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Introduction (1)
DSP is different from other areas in 
computer science by the type of data it 
uses: signals.

DSP is the mathematics and 
algorithms that used to manipulate 
these signals. But first it should be 
converted into digital form. 
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Digital Signal Processing (DSP) Deals with the 
transformation of signals that are discrete in both 
amplitude and time

Is area of science and engineering developed rapidly 
over the last 30 years.

DSP is a result of significant advances in: 
Digital computer technology
Integrated circuit fabrication

DSP involves time and amplitude quantization of signals 
and relies on the theory of discrete time signals and 
systems.

Introduction (2)
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History of DSP

The roots of DSP are in the 1960s and 
1970s when digital computers first 
became available.

With generation of personal computers in 
1980s and 1990s, DSP has been found 
to have more applications.
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Applications (2)
Most DSP applications deal with analogue 
signals.
‑the analogue signal has to be converted to 
digital form

‑Information is lost in converting from analogue 
to digital

‑When the signal is converted to digital form, 
the precision is limited by the number of bits 
available.
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Early applications of DSP

radar & sonar, where national 
security was at risk; 

oil exploration, where large amounts 
of money could be made; 

space exploration, where the

The Scientist and Engineer's Guide 
to Digital Signal Processing
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New Applications
After PC has been developed enough (1980-
1990), new commercial applications were 
expanded for DSP, such products as:

Mobile telephones, compact disc players, 
and electronic voice mail.
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Interdisciplinary DSP
DSP is very interdisciplinary and it has fuzzy and 
overlapping borders with many other

areas of science, engineering and mathematics

Such as:

Communication Theory, Numerical Analysis,

Probability and Statistics, Analog Signal 
Processing, Decision Theory, Digital Electronics,

Analog Electronics
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Area of DSP Applications

 

DSP Application is mainly for two purposes:
      1- To Design a Digital Filter
      2- For Spectral analysis

Telecommunications: Multiplexing, 
Compression,
Echo control
Audio Processing: Music, Speech generation, 
Speech recognition
Echo Location:  Radar, Sonar, Reflection 
seismology
Image Processing: Medical, Space, Commercial 
Imaging Products
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ADC and DAC

 

Signals that encountered in Engineering are usually 
Continuous, such as: changes of light intensity with 
distance; voltage that varies over time etc.
Analog-to-Digital Conversion (ADC) and Digital-to-
Analog Conversion (DAC) are the processes that 
allow digital computers to interact with these 
everyday signals. Digital Signal is referred as signal 
that is sampled and quantized. By sampling frequency 
and number of bits for quantization, one can decide 
how much information contains in digital signal.
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From Continuous to Digital (1)

 

Two processes are made in digitization, ADC: 
2) Sample and Hold (S/H) and (2) Quantization
S/H changes time variable from continuous to
 discrete.
Quantization assigns an integer  value to each 
discrete flat region. That is converting voltage 
from continuous to discrete.
Sampling without quantization is used in switched 
capacitor filters. 
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Two types of Quantization method

1. Truncation ( cutting decimal points) example 
126.66=126

2. Rounding off (Rounding to the upper or lower value) 
example 126.7=127 and 126.3=126.

Quantization: A process in which the continuous range of values 
of an analog signal is sampled and divided into A discrete time discrete 
valued (Digital) signal.

From Continuous to Digital (2)

http://www.its.bldrdoc.gov/fs-1037/dir-002/_0289.htm
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Quantization Error

 

Maximum error in any digitized sample is:
±½ LSB. The quantization error appears
very much like random noise with uniform
Distribution between +-1/2 LSB with zero mean
1/ root(12) LSB as standard deviation. 
For example: 
With 8 bits: added rms noise is:
                    1/ root(12)*1/256 = 1/900
With 12 bits: added rms noise  =1/14000
With 16 bits: added rms noise  =1/227000
Notes: The more bit you use the less quantization noise (error) you get.
For example:           For speech use at least 16 bit.
                                  For image use at least 8 bit
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Processes of ADC
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Dithering
• Dithering is a common technique for 

improving the digitization of these

　slowly varying signals.

This is quite a strange situation: adding

noise provides more information.



16 

The Sampling Theorem

• If you can exactly reconstruct the analog
　signal from the samples, you must have done 

the sampling properly.
  A continuous signal can be properly sampled, 

only if it does not contain frequency 
components above one-half of the sampling 
rate.

a sampling rate of 2,000 samples/second is 
good for  up to 1000 Hz analog signal
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Two examples for sampling 
 good                 irreversible
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1. DSP is programmable:
-In DSP it is possible to change the program of the 

hardware with out changing the hardware 
design.

2. Off line processing (i.e. possible to design 
and test in simulation using PCs etc.)

3. Possible to recover the signal (i.e. Robust 
Noise)

4. Possible for having time sharing.
Possible to use it for very large scale Integrated 

(VLSI) technology

Advantage of Digital Signal Processing Over 
Analogue Signal Processing
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1. Large Bandwidth and CPU demand.
2. Distortion when converting Analogue to 

Digital is not perfect reconstruction of the 
original analogue signal.

3. DSP designed can be expensive
4. The design of DSP systems can be 

extremely time consuming and a high 
complex and specialized activity.

Disadvantages 
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 A signal is defined as a function of one or more variables, that     
 conveys information on the nature of the physical phenomenon 

What is a Signal?

• A signal is a pattern of variation of some form

• Signals are variables that carry information

Examples of signal include:
• Electrical signals

‑ Voltages and currents in a circuit

• Acoustic signals
‑ Acoustic pressure (sound) over time

• Mechanical signals
‑ Velocity of a car over time

• Video signals
‑ Intensity level of a pixel (camera, video) over time
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Continuous & Discrete-Time Signals

Continuous-Time Signals 
(Analogue)

• Are defined along a continuum of 
time and thus represented by a 
continuous independent variable 
and referred as analogue signal.

• E.g. voltage, velocity, 

Discrete-Time Signals
• Are defined at discrete time and 

thus independent variable has 
discrete value i.e. represented 
mathematically as a sequence of 
numbers.

• Denote by x[n], where n is an 
integer value that varies discretely

x(t)

t

x[n]

n
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• Exists only at discrete points in time.
• Often obtained by sampling on analogue signal i.e. measuring it’s value at 

distinct points in time.
• Sampling points usually separated by equal intervals of time.
• Given an analogue signal f(t), let f(n) be a value 
   of f(t) when t=nT  can be written as:

      f(t)=sin (wt)=sin(2πft)           for Analogue
                 when t=nT

    f(nT)=sin(2πfnT π)              Discrete time

where n= integer

Discrete-Time Signals
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Continuous valued versus 
Discrete-valued signals.

• A signal is continuous valued if it takes on all possible values on a 
finite or an infinite range.

• A signal is discrete valued if it takes on values from a finite set of 
possible values, usually equidistant values.

• A discrete time signal having a set of discrete values is called a digital 
signal.

• In order for a signal to be processed digitally it must be discrete in 
time and its value must be discrete.

• If a signal to be processed is in Analogue form, it should be converted 
to a digital signal by:
‑ Sampling the analogue signal at a discrete instants of time, obtaining a 

discreet time signal.

‑ Quantizing it’s continuous values to a set of discrete values (approximation 
process)  
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Discrete-valued signals.
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What is a System?
• Systems is any process that produce an out put 

signal in response to input signal.

How is a System Represented?
A system takes a signal as an input and transforms it into another 
      signal. 

System
impulse responseInput Output
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Delta function (unit impulse) is a normalized impulse, that is sample number 
zero has a value of one, while the other samples have a value of zero. The 
Greek letter tau is used to identify the delta function.

Impulse: is a signal composed of all zeros, except a single non                    
 
                    zero  points.
Impulse Response: is a signal that exists a system when 
                   the delta function (unit impulse is) the input.
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Continuous & Discrete-Time Systems
Continuous-Time Systems

‑ Input and out put continues signal such as in analogue electronics.

‣ E.g. circuit, car velocity

System
h(t) 

impulse response

Input 
x(t)

Output signal
y(t)

Is a mathematical technique capable of converting a time 
domain signal to a frequency domain signal and vice versa. 

Fourier Transform (FT)

For analogue system f(t) transforming it using Fourier transform 

          f(t)          FT                    f(w)   where: w=2πf

 
where:   e-jwt is furrier kernel 

                 e=2.71

                 j=
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Continuous & Discrete-Time Systems

• For any system in linear if the input is 
impulse  (t) the out put of any system is the 
impulse response of h (t).  i.e.

                            g(t)=h(t)

       g(t)=h (t)= h(t)  (t)
h(t)= (η) . h(t- µ)dµ  convolution 
Convolution with µ(t) results the same function: 

g(t)= h(η) . f(t- µ)dµ= h(t)  f(t)
Taking the Fourier transform both sides:

G(w)=H(W). F(w)  where f(t)     F(w)

                       h(t)     H(w)

                       g(t)     G(w)
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Continuous & Discrete-Time Systems

Discrete-Time Systems
A discrete-time system processes a given input sequence 

x[n] to generates an output sequence y[n] with more 
desirable properties

S y s t e m
t i m eD i s c r e t e −x[n] y[n]

Input sequence Output sequence
The behavior of a linear, time-invariant discrete-time system with input 
signal x[n] and output signal y[n] is described by the convolution sum 
 

The signal h[n], assumed known, is the response of the system to a unit-
pulse input.
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Is a mathematical way of combining two signals to form a third 
signal. It is a convolution is an integral that expresses the amount of 
overlap of one function g as it is shifted over another function f.  

         for input  f(t), impulse response g(t)  the out put of the system is 
equal to the input signal convolved with the impulse response that  i.e. 

                      h(t)= f(t)  g(t)     
 and also equal to                               

where the symbol    (occasionally also written as  f g)    denotes 
convolution of f and g. Convolution is more often taken over an infinite 
range, 

 

 

Convolution

Analogue convolution
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Convolution
• The summation

is called the convolution sum of the 
sequences x[n] and h[n] and represented 
compactly as.

∑∑
∞

− ∞=

∞

− ∞=
−=−=

kk
nhknxknhkxny ][][][][][

][][][ nhnxny ∗=

Convolution Sum discrete system
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Convolution
Convolution Sum

Properties -

• Commutative property:

• Associative property :

• Distributive property :

x[n]*h[n] = h[n]*x[n]

(x[n]*h1[n])*h2[n] = x[n]*(h1[n]*h2[n])

x[n]*(h1[n] + h2[n]) = x[n]*h1[n] + x[n]*h2[n]
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Digital Filter
Digital filter uses a signal processor to perform numerical calculations on 

sampled values of the signal.
Digital filters used for two general purposes:
3. Separation of signals that have been combined.
4. Restoration of signals that have been distorted in some way.
Advantage:
 Can handle low frequency signals accurately compared to analogue 

system.
  It is programmable
 Easily designed tested and implemented on a pc
 Very much versatile in their ability to process signals in a variety of 

ways
Limitations:
 Information may lost when analogue signals is converted to digital 

signal because of:
 Inaccuracies in measurement.
 Uncertainty in time.
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Finite Impulse Response (FIR)

Sample Finite Impulse Response Filter Design

FIR is a filter structure that can be used to implement almost any sort of 
frequency response digitally. An FIR is usually implemented by using a 
series of delays multipliers and adders to create the filter outputs.
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Finite Impulse Response Filters

Discrete Convolution

 equation for FIR filter 

Structure of a FIR Filter for input X (n) impulse 
response h (n) and out put y (n). Where :

X (n) 

h (0) h (1) h (2)

X (n-1) X (n-2)

y (n)

D D D

Out put is

           +  

y (n)=  h (m). X (n-m) 
           m=-

D =Delay =Multiplier

=Adder

           2

y (n)=  h (i). X (n-i) 
           i=0
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Infinite Impulse Response (IIR)
The Infinite Impulse Response refers to the ability of the filter to have an 
infinite impulse response and does not imply that it necessarily will have 
one.

Discrete 

Convolution

 equation for

 IIR filter 

Structure of a IIR Filter for input X (n) impulse 
response h (1) and out put y (n). Where :

X (n) 

h (2)

y (n)

D

Out put 

                    +  

y (n)= x (n)+  h (m). y (n-m) 
                     m=-

D =Delay =Multiplier

=Adder

D D
y (n)

input 

h (m)
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Discrete-time signals and systems (1)
Discrete-time signals
A discrete-time signal is represented as a sequence of numbers:

X={x [n]},      - <n< 
Here n is an integer, and x[n] is the nth sample in the 
sequence.
Discrete-time signals are often obtained by sampling 
continuous-time signals.
In this case the nth sample of the sequence is equal to the 
value of the analogue
signal xa(t) at time t =nT :

x[n] = xa(nT) ,  - <n< 
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Discrete-time signals and systems (2) 

This sequence is often referred to as a discrete-time impulse, or just impulse.
It plays the same role for discrete-time signals as the Dirac delta function does
for continuous-time signals

unit sample sequence

1

–4 –3 –2 –1 0 1 2 3 4 5 6
n
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An important aspect of the impulse sequence is that an arbitrary sequence can be 
represented as a sum of scaled, delayed impulses. For example, the sequence 
can be represented by unit sample as:
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Discrete-time signals and systems (3) 

The unit step sequence

–4 –3 –2 –1 0 1 2 3 4 5 6

1

n
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The unit step sequence is defined as:
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Mathematical Relationships between unit step u(n) 
and unit impulse function (n). 

Discrete-time signals and systems (4) 
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Discrete-time systems (1)
A discrete-time system is defined as a transformation 
or mapping operator that maps an input signal x[n] to 
an output signal y[n]. This can be denoted as:
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Example : Ideal delay

Discrete-time systems (2)

system
x (n) Y[n]=x [n-nd]    where:

                           nd=number of delay
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Example: Moving Average

In general, systems can be classified by placing constraints on the 
Transformation  T{ .}.

Yields an out put with:

Discrete-time systems (3)

The general moving average 
system is defined by equation:
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A system is referred as memory less if the output y[n] at every value of n 
depends only on the input value x[n] at the same value of n.
For example, y[n] =(x[n])2 is memoryless, but the ideal delay y[n] = x[n -d]
Is not unless d=0.

1.Memoryless systems

2. Linear systems
A system is linear if the principle of superposition applies. Thus if y1[n] is the
response of the system to the input x1[n], and y2[n] the response to x2[n], then
linearity implies
 Additivity:
          T {x1[n] + x2[n] } = T { x1[n] } + T { x2[n] } = y1[n] + y2[n]
 Homogeneity:
          

Discrete-time systems (4)

Y[n] =5 x[n] is memoryless
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3. Time invariant system
A system is time invariant if a time shift or delay of the input 
sequence causes a corresponding shift in the output sequence. That 
is, if y[n] is the response to x[n], then y[n-d] is the response of x[n-d]

For example, the accumulator system: Is Time invariant 

4. Causality
A system is causal if the output at n depends only on the input at n and 
Earlier input.

For example, the backward difference system y[n] = x[n]- x[n-1] is 
causal, but the forward difference system y[n] = x[n+1] - x[n] is not 
causal. 

Discrete-time systems (5)
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Discrete-time systems (6)

A system is stable if every bounded input sequence produces a bounded 
output  sequence:

 Bounded input     lx[n]l ≤  Bx < 
 Bounded output: ly[n]l ≤ By < 

5. Stability

    For example, the accumulator                                       is an example of an 

unbounded system, since its response to the unit step u[n] is:

which has no finite upper bound.
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The system cumulatively adds, i.e., it accumulates all the input 
sample values.

          n

y(n)=  x(k)     
            
      k=- 

If the input is  (n) for the system the out 
put is u(n) 

 (n)                                                      u(n) Accumulator

          n

u(n)=  (k)           
      
      k=- 

Discrete-time systems (7)

6. Accumulator
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Linear time-invariant systems (LTI)
If the linearity property is combined with the representation of a general
sequence as a linear combination of delayed impulses, then it follows that a
linear time-invariant (LTI) system can be completely characterized by its
impulse response.
Suppose h [n] is the response of a linear system to the impulse [n-k] at n=k. 
Since 

If the system is additionally time invariant, then the response to [n-k] is 
h[n-k] the above equation becomes:

This expression is called the convolution sum. Therefore, a LTI system has
the property that given h[n], we can find y[n] for any input x[n]. Alternatively,
y[n] is the convolution of x[n] with h[n], denoted as follows:
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Properties of LTI systems (1)
All LTI systems are described by the convolution sum

Some properties of LTI systems can therefore be found by considering the
properties of the convolution operation: like commutative, cascade and 
parallel connection
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A LTI system is stable if and only if S= k- | h[k] | < 

The Ideal delay system h[n] = [n-d] is stable since S=1< 

The moving average system:

Properties of LTI systems (2)

the Forward difference system h[n] = [n+1] - [n] and the
Backward difference system h[n] = [n] - [n-1] are stable since S is the 
sum of a finite number of finite samples, and is therefore less than .
But the Accumulator System is unstable.
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1. Ideal delay
  h(n)=(n-m)

Difference Equation

    3. Accumulator
   

2. Moving average

The difference between the input and out put for DSP can be calculated using
Deference equation unlike differential in Analogue.

          n

h(n)=  (k)  =
      k=- 

1 , n ≥0 

0 ,  n<0
Or   h(n)=u(n)



52 

 4. Forward difference 
    
X(n+1)                            x(n)                                y(n)= x(n+1)-x(n)

                               

                                   h[n] = [n+1] - [n]
Forward difference is not causal but it is Stable.

  5. Backward difference system h[n] = [n] - [n-1] are stable since S.

     X(n)                                  x(n-1)                         y(n)= x(n)-x(n-1)

Difference Equation

D -

D -
 h[n] = [n] - [n-1]

Backward difference is not causal 
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 A Forward difference Followed by ideal delay is equal 
to backward difference.
    
X(n+1)                                                y(n)

                               

                                   h[n] =[ [n+1] - [n] ]  [n-1] 

 Inverse System

Difference Equation

FD FD

 h[n] = [n] - [n-1]

h(n) h-1(n)
X(n) X(n)

(n)
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 Example: 
    Backward difference is the inverse of Accumulator.
    
X(n)                                                  x(n)

                               

                                   h[n] =u(n) [ [n] - [n-1]]  and equals to

The inverse of any system is very important  in all 
inverse engineering. For example for TV channel 
broadcast you don’t know, and if you take it as input
And inverse it by backward difference, then you will get
The input, because the out put is the input.

Difference Equation

ACC BD

    u[n] -u[n-1]= [n]
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Frequency Domain Representation
Of Discreet Time Signal systems.

∑ + ∞

− ∞=
−=

k
jwkjw ekheH )()(

General Fourier Equation for frequency representation of 
sample or signal is: 

wkjwke jwk sincos −=−

Where e is: 

)
2

sin(

)
2

sin(
)(

2
)1(

w

ewn

eH

wNj
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−

=
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Frequency Domain Representation
Of Discreet Time Signal systems.

dweeHnh
jwn

jw∫ −
=

π

π
)(

2
1)(

The Inverse of frequency representation of Fourier transform  

If we know the Impulse response we can use the above equation to 
design filter using ideal low pass filter where the h(n) is:

dwenh
co

co

w

w

jwn∫
−

= π
2
1)(

Ideal low pass is not casual and stable

It is possible to design filter using low pass. But we need an infinite taps. And if 
the number of delay tap) is many it is possible to make it sharp and finite.
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General definition for 
even and odd sequence.
Even sequence: 

Xe(n)=Xe (-n)
 Odd sequence: 
Xo(n)=-X0 (-n)

 1. For any sequence in time domain  

)()()(
)()()(
nxnxnx

nxnxnx

oe

oe

−=−
+=

[ ]

[ ])(*)(
2
1)(

)(*)(
2
1)(

nxnxnx

nxnxnx

o

e

−−=

−+=  Even sequence: 

 Odd sequence: 
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General definition for 
even and odd sequence.

 1. For Fourier transform in frequency domain 

[ ]
[ ])(*)(

2
1)(

)(*)(
2
1)(

jwjwjw
o

jwjwjw
e

exexex

exexex

−

−

−=

+= Even Part is: 

 Odd Part is: 

)()()( jwjw
e

jw eeXeX +=

)(*)(

)(*)(
jw

e
jw

o

jw
e

jw
e

eXeX
eXeX

−

−

−=

= Even  

 Odd  
Changing  jw to -wj is the same 
because of complex conjugate  
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Relationship Between Time 
Domain and Frequency Domain.

 where the real part Re of the signal is even part of the sequence

[ ] [ ]
[ ])(

)(*)(
2
1)(1

jw
e

jwjw
e

exR

exexnXF

=

+=

 Transforming Even Part by Fourier Transform is equal to Real part 

 where: Re =Real part 

             F =Fourier transform
[ ][ ][ ] [ ])()(*)(

2
1 ) jw

e
jwjw

e exexexnxRF =+= −−

)(*)(*
)(*)(*

jw

jw

eXnX
eXnX

→−
→ −F1

F1

[ ])(nxRe )( jw
e eX

The Real part Sequence transformed by Fourier transform equal to even part
F1



60 

Properties of Fourier Transform
 In Discrete

  LinearityLinearity
A1x1(n)+a2x2(n)                    a1x1(ejw)+a2x2(ejw)

)( 0( wwjeX −)(. nxe jwn

For a shift in time the out put is the multiplication in frequency.

F1

  Time Shift and Frequency ShiftTime Shift and Frequency Shift

 x (n-D)=                 e
-jwnD

.x(e
jw

)
F1

 Time Shift

F1
 Frequency Shift

Frequency shift is important in communication engineering because 
shift in frequency does not make any overlap.
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Properties of Fourier Transform
 In Discrete

  Time ReversalTime Reversal
X(-n)                  X(e-jw)

ωd
j

jwexd )(()(. nxn

F1

  Differentiation in Frequency DomainDifferentiation in Frequency Domain

 X(n) is real signal: X(-n)             X*(e
jw

)

Time Domain.

F1

F1

  ConvolutionConvolution

)()()()()( nhnxknhkxny ⊗=−= ∑
)().()( jwjwjw eHeXey = Frequency Domain
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Properties of Fourier Transform
 In Discrete

  Parseval’s TheoryParseval’s Theory

)().()( nxnwny =

ω
π

π

π

dexnxE jw
2

2 )(
2
1)( ∫∑

−

−∞+

∞−
==

  The Modulation or Windowing  DomainThe Modulation or Windowing  Domain
Multiplication in Time Domain but 
convolution in frequency domain

Where E=energy

Discrete convolution

θ
π

π

π

θ dewexey wjjwjw ∫
−

−= )().(
2
1)( )(

Integration convolution

21 hh ⊗

21.hh 21 HH ⊗

21.HH
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Chapter- 4
Z-Transform

∑ + ∞

− ∞=
−=

n
nznxzx )()(

Z is a complex number, but in Fourier transform ejw     
     is represented in unit circle. And it is similar to laplace    
      transform which is analogue.

Z is infinite but it is possible to make it convergent.

For time sequence x(n) the discrete Z-transform is defined as:

Where Z is complex and 
can be found any where

Defn.
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Z-Transform

For sequence x(n)=an  where n≤0 transformed by Z-transform

n
n

n zazx −∞

=∑=
0

)(

Example 1

Geometric Series

...)(1)()( 2111
0

+++== −−−∞

=∑ azazzazx n
n

if ,11 <−az 11
1][ −−

=
az

zxthen where

az < The condition for convergence
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Z-Transform

Example 2
For sequence x(n)=a|n|  where -∞<n<n transformed by Z-transform

n
n

nn
n

n zazazx ∑∑ ∞

=
−−

∞=
− +=

0

1)( Making a summation into parts

n
n

nn
n

n zaza −∞

=

∞

= ∑∑ +=
01

The left part 

The right part 

n
n

n za∑ ∞

= 1

n
n

n za −∞

=∑ 0

is convergent when:

is convergent when: 

1<az

a
z 1<

11 <−az

az >



66 

Properties of Z-Transform

Linearity

)()( nbynax +

Let x(n) and y(n) be any two functions and let X(z) and Y(z) be 
their respective transforms. Then for any consonants a and b

If w(n)=x(n)*y(n) then 

)()( zbyzax +Z

Shifting
)( knx + Z )(zxz k

convolution
)()()( zYzXzw =

∑ −= )()()( knxkhny Z )().()( zXzHzy =
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If the sequence is right sided then ROC is:

jwreZ =
∑ −= nznxzx )()(

Relationships between Fourier transform and Z-transformRelationships between Fourier transform and Z-transform

Properties of Z-Transform

∑ −= jwnjw enxex )()(
Range of convergence (ROC) for  Z-transformRange of convergence (ROC) for  Z-transform

If the sequence is left sided then ROC is:

If the sequence is both sided then the pole is 
outside or inside the ring. It is Like donat shape

ROC

ROC

ROC
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z
dzzzx

j
nx

c

n∫= ).(
2
1)(
π

Method 1Method 1

Inverse of Z-Transform

Method 2Method 2

15.01
1)( −−

=
z

zx

Z p=0.5 that means we have the pole inside circle
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)(naan
Inspection method Inspection method 

Inverse of Z-Transform

Partial fraction Expansion method Partial fraction Expansion method 

az >

For M<N where 

)1( −−− naan

11
1

−− azZZ

ZZ
11

1
−− az az <

Right Sided

Left Sided
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∑

=
−

=
−
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k
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Azx
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Power series Expansion Power series Expansion 

Inverse of Z-Transform

If you have 
 

...)1()0()1()2()()( 112 −−−− ++−+−+== ∑ zxxzxzxznxzx n

)1log()( 1−+= azzx Which is the result of function or series

)()1()1log(
1

1 nx
n

x
n

n

∑ ∞

=

+−=+ ∑ ∞

=

−+−=
1

1)1(
n

nnn

n
za

n
anx

n
n 1)1()( +−= 1≥nFor

This was the function which is the result of the above function
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Sampling:Sampling:
To use digital signal processing methods on analogue signal, To use digital signal processing methods on analogue signal, 
it is necessary to represent the signal as a sequence of it is necessary to represent the signal as a sequence of 
numbers. this is commonly done by sampling the analogue numbers. this is commonly done by sampling the analogue 
signal, denoted Xsignal, denoted Xaa(t), periodically to produce the sequence(t), periodically to produce the sequence

X[n]= XX[n]= Xaa(nT),   -(nT),   -∞∞<n< <n< ∞∞    where: T=sampling period.    where: T=sampling period.
  

Chapter 3
Sampling of Continuous-Time Signals

Block diagram representation of an ideal continuous-to-
discrete (C/D) converter.

C/D
XXaa(t),(t),

TT

X[n]= XX[n]= Xaa(nT),(nT),
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Two examples for sampling 
 good                 irreversible
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Fourier transformFourier transform
 in analogue : in analogue :

Sampling of Continuous-Time Signals

dtetxix tj
aa ∫

+ ∞

∞−

Ω−=Ω )()(

ΩΩ= ∫
+ ∞

∞−

Ω dejxtx tj
aa )(

2
1)(
π

Where:     =frequency Ω

ΩΩ== ∫
+ ∞

∞−

Ω dejxnTxnx nTj
aa )(

2
1)()(
π

Not periodic

ω
π

π

π

ωω deexnx njj∫
+

−

= )(
2
1)(  periodic (between -Π to Π)
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Sampling Theorem: Sampling Theorem: If a signal XIf a signal Xaa(t) has a band limited Fourier (t) has a band limited Fourier 
transform Xtransform Xaa(j   ), such that X(j   ), such that Xaa(j  )=0 for    ≥2 (j  )=0 for    ≥2 ΠFN, then XXaa(t) can be 
uniquely constructed from equally sampled spaces
XXaa(t), -∞<n< ∞ if 1/T >2FN. 

Sampling of Continuous-Time Signals

dtetxix tj
aa ∫

+ ∞

∞−

Ω−=Ω )()(

)2(1)( k
T

jjX
T

eX
k a

tj π+Ω= ∑ ∞

− ∞=
Ω

If the Fourier transform of Not periodic XXaa(t) is defined as:

 then If          is evaluated for frequency                  then,                  is 
related to                   by:

Ω

)( ωje TΩ=ω

Ω Ω

)( TjeX Ω

)( ΩjX a

 where: K=integer
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(a)(a)

Illustration of Sampling:Illustration of Sampling:

Recovery of Analogue 
Signal From Sampling (1)

)( ΩjX a

)( Tj
a eX Ω

NΩ−
Ω

)( Tj
a eX Ω

Ω

Ω

(b)(b)

(c)(c)

NΩ

NN Fπ2=Ω

NΩ−
NT

Ω−π2

0

0

0

..........
T
π2

NT
Ω+− π2

T
π2−

1

T
1

T
1

T
π2

T
π2−

T
π4−

T
π4
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In the above figures:In the above figures:

Figure  (a) assume that                                               the Figure  (a) assume that                                               the 
Frequency FFrequency FNN is called   is called  Niguist Frequency.Niguist Frequency.  

Figure (b) depicts the case  when 1/T>2FFigure (b) depicts the case  when 1/T>2FN N so that the image of so that the image of 
transform don’t overlap into the base band transform don’t overlap into the base band 

Figure (c) on the other hand shows the case 1/T>2FN.  In this 
case the image centered at 2 Π/T overlaps into the base band. 
This condition, where a high frequency seemingly takes on the 
identity of the lower frequency is called aliasing.

NFπ2<Ω

NNa FforjX π2__0)( =Ω>Ω=Ω

Recovery of Analogue 
Signal From Sampling (2)

Aliasing can be avoided only if the Fourier transform is band limited and
The sampling frequency (1/T) is equal to at least twice the Niguist 
Frequency
(1/T>2FN)
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Under the condition 1/T > 2FUnder the condition 1/T > 2FN  N  the Fourier transform of the sequence of the Fourier transform of the sequence of 
sample is proportional to the analogue signal in the base band; i.e.,sample is proportional to the analogue signal in the base band; i.e.,
    

Using this result, it can be shown that the original signal can be 
related to the sequence of samples by InterpolationInterpolation FormulaT

π<Ω

)(1)( Ω=
Ω

jX
T

eX a
Tj

Recovery of Analogue 
Signal From Sampling (3)

If the samples of a band limited analogue signal taken at a rate of at least If the samples of a band limited analogue signal taken at a rate of at least 
twice the Niguist Frequency, it is possible to reconstruct the orignal twice the Niguist Frequency, it is possible to reconstruct the orignal 

analogue signal using the above equation.analogue signal using the above equation.









−

−= ∑
+ ∞

− ∞= TnTt
TnTtnTxtx

n
aa /)(

/)(sin[)()(
π

π InterpolationInterpolation
 Formula
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General formula for General formula for Interpolation.Interpolation.  

∑
∞

− ∞=

=
k

kKa tCtX )()( φ

Recovery of Analogue 
Signal From Sampling (4)

If                                         then it is possible to recover. If the above 
condition is not set, then aliasing will be produced.

Where: =kC
=kφ Sink 

Sampling Value 

Low Pass Filter
Band width 

sΩNΩNΩ−sΩ− cΩ− cΩ

Ns Ω−Ω

Where:              is
      Cutoff frequency 

cΩ

NscN Ω−Ω<Ω<Ω
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order to avoid aliasing (distortion) order to avoid aliasing (distortion) 

Recovery of Analogue 
Signal From Sampling (5)

Condition for anti aliasing

TN
π<Ω

2
s

N
FF < Ns Ω>Ω 2

Ns Ω>Ω 2

Since                     we can write the above equation as:
Ts
π2=Ω

NNs Ω>Ω−Ω

Nyquist Frequency Rate

or or
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Recovery of Analogue 
Signal From Sampling (5)

Ω

Ω

ω

(a) (a) 

(b)(b)

(c)(c)

)( ΩjX c

NΩ−

T
π2

T
π2− T

π−

NΩ

1

T
1

T
1 T

π

Fig. (a) Fourier transform ofFig. (a) Fourier transform of
              band limited input signalband limited input signal

Fig. (b) Fourier transform ofFig. (b) Fourier transform of
              Sampled input Plotted asSampled input Plotted as
          function of continuous-timefunction of continuous-time
     Frequency     Frequency Ω

Fig. (c) Fourier transform Fig. (c) Fourier transform 
                                          of sequenceof sequence
              Samples and FrequencySamples and Frequency
      Response            of       Response            of 
   discrete time system    discrete time system 
      Plotted Vs. Plotted Vs. 

)()( Tj
s eXjX Ω=Ω

)( ωjeX

)( ωjeH

ω

)( ωjeX
)( ωjeH

π2− π2
cωcω−

TNω−
TNω )2( TNωπ −
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Decimation/Downsampling/CompressorDecimation/Downsampling/Compressor

Changing The Sampling Rate Using 
Discrete-Time Processing

The sampling rate of a sequence can be reduced by “sampling it, i.e., by 
defining a new sequence 

)(][][ nMTxnMxnx cd ==

NMTT Ω>= )/('/ ππ

The process of sampling rate reduction is called Decimation.

Sampling Rate Reduction by an Integer FactorSampling Rate Reduction by an Integer Factor

           can be obtained directly  from              by sampling with period 
                    .Furthermore, if                                                   then 

Is an exact representation of               if                                             
That is, the sampling rate can be reduced by  a factor of M with out 
aliasing
If the original sampling rate was at least M times the Nyquist rate.      
The operation of reducing the sampling rate is called downsampling downsampling 
or decimation.or decimation.

][nxd

)(txc

MTT =' Nc forjx Ω>Ω=Ω __0)(
)(txc
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 Sampling
 period T’=MT

Representation of Downsampler or discrete-time samplerRepresentation of Downsampler or discrete-time sampler

Changing The Sampling Rate Using 
Discrete-Time Processing

Sampling Rate Reduction by an Integer FactorSampling Rate Reduction by an Integer Factor

][nx ][][ nMxnxd =
M

 Sampling
 period T

)(][ nTxnx c=
We discussed that the discreet-time Furrier Transform of
                               is 

)2(1)(
T

kj
T

jx
T

ex
k c

jw πω −= ∑ ∞+

− ∞=



83 

Changing The Sampling Rate Using 
Discrete-Time Processing

Sampling Rate Reduction by an Integer FactorSampling Rate Reduction by an Integer Factor

)
'

2
'

(
'

1)(
T

kj
T

jx
T

ex
k c

jw
d

πω −= ∑ ∞+

− ∞=

)(][][ nMTxnMxnx cd ==

Similarly, the discreet-time Furrier Transform of
    
                                                 With T’=MT is

Now Since  T’=MT , we can write the above Equation as

)2(1)(
T

rj
MT

jx
MT

ex
k c

jw
d

πω −= ∑ ∞+

− ∞=
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Changing The Sampling Rate Using 
Discrete-Time Processing

Sampling Rate Reduction by an Integer FactorSampling Rate Reduction by an Integer Factor

)(1)( /2/(1

0
MiMjM

i
jw

d ex
M

ex πω −−

=∑=

Equation for Decimation in Frequency Domain when 
r in the above equation is expressed as r =i + KM

General System for Sampling rate reduction by M

Low pass filter
Gain=1

Cutoff=Π/M
M][nx ][~][~ nMxnxd =][~ nxd

 Sampling
 period T

 Sampling
 period T

 Sampling
 period T’=MT
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Changing The Sampling Rate Using 
Discrete-Time Processing

Frequency-domain illustration of downsamplingFrequency-domain illustration of downsampling
)( ΩjX c

(a)(a)

(b)(b)

(c)(c)

Ω

Ω

TΩ=ω

)(),( Tj
s exjX ΩΩ

)( ωjeX

1

T
1

T
1

NΩ−
NΩ

NΩ− NΩ

Nω− TNN Ω=ω

T
π2

T
π2−

π2− π2π− π

Fig. (a) Shows the Fourier transformFig. (a) Shows the Fourier transform
                      a bandlimited continuous timea bandlimited continuous time
                        signalsignal

Fig. (b) Shows the Fourier transformFig. (b) Shows the Fourier transform
                        of the impulse train of of the impulse train of 
             samples obtained with              samples obtained with 
              sampling Period T.              sampling Period T.

Fig. (c) Shows Fig. (c) Shows 
                        and related to         and related to         
                
                          Fig.(b).Fig.(b).
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Changing The Sampling Rate Using 
Discrete-Time Processing

ContinuedContinued

(D)(D)

(e)(e)

)2( =M

'TΩ=ω

)(
'Tj

d eX Ω

)( ωj
d eX

MT
1

'T
ω=ΩT

π2
'

2
T

π−

π2− π2π− π

'

1
T

'

4
T

π− TT
ππ 24

' =

Fig. (d) Shows the discrete-timeFig. (d) Shows the discrete-time
                  Fourier transform of downsampledFourier transform of downsampled
                  sequence when M=2sequence when M=2

Fig. (e) Shows the discrete-time Fourier transform of the downsampled sequenceFig. (e) Shows the discrete-time Fourier transform of the downsampled sequence
                      plotted as a function of the continuous time frequency variable plotted as a function of the continuous time frequency variable Ω



87 

InterpolationInterpolation

Changing The Sampling Rate Using 
Discrete-Time Processing

Increasing the sampling rate involves operations analogous to D/C 
Conversion. To see this consider a signal           whose sampling rate 
wish to increase by an integer factor of L. If we consider the underlying
Continuous-time signal          , the objective is to obtain samples

Increasing the Sampling Rate by an Integer FactorIncreasing the Sampling Rate by an Integer Factor

][nx

)(][ nTxnx c=
L
TT ='

),/(]/[][ LnTxLnxnx ci ==

)(txc

)()( 'nTxnx ci =
Where                   , from the sequence of samples

The operation of increasing the sampling rate is referred as

Upsampling.Upsampling.
It is clear from  the above two equation that

,....2,,0 LLn ±±=
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Changing The Sampling Rate Using 
Discrete-Time Processing

The above figure show a system for obtaining   
from using only discreet-time processing.         

General System for Sampling rate Increased L

Low pass filter
Gain=1

Cutoff=Π/L
L

][nx ][nxe

 Sampling
 period T  Sampling

 period T’=T/L
 Sampling

 period T’=T/L

Increasing the Sampling Rate by an Integer FactorIncreasing the Sampling Rate by an Integer Factor

][nxi

][nxi

][nx

The System on the left is called Sampling rate ExpanderSampling rate Expander or 
simply an expanderexpander. It’s out put is
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Changing The Sampling Rate Using 
Discrete-Time Processing

Or equivalently,

Increasing the Sampling Rate by an Integer FactorIncreasing the Sampling Rate by an Integer Factor

,otherwise
{ ],/[

,0][ Lnx
e nx = ,....2,,0 LLn ±±=

∑
∞

− ∞=

−=
k

e KLnkxnx ][][][ δ

The system on the right (above figure) is a lowpass discrete-
time system with cutoff frequency on Or equivalently, Π/L and 
gain L. This system plays a role similar to the ideal D/C 
converter.
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Changing The Sampling Rate Using 
Discrete-Time Processing

The Fourier transform of         can be expressed as

Increasing the Sampling Rate by an Integer FactorIncreasing the Sampling Rate by an Integer Factor

( ) nj

n
k

j
e eKLnkxex ωω δ −

∞

− ∞=

∞

− ∞=∑ ∑ −= ][][)(

Thus the Fourier transform of the out put of the expander
Is a frequency scaled version of the Fourier transform of 
the input, i.e.,         is replaced by         so that            is
Normalized by  

][nxe

)(][ LjLkj

k
eXekx ωω == −

∞

− ∞=
∑

ωLΩ
'TΩ=ω

Ω
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Changing The Sampling Rate Using 
Discrete-Time Processing
Frequency-domain illustration of interplationFrequency-domain illustration of interplation

(a)(a)

(b)(b)

(c)(c)

Ω

'TΩ=ω

)( ωjex

)( ωjeX

1

T
1

T
1

NΩ−
NΩ

Nc TwherenTxnx Ω== /_),(][ π

L
π2

L
π−

π2− π2π− π

Fig. (a) Shows a bandlimited continuous Fig. (a) Shows a bandlimited continuous 
                      time Fourier transformtime Fourier transform

Fig. (b) Shows the discrete-timeFig. (b) Shows the discrete-time
                Fourier transform of the sequenceFourier transform of the sequence
                        

Fig. (c) Shows Fig. (c) Shows 
                        according to the      according to the      
              
           above equation,            above equation, 
                            with L=2.        with L=2.        
                          

TΩ=ω

)( ωjex

L
π2−

L
π

ππ 24 =
LL

π4−
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Changing The Sampling Rate Using 
Discrete-Time Processing

ContinuedContinued

(D)(D)

(e)(e)

'TΩ=ω

)( ωj
i eH

L

π2− π2π− π

T
L

T
='

1

Fig. (e) Shows the the Fourier transform of the desired signal        We see that Fig. (e) Shows the the Fourier transform of the desired signal        We see that 
Can be obtained from                by correcting the amplitude scale from 1/T to 1/T’ Can be obtained from                by correcting the amplitude scale from 1/T to 1/T’ 
and by removing all the frequency-scaled images of             except at integer multiple and by removing all the frequency-scaled images of             except at integer multiple 
of 2of 2ΠΠ..

L
π−

L
π

)( ωj
i eX

π2− π−
L
π−

L
π π π2 'TΩ=ω

][nxi

)( ωj
i eX

)( ωj
e eX

)( ωj
e eX
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By combining decimation and interpolation it By combining decimation and interpolation it 
is possible to change the sampling rate by is possible to change the sampling rate by 
noninteger factor.noninteger factor.

An interpolator which decrease the sampling An interpolator which decrease the sampling 
period from T to T/L, Followed by Decimator period from T to T/L, Followed by Decimator 
which increase the sampling period by M, which increase the sampling period by M, 
produce an output sequence         that has an produce an output sequence         that has an 
effective sampling period of T’=TM/L.effective sampling period of T’=TM/L.
(See the following fig.)(See the following fig.)

Changing The Sampling Rate 
By a Noninteger Factor

][~ nxd
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Changing The Sampling Rate Changing The Sampling Rate 
By a Noninteger FactorBy a Noninteger Factor

L M
Low pass filter

Gain=L
Cutoff=Π/L

L    M

Low pass filter
Gain=1

Cutoff=Π/M

SamplingSampling
  Period:Period:

T T/L T/L T/L TM/L

Low pass filter
Gain=L

Cutoff=Π/L
Min(Π/L, Π/M)

InterpolatorInterpolator DecimatorDecimator

SamplingSampling
  Period:Period: T T/L T/L TM/L

  System for changing the sampling rate by a noninteger factor.System for changing the sampling rate by a noninteger factor.

Simplified system in which the decimation Simplified system in which the decimation 
and interpolation filters are combined.and interpolation filters are combined.

][nx ][nxe ][nxi

][nx ][nxe

][~ nxi ][~ nxd

][~ nxd
][~ nxi
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Practical Consideration in AD/DA conversionPractical Consideration in AD/DA conversion

Practical Problems:Practical Problems:
  Continuous-time signals are not band limitedContinuous-time signals are not band limited
  Ideal lowpass filter is impossible to be realized Ideal lowpass filter is impossible to be realized 
Prefiltering to Avoid AliasingPrefiltering to Avoid Aliasing

When processing analogue system if the input signal is 
not band limited or if the Nyquist frequency of the input is 
to high, prefiltering is often used to avoid aliasing.

Prefiltering Sample

T

X(n)

Prefiltering the analogue signalPrefiltering the analogue signal
to reduce anti-aliasingto reduce anti-aliasing
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Continued.Continued.

• f Anti-aliasing
Filter C/D Discrete-

time System D/C
][nx

)( ΩjH aa

)(txa ][ny )(tyr
)(txc

Fig. Use of Prefiltering to avoid aliasing

For an ideal lowpass anti-aliasing filter (above fig.) behaves as a linear time-
invariant system with frequency response given by the following equation even 
When            is not bandlimited.          

{ )(
,0)(

tjeH
eff jH

Ω

=Ω ,/
./

T
T

π
π

<Ω
>Ω

)( Ωjxc

In practice, the frequency response               can not be ideally bandlimited, but            
Can be made small for                 so that the aliasing is minimized. In this case, the
Overall frequency response of the system in the above fig. would be approximately          

)( ΩjH aa )( ΩjH aa
,/Tπ<Ω

)()()( Tj
aaeff eHjHjH ΩΩ≈Ω
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Chapter-7Chapter-7
Digital Filter DesignDigital Filter Design

Filter can be defined as a system that modifies certain 
frequencies relative to others.

Digital filter is a linear shift invariance system (LIS).

The designing filter involves the following stages:

4) Desired characteristics (Specification)  of the system.

5) Approximation of the specification using a casual 
discrete-time system.

6) The realization of the system (building the filter by finite 
arithmetic computation.
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Design of Discrete-Time IIR Filters From Design of Discrete-Time IIR Filters From 
Continuous-Time FiltersContinuous-Time Filters

The traditional approach to the design of discrete-time IIR  
filters involves the transformation of continuous-time filter 
into a discrete-time filter meeting prescribed specification.
1. Filter Design by Impulse Invariance1. Filter Design by Impulse Invariance

In the impulse invariance design procedure the impulse response of the 
discrete-time filter is chosen as equally spaced samples of the impulse 
response of the continuous-time filter; i.e.

)(][ dcd nThTnh = Where: Td=sampling interval
Note: Impulse invariance techniques have problem of aliasing

Analogue filter can be changed to digital filter by sampling the
impulse response h(t) of analogue. (concept of impulse invariance) 

Analogue Digital Filter
h(n)h(t)
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Continued..Continued..
To develop the transformation (from continuous-time to discrete-time), let 
us consider the simple function of the continuous time filter expressed in 
terms of partial fraction expression, as:

∑
= −

=
N

k k

k
c ss

AsH
1

)(

The corresponding impulse response is





 ∑
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The Impulse response of the discrete-time filter obtained by sampling               is
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Continued..Continued..

∑
=

−−
=

N

k
Ts

kd

ze
ATzH

dk
1

11
)(

The system function H (z) of the discrete-time filter is therefore given by

,
1
12

1

1
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z
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T
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 This technique have in distortion of frequency axis.
  Avoid the problem of aliasing.

2. Bilinear Transformation2. Bilinear Transformation

With Hc(s) denoting the continuous-time system function and H(z) the discrete-time
System function, the bilinear transformation corresponds to replacing s by 

That is,

.
1
12)( 1

1
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FIR Design by WindowFIR Design by Window

IIR filter design IIR filter design are based on transformation of continuous-
time IIR system in to Discrete time system.
In contrast, FIR filtersFIR filters are almost entirely restricted to 
discrete-time implementations. 
The design technique for FIR filters are based on directly 
approximating the desired frequency response of the 
discrete-time system, 

This method generally begins with an ideal desired frequency response 
that can be represented as:

∑
∞

− ∞=

−=
n

nj
d

j
d enheH ,][)( ωω

The simplest method of FIR filter design is called the The simplest method of FIR filter design is called the 
Window methodWindow method..
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Continued…Continued…

Where HWhere Hdd[n] is the corresponding impulse response [n] is the corresponding impulse response 
sequence, which can be expressed in terms of sequence, which can be expressed in terms of HHdd(e(ejwjw)) as as

∫−
=

π

π

ωω ω
π

deeHnh njj
dd )(

2
1][

To obtain a casual FIR filter from  HTo obtain a casual FIR filter from  Hdd[n] is to define a [n] is to define a 
new system with impulse response h[n] given bynew system with impulse response h[n] given by





=
],[

,0][
nhd

nh
.
,0

otherwise
Mn ≤≤
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Continued…Continued…
More generally we can represent More generally we can represent h[n]h[n] as the product of  as the product of 
desired impulse response and a finite-duration desired impulse response and a finite-duration 
“window” “window” w[n]w[n]; i.e.’; i.e.’

],[][][ nwnhnh d=
Where for simple truncation as in above equation the Where for simple truncation as in above equation the 
window is the rectangular windowwindow is the rectangular window



=

,1

,0][nw

∫−

−=
π

π

θωθω θ
π

deWeHeH jj
d

j )()(
2
1)( )(
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Properties of commonly used windowsProperties of commonly used windows
Some commonly used windows are defined by the following equations:Some commonly used windows are defined by the following equations:
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The Kaiser Window Filter Design MethodThe Kaiser Window Filter Design Method

The Kaiser window is defined asThe Kaiser window is defined as
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Where  Where  αα=M/2=M/2, and , and IIoo((..)) represents the zero-order  represents the zero-order 
modified Bessel function of the first kind.modified Bessel function of the first kind.
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Properties of Linear phase FIR FilterProperties of Linear phase FIR Filter

The Shape of the impulse response defined by Equation.The Shape of the impulse response defined by Equation.

The frequency response of the above system isThe frequency response of the above system is
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Continued..Continued..

α ωβω −=∠ )( jeHFor other linear phase                            and anti symmetric For other linear phase                            and anti symmetric 
 condition                              which is opposite of  condition                              which is opposite of 
symmetry.                                                 symmetry.                                                 

)1()( nmhnh −−−=

2
1−= Mα

2
1−= Mα

1)1) Case 2 when M is even Case 2 when M is even 
Non integerNon integer

1)1) Case 1 when M is odd Case 1 when M is odd 

1)1) Case 2 when M is even Case 2 when M is even 

2
1−= Mα
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Non integerNon integer
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Algorithmic Procedure For The Design Of 
FIR Filters With Generalized Linear Phase

In designing a causal Type I linear phase FIR filter, it is convenient first to 
consider the design of a zero-phase filter, i.e., one for which

and then to insert sufficient delay to make it causal.

Type IType I

][][ nhnh ee −=
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Algorithmic Procedure For The Design Of 
FIR Filters With Generalized Linear Phase

A Type II causal filter is one for which h[n]=0 outside the range 

, with filter length (M+1) even, I.e. 

Type IIType II
Mn ≤≤0

M: even, and with the symmetry property 
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Algorithmic Procedure For The Design Of 
FIR Filters With Generalized Linear Phase

Type IIIType III
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Algorithmic Procedure For The Design Of 
FIR Filters With Generalized Linear Phase

Type IVType IV
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Thank
 you 


