Discrete-Time signals and systems

Introduction

- **Signal:** A signal can be defined as a function that conveys information, generally about the state or behavior of a physical system.
- **Continuous-time signal:** Continuous-time signals are defined along a continuum of times and thus are represented by a continuous independent variable. Continuous-time signals are often referred to as analog signals.
- **Discrete time signal:** Discrete-time signals are defined at discrete times and thus the independent variable has discrete values; i.e., discrete-time signals are represented as sequences of number.

•How to retrieve h(t):

How to define $\delta(t)$?

•
$$\delta(t) = \begin{cases} \alpha & t = 0 \\ 0 & Others \end{cases}$$

And $+\varepsilon \int \partial(t) dt = 1$
 $-\varepsilon$

How to define System Output g(t)?

• g(t)= $\int_{-\infty}^{+\infty} h(\tau) f(t-\tau) d\tau$

• Or g(t)=
$$\int_{-\infty}^{+\infty} f(\tau) h(t-\tau) d\tau$$

- And there is another a form like g(t)=h(t)*f(t)
- Here * is the commutative property of convolution

Frequency domain:

• In frequency domain system output

$$G(\omega) = \int_{-\infty}^{+\infty} g(t) e^{-j\omega t} dt$$

$$G(\omega)=H(\omega) \times F(\omega)$$

Definition: Important functions in Discrete Time Signal

• Unit impulse function: $\delta(n) = \begin{cases} 1 & for, n = 0 \\ 0 & for, n \neq 0 \end{cases}$

Unit step function:

$$U(n) = \begin{cases} 1 & for, n \ge 0 \\ 0 & for, n < 0 \end{cases}$$

Here "n" is an integer

Relationship between δ(n) and U(n)

• U(n)= $\sum_{k=-\infty}^{n} \partial(k)$

- U(n)= $\sum_{k=0}^{\infty} \partial(n-k)$
- $\delta(n) = U(n)-U(n-1)$

Discrete time invariant system

How to retrieve h(n)?

Definitions:

- **FIR (Finite Impulse Response):** A finite impulse response (FIR) filter is a type of a digital filter. The impulse response, the filter's response to a Kronecker delta input, is 'finite' because it settles to zero in a finite number of sample intervals.
- **IIR(Infinite Impulse Response):** They have an impulse response function which is non-zero over an infinite length of time.
- Casual System: If h(n)=0 for n<0; then this system is called casual system.

Follow graph(FIR digital filter,IIR digital filter):

The System Output h(n)

The energy of a sequence:

$$\mathsf{E}=\sum_{n=-\infty}^{+\infty}|x(n)|^2$$

Any discrete sequence can be shown by $\delta(n)$:

Definition: Different System

Moving Average: The moving average system output

$$y(n) = \frac{1}{m1+m2+1} \sum_{k=-m1}^{m2} x(n-k)$$

Accumulator (Acc) : $y(n) = \sum_{k=-\infty}^{n} x(n)$

So the impulse response of the accumulator is same as the u(n) h(n) u(n)

Linear Shift Invariant System

a1

Linear Shift Invariant System (Cont...)

If y'' = y(n-k) = T[x(n-k)] then the system is shift invariant

Discrete Convolution

In LSI system

So,
$$y(n) = T[\sum_{k=-\infty}^{+\infty} x_{(k)} \partial_{(n-k)}]$$

If the system is linear then $y(n) = \sum_{k=-\infty}^{+\infty} x_{(k)} T[\partial_{(n-k)}]$

Discrete Convolution (Cont...)

If the system is LSI

$$\partial_{(n-k)} \xrightarrow{\mathsf{T}[.]} h_k(n)$$

So we can write
$$y(n) = \sum_{k=-\infty}^{+\infty} x_{(k)} h_{k(n)}$$

Again if the system is SI: $y_{(n-k)} = T[x_{(n-k)}]$ and $h_{k(n)} = h_{(n-k)}$

if LSI: $y(n) = \sum_{k=-\infty}^{+\infty} x_{(k)} h_{k(n-k)}$, it is known as discrete convolution

We can also write as $y(n) = \sum_{k=-\infty}^{+\infty} h_{(k)} x_{k(n-k)}$

Compressor: Down Sampling : Decimator

$$\xrightarrow{X_{(n)}} \text{Compressor} \xrightarrow{y_{(n)}}$$

 The compressor output y(n)=x(M.n) where M is a integer greater than 1

If M=2;

A compressor is not SI: x1(n)=x(n-n0) y1(n)=x1(mN)=x(Mn-n0) y(n-n0)=x[M(n-n0)]=x(Mn-Mn0)Here, x(Mn-n0)!=x(Mn-Mn0)So, a compressor not SI

Expander : Up Sampling : Interpolation

- The expander output y(n)=x(n/L); where L>1
- If L=2;

The system output y(n) in different cases

•
$$h(n) = \begin{cases} a^n for, n \ge 0 \\ 0 for, n < 0 \end{cases}$$

x(n)=U(n) - U(n-N) y(n)=?

We know that system output for LSI: $y(n) = \sum_{k=1}^{\infty} x_{(k)} h_{(n-k)}$

1. For n<0 then y(n)=0
2. For 0<=n\sum_{k=0}^{n} a^{n-k} = a^n \sum_{k=0}^{n} a^{-k} = a^n \frac{1-a^{-(n+1)}}{1-a^{-1}}
3. For n>=N-1 then y(n)=
$$\sum_{k=0}^{N-1} a^{n-k} = a^n \frac{1-a^{-N}}{1-a^{-1}}$$

Definition:

Stability of a system: A stable system produces finite output when the input is finite y(n) |=| ∑^{+∞}_{k=-∞} h_k x_(n-k) |<∞
 For LSI system: and |x(n)|<M<∞

So,
$$|y(n)| < M \sum_{k=-\infty}^{+\infty} |h_{(k)}| < \infty => \sum_{k=-\infty}^{+\infty} |h_{(k)}| < \infty$$

Causality: A system is casual when for N=n0; the output of the system depending on input x(n) only for n<=n0

$$\sum_{n=-\infty}^{\infty} |h(n)| = \sum_{n=0}^{\infty} |a^n| < \infty$$

$$x(n)$$

$$n$$

$$N=n0$$

$$N=n0$$

$$N=n0$$

$$1.|a|<1;S=1/1-|a|;Stable$$

$$2.a=1 \text{ and } a>1; s=\infty \text{ then not stable}$$

Impulse response for different delay

Ideal Delay: $x_{(n)}$ $y_{(n)} = x(n-m)$ M-Sample \rightarrow

Impulse response for ideal delay $h(n)=\delta(n-m)$ Moving average:

$$h(n) = \frac{1}{m1 + m2 + 1} \sum_{k = -m1}^{m^2} \partial(n - k) = \begin{cases} \frac{1}{m1 + m2 - 1} \text{ for } , n - m1 \le n \le m2 + n \\ 0 \text{ otherwise} \end{cases}$$

Accumulator: h(n)=u(n)=
$$\sum_{k=-\infty}^{n} \partial(k) = \begin{cases} 1^{n \ge 0} \\ 0_{n < 0} \end{cases}$$

Forward difference:

- Difference eqation = x(n+1)-x(n)
- Impulse response = $\delta(n+1)-\delta(n)$

Backward Difference

- Difference equation= y(n)=x(n)-x(n-1)
- Impulse response $h(n) = \delta(n+1) \delta(n)$

Stability:

• For a LSI
$$s = \sum_{n=-\infty}^{+\infty} |h(n)| < \infty$$

 For Ideal Delay, Moving Average, Backward Difference and Forward Difference; if s<∞ then it is stable

But for Accumulator

 $s=\sum_{n=0}^{\infty} U(n)$ goes to ∞ then it is not stable

Accumulator

Difference equation y(n)=x(n)+y(n-1) h(n)=U(n)

This IIR digital filter

Difference equation y(n)=x(n)+ay(n-1)Impulse response $h(n)=a^nu(n)$ Stability checking $= \sum |a^n| = \frac{1}{1-|a|} < \infty$ Condition check: if |a| < 1Result: Stable

Other properties of LSI

1-sample

h(n)=[δ(n+1)-δ(n)]*δ(n-1)

 $h(n)=\delta(n)-\delta(n-1)$; In case of forward delay, if we add a 1-sample delay then it will convert to B.D

Inverse of a system

Inverse of system: Engineering application

- 1. T.V.ghost canceling
- 2. Channel multi-path canceling
- 3. Equalization in communications channel

Frequency domain representation of discrete time signals and system

• Frequency response of the system:

Inverse Fourier transform:

$$h(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} H(e^{j\omega}) e^{j\omega n} d\omega$$

Example: In the ideal low pass filter $H(e^{j\omega}) = \begin{cases} 1 & |\omega| \le \omega_{c0} \\ 0 & \omega_{c0} < |\omega| \le \pi \end{cases}$

Proof the inverse Fourier transform

$$x(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x_{(n)} e^{-j\omega n}$$

$$\therefore \quad x_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} x(e^{j\omega}) e^{j\omega n} d\omega$$

$$\hat{x}$$
 such that: $\hat{x}(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \left(\sum_{m=-\infty}^{+\infty} x_{(m)} e^{-j\omega m} \right) e^{j\omega n} d\omega$

interchanging the order of integral and summation

$$\hat{x}(n) = \sum_{m=-\infty}^{+\infty} x_{(m)} \cdot \left[\frac{1}{2\pi} \int_{-\pi}^{\pi} e^{j\omega(n-m)} d\omega \right]$$

33

Proof the inverse Fourier transform cont..

We have,

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} e^{j\omega(n-\omega)} d\omega = \frac{\sin[\pi(n-m)]}{\pi(n-m)} = \begin{cases} 1 & \text{for,m=n} \\ 0 & \text{m\neq n} \end{cases}$$

=δ(n)

$$\hat{x}(n) = \sum_{m=-\infty}^{+\infty} x(m) \delta(n-m)$$

 $\hat{x}(n) = x(n)$

Sampling theorem:

Fourier transform for discrete time signal:

Digital freq: $\omega = \Omega.T.....(3)$

From eq.(2) for t=n.T

$$x(nT) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} x_c(\Omega) e^{j\omega nT} d\Omega.....(5)$$

On the other hand we had before:

$$x(nT) = \frac{1}{2\pi} \int_{-\pi}^{+\pi} x(e^{j\omega}) e^{j\omega n} d\omega.....(6)$$

Putting (5) into (4)

$$x(e^{j\omega}) = \sum_{n=-\infty}^{+\infty} \frac{1}{2\pi} \int_{-\infty}^{+\infty} x_c(\Omega) e^{j\Omega nT} d\Omega \left[e^{-jn\omega} \dots (7) \right]$$

Interchanging \sum with integral

$$x(e^{j\omega}) = \frac{1}{2\pi} \int_{-\infty}^{\infty} x_c(\Omega) \left[\sum_{n=-\infty}^{\infty} e^{jn(\Omega T - \omega)} \right] d\Omega....(8)$$

Then from (8) and (9) :

$$x(e^{j\omega}) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} x_c(\Omega) \cdot \left[\frac{2\pi}{T} \sum_{k=-\infty}^{+\infty} \partial(\Omega - \frac{\omega}{T} + \frac{2\pi k}{T}) \right] d\Omega$$

$$x(e^{j\omega}) = \frac{1}{T} \sum_{k=-\infty}^{+\infty} \int_{-\infty}^{+\infty} x_c(\Omega) \partial(\Omega - \frac{\omega}{T} + \frac{2\pi k}{T}) d\Omega....(10)$$

Then $x(e^{j\omega}) = \frac{1}{T} \sum_{k=-\infty}^{+\infty} x_c \left(\frac{\omega}{T} - \frac{2\pi k}{T}\right)$

Since,

$$\Omega = \frac{\omega}{T}$$

$$x(e^{j\omega}) = \frac{1}{T} \sum_{k=-\infty}^{+\infty} x_c \left(\Omega - \frac{2\pi k}{T}\right)....(11)$$

Then $\chi(e^{j\omega})$ is a periodic function of $\Omega=\omega/T$ with period of $2\pi/T$

Nyquist rate for maximum frequency Ω_0 is sampling rate in order not to have aliasing effect

$$\begin{array}{ll} \text{if} \quad \Omega_0 < \frac{\pi}{T} = \frac{\omega_s}{2} = \pi f_s \\ -\pi \leq \omega \leq \pi \end{array} \end{array}$$

In this case we can recover the analog signal from its sample as follows:

$$x_{c}(t) = \sum_{k=-\infty}^{+\infty} x_{c}(kt) \frac{\sin[\frac{\pi}{T}(t-kT)]}{[\frac{\pi}{T}(t-kT)]}$$

This formal is obtained as follows:

$$x_c(t) = \frac{1}{2\pi} \int_{-\pi/T}^{\pi/T} x_c(\Omega) e^{j\Omega t} d\Omega$$

$$-\frac{\pi}{T} \le \Omega \le \frac{\pi}{T}$$

$$x(e^{j\omega}) = x(e^{j\omega T}) = \frac{1}{T} x_c(\Omega)$$

$$x_{c}(t) = \frac{1}{2\pi} \int_{-\pi/T}^{+\pi/T} T \cdot x(e^{j\omega}) e^{j\Omega t} d\Omega$$

$$x(e^{j\omega}) = x(e^{j\Omega T}) = \sum_{k=-\infty}^{+\infty} x(kT)e^{-j\Omega Tk}$$

$$x_{c}(t) = \frac{T}{2\pi} \int_{-\pi/T}^{\pi/T} \left[\sum_{k=-\infty}^{+\infty} x(kT) e^{-j\Omega Tk} \right] e^{j\Omega t} d\Omega$$

$$x_{c}(t) = \sum_{k=-\infty}^{+\infty} x(kT) \left[\frac{T}{2\pi} \int_{-\pi/T}^{\pi/T} e^{j\Omega(t-kT)} d\Omega \right]$$

$$x_{c}(t) = \sum_{k=-\infty}^{+\infty} x(kT) \frac{\sin\left[(\frac{\pi}{T})(t-kT)\right]}{(\frac{\pi}{T})(t-kT)}$$

To recover analog signal from its sample

Fourier transform properties

 $x(n) \xrightarrow{f} X(e^{j\omega})$

- 2. Frequency shift $e^{j\omega_0^n} x(n) X(e^{j(\omega-\omega_0)})$
- 3. Time reversal: $x(-n) \xrightarrow{f} X(e^{-j\omega})$

if x(n) is a real sequence then:

$$x(-n) \xrightarrow{f} X.(e^{j\omega})$$

Fourier transform properties contd..

4. Differentiations in frequency domain:

n.x(n)
$$\longrightarrow j \frac{dx(e^{j\omega})}{d\omega}$$

5. Convolution theorem:

$$y(n) = \sum_{k=-\infty}^{+\infty} x(k)h(n-k)$$

$$Y(e^{j\omega})$$
= $X(e^{j\omega})$. H $(e^{j\omega})$

Fourier transform properties contd..

6. Parseval's Theorem (Energy)

$$\mathsf{E} = \sum_{n=-\infty}^{+\infty} |x(n)|^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} |x(e^{j\omega})|^2 d\omega$$

7. The modulation or windowing theorem:

Z-Transform

• X(z)=
$$\sum_{n=-\infty}^{\infty} x(n).z^{-n}$$

z: complex variable in z-plane

Similar to Laplace transform

Convergency of Z-transfer should be check

Example 1. $x(n)=a^nU(n)$

 $X(z) = \sum_{n=0}^{\infty} a^n z^{-n} = \sum_{n=0}^{\infty} (az^{-1})^n \text{ From the geometric series if we have } |az^{-1}| < 1 =>|z|>|a|$ $x(z) = 1/1 - az^{-1}$

Example

x(n)=a^{|n|}
 |a|<1

- 1- convergent for |az|<1
- 2-convergent for |az⁻¹|<1

where |a|<|z|<1/|a|

Example contd...

Example

• Example 2: $x(n)=\delta(n)$ X(z)=1 $x(n)=\delta(n-m)$ $X(z)=z^{-m}$

Example 3: $x(n) = a^{n} \sin(\omega_{0}n) U(n)$ $x(z) = \frac{a \sin(\omega_{0}) z^{-1}}{1 - 2a \cos \omega_{0} z^{-1} + a^{2} z^{-2}}$

Example

Example 4
 x(n)=naⁿU(n)

$$X(z) = \sum_{n=0}^{\infty} na^n z^{-n}$$

With a little change in above summation

$$X(z) = z^{-1} \frac{d}{dz^{-1}} \left[\sum_{n=0}^{\infty} a^n z^{-n} \right] = z^{-1} \frac{d}{dz^{-1}} \left[\frac{1}{1 - az^{-1}} \right]$$

$$X(z) = \frac{az^{-1}}{\left(1 - az^{-1}\right)^2}$$

Properties of z-transform

• 1. Linearity: $a_1x_1(n) + a_2x_2(n) \xrightarrow{Z-\text{trans}} a_1X_1(z) + a_2X_2(z)$

• 2. Shift:
$$x(n \pm k) \longrightarrow Z^{\pm k} X(z)$$

• 3 Convolution: $y(n) = \sum_{k=-\infty}^{+\infty} h(k)x(n-k)$

Y(Z)=h(Z).X(Z)

The relation between Z transform to Fourier transform

•
$$X(z) = \sum_{n=-\infty}^{+\infty} x(n) z^{-n}$$

If we put: $z=e^{j\omega}$ then Z.T \longrightarrow F.T

For more general case $Z=re^{j\omega}$

So,
$$X(re^{j\omega}) = \sum_{n=-\infty}^{+\infty} [x(n)r^{-n}]e^{-j\omega n}$$

z-transform derived from Laplace transform

Consider a discrete-time signal x(t) below sampled every T sec $x(t) = x_0 \,\delta(t) + x_1 \delta(t-T) + x_2 \,\delta(t-2T) + x_3 \,\delta(t-3T) + \dots$ The Laplace transform of x(t) is therefore: $X(s) = x_0 + x_1 e^{-sT} + x_2 e^{-s2T} + x_3 e^{-s3T} + \dots$ Now define $z = e^{sT} = e^{(\sigma + j\omega)T} = e^{\sigma T} \cos \omega T + j e^{\sigma T} \sin \omega T$ $X[z] = x_0 + x_1 z^{-1} + x_2 z^{-2} + x_3 z^{-3} + \dots$ 1=0

Range of convergency (ROC)

• x(n)=u(n)

in case $z=e^{j\omega}$ not convergent

in case $z=re^{j\omega}$ for r>1 then convergent because

$$\sum_{n=-\infty}^{+\infty} |x(n)r^{-n}| < \infty$$
$$= \sum_{\substack{n=-\infty\\\infty}}^{+\infty} |u(n)r^{-n}| < \infty$$

$$=\sum_{n=0}|r^{-n}|<\infty$$

ROC Contd....

- Step function u(n) has z-transform for ROC: |z|>1
 - $^{\rm v}$ If ROC includes the unit circle then $z{=}e^{j\omega}$ and the sequence has Fourier Transform
 - There is possibility that two sequences are different but they may have a similar algebraic form of their z-transform, however their ROC's are different

Table of z-transform

Here:

- u[n]=1 for n>=0, u[n]=0 for n<0</p>
- δ[n] = 1 for n=0, δ[n] = 0 otherwise

	Signal, x[n]	Z-transform, X(z)	ROC
1	$\delta[n]$	1	all z
2	$\delta[n-n_0]$	z^{-n_0}	$z \neq 0$
3	u[n]	$\frac{1}{1-z^{-1}}$	z > 1
4	-u[-n-1]	$\frac{1}{1-z^{-1}}$	z < 1
5	nu[n]	$\frac{z^{-1}}{(1-z^{-1})^2}$	z > 1
6	-nu[-n-1]	$\frac{z^{-1}}{(1-z^{-1})^2}$	z < 1
7	$n^2u[n]$	$\frac{z^{-1}(1+z^{-1})}{(1-z^{-1})^3}$	z > 1
8	$-n^2u[-n-1]$	$\frac{z^{-1}(1+z^{-1})}{(1-z^{-1})^3}$	z < 1
9	$n^3u[n]$	$\frac{z^{-1}(1+4z^{-1}+z^{-2})}{(1-z^{-1})^4}$	z > 1
10	$-n^{3}u[-n-1]$	$\frac{z^{-1}(1+4z^{-1}+z^{-2})}{(1-z^{-1})^4}$	z < 1
-		2000 CONSC	

Table of z-transform

11	$a^n u[n]$	$\frac{1}{1-az^{-1}}$	z > a
12	$-a^nu[-n-1]$	$\frac{1}{1-az^{-1}}$	z < a
13	$na^nu[n]$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z > a
14	$-na^nu[-n-1]$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z < a
15	$n^2 a^n u[n]$	$\frac{az^{-1}(1+az^{-1})}{(1-az^{-1})^3}$	z > a
16	$-n^2a^nu[-n-1]$	$\frac{az^{-1}(1+az^{-1})}{(1-az^{-1})^3}$	z < a
17	$\cos(\omega_0 n)u[n]$	$\frac{1 - z^{-1}\cos(\omega_0)}{1 - 2z^{-1}\cos(\omega_0) + z^{-2}}$	z > 1
18	$\sin(\omega_0 n)u[n]$	$\frac{z^{-1}\sin(\omega_0)}{1 - 2z^{-1}\cos(\omega_0) + z^{-2}}$	z > 1
19	$a^n \cos(\omega_0 n) u[n]$	$\frac{1 - az^{-1}\cos(\omega_0)}{1 - 2az^{-1}\cos(\omega_0) + a^2 z^{-2}}$	z > a
20	$a^n \sin(\omega_0 n) u[n]$	$\frac{az^{-1}\sin(\omega_0)}{1 - 2az^{-1}\cos(\omega_0) + a^2 z^{-2}}$	z > a

The properties of ROC

- ROC has a ring form or a disc form
- The Fourier transform of x(n) has Fourier transform if and only if that its z-transform's ROC includes unit circle
- ROC cannot contain any pole
- If the sequence x(n) has finite length then ROC contains all z-plane (excluding z=0 or z=∞)
- If x(n) is right-sided, then ROC is located outside of the largest pole.
- If x(n) is left sided then ROC is located inside of the smallest pole.
- If the sequence x(n) is both-sided then the ROC has ring shape which is limited to inside and outside poles and there is no pole in ROC.
- ROC must be a connected area.

Calculation of inverse Z-transform

$$x(n) = \frac{1}{2\pi j} \oint_c x(z) z^{n-1} dz$$

C is a closed curve

Example:
$$X(z) = \frac{1}{1 - 0.5z^{-1}}$$

 $|z| > 0.5$
 $X(z) = \frac{1}{1 - 0.5z^{-1}} = 1 + 0.5z^{-1} + 0.25z^{-2} + 0.125z^{-3}$
 $x(n) = \begin{cases} 1,0.5,0.25,0.125.....n \ge 0\\ 0 & n < 0 \end{cases} = >x(n) = (0.5)^{n}u(n)$

Inverse z-transform

• If the Z transform can be expanded out as a series in powers of z, then the coefficients of each term of the series constitutes the inverse. In the following expression, the inverse would be the coefficients in blue

 $X_0(z) = x_0(0) + x_0(1)z^{-1} + x_0(2)z^{-2} + x_0(3)z^{-3} + \cdots$

• Consider a Z transform which can be expanded as in the expression below

$$X(z) = 1 + \frac{1}{2}z^{-1} + \frac{1}{4}z^{-2} + \frac{1}{8}z^{-3} + \cdots$$

• Then the inverse is the coefficients in blue and can be written as follows.

Laplace, Fourier and z-Tranforms

	Definition	Purpose	Suitable for
Laplace transform	$X(s) = \int_{-\infty}^{\infty} x(t) e^{-st} dt$	Converts integro- differential equations to algebraic equations	Continuous-time system & signal analysis; stable or unstable
Fourier transform	$X(\omega) = \int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt$	Converts finite time signal to frequency domain	Continuous-time; stable system, convergent signals only; best for steady-state
Discrete Fourier transform	$X[n\omega_0] = \sum_{n=0}^{N_0 - 1} x[n] e^{jn\omega_0 T}$ $N_0 \text{ samples,} T = \text{ sample period}$	Converts finite discrete- time signal to discrete frequency domain	Discrete time, otherwise same as FT
z transform	$\omega_0 = 2\pi/T$ $X[z] = \sum_{n = -\infty}^{\infty} x[n] z^{-n}$	Converts difference equations into algebraic equations	Discrete-time system & signal analysis; stable or unstable