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Discrete-Time signals 

and systems 
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Introduction 

 Signal: A signal can be defined as a function that conveys 

information, generally about the state or behavior of a physical 

system. 

 

 Continuous-time signal: Continuous-time signals are defined 

along a continuum of times and thus are represented by a 

continuous independent variable. Continuous-time signals are often 

referred to as analog signals. 

 

 Discrete time signal: Discrete-time signals are defined at discrete 

times and thus the independent variable has discrete values; i.e., 

discrete-time signals are represented as sequences of number. 
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Analog: Linear time invariant 

system 
f(t)                                                 g(t) 
input                                       impulse response                                              output 

 

How to retrieve h(t): 

    

δ(t)   

h(t) 

h(t) h(t) 

   Impulse Out put will be same as h(t) 
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How to define δ(t) ? 

 δ(t)= 

 

 

And  
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How to define System Output 

g(t)? 

 g(t)= 

 

 

 Or g(t)= 

 

 And there is another a 
form like 

   g(t)=h(t)*f(t) 

Here * is the commutative 
property of convolution 





  dtfh )().(





  dthf )().(
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Frequency domain: 

 In frequency domain system output  

 

G(ω)= 

 

G(ω)=H(ω) x F(ω) 

dtetg tj


 )(
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Definition: Important functions 

in Discrete Time Signal  

 Unit impulse function: 

 δ(n) =  

 

 

Unit step function: 

 

U(n)= 

 

 

Here “n” is an integer 
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Relationship between δ(n) and 

U(n) 

 U(n)= 

 

 U(n)= 

 

 δ(n) = U(n)-U(n-1) 
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Discrete time invariant system 

 

x(n)                                                    y(n) 
input                                         impulse response                                              output 

 

Output y(n) = 

 
Or y(n) =   

 

How to retrieve h(n)? 

 

δ(n) 
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h(n) 
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h(n) h(n) 

   Impulse Out put will be same as h(n) 
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Definitions: 

 FIR (Finite Impulse Response): A finite impulse response 

(FIR) filter is a type of a digital filter. The impulse response, the 

filter's response to a Kronecker delta input, is 'finite' because it 

settles to zero in a finite number of sample intervals.  

 IIR(Infinite Impulse Response): They have an impulse 

response function which is non-zero over an infinite length of time.  

 Casual System: If h(n)=0 for n<0; then this system is called 

casual system. 
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Follow graph(FIR digital 

filter,IIR digital filter): 

 x(n) 

 

 

 

 

 

 

 

 



D D D D 

x x a0 

X0 

a1 

X(n-1) 

x 
a2 

X(n-2) 

x 
a3 

X(n-3) 

x 
an 

X(n-N) 

FIR Digital Filter: 

It is also known as difference 

equation. 

IIR Digital Filter: 

+ 
)(1 ny ny

D D D 

x x x b1 b(m-1) bm 
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The System Output h(n) 

 
 δ(n) 
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h(n) 

b1 

a0 a1 

h(n)= 

n=0 then h(0)= 

n=1 then h(1)= 

n=2 then h(2)= 

n=3 then h(3)= 

               h(n)=                                it is general 

solution for the system output h(n) 
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The energy of a sequence: 

 

 E= 


n

nx 2|)(|

Any discrete sequence can be shown by δ(n) : 

General equation: x(n)= 





k
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Example: 

   

   

X(n)=0.5δ(n+3)+ δ(n+2)-0.5δ(n+1)-0.5 δ(n)+0.5 δ(n-1)-0.3δ(n-2) 

 

 

0  -1 

 -2  -3  1 

 2 
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Definition: Different System  

The ideal delay system: 

X(n)                                                         

 

 

Moving Average: The moving average system output  

 

y(n)= 

 

Accumulator (Acc) : y(n)= 
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X(n-1) X(n-2) 

X(n-N)=y(n) 

The ideal delay system output would be y(n)=x(n-N) 
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So the impulse response of the accumulator is same as 

the u(n) 

 δ(n)                        u(n) 

 

 

h(n) 



15 

Linear Shift Invariant System 

)]()([ 2211

/ nxanxaTy 

]][][ 2211

// xTaxTay 

 

 

 + 

a2 

a1 

[ T[.] ] 

x 

x 
X2(n) 

x1(n) 

X2(n) 

x1(n) 

T [.] 

T [.] 

y1(n) 

y2(n) 

a2 

a1 

x 

x 

+ 

If      y’   = y’’ 

then system is linear 
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Linear Shift Invariant System 

(Cont...) 

)]([/ knxTy 

)(// knyy X(n) 

x(n) 
k-sample 

T [.] 

x(n-k) 

y(n) 

T [.] 

k-sample 

)(// knyy If                           = T[x(n-k)]  then the system is shift invariant  
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Discrete Convolution  

 In LSI system 

 

 

x(n)= 

 

So, y(n)=T[              ] 

 

If the system is linear then 

y(n) = 







k

knkx )()(

x(n) 

T [.] 

y(n)=T[x(n)] 
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Discrete Convolution (Cont...) 

 If the system is LSI 

 

 

 So we can write 

 y(n)= 

 

Again if the system is SI:                                 and  

 

if LSI: y(n)=                         ,it is known as discrete convolution 

 

We can also write as y(n)= 
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Compressor: Down Sampling :Decimator 

 

 

 The compressor output y(n)=x(M.n) where M is a integer 

greater than 1 

   If M=2; 

 

 

 

)(nx
Compressor 

)(ny

0 2 3 4 1 

x(n) 

0 2 1 

y(n) 

Discarding M-1 in between samples 

A compressor is not SI: 

x1(n)=x(n-n0) 

y1(n)=x1(mN)=x(Mn-n0) 

y(n-n0)=x[M(n-n0)]=x(Mn-Mn0) 

Here, x(Mn-n0)!=x(Mn-Mn0) 

So, a compressor not SI 

n 

n 
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Expander : Up Sampling :Interpolation 

 

 The expander output y(n)=x(n/L); where L>1 

 If L=2; 
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The system output y(n) in different 

cases 

 

 
 h(n)= 

 

x(n)=U(n) - U(n-N) 

y(n)=? 

We know that system output for LSI: y(n)= 

1. For n<0 then y(n)=0 

2. For 0<=n<N then y(n)= 

 

3. For n>=N-1 then y(n)=  

)(nx
h(n) 
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Definition: 

 Stability of a system: A stable system produces finite output when the 

input is finite. 

For LSI system:                                                    and |x(n)|<M<∞  

 

So, |y(n)|< 

 

Causality: A system is casual when for N=n0; the output of the system 

depending on input x(n) only for n<=n0 

 

 

 

 

If the system is LSI and h(n)=0 for n<0 then it is causal    
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N=n0 
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x(n) y(n) 

N=n0 

Example: s= 
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1.|a|<1;S=1/1-|a|;Stable 

2.a=1 and a>1; s=∞ then 

not stable 
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Impulse response for different 

delay  

Ideal Delay: 

 

 Impulse response for ideal delay h(n)=δ(n-m) 

Moving average: 

 

h(n)= 

 

 

Accumulator: h(n)=u(n)= 

 

)(nx
M-Sample 

)()( mnxy n 



 









nmnmnfor

kn
mm

mm

otherwise

m

mk

21,
)(

121

1
121

1

0

2

1











0

0

1

0

)(
n

n

n

k

k



24 

Forward difference:  

 

 

 

 

 Difference eqation = x(n+1)-x(n) 

 Impulse response = δ(n+1)-δ(n) 
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Backward Difference 

 

 

 

 

 Difference equation= y(n)=x(n)-x(n-1) 

 Impulse response h(n)=δ(n+1)-δ(n) 

)1( nx

D 
)(nx - 

y(n) 

1 

0 

-1 

1 



26 

Stability:    

 For a LSI  

 

 For Ideal Delay, Moving Average, Backward 

Difference and Forward Difference; if s<∞ then 

it is stable 

But for Accumulator 

s=  goes to ∞ then it is not stable  
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Accumulator  

 

                                       Difference equation   

     y(n)=x(n)+y(n-1) 

                                   h(n)=U(n) 

                                             

 This IIR digital filter   

 

D 

)(nx
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D 
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y(n) 

x 

a 

Difference equation  

y(n)=x(n)+ay(n-1) 

Impulse response h(n)=anu(n) 

Stability checking  

Condition check: if |a|<1 

Result: Stable 
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Other properties of LSI   

 

 
F.D 

)(nx y(n) 
D 

1-sample 

h(n)=[δ(n+1)-δ(n)]*δ(n-1) 

h(n)=δ(n)- δ(n-1)  ; In case of 

forward delay, if we add a 1-sample 

delay then it will convert to B.D 
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Inverse of a system 

   

 

Example: 

   

 

                                                               

h(n) 
)(nx x(n) h(n) 

h-1(n) 

Acc 
)(nx x(n) y(n) 

B.D 

h(n)=δ(n) 

h1(n)=U(n) h2(n)= δ(n)- δ(n-1) h(n)=h1(n)*h2(n) 

h(n)=U(n)*[δ(n)- δ(n-1)]=U(n)-

U(n-1)= δ(n) 

)(nx y(n)=x(n) B.D 
+ 

D 

- 

D 

F.D 

B.D is inverse system of ACC 
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Inverse of system: 

Engineering application 

 1. T.V.ghost canceling  

 2. Channel multi-path canceling  

 3. Equalization in communications channel   
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Frequency domain representation of 

discrete time signals and system 

 Frequency response of the 

system: 

  

H(ejω)= 
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Inverse Fourier transform:  

h(n)= 

 

Example: In the ideal low pass filter 
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Proof the inverse Fourier transform 
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We have, 

=δ(n) 

Proof the inverse Fourier transform cont.. 
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Sampling theorem:  
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Analog signal xc(t)                               

Xc(t) 

T(sampling period) 

x(nt) 

FT: 

IFT: )2........(..........)(
2

1
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Fourier transform for discrete time signal: 

Digital freq: ω=Ω.T……………………………………..(3) 
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spectrumAnax log:)(

s
s f

T





2
0

-Ω0 Ω0 
-π/T π/T 

Ω 

Nyquist rate for maximum frequency Ω0 is sampling rate in order 

not to have aliasing effect 

if 
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In this case we can recover the analog signal from its sample as follows: 

This formal is obtained as follows:  
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To recover analog signal from its sample 
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Fourier transform properties 

      x(n)                                 X(ejω) 

 

1. Time shift: x(n-M)                                                

 

2. Frequency shift                                      X(ej(ω-ω0)) 

 

3. Time reversal:  x(-n)                       X(e-jω) 

 

  if x(n) is a real sequence then: 

 

  x(-n)                       X.(ejω) 

 

 

 

ƒ 

 
ƒ 

 
e-jωM X(ejω) 

ejω
0

n x(n) 
ƒ 

 

ƒ 

 

ƒ 
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Fourier transform properties 

contd.. 

4. Differentiations in frequency domain: 

 

   n.x(n)                                                       

 

 

5. Convolution theorem: 

 

   y(n)= 

 

   Y(ejω)=X(ejω) . H (ejω) 
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Fourier transform properties 

contd.. 

6. Parseval’s Theorem (Energy)  

 

 E= 

 
7. The modulation or windowing 

theorem: 

 

  

 






n

j dexnx 







2

2 |)(|
2

1
|)(|

X(n) 

y(n)=w(n) . x(n) 

 









 deweXeY jjj )(.)(
2

1
)( )( 





47 

Z-Transform 

 X(z)= 

 
z: complex variable in z-plane 

 

Similar to Laplace transform  

 

Convergency of Z-transfer should be check 

 

Example 1. x(n)=anU(n) 

 

X(z)= 
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nn azza From the geometric series if we have |az-1|<1=>|z|>|a| 

x(z)=1/1-az-1 
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Example  

 x(n)=a|n| 

   |a|<1 

 

X(z)= 

 

  = 

 









 
1 0n

n

n

nnn zaza












01 n

nn

n

nn zaza

1 2 

1- convergent for |az|<1 

2-convergent for |az-1|<1 

 where |a|<|z|<1/|a| 

a>1 

a<1 

Don’t shape 
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Example contd… 

So, 

 X(z)= 

)1)(1(

1
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Example 

 Example 2: 

   x(n)=δ(n) 

 X(z)=1 

 x(n)=δ(n-m) 

 X(z)=z-m 

 

Example 3: x(n)=ansin(ω0n)U(n) 

    

x(z)= 
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Example 

 Example 4  

 x(n)=nanU(n) 

 

X(z)= 






0n

nnzna

With a little change in above summation 

































  11

1

0
1

1

1

1
)(

azdz

d
zza

dz

d
zzX

n

nn

 21

1

1
)(








az

az
zX



52 

Properties of z-transform  

 1. Linearity: a1x1(n)+a2x2(n)               

     

 

 2. Shift: x(n    k)                      Z  k   X(z) 

 

 3 Convolution: y(n)=  

 

   Y(Z)=h(Z).X(Z) 
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Z-trans 
a1X1(z)+a2X2(z) 
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The relation between Z transform to 

Fourier transform 

 X(z)= 






n

nznx )(

If we put: z=ejω   then Z.T                 F.T 

 

For more general case Z=rejω 

 

So,  
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z-transform derived from Laplace 

transform 
 

Consider a discrete-time signal x(t) below sampled every T sec 

   x(t) = x0 δ (t) + x1δ (t −T) + x2 δ (t − 2T) + x3 δ (t − 3T) +..... 

The Laplace transform of x(t) is therefore: 

X (s) = x0 + x1 e
−sT + x2 e

−s 2T + x3 e
−s 3T +..... 
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Range of convergency (ROC) 

 x(n)=u(n) 

   in case z=ejω not convergent  

   in case z=rejω for r>1 then convergent because 
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ROC Contd…. 

 Step function u(n) has z-transform for ROC: |z|>1 

 

     If ROC includes the unit circle then  z=ejω and the sequence has 

Fourier Transform 

 

     There is possibility that two sequences are different but they may 

have a similar algebraic form of their z-transform, however their 

ROC’s are different 
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Table of z-transform 
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Table of z-transform 
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The properties of ROC 

  ROC has a ring form or a disc form  

 The Fourier transform of x(n) has Fourier transform if and only if that 

its z-transform’s ROC includes unit circle 

 ROC cannot contain any pole 

 If the sequence x(n) has finite length then ROC contains all z-plane 

(excluding z=0 or z=∞)  

 If x(n) is right-sided, then ROC is located outside of the largest pole. 

 If x(n) is left sided then ROC is located inside of the smallest pole. 

 If the sequence x(n) is both-sided then the ROC has ring shape 

which is limited to inside and outside poles and there is no pole in 

ROC. 

 ROC must be a connected area. 
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Calculation of inverse Z-transform 
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C is a closed curve  

Example:  

|z|>0.5 

=1+0.5z-1+0.25z-2+0.125z-3 










0............................................125.0,25.0,5.0,1
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=>x(n)=(0.5)nu(n) 
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Inverse z-transform 

 If the Z transform can be expanded out as a series in powers of z, then the coefficients 

of each term of the series constitutes the inverse. In the following expression, the 

inverse would be the coefficients in blue 

 

 

 

 

 Consider a Z transform which can be expanded as in the expression below 

 

 

 

 Then the inverse is the coefficients in blue and can be written as follows. 
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