Discrete-Time signals and systems

Introduction

- Signal: A signal can be defined as a function that conveys information, generally about the state or behavior of a physical system.
- Continuous-time signal: Continuous-time signals are defined along a continuum of times and thus are represented by a continuous independent variable. Continuous-time signals are often referred to as analog signals.
- Discrete time signal: Discrete-time signals are defined at discrete times and thus the independent variable has discrete values; i.e., discrete-time signals are represented as sequences of number.

Analog: Linear time invariant system

-How to retrieve $\mathrm{h}(\mathrm{t})$:

How to define $\delta(\mathrm{t})$?

- $\delta(\mathrm{t})=\left\{\begin{array}{cc}\alpha & t=0 \\ 0 & \text { Others }\end{array}\right.$

And ${ }^{+\varepsilon}$
$\partial(t) d t=1$
$-\varepsilon$

How to define System Output $\mathrm{g}(\mathrm{t})$?

- $\mathrm{g}(\mathrm{t})=\int_{-\infty}^{+\infty} h(\tau) \cdot f(t-\tau) d \tau$
- $\operatorname{Org} g(\mathrm{t})=\int_{-\infty}^{+\infty} f(\tau) \cdot h(t-\tau) d \tau$
- And there is another a form like $g(t)=h(t)^{*} f(t)$
Here * is the commutative property of convolution

Frequency domain:

- In frequency domain system output

$$
\mathrm{G}(\omega)=\int_{-\infty}^{+\infty} g(t) e^{-j \omega t} d t
$$

$G(\omega)=H(\omega) \times F(\omega)$

Definition: Important functions in Discrete Time Signal

- Unit impulse function:

$$
\delta(\mathrm{n})= \begin{cases}1 & \text { for }, n=0 \\ 0 & \text { for }, n \neq 0\end{cases}
$$

Unit step function:
$U(n)= \begin{cases}1 & \text { for }, n \geq 0 \\ 0 & \text { for }, n<0\end{cases}$
Here " n " is an integer

Relationship between $\delta(n)$ and U(n)

- $U(\mathrm{n})=\sum_{k=-\infty}^{n} \partial(k)$
- $U(\mathrm{n})=\sum_{k=0}^{\infty} \partial(n-k)$
- $\delta(n)=U(n)-U(n-1)$

Discrete time invariant system

Output $\mathbf{y}(\mathrm{n})=\sum_{i=-\infty}^{i=+\infty} h(i) x(n-i)$
Or $\mathbf{y}(\mathrm{n})=\sum_{i=-\infty}^{i=+\infty} x(i) h(n-i)$
How to retrieve $h(n) ?$

Impulse

Out put will be same as $\mathrm{h}(\mathrm{n})$

Definitions:

- FIR (Finite Impulse Response): A finite impulse response (FIR) filter is a type of a digital filter. The impulse response, the filter's response to a Kronecker delta input, is 'finite' because it settles to zero in a finite number of sample intervals.
- IIR(Infinite Impulse Response): They have an impulse response function which is non-zero over an infinite length of time.
- Casual System: If $h(n)=0$ for $n<0$; then this system is called casual system.

Follow graph(FIR digital filter,IIR digital filter):

FIR Digital Filter:

$$
y_{n}=\sum_{i=0}^{N} a_{i} x(n-i) \begin{aligned}
& \text { It is also known as difference } \\
& \text { equation. }
\end{aligned}
$$

IIR Digital Filter:

$$
y_{n}=\sum_{i=0}^{N} a_{i} x(n-i)+\sum_{j=1}^{m} b_{j} y(n-j)
$$

The System Output h(n)

The energy of a sequence:

$$
\mathrm{E}=\sum_{n=-\infty}^{+\infty}|x(n)|^{2}
$$

Any discrete sequence can be shown by $\delta(\mathrm{n})$:

Definition: Different System

The ideal delay system:
X(n)

$$
X(n-1) \quad X(n-2)
$$

The ideal delay system output would be $\mathrm{y}(\mathrm{n})=\mathrm{x}(\mathrm{n}-\mathrm{N})$
Moving Average: The moving average system output
$\mathrm{y}(\mathrm{n})=\frac{1}{m \mathrm{l}+m 2+1} \sum_{k=m 1}^{m 2} x(n-k)$
Accumulator (Acc) : $\mathrm{y}(\mathrm{n})=\sum_{k=-\infty}^{n} x(n)$
So the impulse response of the accumulator is same as the $u(n)$

Linear Shift Invariant System

Linear Shift Invariant System (Cont...)

If $y^{\prime /}=y(n-k)=\mathrm{T}[\mathrm{x}(\mathrm{n}-\mathrm{k})]$ then the system is shift invariant

Discrete Convolution

- In LSI system

$$
\begin{aligned}
& \mathrm{x}(\mathrm{n})=\stackrel{\sum_{k=-\infty}^{+\infty} x_{(k)} \partial_{(n-k)}}{\mathrm{x}(\mathrm{n})} \mathrm{T}[\cdot] \xrightarrow{\mathrm{y}(\mathrm{n})=\mathrm{T} \mathrm{~T}(\mathrm{n})]} \\
& \text { So, } \mathrm{y}(\mathrm{n})=\mathrm{T}\left[\sum_{k=-\infty}^{+\infty} x_{(k)} \partial_{(n-k)}\right]
\end{aligned}
$$

If the system is linear then
$\mathrm{y}(\mathrm{n})=\sum_{k=-\infty}^{+\infty} x_{(k)} T\left[\partial_{(n-k)}\right]$

Discrete Convolution (Cont...)

- If the system is LSI

So we can write

$$
\mathrm{y}(\mathrm{n})=\sum_{k=-\infty}^{+\infty} x_{(k)} h_{k(n)}
$$

Again if the system is SI: $y_{(n-k)}=T\left[x_{(n-k)}\right]$ and $h_{k(n)}=h_{(n-k)}$
if LSI: $\mathrm{y}(\mathrm{n})=\sum_{k=-\infty}^{+\infty} x_{(k)} h_{k(n-k)}$,it is known as discrete convolution
We can also write as $\mathrm{y}(\mathrm{n})=\sum_{k=-\infty}^{+\infty} h_{(k)} x_{k(n-k)}$

Compressor: Down Sampling :Decimator

- The compressor output $\mathrm{y}(\mathrm{n})=\mathrm{x}(\mathrm{M} . \mathrm{n})$ where M is a integer greater than 1
If $M=2$;
A compressor is not SI :
$x 1(n)=x(n-n 0)$
$y 1(n)=x 1(m N)=x(M n-n 0)$
$y(n-n 0)=x[M(n-n 0)]=x(M n-M n 0)$
Here, $x(M n-n 0)!=x(M n-M n 0)$
So, a compressor not SI

Expander: Up Sampling :Interpolation

- The expander output $y(n)=x(n / L)$; where $L>1$
- If $\mathrm{L}=2$;

The system output $y(n)$ in different cases

- $\mathrm{h}(\mathrm{n})=\left\{\begin{array}{l}a^{n} \text { for }, n \geq 0 \\ 0 \text { for }, n<0\end{array}\right.$
$x(n)=U(n)-U(n-N)$
$y(n)=$?
We know that system output for LSI: $\mathrm{y}(\mathrm{n})=\sum_{k=-\infty}^{+\infty} x_{(k)} h_{(n-k)}$

1. For $\mathrm{n}<0$ then $\mathrm{y}(\mathrm{n})=0$
2. For $0<=\mathrm{n}<\mathrm{N}$ then $\mathrm{y}(\mathrm{n})=\sum_{k=0}^{n} a^{n-k}=a^{n} \sum_{k=0}^{n} a^{-k}=a^{n} \frac{1-a^{-(n+1)}}{1-a^{-1}}$
3. For $\mathrm{n}>=\mathrm{N}-1$ then $\mathrm{y}(\mathrm{n})=\sum_{k=0}^{N-1} a^{n-k}=a^{n} \frac{1-a^{-N}}{1-a^{-1}}$

Definition:

- Stability of a system: A stable system produces finite output when the input is finite $y_{y}(n)\left|=\left|\sum_{k=-\infty}^{+\infty} h_{k} x_{(n-k)}\right|<\infty\right.$

$$
\text { and }|x(n)|<M<\infty
$$

So, $|\mathrm{y}(\mathrm{n})|<M \sum_{k=-\infty}^{+\infty}\left|h_{(k)}\right|<\infty=>\sum_{k=-\infty}^{+\infty}\left|h_{(k)}\right|<\infty$
Causality: A system is casual when for $\mathrm{N}=\mathrm{nO}$; the output of the system depending on input $x(n)$ only for $n<=n 0$

If the system is LSI and $\mathrm{h}(\mathrm{n})=0$ for $\mathrm{n}<0$ then it is causal
Example: $s=\sum_{n=-\infty}^{+\infty}|h(n)|=\sum_{n=0}^{\infty}\left|a^{n}\right|<\infty$

1. $|\mathrm{a}|<1 ; \mathrm{S}=1 / 1-|\mathrm{a}|$;Stable
2. $a=1$ and $a>1 ; s=\infty$ 解en not stable

Impulse response for different delay

Ideal Delay:

Impulse response for ideal delay $h(n)=\delta(n-m)$ Moving average:
$\mathrm{h}(\mathrm{n})=\frac{1}{m 1+m 2+1} \sum_{k=-m 1}^{m 2} \partial(n-k)=\left\{\begin{array}{l}\frac{1}{m 1+m 2-1} \text { for }, n-m 1 \leq n \leq m 2+n \\ 0 \text { otherwise }\end{array}\right.$
Accumulator: $\mathrm{h}(\mathrm{n})=\mathrm{u}(\mathrm{n})=\sum_{k=-\infty}^{n} \partial(k)=\left\{\begin{array}{l}1^{n \geq 0} \\ 0_{n<0}\end{array}\right.$

Forward difference:

- Difference eqation $=x(n+1)-x(n)$
- Impulse response $=\delta(n+1)-\delta(n)$

Backward Difference

- Difference equation $=y(n)=x(n)-x(n-1)$
- Impulse response $h(n)=\delta(n+1)-\delta(n)$

Stability:

- For a LSI $s=\sum_{n=-\infty}^{+\infty}|h(n)|<\infty$
- For Ideal Delay, Moving Average, Backward Difference and Forward Difference; if $\mathbf{s}<\infty$ then it is stable
But for Accumulator
$\mathrm{s}=\sum_{n=0}^{\infty} U(n)$ goes to ∞ then it is not stable

Accumulator

Difference equation

$$
\begin{aligned}
& y(n)=x(n)+y(n-1) \\
& h(n)=U(n)
\end{aligned}
$$

- This IIR digital filter

Difference equation $y(n)=x(n)+a y(n-1)$
Impulse response $h(n)=a^{n} u(n)$
Stability checking = $\sum\left|a^{n}\right|=\frac{1}{1-|a|}<\infty$
Condition check: if $|\mathrm{a}|<1$
Result: Stable

Other properties of LSI

1-sample

$h(n)=[\delta(n+1)-\delta(n)]^{\star} \delta(n-1)$
$h(n)=\delta(n)-\delta(n-1) ;$ In case of
forward delay, if we add a 1 -sample delay then it will convert to B.D

Inverse of a system

$\xrightarrow{x(n)} \xrightarrow{\mathrm{h}(\mathrm{n})} \xrightarrow{\mathrm{h}(\mathrm{n})} \xrightarrow{\mathrm{h}^{-1}(\mathrm{n})} \xrightarrow{x(\mathrm{n})}$
Example:

$$
\begin{aligned}
& h(n)=h 1(n)^{*} h 2(n) \\
& h(n)=U(n)^{*}[\delta(n)-\delta(n-1)]=U(n)- \\
& U(n-1)=\delta(n)
\end{aligned}
$$

Inverse of system: Engineering application

- 1. T.V.ghost canceling
- 2. Channel multi-path canceling
- 3. Equalization in communications channel

Frequency domain representation of discrete time signals and system

- Frequency response of the system:

$$
\mathrm{H}\left(\mathrm{e}^{\mathrm{j} \omega}\right)=\sum_{k=-\infty}^{+\infty} h(k) e^{-j \omega k}
$$

Example:

$$
h(n)=\left\{\begin{array}{l}
10 \leq n \leq N-1 \\
00, \text { elsewhere }
\end{array}\right.
$$

$$
\begin{aligned}
& \mathrm{h}(\mathrm{n})=\mathrm{U}(\mathrm{n})-\mathrm{U}(\mathrm{n}-\mathrm{N}) \\
& \mathrm{H}\left(\mathrm{e}^{\mathrm{j} \omega}\right)=\sum_{k=0}^{N-1} h(k) e^{-j \omega k}=\frac{1-e^{-j \omega N}}{1-e^{-j \omega}} \\
& =\frac{\sin \left(\frac{\omega N}{2}\right)}{\sin \left(\frac{\omega}{2}\right)} e^{-j \frac{N-1}{2} \omega}
\end{aligned}
$$

Inverse Fourier transform:

$\mathrm{h}(\mathrm{n})=\frac{1}{2 \pi} \int_{-\pi}^{\pi} H\left(e^{j \omega}\right) e^{j \omega \pi} d \omega$
Example: In the ideal low pass filter $H\left(e^{j \omega}\right)= \begin{cases}1 & |0| \leqslant \omega_{c 0} \\ 0 & \omega_{c 0}\langle | 0 \mid \leqslant \pi\end{cases}$

Proof the inverse Fourier transform

$$
\begin{aligned}
& x\left(e^{j \omega}\right)=\sum_{n=-\infty}^{\infty} x_{(n)} e^{-j \omega n} \\
& \because \quad x_{n}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} x\left(e^{j \omega}\right) e^{j \omega n} d \omega \\
& \hat{x} \text { such that: } \hat{x}(n)=\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left(\sum_{m=-\infty}^{+\infty} x_{(m n} e^{-j \omega \omega}\right) e^{j \omega n} d \omega
\end{aligned}
$$

interchanging the order of integral and summation

$$
\hat{x}(n)=\sum_{m=-\infty}^{+\infty} x_{(m)} \cdot\left[\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{j \omega(n-m)} d \omega\right]
$$

Proof the inverse Fourier transform cont..

We have,

$$
\begin{aligned}
& \frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{j \omega(n-\omega)} d \omega=\frac{\sin [\pi(n-m)]}{\pi(n-m)}= \begin{cases}1 & \text { for }, m=n \\
0 & m \neq n\end{cases} \\
& =\delta(n) \\
& \hat{x}(n)=\sum_{m=-\infty}^{+\infty} x(m) \delta(n-m) \\
& \hat{x}(n)=x(n)
\end{aligned}
$$

Sampling theorem:

Analog signal $\mathrm{x}_{\mathrm{c}}(\mathrm{t})$

$\mathrm{FT}: x_{c}(\Omega)=\int_{-\infty}^{+\infty} x_{c}(t) e^{-j \Omega t} d t$.
$\mathrm{IFT}: x_{c}(t)=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} x_{c}(\Omega) e^{j \Omega t} d \Omega \ldots \ldots \ldots \ldots \ldots .(2)$
Fourier transform for discrete time signal:
Digital freq: $\omega=\Omega . \mathrm{T}$

$$
\begin{equation*}
x\left(e^{j \omega}\right)=\sum_{n=-\infty}^{+\infty} x(n T) e^{-j n \omega}=\sum_{n=-\infty}^{+\infty} x(n T) e^{-j n \Omega T} \tag{4}
\end{equation*}
$$

From eq.(2) for $t=n . T$
$x(n T)=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} x_{c}(\Omega) e^{j \omega n T} d \Omega \ldots \ldots \ldots \ldots \ldots \ldots \ldots$ (5)
On the other hand we had before:

$$
\begin{equation*}
x(n T)=\frac{1}{2 \pi} \int_{-\pi}^{+\pi} x\left(e^{j \omega}\right) e^{j \omega n} d \omega \tag{6}
\end{equation*}
$$

Putting (5) into (4)

$$
\begin{equation*}
\left.x\left(e^{j \omega}\right)=\sum_{n=-\infty}^{+\infty} \frac{1}{2 \pi} \int_{-\infty}^{+\infty} x_{c}(\Omega) e^{j \Omega n T} d \Omega\right] e^{-j n \omega} \tag{7}
\end{equation*}
$$

Interchanging \sum with integral

$$
x\left(e^{j \omega}\right)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} x_{c}(\Omega)\left[\sum_{n=-\infty}^{\infty} e^{j n(\Omega T-\omega)}\right] d \Omega \ldots \ldots \ldots \ldots . .(8)
$$

But we have:

$$
\begin{equation*}
\sum_{n=-\infty}^{+\infty} e^{j n(\Omega T-\omega)}=\frac{2 \pi}{T} \sum_{k=-\infty}^{+\infty} \partial\left(\Omega-\frac{\omega}{T}+\frac{2 \pi k}{T}\right) . \tag{9}
\end{equation*}
$$

Then from (8) and (9) :

$$
\begin{aligned}
& x\left(e^{j \omega}\right)=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} x_{c}(\Omega) \cdot\left[\frac{2 \pi}{T} \sum_{k=-\infty}^{+\infty} \partial\left(\Omega-\frac{\omega}{T}+\frac{2 \pi k}{T}\right)\right] d \Omega \\
& x\left(e^{j \omega}\right)=\frac{1}{T} \sum_{k=-\infty}^{+\infty} \int_{-\infty}^{+\infty} x_{c}(\Omega) \partial\left(\Omega-\frac{\omega}{T}+\frac{2 \pi k}{T}\right) d \Omega \ldots \ldots . . .(10)
\end{aligned}
$$

Then

$$
x\left(e^{j \omega}\right)=\frac{1}{T} \sum_{k=-\infty}^{+\infty} x_{c}\left(\frac{\omega}{T}-\frac{2 \pi k}{T}\right)
$$

Since,

$$
\Omega=\frac{\omega}{T}
$$

$$
\begin{equation*}
x\left(e^{j \omega}\right)=\frac{1}{T} \sum_{k=-\infty}^{+\infty} x_{c}\left(\Omega-\frac{2 \pi k}{T}\right) \tag{11}
\end{equation*}
$$

Then $\quad X\left(e^{j \omega}\right)$ is a periodic function of $\Omega=\omega / T$ with period of $2 \pi / T$

Nyquist rate for maximum frequency Ω_{0} is sampling rate in order not to have aliasing effect

$$
\text { if } \begin{aligned}
& \Omega_{0}<\frac{\pi}{T}=\frac{\omega_{s}}{2}=\pi f_{s} \\
& -\pi \leq \omega \leq \pi
\end{aligned}
$$

In this case we can recover the analog signal from its sample as follows:

$$
x_{c}(t)=\sum_{k=-\infty}^{+\infty} x_{c}(k t) \frac{\sin \left[\frac{\pi}{T}(t-k T)\right]}{\left[\frac{\pi}{T}(t-k T)\right]}
$$

This formal is obtained as follows:

$$
\begin{aligned}
& x_{c}(t)=\frac{1}{2 \pi} \int_{-\pi / T}^{\pi / T} x_{c}(\Omega) e^{j \Omega t} d \Omega \\
& -\frac{\pi}{T} \leq \Omega \leq \frac{\pi}{T}
\end{aligned}
$$

$$
\begin{aligned}
& x\left(e^{j \omega}\right)=x\left(e^{j \omega T}\right)=\frac{1}{T} x_{c}(\Omega) \\
& x_{c}(t)=\frac{1}{2 \pi} \int_{-\pi / T}^{+\pi / T} T \cdot x\left(e^{j \omega}\right) e^{j \Omega t} d \Omega \\
& x\left(e^{j \omega}\right)=x\left(e^{j \Omega T}\right)=\sum_{k=-\infty}^{+\infty} x(k T) e^{-j \Omega T k} \\
& x_{c}(t)=\frac{T}{2 \pi} \int_{-\pi / T}^{\pi / T}\left[\sum_{k=-\infty}^{+\infty} x(k T) e^{-j \Omega I \pi}\right] e^{j \Omega t} d \Omega
\end{aligned}
$$

$$
\begin{aligned}
& x_{c}(t)=\sum_{k=-\infty}^{+\infty} x(k T)\left[\frac{T}{2 \pi} \int_{-\pi / T}^{\pi / T} e^{j \Omega(t-k T)} d \Omega\right] \\
& x_{c}(t)=\sum_{k=-\infty}^{+\infty} x(k T) \frac{\sin \left[\left(\frac{\pi}{T}\right)(t-k T)\right]}{\left(\frac{\pi}{T}\right)(t-k T)}
\end{aligned}
$$

To recover analog signal from its sample

Fourier transform properties

$\mathrm{X}(\mathrm{n}) \xrightarrow{f} \mathrm{X}\left(\mathrm{e}^{\mathrm{j} \omega}\right)$

1. Time shift: $\mathrm{x}(\mathrm{n}-\mathrm{M}) \xrightarrow{f} \mathrm{e}^{-\mathrm{j} \omega \mathrm{M}} \mathrm{X}\left(\mathrm{e}^{\mathrm{j} \omega}\right)$
2. Frequency shift $\mathrm{e}^{\mathrm{i} \omega_{0} \mathrm{n} x(n) \longleftarrow} \stackrel{f}{\unlhd} \mathrm{X}\left(\mathrm{e}^{\mathrm{i}(\omega-\omega)}\right)$
3. Time reversal: $\mathrm{x}(-\mathrm{n}) \xrightarrow{f} \mathrm{X}\left(\mathrm{e}^{\mathrm{j} \omega}\right)$
if $x(n)$ is a real sequence then:

$$
\mathrm{X}(-\mathrm{n}) \longrightarrow \xrightarrow{f} \mathrm{X} .\left(\mathrm{e}^{\mathrm{j} \omega}\right)
$$

Fourier transform properties contd..

4. Differentiations in frequency domain:

5. Convolution theorem:

$$
\begin{aligned}
& \mathrm{y}(\mathrm{n})=\sum_{k=-\infty}^{+\infty} x(k) h(n-k) \\
& \mathrm{Y}\left(\mathrm{e}^{\mathrm{j} \omega}\right)=\mathrm{X}\left(\mathrm{e}^{\mathrm{j} \omega}\right) \cdot \mathrm{H}\left(\mathrm{e}^{\mathrm{j} \omega}\right)
\end{aligned}
$$

Fourier transform properties contd..

6. Parseval's Theorem (Energy)

$$
\mathrm{E}=\quad \sum_{n=-\infty}^{+\infty}|x(n)|^{2}=\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|x\left(e^{j \omega}\right)\right|^{2} d \omega
$$

7. The modulation or windowing theorem:

$$
\begin{gathered}
\mathrm{y}(\mathrm{n})=\mathrm{w}(\mathrm{n}) \cdot \mathrm{x}(\mathrm{n}) \\
Y\left(e^{j \omega}\right)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} X\left(e^{j \theta}\right) \cdot w\left(e^{j(\omega-\theta)}\right) d \theta
\end{gathered}
$$

Z-Transform

- $\mathrm{X}(\mathrm{z})=\sum_{n=-\infty}^{\infty} x(n) \cdot z^{-n}$
z: complex variable in z-plane

Similar to Laplace transform

Convergency of Z-transfer should be check

Example 1. $x(n)=a^{n} U(n)$
$\mathrm{X}(\mathrm{z})=\sum_{n=0}^{\infty} a^{n} z^{-n}=\sum_{n=0}^{\infty}\left(a z^{-1}\right)^{n} \quad$ From the geometric series if we have $\left|\mathrm{az}{ }^{-1}\right|<1=>|\mathrm{z}|>|\mathrm{a}|$ $x(z)=1 / 1-a z^{-1}$

Example

- $x(n)=a^{|n|}$ $|a|<1$

$$
\begin{aligned}
X(z)= & \sum_{n=1}^{\infty} a^{-n} z^{-n}+\sum_{n=0}^{\infty} a^{n} z^{-n} \\
& =\sum_{n=1}^{\infty} a^{n} z^{n}+\sum_{n=0}^{\infty} a^{n} z^{-n}
\end{aligned}
$$

1- convergent for $|a z|<1$
2-convergent for $\left|a z^{-1}\right|<1$

Example contd...

So,
$\mathrm{X}(\mathrm{z})=\frac{a z}{1-a z}+\frac{1}{1-a z^{-1}}$

$$
Z(z)=\frac{1-a^{z}}{(1-a z)\left(1-a z^{-1}\right)}
$$

Example

- Example 2 :

$$
\begin{aligned}
& x(n)=\delta(n) \\
& X(z)=1 \\
& x(n)=\delta(n-m) \\
& X(z)=z^{-m}
\end{aligned}
$$

Example 3: $x(n)=a^{n} \sin \left(\omega_{0} n\right) U(n)$

$$
\mathrm{x}(\mathrm{z})=\frac{a \sin \left(\omega_{0}\right) z^{-1}}{1-2 a \cos \omega_{0} z^{-1}+a^{2} z^{-2}}
$$

Example

- Example 4

$$
x(n)=\operatorname{na}^{\mathrm{n}} \mathrm{U}(\mathrm{n})
$$

$$
X(z)=\sum_{n=0}^{\infty} n a^{n} z^{-n}
$$

With a little change in above summation

$$
\begin{aligned}
& X(z)=z^{-1} \frac{d}{d z^{-1}}\left[\sum_{n=0}^{\infty} a^{n} z^{-n}\right]=z^{-1} \frac{d}{d z^{-1}}\left[\frac{1}{1-a z^{-1}}\right] \\
& X(z)=\frac{\boldsymbol{a} z^{-1}}{\left(1-\boldsymbol{a} z^{-1}\right)^{2}}
\end{aligned}
$$

Properties of z-transform

- 1. Linearity: $a_{1} x_{1}(n)+a_{2} x_{2}(n) \xrightarrow{\text { Z-trans }} a_{1} x_{1}(z)+a_{2} x_{2}(z)$
- 2. Shift: $x(n \pm k) \longrightarrow Z^{ \pm k} X(z)$
- 3 Convolution: $\mathrm{y}(\mathrm{n})=\sum_{k=-\infty}^{+\infty} h(k) x(n-k)$

$$
Y(Z)=h(Z) \cdot X(Z)
$$

The relation between Z transform to Fourier transform

- $\mathrm{X}(\mathrm{z})=\sum_{n=-\infty}^{+\infty} x(n) z^{-n}$

If we put: $\mathrm{z}=\mathrm{e}^{\mathrm{j} \omega}$ then $\mathrm{Z} . \mathrm{T} \longrightarrow$ F.T

For more general case $Z=r e^{j \omega}$
So, $\quad X\left(r e^{j \omega}\right)=\sum_{n=-\infty}^{+\infty}\left[x(n) r^{-n}\right] e^{-j \omega n}$

z-transform derived from Laplace transform

Consider a discrete-time signal $x(\mathrm{t})$ below sampled every T sec

$$
x(t)=x_{0} \delta(t)+x_{1} \delta(t-T)+x_{2} \delta(t-2 T)+x_{3} \delta(t-3 T)+\ldots . .
$$

The Laplace transform of $\mathrm{x}(\mathrm{t})$ is therefore:
$X(s)=x_{0}+x_{1} e^{-s T}+x_{2} e^{-s 2 T}+x_{3} e^{-s 3 T}+\ldots$.
Now define $z=e^{s T}=e^{(\sigma+j \omega) T}=e^{\sigma T} \cos \omega T+j e^{\sigma T} \sin \omega T$

$$
X[z]=x_{0}+x_{1} z^{-1}+x_{2} z^{-2}+x_{3} z^{-3}+\ldots .
$$

Range of convergency (ROC)

- $x(n)=u(n)$
in case $\mathrm{z}=\mathrm{e}^{\mathrm{j} \omega}$ not convergent in case $z=r \mathrm{e}^{j \omega}$ for $r>1$ then convergent because
$\sum_{n=-\infty}^{+\infty}\left|x(n) r^{-n}\right|<\infty$
$=\sum_{n=-\infty}^{+\infty}\left|u(n) r^{-n}\right|<\infty$
$=\sum_{n=0}^{\infty}\left|r^{-n}\right|<\infty$

ROC Contd....

- Step function $u(n)$ has z-transform for ROC: $|z|>1$
\because If ROC includes the unit circle then $\mathrm{z}=\mathrm{e}^{\mathrm{j} \omega}$ and the sequence has Fourier Transform
\because There is possibility that two sequences are different but they may have a similar algebraic form of their z-transform, however their ROC's are different

Table of z-transform

Here:

- $u[n]=1$ for $n>=0, u[n]=0$ for $n<0$
- $\delta[n]=1$ for $n=0, \delta[n]=0$ otherwise

	Signal, $x[n]$	Z-transform, $X(z)$	ROC
1	$\delta[n]$	1	all z
2	$\delta\left[n-n_{0}\right]$	$z^{-n_{0}}$	$z \neq 0$
3	$u[n]$	$\frac{1}{1-z^{-1}}$	$\|z\|>1$
4	$-u[-n-1]$	$\frac{1}{1-z^{-1}}$	$\|z\|<1$
5	$n u[n]$	$\frac{z^{-1}}{\left(1-z^{-1}\right)^{2}}$	$\|z\|>1$
6	$-n u[-n-1]$	$\frac{z^{-1}}{\left(1-z^{-1}\right)^{2}}$	$\|z\|<1$
7	$n^{2} u[n]$	$\frac{z^{-1}\left(1+z^{-1}\right)}{\left(1-z^{-1}\right)^{3}}$	$\|z\|>1$
8	$-n^{2} u[-n-1]$	$\frac{z^{-1}\left(1+z^{-1}\right)}{\left(1-z^{-1}\right)^{3}}$	$\|z\|<1$
9	$n^{3} u[n]$	$\frac{z^{-1}\left(1+4 z^{-1}+z^{-2}\right)}{\left(1-z^{-1}\right)^{4}}$	$\|z\|>1$
10	$-n^{3} u[-n-1]$	$\frac{z^{-1}\left(1+4 z^{-1}+z^{-2}\right)}{\left(1-z^{-1}\right)^{4}}$	$\|z\|<1$

Table of z-transform

11	$a^{n} u[n]$	$\frac{1}{1-a z^{-1}}$	$\|z\|>\|a\|$
12	$-a^{n} u[-n-1]$	$\frac{1}{1-a z^{-1}}$	$\|z\|<\|a\|$
13	$n a^{n} u[n]$	$\frac{a z^{-1}}{\left(1-a z^{-1}\right)^{2}}$	$\|z\|>\|a\|$
14	$-n a^{n} u[-n-1]$	$\frac{a z^{-1}}{\left(1-a z^{-1}\right)^{2}}$	$\|z\|<\|a\|$
15	$n^{2} a^{n} u[n]$	$\frac{a z^{-1}\left(1+a z^{-1}\right)}{\left(1-a z^{-1}\right)^{3}}$	$\|z\|>\|a\|$
16	$-n^{2} a^{n} u[-n-1]$	$\frac{a z^{-1}\left(1+a z^{-1}\right)}{\left(1-a z^{-1}\right)^{3}}$	$\|z\|<\|a\|$
17	$\cos \left(\omega_{0} n\right) u[n]$	$\frac{1-z^{-1} \cos \left(\omega_{0}\right)}{1-2 z^{-1} \cos \left(\omega_{0}\right)+z^{-2}}$	$\|z\|>1$
18	$\sin \left(\omega_{0} n\right) u[n]$	$\frac{z^{-1} \sin \left(\omega_{0}\right)}{1-2 z^{-1} \cos \left(\omega_{0}\right)+z^{-2}}$	$\|z\|>1$
19	$a^{n} \cos \left(\omega_{0} n\right) u[n]$	$\frac{1-a z^{-1} \cos \left(\omega_{0}\right)}{1-2 a z^{-1} \cos \left(\omega_{0}\right)+a^{2} z^{-2}}$	$\|z\|>\|a\|$
20	$a^{n} \sin \left(\omega_{0} n\right) u[n]$	$\frac{a z^{-1} \sin \left(\omega_{0}\right)}{1-2 a z^{-1} \cos \left(\omega_{0}\right)+a^{2} z^{-2}}$	$\|z\|>\|a\|$

The properties of ROC

- ROC has a ring form or a disc form
- The Fourier transform of $x(n)$ has Fourier transform if and only if that its z-transform's ROC includes unit circle
- ROC cannot contain any pole
- If the sequence $x(n)$ has finite length then ROC contains all z-plane (excluding $\mathrm{z}=0$ or $\mathrm{z}=\infty$)
- If $x(n)$ is right-sided, then ROC is located outside of the largest pole.
- If $x(n)$ is left sided then ROC is located inside of the smallest pole.
- If the sequence $x(n)$ is both-sided then the ROC has ring shape which is limited to inside and outside poles and there is no pole in ROC.
- ROC must be a connected area.

Calculation of inverse Z-transform

$$
x(n)=\frac{1}{2 \pi j} \oint_{c} x(z) z^{n-1} d z
$$

C is a closed curve

$$
\begin{aligned}
& \text { Example: } X(z)=\frac{1}{1-0.5 z^{-1}} \\
& |z|>0.5 \\
& X(z)=\frac{1}{1-0.5 z^{-1}}=1+0.5 z^{-1}+0.25 z^{-2}+0.125 z^{-3} \\
& x(n)=\left\{\begin{array}{ll}
1,0.5,0.25,0.125 \ldots \\
0 & n \geq \omega_{n} \\
0
\end{array}\right\} \quad \Rightarrow x(n)=(0.5)^{n} u(n)
\end{aligned}
$$

Inverse z-transform

- If the Z transform can be expanded out as a series in powers of z, then the coefficients of each term of the series constitutes the inverse. In the following expression, the inverse would be the coefficients in blue

$$
X_{0}(z)=x_{0}(0)+x_{0}(1) z^{-1}+x_{0}(2) z^{-2}+x_{0}(3) z^{-3}+\cdots
$$

- Consider a Z transform which can be expanded as in the expression below

$$
X(z)=1+\frac{1}{2} z^{-1}+\frac{1}{4} z^{-2}+\frac{1}{8} z^{-3}+\cdots
$$

- Then the inverse is the coefficients in blue and can be written as follows.

Laplace, Fourier and z-Tranforms

	Definition	Purpose	Suitable for ..
Laplace transform	$X(s)=\int_{-\infty}^{\infty} x(t) e^{-s t} d t$	Converts integro- differential equations to algebraic equations	Continuous-time system \& signal analysis; stable or unstable
Fourier transform	$X(\omega)=\int_{-\infty}^{\infty} x(t) e^{-j \omega t} d t$	Converts finite time signal to frequency domain	Continuous-time; stable system, convergent signals only; best for steady-state
Discrete Fourier transform	$\left.\begin{array}{l}N_{0} \text { samples, } T=\text { sample period } \\ \omega_{0}=2 \pi / T\end{array} n \omega_{0}\right]=\sum_{n=0}^{N_{0}-1} x[n] e^{j n \omega_{0} T}$	Converts finite discrete- time signal to discrete frequency domain	Discrete time, otherwise same as FT
Z			
transform	$X[z]=\sum_{n=-\infty}^{\infty} x[n] z^{-n}$	Converts difference equations into algebraic equations	 signal analysis; stable or unstable

