
sides of the identity

(1+2)n+1‘-—1 — (1+Z)n+m/(l+z)m+l—1

n l'

Z = Pr(X, <n), where X, has a Poisson distribution of
parameter n. Now (see Exercise 2.8(b)), if X, is of this form, we can write
X" = Z Z"

i=1

where the Z; are independent, identically distributed Poisson random
variables of parameter 1. Hence by a simple central limit theorem, .

Pr(X,<n)-®0)=3 asé€[X,]=n
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Therefore lim (e‘” Y n_) =%

no o y=or!
See ABC, p. 389.

y = g(x) does not, in this example, have a continuous derivative. Thus
Equation (2.3) is not appropriate. However, we always have:

Pr{Y < ) = Pr(X <€ x)
and for y < 1, .
PrY <y)=1—-¢""
while for y = 1,
Pr(¥ <y =1-—e U022

See Exercise 7.25.

For A < uthe queue settles down to an ‘equilibrium’ state. For 4 2 pno
such state exists, and the queue size increases ultimately without limit.
See Exercise 7.24.

Chapter 3
Pr(respond ‘Yes') = Pr(respond ‘Yes' to (i))Pr{(i} is the question)
+ Pr(respond ‘Yes’ to (ii))Pr((ii) is the question).

If one responds ‘Yes’ to (i) then one responds ‘No’ to (ii)
Pr(respond ‘Yes’ to (ii)) = 1 — Pr{respond ‘Yes’ to (i)) = 1 —n, say
Pr(respond ‘Yes') = 5 Pr({i)} + (1L —n} Pr(ii)

Pr(i) and Pr(ii) are determined by a randomization device, and

Pr{respond ‘Yes’) is estimated from the responses. For example, from a

class survey of first-year mathematics students, in which group X

approved of sit-ins as a form of protest (a question topical at the time),

Pr(i) = 3/10; Pr(ii) = 7/10,and 34 responded “Yes’ out of 56, resulting in

# = 0.38. The students also wrote their opinion anonymously on slips

which were collected, and which gave rise to # = 0.33. See Warner

(1965) for further discussion on confidence intervals, etc.

Conduct two surveys with two different probabilities of answering the
innocent question, resulting in two equations in two unknowns. For
further discussion, see Moors (1971). Innocent questions with known
frequency of response might include month of birth, or whether an
identity-number of some kind is even or odd (Campbell and Joiner,
1973).

Let 6 = Pr(respondent has had an abortion)
Let proportions of balls be: p,, p,.. p.

Then Pr(respond ‘Yes) = fp, + p,,.

See Greenberg et al. (1971).
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With the question as stated in Example 3.1, “Yes’ is potentially
incriminating, whereas ‘No’ is not. See Abdul-Ela et al. (1967) and
Warner (1971).

In experiments of this kind, individuals typically overestimate p,
introducing a judgement bias. Here we find:

judgement: X = 45.56;s = 13.69

random : X =37.21;5s=10.28.

Let X denote the recorded value.

6
PriX=0)= z Pr{ist die = i) Pr(2nd die = 10 -1i)

i=4
=3-4.1=4  (assuming independence)

o . .

Pr(X =1)= ) Pr(lst die =i) Pr(2nd die = 11 —i) = 5.
i=5

For2<i<9,
min(5,i — 1)

PriX =i)= ¥ Pr(lst die = j) Pr(2nd die = i —j),

Jj=max(1,i—6}

Thus Pr(X =2) =45, Pr{(X =3) = {4, Pr(X = 4) = {4, etc.
For equiprobable random digits, the method suggested is clearly

- unsuitable.

pq

Pr(2nd coin is H| two tosses differ) = =
pg+4p
(p=Pr(H)=1~gq).

There are 6 possibilities for both A and B, and so there are 36
possibilities in all. If we reject (i, {) results, for 1 <7< 6, we get 30
possibilities, which may be used to generate uniform random digits
from 0-9 as follows:

b

Possible outcomes from dice Digit selected
(1,2) (1, 3) (L, 4) 0
(1, 5) (1,6) (2, 1) 1
(2,3) 29 (2, 5) 2
(2, 6) G, 1) (3,2 3
(3, 4 (3, 5) (3, 6) 4
4, 1) (4,2 4,3) 5
(4, 5) (4,6) (5, 1) 6
(5, 2) (3,3 G, 4 7
(5, 6) (6, 1) (6, 2) 8
(6, 3) (6, 4) (6, 3) 9

Thus, for example, we choose digit 5 if we get one of (4, 1), (4,2), (4,3), :
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and the conditional probability of this is:
(3 x () x 4))/(30/36) = fg  as required.
The pairs given thus result in the sequence:
0,3,1,5-96,6,40.

If we take these digits in fours we obtain the required numbers; €.g.
0315, 9664.

3.9 Regard HCY 7F as HCY 007F, etc. One set of 600 digits obtained in this
manner is given below: '

157 741 602 823 438 455 816 493 681 241
260 765 308 684 564 918 422 772 471 072
217 192 159 274 946 068 017 230 889 812
735 801 5i7 582 277 573 808 623 641 770
601 319 100 153 976 015 506 460 342 357
485 803 335 844 370 556 724 900 935 195
200 360 263 427 280 419 515 991 296 712
297 122 007 388 186 876 581 793 352 033
285 307 996 988 973 794 981 677 212 464
246 893 373 113 723 725 7718 645 028 611

395 288 291 370 744 142 486 374 548 580
s91 454 733 986 484 423 594 938 670 323
792 355 642 059 803 356 278 500 840 383
416 453 461 412 851 560 978 483 772 615
885 520 441 909 435 802 055 933 659 534
801 726 501 651 828 941 570 164 104 380
253 882 072 848 909 249 147 309 522 503
015 813 421 805 702 342 920 170 226 312
832 562 730 201 704 965 728 387 761 360
028 331 334 202 479 916 953 930 462 369

3.11 It is easy to demonstrate degeneration of this method:
(i) 55 02 00
(ii) 66 35 22 48 30 90 10 10 10
\e— 312 If this sequence is operated to small decimal-place accuracy then it can

enerat as the following example shows:
\'\y ‘)) /de'g 24 P

0925 0309 0180 ¢.326 0349 0.198 0401
\J\ 0964 0.485 0327 0073 0265 0776 0.776

3.13 We require sample mean and variance for the sample:
{ifm0=i<m-—1}

E_Lm(m—l)_ll 1
T om? 2 L ™

B\
A3 \})
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3.14 IFAXxUO+B = (kx 1000)+ r
where 0=<r <1000, Ul = k++/1000+¢
where ¢ <€ 0.001 is the round-off errbr, and INT(UL) = r/1000 +¢,
Y = (UL —INT(U1)) x 1000 = r+ 1000¢

We require r, therefore set Ul = INT ( + 1000z + 8)
where @ is such that § + 1000 > 0, but 8+ 1000e < 1.
8 = 0.5 will do.

An example is:

1 168 595 82 429 435964 874.781 ...
With the additional line we get:
_ 1 168 595 82 429 436 903...
i _ 315 x;y =ax;+b (mod m)

Le X =ax;+b—xm for some x and 0 < ax,+ b < m

andso (ﬂ):a(ﬁ).{_i_x
n m m

b b
L.y =au;+— (mod 1) and 0<au+— <.
m m

; 3.16 For anyn=20,x,,, =ax,+b (mod m)

Therefore ax,+b=ym+x,,, for some integral y>0 and
0<x,;,,<m

and 50 x,,.5 = ax,,, +b {mod m)
= a’x,+ab—yam+b rkmed-m)cs
ax,+(@+1)b  (mod m)

and this is the approach which may be used to prove this result by
~ induction on k for any n:
a—1
a—1

=[x+
Xntk+1 —(a xn‘l‘(

=a""x, + (@ — )b (a—1)"? .mod(m)

) ba-+ b) mod(m)

Thus every kth term of the original series is another congruential series,
with muitiplier a* and increment (@ —1) (a—1)"1b, or, equivalently,
a* (modm) and (a*—1) (a — 1)='b (mod m), respectively,

3,17 The illustration below is taken f;o'm Wichmann and Hil] (1982a):
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Value of Value of U, to 1 d.p.

U,

to 1dp. 00 01 02 03 04 05 06 07 08 09
00 00 01 02 03 04 05 06 07 08 09
0.1 01 02 03 04 05 06 07 08 09 00
0.2 02 03 04 05 06 07 08 09 00 Ol
0.3 03 04 05 06 07 08 09 00 01 02
0.4 04 05 06 07 08 09 00 01 02 03
0.5 05 06 07 08 09 00 01 02 03 04
0.6 06 07 08 09 00 01 02 03 04 05
0.7 07 08 09 00 01 02 03 04 05 06
0.8 08 09 00 O} 02 03 04 05 06 07
0.9 09 00 01 02 03 04 05 06 07 08

The values above give the fractional part of (U, + U,). If U and U are’
independent, then whatever the value of U,,if U, is uniform then so is
the fractional part of (U, + U,), and U, need not be uniform.

3.20 Note the generalization of this result.

3.21 (a) Numbers in the two half-periods differ by 16:

013 231 417 6 3 82110 712251411
16 29 18 1520 1'22 19 24 526 23 28 9 30 27

We have:
Binary form  Decimal form
u, 9u, + 13 Uiy of u, .y of u,.,/32
1] 13 13 01101 0.40625
13 130 2 ~ 00010 0.06250
2 31 3t 11111 0.96875
31 292 4 00100 0.12500
4 49 17 10001 0.53125
17 166 & 00110 0.18750
6 67 3 00011 0.09375
3 40 8 01000 0.25000
8 85 21 10101 0.65625
21 ) 202 10 01010 - 031250
10 103 7 00111 0.21875
7 76 12. 01100 0.37500
12 121 25 11001 0.78125
25 238 14 01110 0.43750
14 139 11 01011 0.34375
11 112 16 10000 0.50000
16 157 29 11101 0.90625

29 274 i8 10010 © 056250

revealing further clear patterns.
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3.22 (a) Procedures are equivalent if the indicator digit is from a generator
of period g.

(b) The sequence is: 1, 8, 11, 10, 5 12,15, 14,9,0, 3, 2, 13,4, 7, 6 1.
Suppose g = 4, for illustration. We start with (1, 8, 11, 10).
Let X denote the next number in the sequence, and suppose that if

i 0= X< 3 wereplace the 1st stored term
3 4= X< 7 wereplace the 2nd stored term
(+) 8§ <X <11 wereplace the 3rd stored term
12< X <15 we replace the 4th stored term
This gives:
1,8, 11, 10) 1
(1,511, 10) use 3
{1,5 11,12) use 10
(1, 5,11, 15) use 15
etc.

Once the store contains (1, 5, 9, 14) in this example then it enters a
(full) cycle. Note that before a cycle can commence, the numbers in
the store must correspond, in order, to the four different ranges in
(*), and the sequence of numbers for any part of the store must
correspond to that in the original sequence for the numbers in that
range.

3.23 Omit trailing decimal places, when the x, are divided by m, to give:
u; = x;/m,

3.25 For suitable , f, 6,
Xpop = (28 +3)x, + 23!
= 6x; 4+ x;(2*% —3) + 23!
= 6+ (2'6 +3)(216 —3)x,_, + (2'6 —3)2% 4 a2*!
= 6x;+ (232 - 9)x;_, + 823
= 6x; —9x;_, + 623!
=6x;,—9x;_, (mod 2%"),

3.26 (b) One-sixth of the time.

0<x;<m
therefore x, +x,_, = x4, +km where k =0 or x = 1.
Now suppose  x,.; < X,&q < X, (%)

then Xpoy HEM < X+ X, < X,+Km

If x = 1, this implies x, > m
If x = 0, this implies x,_; <0

} neither can occur, so («) is false.” '
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3.27 (b) No zero values with a multiplicative congruential generator.

3.28 FORTRAN programs are provided by Law and Kelton {1982, p. 227,
see also Nance and Overstreet (1975). Some versions of FORTRAN
allow one to declare extra-large integers.

3.29 Sety, = §"and solve the resulting quadratic equation in & (roots f, and ’
8,). The general solution is then y, = AQ% + B63, where A and B are
determined by the values of y, and y,.

3.32 From considering the outcome of the first two tosses,

Pn=%Pn—1+‘};P,,_2 fornZZ.

n n
npy, = ipn—l'f'zpn"l
(n—1) (n=2) ’
= 5 P,_;+%Pn_l+--4—-p,,_2+%p,,_2 forn=?2

o
Summing over n: if g = Y, np,,
n=1

il
B=2py =Py =§+§+%(1 —p)+i p=0p =i, n=06

Chapter 4

4,2 10 LETP=.5
20 LETQ=1-P
30 LETS=40
40 RANDOMIZE
50 LET U =RND
60 FORI=1TO3
70 IF U < P THEN 100
80 ILET U= (1-U)/Q
50 GOTO 120
100 LETU= U/P
110 LETS=5+1
120 NEXT1
130 PRINT S
140 END

4.6 N, =(—2log U,)*"?cos2nl,
N, = (—2log, U,)'??sin2nU,

B2 _ tan (2mu,); uy = exp[ —4(n} +n2)]

ny

0 g

_u.l'. i —n,u, — Nyl

on, On,

Ju, Ou, - 3 —’:2 11

a_n-l— 5; ni2m sec® 2nu,) 2mn, sec (2mu,)

_wmm/nl) _w exp[—3(ri+n3)] required.
2n sec (2ru,) 2w n ’
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The simplest case is when n = 2, resulting in the triangular distribution:

Sx)==x for 0=<x<1
fxy=2~-x for 1£x<2

For illustrations and applications, see Section 5.5.

Define Y, = 0.
K=iifandonlyif¥;< 1 <¥,,, fori=0.
Thus K < k if and only if ¥,,, > 1. Therefore -

@ k —Ay
Pr(K < k)= Pr(Y,,, > 1) = f %ﬂ
, .
and Pr(K = ) = Pr(K < k)—Pr(K <k—1) for k=0
[Pr(K < ~1) = Pr(¥, >1) = 0]
=Pr(Y, 4y > 1)-Pr(¥,. > 1)

Es Ak+1yhe—1y Akykﬂ-le—zly
‘J{ TR RS VT

uoiki-lyke—ﬂ.y ;{k 4] . _a
L ——dy= 5| e

1

lk k A © Ak ® Ay k—1
= | 2 kp=ar _r ~hy k=14
[k!y ¢ ], +(k_1)!£ ¢y

and so (integrals are finite)

e—). k

o for k= 0.

Pr(K = k) =

Lenden-Hitchcock (1980) considered the following four-dimensional
method.

Let N, 1 <i <4, be independent random variables, each with the
half-normat density: ‘

Tufx)= \/(%) e~*2  for x>0,

Changing from Cartesian to polar co-ordinates we get:

N, =Rcos®,cos@,cos 0,
) N, = Rsin ®, cos @, cos O, O<®i<g,for15i£4
N3 = Rsin®,cos 0, : 0<R <o,
N, =Rsin®,
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The Jacobian of the transformation is R3cos @, cos? @;, and so
4 :
fre, 0,0, 0::02,03) = = rde—"cosf, cos?d,.

Thus R, ©,, @, and ©, are independent, and to obtain the {N} we
simply simulate R, ©,, ®, and ©; using their marginal distributions
and transform back to the {N,} by (). R* has a x] distribution,and so is
readily simulated, as described in Section 4.3.

(Had a three-dimensional generalization been used, R? would have
had a % distribution, which is less readily simulated} Lenden—
Hitchcock suggested that the four-dimensional method is more efficient
than the standard two-dimensional one.

Let W = Pr(Accept (V;, V3) and Accept (¥}, V3))
—Pr(Vi+Vi<land Vi+V2i<1)

1
S =5am for0=x=k F (%) = x112
1
Therefore ¥ = L Pr(V}<1-x)Pr(Vi{<1-x) 22172 dx
1y 1 2 n?
2 12 _ M2y = ] —= = o ok —
2L(x x'*)dx 1,3 3%16'

Logistic.

It is more usual to obtain the desired factorization using Choleski’s

method (see Conte and de Boor, 1972, p. 142), which states that we can

obtain the desired factorization with a lower triangular matrix A. The

elements of A can be computed recursively as follows.

Let ={o;}, A={a;}. We have a;=0 for j>i and so
min (i, j)

Oy= Y, azau;6y =4dy, so that a, = g2, and then
k=1

a,y = (0y, /ot 2)fori > 1. This gives the first column of A, whichmaybe
used to give the second column, and so on. Given the first (j—1)

columns of A,

i—1 1/2
— 2
ay = ("J‘j_ by @

k=1
-1

and a, =(a",— ¥ aikaﬂ)/ ay fori>j.
k=1

The result is easily shown by the transformation-of-variable theory,
with the Jacobian of the transformation = (1 — p?)'/2. Alternatively,
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small-scale study resulting from data collected froma provincial French
practice, see Example 8.1. °

If a model did not result in a simplification then it would not be a model.
Clearly models such as that of Exercise 1.6 ignore features which would
make the models more realistic. Thus one might expect more women
patients than men (adults) in the morning, as compared with the
afternoon. Were this true, and if there was a sex difference regarding
consultation times, or lateness factors, the model should be modified
accordingly.

A system with small mean waiting time may frequently give risz to very
small waiting times, but occasionally result in very large waiting times.
An alternative system with slightly larger mean waiting time, but no
very large waiting times, could be preferable. An example of this kind is
discussed -by Gross and Harris (1974, p. 430). In some cases a
multivariate response may be of interest (see Schruben, 1981).

The following two examples are taken from Shannon and Weaver

{1964, pp. 4344).

(a) Words chosen independently but with their appropriate fre-
quencies: ‘Representing and speedily is an good apt or come can
different natural here he the a in came the to of to expert gray came
to furnishes the line message had be these.’

(b} If we simulate to match the first-order transition frequencies, i.e.
matching the frequencies of what follows what, we get: “The head
and in frontal attack on an English writer that the character of this
point is therefore another method for the letters that the time of
who ever told the problem for an unexpected.’

Chapter 2

dy
X = —log, U,fx(X) =fy(y) ’a;
in general, and so here,

du
Sx(x)=1 '&;

but u = e % and so fy(x) =% for x 2 0.

1

u-l

Note that for the exponential, gamma and normal cases X remains,
respectively, exponential, gamma and normal. :

fx(x}=e™™ forx=0

CW=yX'?
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the joint p.df. of ¥, and X, can be written as the product of the
conditional p.d.f. of Y1|X 1 and the marginal distribution of X, to
yield, directly:

_exp[ —3(y —p)*/(1 —p?)] exp[ —ix?]
Jr,x, 0, %) = I (2 Jen

(See also the solution to Exercise 6.5.)

Median = mif and only if one value = m, (n — 1) of the other values are
less than m, and (n — 1) are greater than m. The value to be m can be
chosen (2n — 1) ways; the values to be < m can be chosen (*"Z%) ways,
hence,

2n—2

Sulmydm = (2:1—1)( n—1

) m L —m) " dm

ie. M has a B,(n, n) distribution.

| [®e-4djkg=04gnn—1
PrX =)= L Sl
= an mz?."“—le_mﬂ)dl
KTm) o
8"  T(n+k) _
= WD) @ 1pek 2 required.
d
y=es pmef=y x=log,()
)= B -2 for v > 0.
Jr) yo J@m) exp{ 2( = or
T 1 @ (aef)
= 3 &%p, = —
k§1 Px log(l —a) &, k

—_ 1 = M of
Note that dM(6)/df = Togl =%) Y (xe)ae

) dM(8) oe® N
e. - 1
L€ @ logll~w@e =1 oree<
1 )
Therefore M0 = rc-i—m log(! —ae®)
MO =1sox=0
Pr(X = k) = 1 " Fldy = @ for k2 1
T Togl=a) )y ¥ YT TKiogli—a) =

This question is continued in Exercise 5.14.
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Chapter 5
51 LetWel-Us fylw) =yl |
. =] - ; = ) |—
W uth dw
lgl.‘. =1 and the result is proved.
dw

52 Fg(w)=Pr(X <w)=Pr(X <w|X =X) Pr(X = X)
LPrX <w|X=-—X)Pr(X = -X)
=1iPr(X < w)+3Pr(—X <w)
=iPr(X S w)+3iPr(X = —w)
Therefore if w = 0,

| O 1
F);,(w)=§j‘ fx(x)dx+§= & (w)
)

and if w <0,
Fypw)=0+3Pr(X 2 —w)= O(—w)

53  Poisson random variables with large mean values, g, say, can be
simulated as the sum of independent Poisson variables with means
which sum to g

5.4 We can take a Poisson random variable X, with mean 3 as an
illustration:

i 0 1 2 3 4 5 6

Pr(X =i | 00498 0.1454 02240 0.2240 0.1680 0.1008 0.0504
i 7 g 9 10 =11

Pr(X =i)| 00216 0008 0003 0.0008 0.0002

(b} Here we can set § = 2, say; Pr(X = 2) =04232.
As a first stage, check to see if U > 04232 If so, then it is not
necessary to check U against Zi_o Pr(X = i), for j<0=2.
(c) Here we could take 8, = 1 and 6, =4
Pr(X < 1)=10.1992; Pr(X < 4)=0.8152,andasa first stage we

check to see where U lies:

t J—

I + t 1

.0 01992 T 08152 1
if U/ lies here, if U/ lies here, if / lies here,
possible values possible values possible values

for X are:{,1 for X are; 2,3,4 for X are: =5
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(d) When the probabilities are ordered we have:

i 2 3 4 1 5 6

Pr(X=10| 0224 0224 0.168 0.1494 0.1008 0.0504

i 0 7 8 9 10 =11

Pr(X =i} 00498 0.0216 0.008 0.003 0.0008 0.0002

Ordering is a time-consuming operation but once it is done we
obtain the obvious benefit of checking the most likely intervals first.
As a first step one might check to see if U < 0.616. If so, X takes one
of the values 2, 3 or 4,

(a} Illustrate F(x) by means of a diagram. Note the symmetry,
IfU<05,set X = /JQRU)IfU=05,set X =2—,/(2-2V).

(b) We also obtain such an X by setting X = U, + U,, where U, and
U, are independent, identicaily distributed U (0, 1) random vari-
ables (see Exercise 4.8).

x 2 y3 <
y{l —y)dy= 5[_”_.___} =3x* —2x3
3 Jo

Therefore set U = 3X2 —2X? and solve this cubic equation in X.

Fx(x)=6j

0

3 e dy
(a) F(x) = J (1+y)—00£x500.

1 (tan Yx 1 T
Set y =tan 6 F(x)=—j d6=—(tan'1x+—)
T J_np )3 2

for —— <0<

b N
(YR

b
Therefore set Un = tan ™! x+3,

ie tan (Un+n/2) =
or, equivalently,
X = tan (nl)

{b) We saw, from Section 4.2.1, that we can write
N, =(-2log, U)?sin2n U,
Ny =(—2log, U,)"*cos 2n U,
where U, and U, are independent U (0, 1) random variables. Thus =
N,/N, =tan(2nU,), which clearly has the same “distribution as
X = tan (nU) above, ie. the standard Cauchy.: - ‘



286 Solutions and Comments for Selected Exercises

59 Letul= 1+exp(—2a15c(1—|'—a25cz])
Therefore we need to solve

log, (u™' —1) = —2a,% (1 +a; %%

Use the result: If ax®* +x—b =0, x =¢— 1/(3ac)
where 4\
2ac® = b+ (b2 +——) (see Page, 1977).
2la
510 See Kemp and Loukas (1978a, b). They suggest truncating the
distribution—e.g. to give values of {p;;} summing, over iand j, to give
unity to,say, 4 decimal places. Then use the approach of Exercise 5.4(d).
They found this approach faster than first simulating a marginat
variable and then simulating the . bivariate distribution via the con-

ditional distribution.

531 One approach is via the conditiona
above, in the comments OR Exercise 5.10.

512 Pr¥=i-1)= pm M= 1 _gmd = g7 H (et — 1) fori=1

oM —e”?y foriz L

Hence, from Section 2.6, (Y+1) has a geametric distribution with
g = e * This relationship is not surprising since both geometric and
exponential random variables measure waiting-times, as stated in

Section 2.10.

513 (a) Flx)=1/(1+e™%)
Therefore set U = 1/{1 +e %)

Ul=1+e ¥
X = —log (U™'—1)

(b) Fx)= % j‘x Wt exp[—(w/n]dw
1
13
= [exp [- (w/v)"]] =1 —exp[— (/)
Therefore set U = 1 —exp[ —(X ]

X\#
ie. exp[ —(X/W1=1-U; _-('}T) = log. (1 —-U).

X = y(~log, (1 —UN"*
or equivalently, and more simply (see Exercise 5.1)

X =y(~log U)"”

i and marginal distributions, as
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{© Set U=1—(k/X)5 1-Us=(K/X)" -
kl-U)y =X
or equivalently, as in (b}
X =kU~lm

(d) Set U = exp(—exp(({ —X)/0)

—log, U = exp (({ - X)/0)

flog.(—log. U) =& X,

X ={¢—0Blog,(—log,U)

To complete the simulation of a random variable with the logarithmic
distribution of Exercise 4.22, we need to simulate the random variable ¥,

for which
Fp()=log (1 —y)log(l —a) for0<y<ao

To do this by the inversion method, set U = log {1 —Y)/log {1 —«), ie.
log(l =Y)=Ulog(l =a); 1-Y={1—a)¥

Y=1-(1-aV

(a) First we find f(x, y): .
SN = —a(l =FxNA=FON+/ () F () af(y)
x{1—=F{x))
= oF (x) fpf () (1 = F (1)) = af (x) f (P) F (x) F ()

Now make the transformation of variable: U = F(X), V= F(Y):
Jlu,y=1—e(l —u)(1 —v)+av{l —u)+ oau{l —v) —ouw
=1 —a(l -2l —20)
(b) f(u,0) = (1 —a logu) (1 —alog v) — &) vu ~*loe?

_ = {1+tan"? (m)} {1 +tan”? (mv)}
72 {1+ tan"2 (nu)+ tan 2 (xv)} 7

() f{u,v)

Rejection, with a high probability of rejection, can be applied simply by
generating a uniform distribution of points over an enveloping
rectangle, and accepting the abscissae of the points that lic below the
curve, High rejection here is not too important as this density is only
sampled with probability 0.0228.

du
X =cosnlU; fy(x)= Ix
dx _ —msin (), fy(x) = : 1

du asinmu 72 J(1—x2)

for —1<x< 1.
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To simulate X without using the ‘cos’ function we can use the sarne:
approach as in the Polar Marsaglia method: ‘

cosnl/ = 2 cos? (%) -1

Thus, if U,, U, are independent U (0, 1) random variables
) w2 Uty
:fU§+U§ < 1, set X=W—l =(E~2-"+—Uz- .

5.18 Using a rectangular envelope gives an acceptance probability of 2/3.
Using a symmetric triangular envelope gives an acceptance probability
of 2/3 also, but the acceptance probability of 8/9 results from using a
symmetric trapezium. Simulation from a trapezium densny is easily
done using inversion.

5.19 For the exponential envelope we simulate from the half-logistic density
fl)=2e"*/(1+e ™) forx=0

We need to choose k > 1 so that ke™* > 2¢"*/(1 +e~*)* forall x = 0
i.e. choose k so that k > 2(1 +e~*)"2 for all x = 0, and this is done fos
smallest k by setting k = 2 {x = o0). |
1IfU,,U,are mdependent U (0, 1) random variables, set X = —log, U,
if U, < (1+ U,)"2 Finally transform to (— o0, c0) range.

5.20 =——— e %
/&) \/(21:)‘? } co<x< o
h(x)=e"(1+e")“z

N[

Set g(x) = —--!-— PR L § I N |
If 1(x) = log, q{(x)
|

1 2
Hx) = —3 log, 2m)+x —fz——{— 2log, (1+e7%)

dl(x) 2 |
= —— —_ = h = 0 }
™ 1—-x TS 0 when x
d21(x) 2e* |
e (1+e‘)2<0 when x ;
4

Therefore x =0 maximizes g(x), and k = max {g(x))= “
x ) \/ (2%

= 1.596. |
\

\
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To operate the rejection method here we need to simulate from h(x),
and this is readily done by the inversion method of Exercise 5.13(a);
probability of rejection = 1 —1/k = 0.37. This may seem surprisingly
high, but recall that the two distributions have different variances (1 and
n?/3) and a better approach would be to use a logistic distribution of
unit variance (see Fig. 5.14).

k = max {\/(%) exp[—x"/Z]/(lexp[—Ax])}
ie. k = max {(%\/(%) exp (Ax —xz/Z)}

d d’y
Le[y:,lx—xz'/z; d—y_=l—x=0whenx=l ¥
' X

gz = b

Hence & is obtained for x = A, to give:

k= l \/(2) exp (A%/2)
A brd

. 1
The method becomes: accept X = 7 log, U, if

U, U, <exp[-(A2+ X?)/2], for independent U(0, 1) random
variables U, and U,.

Probability of rejection = 1 — \/ (g) exp (—12/2)

Let y = lexp{—A%/2)

dz 1
let z = = J.—/lz y == — A= =],
e log y = log /2; =1 A=0wheni=1
d?z 1
W=—A—2—l,<0whenl=l

Thus taking 4 = 1 minimizes the probability of rejection.

(2) Use the inversion method:

0

F(x)=Au J‘: Y u+y)idy = [#(#+y“)"]

=1—pg(p+xY~*  forxz0.
Set U=1-p(p+XH7h 1-U=pp+x)!
or cquivalently

ﬁ___ . _ i_ 1§73
epes x=fufb o))
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=X
Sy w] = fy () dc/dw|

dw/dx = L x1# =3
/=g

N =K =1
fw{W}=ﬁeTx"”’=€-£"*“}n (%) r

Le. fi(w) --f;w"‘e‘“"”" for w = 0.

Y=NLPrl0£¥ = y)=Pr(~y't = N =y'?)
=B - B(—y'F)

and so

L =371 )+ T =y ) = T RGN

=y~ Uke=¥ily f(2n) for y = 0, ie 73,
Note that ¥ = N? is not -1 and so rote application of Equation (23) 33
gives the wrong answer. ;
=12 g8 2
(2

Suppose that § < 4. Let z = —2p(f —4),
ie 2=yl =20} dz = dp{l —24),

= z -2 ds
= —_— -
My ) L (I—EE) ¢ e -8
u_zm—l,l: Im .
NEEERD

ie M) = (1 —26)""" (see also Table 2.1).
Hence, in the notation of this question,

(6) = (1 —26)""

My(6) = £[¢"] = :" dy

g HE gl dz,

M .
L
dmi . -
ie. (from Table 2.1), the m.gf of a 32 random variable, (See also

Exercise 2.21.)

Solution: h
1 n I .
e ¥, hen = - .
If s na:“: ; then fi(s) g for —0Ss=< o, ie §
S has the same Cauchy p.d.f. as the component {¥;} random variables. 3
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28 (@) N(p, +pp, 01 +03) .

! (b) Poisson with parameter (14 1)

(¢) If 1 = pthe solution is given by Example 2.6, with a generalization
given in Exercise 2.6. If A # p,

_ A U _ 1 Ape 1 Ap
My.r(6) = (,1—9)(#—9) TE=R WD a0 G-p)

and so,

Awy Ap N L.
Sxsr(@) = (’T:-I)e A +(}L—,u)e g forz=0

i.e. a mixture of exponential densities.
While the solutions for (a) and (b) also follow easily from using
* . generating functions, the solution to any one of these parts of this
question is also readily obtained from using the convolution integral.
For (a), if the convolution integral is used, note that:

@ 2n b* —ac
1 2 = — .
J:m exp{ —3(ax*+2bx +c)} dx \/(a )exp( % )

(X=randY=n-r)

2.9 Pr(X =r|X+¥=n)= Pr

i Pr(X+Y=n)
_e"‘,l" e u" " pl A
ol =0t Ry \r A+

i.e. the conditional distribution of X is binomial:
Bin, A/(A+ ).
210 Pr(Z < z) = Pr(max(X,Y) < z) = Pr(X < zand Y < 2)
F(2) = Fy(2) Fy(2).
211 Pr¥ <y)=(1—e™y
1' Therefore f(y) = n(l —e7y""le~*

“q _ 1 2 n__ 5 J T
L NM =S e (r_—“e) I (f—f)
Note that

a Y 2 -0+ E+2)...n — r—lh
JI;[ (J'TE)_(I—!')@—I')---(—1)1‘2‘---("“i)—( ) (')
J:

therefore M, (8) = “—i (—1)~? (’:) (j)
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and so f,() = 3 (?)(—w-*ie-fr

i=1

and as n(?Z})=i(f) then it is clear that ¥ and Z have the same
distribution.
Note that

M, (6) = nj (1—e ) te7edy
4]
Ifwelet u=e~?, du= —e ?dy, and so

1
M (6) = nJ‘ (1 —uy'u?du,
0

i.e. is proportional to the beta integral, so that
n[{mI'(1—0)
I'n—0+1)
n!
TU-02-9...(n—0)
as above. To prove this result by induction, note that if

W=X/n—1, W)= @n+1e "™  forwz=0.

Let Z,., = Z,+W,inan obvious notation, then using the convolutio
integral

fz.“(z) = n-[ (1 —E_”)"-le"”(n-i- l)e—(n-l'i)(;—y)dy
0.

My(e) =

=n(n+ l)e’("’“l”J (1—e ") te™dy
0

=n(n+ l)e“"“"‘I (e’ -1y "te’dy
4]

=(n+1e 2 1y = (n+ 1)l —e"%)"e "

Thus if the result is true for n, it is true for (n + 1). But it is clearly true fc
n =0, and so it is true for n = 0.

Both ¥ and Z may be interpreted as the time to extinction for
population of size n, living according to the rules of a linear birtl
process {see Cox and Miller, 1965, p. 156, or Bailey, 1964, p. 88, and th
solution to Exercise 8.4).

ox dx ‘
X,=Y,~-Y ek S TSt NN
1 1 2 ayl 1: 3y2 1
ox ox
X, =Y, +Y. Il 2=1
R Y T IR
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L

dx, 8x,

leXZ(xlxz) —fY,Yl(J’l}’z) EJ_’g %
dx, ©dx,

2 ' 2
= % e_l()'l +ya) = ;L_ e _lxl_

It is now that this problem becomes tricky—we must determine the
possible region for X, and X,. Clearly, X, and X, are not independent,
and the ranges of each depend upon the value taken by the other.

Ifx, 2 0,then x, = x,, whileif x, <0, x, = —x,. So, to obtain the
marginal distributions:

-] —Ax,
Jx,(xq) ='lzf g 3 dx, for x, 2 0
)
. 0 g —Axg
=1 3 dx, forx, <0
’1 1
= Ee"“l forx, 20
A
=3 et forx, =0
Xy 12
and fx,(x2) = f 5 e *dx = Mx,e"* for x, >0
%

: ie I'(2, 4), as anticipated.

213 Pr(|X, - X,| < x, min(X,, X,) < y)

- =PrX, X, < x, min(X,, Xp) < 9 X, < Xa)+ ...
=2Pr(X; X, =%, X, <y X, > X,)

¥
=2J f(”)Pf(X1_X2 $x, ngy, X1>X2|X2=u}du
. Jo

= ZJyf(at)Pr(X, Sx+u,X; > u)du= 2J‘yf(u)[F(x+ w) — F (u)] du
N 0 0
" Therefore the joint p.d.f. is

d

I ONF G+ ) = FO)H = 2/() fix+) = g(x, ), say.

f{X) = e~ :.,g(x’ _V) — ZAe"“’Ae_“"*” = 2126~2Aye—1x

= independence
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Independence = g(x, y) = 2f(») flx +y) = U{x}h(y)
for some functions [ and h.

Put x =0, and let K = {(0), then
2L/ = Khi(y)=h(y) = [f(y)]”

Also, h{y)= ng(x, ydx =2f(y)[1L—-F(y]
2
Thus, /(W1 -FW] = Lfn]?
L—F() =fp)/K

dF
& k=1
FM+®/
F(y)= 1+4e~X¥, as required, Finally,
Pr(X, + X, < 3 min(X,, X;) < 3b) = Pr(U + 2V < 3V, V < b)

where U = | X, ~ X,| and ¥ = min(X,, X,).
U, V are independent, from above, and X, + X, = U+2V. Hence

required probability = Pr(U < ¥ < b)

fulu) = de™* (see Exercise 2.12) for some 4 >0
{cf. Exercise -2.10), and f,(v) = 2de~?*", and using the independence
property, we have reguired probability

bfe i 2 s
'[ J Ae"'“2f’.e"2""dudu=§—e"m’+—e’3“°.

oJo 3
e-x,l?_ xa—l
== >
214 f,(x) ¥ T@ forx=0
eyt
5y T0) for y
S=X+Y 6_3- = ' é =1
{ - ax dy
T = X/(X+7) ot ¥ ot x

x4y Oy P

therefore ST =X, ¥ =S(1-T1).
e—((x+y),'2)xa-1yb—1(x+y)
fST(S: t) =fXY(x’ Y)(x'l'y) = 24+bl-|(a)r(b)

_se R (st (s(L — ) ?
2T ()T (B)

R T T

alith o g b R L e e L e b e e D e e e eram o L r e s o e g b
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s“"'b_l,e"""zt“_l(l _t)"_!l_'(a-!- b)
2°**F(a + b)[ (@) (b)

We see that § and T are independent. S is Xbasn and T is B (a, b).

ie. fsrls, &)=

' © [* exp[fx,x
2215 (a) MN,N,(B)=J J. ~—p[21r—'2]exp[—%(xi+x§)]dx1dx2
K —w g -

[+]

1
=~ | ol=x112]

-

[ 2]

14
x(m i exp[l.‘bc,xl—.vc§/2]dx2)dx1

1 [
= m J‘_Q CxP[““X%/z] cxp[_l_%gzx?

8 (\/(1211:) J.f "KP[“%(GXI —xz)z] dx, ) dx,

1

Jen Ji

i -
(from setting x, = Ji -—Bz})

therefore =

—0%) J_ exp[ —y*/2]dy

1
~ =)
therefore M y v 1y v (0) = _t_

(1-6%

’ But this is the m.gf. of a random variable with the Laplace
' distribution:

Sx(x) = exp[ —|x|] for —0 < x< 0,

To see this:

0 E-

1
e*e*dx + EJ. e~ *dx
0

Mﬂ&=%f

_ 1
T214+8) 20-1)°

1
T (1-6)

(This is the distribution of Y, —Y, in Exercise 2.12.)

for8 <1
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Hence
SiNyN+ N (X) = €77 forx=0

(b) C = N,/N,. Also, set D = N, say, to give a 1-1 transformation
from (NI,NZ) to (C, D)

ac 1 dc ny od ad

c - = 2T =0
én;, n, an, ni  én, ony
exp[ —1(n} +n3)] {n3
Hence, fcplc,d)= —=
C.D I n,
exp[ —3v*(1 + 1/x%)] | y
[d=yx=c)= [ zyzn ] 2 =fx,y(X, »,

and now we form the marginal distribution of X:

-3 0 3
fx (x) = j_ fx_y(X, yydy = J._ fx,r(xs y)dy+ J; fx,y(xa y)dy

o 2WX

o 1
= I —— (—yexp[ —(*/2(1 + 1/x*)] dy
©
+L myexp[(—yz/z)(l +.1/x%)]dy

1 i1 1
S 15 2 1 10 all+22)

ie. fy(x) =

for —oo £ x < o,

i.e. X has the standard Cauchy distribution.

If X, Y are independent, identically distributed exponential
random variables, with probability density function, e”* for x 2 0,
then for Z = X/Y, f,{z) = (1+2)72 for z2 0, and £[Z] = o0.

2.16 ¢(x) = (2m) *2|Z|7"? exp{ ~ixZ7x}dx
Suppose, first of all, that y = 0:
x=A"'z  and the Jacobian is: |A™!|
and so, 3(z) = (2m) " P2|Z| P exp{ —1 (A YL A1z} |ATY
ie. qs(z)z(2n)-ﬂf2|>:]“”||A[|"lexp{—l{A-’z)'z"‘A-*z}
= (2m) PPIAZA| P exp{—iz (AT VETIAT 12}
= (2m)"P2|AZA |72 exp{ —3Z(AZA') 'z}
ie. Z = AX has an N{#, AZ A") distribution.

12
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