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PREFACE

In January 1978, I began the preface to the first edition of Digital Image Processing
with the following statement:

The field of image processing has grown considerably during the past decade
with the increased utilization of imagery in myriad applications coupled with
improvements in the size, speed, and cost effectiveness of digital computers and
related signal processing technologies. Image processing has found a significant role
in scientific, industrial, space, and government applications.

In January 1991, in the preface to the second edition, I stated:
Thirteen years later as I write this preface to the second edition, I find the quoted

statement still to be valid. The 1980s have been a decade of significant growth and
maturity in this field. At the beginning of that decade, many image processing tech-
niques were of academic interest only; their execution was too slow and too costly.
Today, thanks to algorithmic and implementation advances, image processing has
become a vital cost-effective technology in a host of applications.

Now, in this beginning of the twenty-first century, image processing has become
a mature engineering discipline. But advances in the theoretical basis of image pro-
cessing continue. Some of the reasons for this third edition of the book are to correct
defects in the second edition, delete content of marginal interest, and add discussion
of new, important topics. Another motivating factor is the inclusion of interactive,
computer display imaging examples to illustrate image processing concepts. Finally,
this third edition includes computer programming exercises to bolster its theoretical
content. These exercises can be implemented using the Programmer’s Imaging Ker-
nel System (PIKS) application program interface (API). PIKS is an International
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Standards Organization (ISO) standard library of image processing operators and
associated utilities. The PIKS Core version is included on a CD affixed to the back
cover of this book.

The book is intended to be an “industrial strength” introduction to digital image
processing to be used as a text for an electrical engineering or computer science
course in the subject. Also, it can be used as a reference manual for scientists who
are engaged in image processing research, developers of image processing hardware
and software systems, and practicing engineers and scientists who use image pro-
cessing as a tool in their applications. Mathematical derivations are provided for
most algorithms. The reader is assumed to have a basic background in linear system
theory, vector space algebra, and random processes. Proficiency in C language pro-
gramming is necessary for execution of the image processing programming exer-
cises using PIKS.

The book is divided into six parts. The first three parts cover the basic technolo-
gies that are needed to support image processing applications. Part 1 contains three
chapters concerned with the characterization of continuous images. Topics include
the mathematical representation of continuous images, the psychophysical proper-
ties of human vision, and photometry and colorimetry. In Part 2, image sampling
and quantization techniques are explored along with the mathematical representa-
tion of discrete images. Part 3 discusses two-dimensional signal processing tech-
niques, including general linear operators and unitary transforms such as the
Fourier, Hadamard, and Karhunen–Loeve transforms. The final chapter in Part 3
analyzes and compares linear processing techniques implemented by direct convolu-
tion and Fourier domain filtering.

The next two parts of the book cover the two principal application areas of image
processing. Part 4 presents a discussion of image enhancement and restoration tech-
niques, including restoration models, point and spatial restoration, and geometrical
image modification. Part 5, entitled “Image Analysis,” concentrates on the extrac-
tion of information from an image. Specific topics include morphological image
processing, edge detection, image feature extraction, image segmentation, object
shape analysis, and object detection.

Part 6 discusses the software implementation of image processing applications.
This part describes the PIKS API and explains its use as a means of implementing
image processing algorithms. Image processing programming exercises are included
in Part 6.

This third edition represents a major revision of the second edition. In addition to
Part 6, new topics include an expanded description of color spaces, the Hartley and
Daubechies transforms, wavelet filtering, watershed and snake image segmentation,
and Mellin transform matched filtering. Many of the photographic examples in the
book are supplemented by executable programs for which readers can adjust algo-
rithm parameters and even substitute their own source images.

Although readers should find this book reasonably comprehensive, many impor-
tant topics allied to the field of digital image processing have been omitted to limit
the size and cost of the book. Among the most prominent omissions are the topics of
pattern recognition, image reconstruction from projections, image understanding,
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image coding, scientific visualization, and computer graphics. References to some
of these topics are provided in the bibliography.

WILLIAM K. PRATT

Los Altos, California
August 2000
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PART 1

CONTINUOUS IMAGE 
CHARACTERIZATION

Although this book is concerned primarily with digital, as opposed to analog, image
processing techniques. It should be remembered that most digital images represent
continuous natural images. Exceptions are artificial digital images such as test
patterns that are numerically created in the computer and images constructed by
tomographic systems. Thus, it is important to understand the “physics” of image
formation by sensors and optical systems including human visual perception.
Another important consideration is the measurement of light in order quantitatively
to describe images. Finally, it is useful to establish spatial and temporal
characteristics of continuous image fields which provide the basis for the
interrelationship of digital image samples. These topics are covered in the following
chapters.

Digital Image Processing: PIKS Inside, Third Edition. William K. Pratt
Copyright © 2001 John Wiley & Sons, Inc.

ISBNs: 0-471-37407-5 (Hardback); 0-471-22132-5 (Electronic)
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1
CONTINUOUS IMAGE MATHEMATICAL 
CHARACTERIZATION

In the design and analysis of image processing systems, it is convenient and often
necessary mathematically to characterize the image to be processed. There are two
basic mathematical characterizations of interest: deterministic and statistical. In
deterministic image representation, a mathematical image function is defined and
point properties of the image are considered. For a statistical image representation,
the image is specified by average properties. The following sections develop the
deterministic and statistical characterization of continuous images. Although the
analysis is presented in the context of visual images, many of the results can be
extended to general two-dimensional time-varying signals and fields.

1.1. IMAGE REPRESENTATION

Let  represent the spatial energy distribution of an image source of radi-
ant energy at spatial coordinates (x, y), at time t and wavelength . Because light
intensity is a real positive quantity, that is, because intensity is proportional to the
modulus squared of the electric field, the image light function is real and nonnega-
tive. Furthermore, in all practical imaging systems,  a small amount of background
light is always present. The physical imaging system also imposes some restriction
on the maximum intensity of an image, for example, film saturation and cathode ray
tube (CRT) phosphor heating. Hence it is assumed that

(1.1-1)

C x y t λ, , ,( )
λ

0 C x y t λ, , ,( ) A≤<

Digital Image Processing: PIKS Inside, Third Edition. William K. Pratt
Copyright © 2001 John Wiley & Sons, Inc.

ISBNs: 0-471-37407-5 (Hardback); 0-471-22132-5 (Electronic)



4 CONTINUOUS IMAGE MATHEMATICAL CHARACTERIZATION

where A is the maximum image intensity. A physical image is necessarily limited in
extent by the imaging system and image recording media. For mathematical sim-
plicity, all images are assumed to be nonzero only over a rectangular region
for which

(1.1-2a)

(1.1-2b)

The physical image is, of course, observable only over some finite time interval.
Thus let

(1.1-2c)

The image light function  is, therefore, a bounded four-dimensional
function with bounded independent variables. As a final restriction, it is assumed
that the image function is continuous over its domain of definition.

The intensity response of a standard human observer to an image light function is
commonly measured in terms of the instantaneous luminance of the light field as
defined by

(1.1-3)

where  represents the relative luminous efficiency function, that is, the spectral
response of human vision. Similarly, the color response of a standard observer is
commonly measured in terms of a set of tristimulus values that are linearly propor-
tional to the amounts of red, green, and blue light needed to match a colored light.
For an arbitrary red–green–blue coordinate system, the instantaneous tristimulus
values are

(1.1-4a)

(1.1-4b)

(1.1-4c)

where , ,  are spectral tristimulus values for the set of red, green,
and blue primaries. The spectral tristimulus values are, in effect, the tristimulus

Lx– x Lx≤ ≤

Ly– y Ly≤ ≤

T– t T≤ ≤

C x y t λ, , ,( )

Y x y t, ,( ) C x y t λ, , ,( )V λ( ) λd
0

∞
∫=

V λ( )

R x y t, ,( ) C x y t λ, , ,( )RS λ( ) λd
0

∞
∫=

G x y t, ,( ) C x y t λ, , ,( )GS λ( ) λd
0

∞
∫=

B x y t, ,( ) C x y t λ, , ,( )BS λ( ) λd
0

∞
∫=

RS λ( ) GS λ( ) BS λ( )
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values required to match a unit amount of narrowband light at wavelength . In a
multispectral imaging system, the image field observed  is modeled as a spectrally
weighted integral of the image light function. The ith spectral image field is then
given as

(1.1-5)

where  is the spectral response of the ith sensor.
For notational simplicity, a single image function  is selected to repre-

sent an image field in a physical imaging system. For a monochrome imaging sys-
tem, the image function  nominally denotes the image luminance, or some
converted or corrupted physical representation of the luminance, whereas in a color
imaging system,  signifies one of the tristimulus values, or some function
of the tristimulus value. The image function  is also used to denote general
three-dimensional fields, such as the time-varying noise of an image scanner.

In correspondence with the standard definition for one-dimensional time signals,
the time average of an image function at a given point (x, y) is defined as

(1.1-6)

where L(t) is a time-weighting function. Similarly, the average image brightness at a
given time is given by the spatial average,

(1.1-7)

In many imaging systems, such as image projection devices, the image does not
change with time, and the time variable may be dropped from the image function.
For other types of systems, such as movie pictures, the image function is time sam-
pled. It is also possible to convert the spatial variation into time variation, as in tele-
vision, by an image scanning process. In the subsequent discussion, the time
variable is dropped from the image field notation unless specifically required.

1.2. TWO-DIMENSIONAL SYSTEMS

A two-dimensional system, in its most general form, is simply a mapping of some
input set of two-dimensional functions F1(x, y), F2(x, y),..., FN(x, y) to a set of out-
put two-dimensional functions G1(x, y), G2(x, y),..., GM(x, y), where 
denotes the independent, continuous spatial variables of the functions. This mapping
may be represented by the operators  for m = 1, 2,..., M, which relate the input
to output set of functions by the set of equations

λ

Fi x y t, ,( ) C x y t λ, , ,( )Si λ( ) λd
0

∞
∫=

Si λ( )
F x y t, ,( )

F x y t, ,( )

F x y t, ,( )
F x y t, ,( )

F x y t, ,( )〈 〉T
1

2T
------ F x y t, ,( )L t( ) td

T–

T

∫T ∞→
lim=

F x y t, ,( )〈 〉S
1

4LxLy
-------------- F x y t, ,( ) xd yd

Ly–

Ly∫Lx–

Lx∫Lx ∞→
Ly ∞→

lim=

∞ x y, ∞< <–( )

O ·{ }
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   (1.2-1)

In specific cases, the mapping may be many-to-few, few-to-many, or one-to-one.
The one-to-one mapping is defined as

 (1.2-2)

To proceed further with a discussion of the properties of two-dimensional systems, it
is necessary to direct the discourse toward specific types of operators.

1.2.1. Singularity Operators

Singularity operators are widely employed in the analysis of two-dimensional
systems, especially systems that involve sampling of continuous functions. The
two-dimensional Dirac delta function is a singularity operator that possesses the
following properties:

for  (1.2-3a)

(1.2-3b)

In Eq. 1.2-3a,  is an infinitesimally small limit of integration; Eq. 1.2-3b is called
the sifting property of the Dirac delta function.

The two-dimensional delta function can be decomposed into the product of two
one-dimensional delta functions defined along orthonormal coordinates. Thus

(1.2-4)

where the one-dimensional delta function satisfies one-dimensional versions of Eq.
1.2-3. The delta function also can be defined as a limit on a family of functions.
General examples are given in References 1 and 2.

1.2.2. Additive Linear Operators

A two-dimensional system is said to be an additive linear system if the system obeys
the law of additive superposition. In the special case of one-to-one mappings, the
additive superposition property requires that

G1 x y,( ) O1 F1 x y,( ) F2 x y,( ) … FN x y,( ), ,,{ }=

Gm x y,( ) Om F1 x y,( ) F2 x y,( ) … FN x y,( ), ,,{ }=

GM x y,( ) OM F1 x y,( ) F2 x y,( ) … FN x y,( ), ,,{ }=

…
…

G x y,( ) O F x y,( ){ }=

δ x y,( ) xd yd
ε–

ε
∫ε–

ε
∫ 1= ε 0>

F ξ η,( )δ x ξ– y η–,( ) ξd ηd
∞–

∞
∫∞–

∞
∫ F x y,( )=

ε

δ x y,( ) δ x( )δ y( )=
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(1.2-5)

where a1 and a2 are constants that are possibly complex numbers. This additive
superposition property can easily be extended to the general mapping of Eq. 1.2-1.

A system input function F(x, y) can be represented as a sum of amplitude-
weighted Dirac delta functions by the sifting integral, 

(1.2-6)

where  is the weighting factor of the impulse located at coordinates  in
the x–y plane, as shown in Figure 1.2-1. If the output of a general linear one-to-one
system is defined to be

 (1.2-7)

then

 (1.2-8a)

or

(1.2-8b)

In moving from Eq. 1.2-8a to Eq. 1.2-8b, the application order of the general lin-
ear operator  and the integral operator have been reversed. Also, the linear
operator has been applied only to the term in the integrand that is dependent on the

FIGURE1.2-1. Decomposition of image function.

O a1F1 x y,( ) a2F2 x y,( )+{ } a1O F1 x y,( ){ } a2O F2 x y,( ){ }+=

F x y,( ) F ξ η,( )δ x ξ– y η–,( ) ξd ηd
∞–

∞
∫∞–

∞
∫=

F ξ η,( ) ξ η,( )

G x y,( ) O F x y,( ){ }=

G x y,( ) O F ξ η,( )δ x ξ– y η–,( ) ξd ηd
∞–

∞
∫∞–

∞
∫ 

 
 

=

G x y,( ) F ξ η,( )O δ x ξ– y η–,( ){ } ξd ηd
∞–

∞
∫∞–

∞
∫=

O ⋅{ }
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spatial variables (x, y). The second term in the integrand of Eq. 1.2-8b, which is
redefined as

 (1.2-9)

is called the impulse response of the two-dimensional system. In optical systems, the
impulse response is often called the point spread function of the system. Substitu-
tion of the impulse response function into Eq. 1.2-8b yields the additive superposi-
tion integral

 (1.2-10)

An additive linear two-dimensional system is called space invariant (isoplanatic) if
its impulse response depends only on the factors  and . In an optical sys-
tem, as shown in Figure 1.2-2, this implies that the image of a point source in the
focal plane will change only  in location, not in functional form, as the placement of
the point source moves in the object plane. For a space-invariant system

(1.2-11)

and the superposition integral reduces to the special case called the convolution inte-
gral, given by

(1.2-12a)

Symbolically,

(1.2-12b)

FIGURE 1.2-2. Point-source imaging system.

H x y ξ η,;,( ) O δ x ξ– y η–,( ){ }≡

G x y,( ) F ξ η,( )H x y ξ η,;,( ) ξd ηd
∞–

∞
∫∞–

∞
∫=

x ξ– y η–

H x y ξ η,;,( ) H x ξ– y η–,( )=

G x y,( ) F ξ η,( )H x ξ– y η–,( ) ξd ηd
∞–

∞
∫∞–

∞
∫=

G x y,( ) F x y,( ) �* H x y,( )=
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denotes the convolution operation. The convolution integral is symmetric in the
sense that

(1.2-13)

Figure 1.2-3 provides a visualization of the convolution process. In Figure 1.2-3a
and b, the input function F(x, y) and impulse response are plotted in the dummy
coordinate system . Next, in Figures 1.2-3c and d the coordinates of the
impulse response are reversed, and the impulse response is offset by the spatial val-
ues (x, y). In Figure 1.2-3e, the integrand product of the convolution integral of
Eq. 1.2-12 is shown as a crosshatched region. The integral over this region is the
value of G(x, y) at the offset coordinate (x, y). The complete function F(x, y) could,
in effect, be computed by sequentially scanning the reversed, offset impulse
response across the input function and simultaneously integrating the overlapped
region.

1.2.3. Differential Operators

Edge detection in images is commonly accomplished by performing a spatial differ-
entiation of the image field followed by a thresholding operation to determine points
of steep amplitude change. Horizontal and vertical spatial derivatives are defined as

FIGURE 1.2-3. Graphical example of two-dimensional convolution.

G x y,( ) F x ξ– y η–,( )H ξ η,( ) ξd ηd
∞–

∞
∫∞–

∞
∫=

ξ η,( )
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(l.2-14a)

(l.2-14b)

The directional derivative of the image field along a vector direction z subtending an
angle  with respect to the horizontal axis is given by (3, p. 106)

(l.2-15)

The gradient magnitude is then

(l.2-16)

Spatial second derivatives in the horizontal and vertical directions are defined as

(l.2-17a)

(l.2-17b)

The sum of these two spatial derivatives is called the Laplacian operator:

(l.2-18)

1.3. TWO-DIMENSIONAL FOURIER TRANSFORM

The two-dimensional Fourier transform of the image function F(x, y) is defined as
(1,2)

(1.3-1)

where  and  are spatial frequencies and . Notationally, the Fourier
transform is written as

dx
F x y,( )∂
x∂

--------------------=

dy
F x y,( )∂
y∂

--------------------=

φ

F x y,( ){ }∇ F x y,( )∂
z∂

-------------------- dx φcos dy φsin+= =

F x y,( ){ }∇ dx
2
dy
2

+=

dxx

2
F x y,( )∂
x
2∂

----------------------=

dyy

2
F x y,( )∂
y
2∂

----------------------=

F x y,( ){ }∇2
2
F x y,( )∂
x
2∂

----------------------
2
F x y,( )∂
y
2∂

----------------------+=

F ωx ωy,( ) F x y,( ) i ωxx ωyy+( )–{ }exp xd yd
∞–

∞
∫∞–

∞
∫=

ωx ωy i 1–=
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(1.3-2)

In general, the Fourier coefficient  is a complex number that may be rep-
resented in real and imaginary form, 

(1.3-3a)

or in magnitude and phase-angle form,

(1.3-3b)

where

(1.3-4a)

(1.3-4b)

A sufficient condition for the existence of the Fourier transform of F(x, y) is that the
function be absolutely integrable. That is,

(1.3-5)

The input function F(x, y) can be recovered from its Fourier transform by the inver-
sion formula

(1.3-6a)

or in operator form

(1.3-6b)

The functions F(x, y) and  are called Fourier transform pairs.

F ωx ωy,( ) OF F x y,( ){ }=

F ωx ωy,( )

F ωx ωy,( ) R ωx ωy,( ) iI ωx ωy,( )+=

F ωx ωy,( ) M ωx ωy,( ) iφ ωx ωy,( ){ }exp=

M ωx ωy,( ) R
2 ωx ωy,( ) I

2 ωx ωy,( )+[ ]
1 2⁄

=

φ ωx ωy,( ) arc
I ωx ωy,( )
R ωx ωy,( )
------------------------

 
 
 

tan=

F x y,( ) xd y ∞<d
∞–

∞
∫∞–

∞
∫

F x y,( ) 1

4π2
--------- F ωx ωy,( ) i ωxx ωyy+( ){ }exp ωxd ωyd

∞–

∞
∫∞–

∞
∫=

F x y,( ) OF
1–

F ωx ωy,( ){ }=

F ωx ωy,( )
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The two-dimensional Fourier transform can be computed in two steps as a result
of the separability of the kernel. Thus, let

(1.3-7)

then 

(1.3-8)

Several useful properties of the two-dimensional Fourier transform are stated
below. Proofs are given in References 1 and 2.

Separability. If the image function is spatially separable such that

(1.3-9)

then

(1.3-10)

where  and  are one-dimensional Fourier transforms of  and
, respectively. Also, if  and  are two-dimensional Fourier

transform pairs, the Fourier transform of  is . An asterisk∗

used as a superscript denotes complex conjugation of a variable (i.e. if ,
then . Finally, if  is symmetric such that ,
then .

Linearity. The Fourier transform is a linear operator. Thus

(1.3-11)

where a and b are constants.

Scaling. A linear scaling of the spatial variables results in an inverse scaling of the
spatial frequencies as given by

(1.3-12)

Fy ωx y,( ) F x y,( ) i ωxx( )–{ }exp xd
∞–

∞
∫=

F ωx ωy,( ) Fy ωx y,( ) i ωyy( )–{ }exp yd
∞–

∞
∫=

F x y,( ) fx x( )fy y( )=

Fy ωx ωy,( ) fx ωx( )fy ωy( )=

fx ωx( ) fy ωy( ) fx x( )
fy y( ) F x y,( ) F ωx ωy,( )

F∗ x y,( ) F ∗ ω– x ω– y,( )
F A iB+=

F∗ A iB )–= F x y,( ) F x y,( ) F x– y–,( )=
F ωx ωy,( ) F ω– x ωy–,( )=

OF aF1 x y,( ) bF2 x y,( )+{ } aF1 ωx ωy,( ) bF2 ωx ωy,( )+=

OF F ax by,( ){ } 1

ab
---------F

ωx
a
------

ωy
b
------, 

 =
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Hence, stretching of an axis in one domain results in a contraction of the corre-
sponding axis in the other domain plus an amplitude change.

Shift. A positional shift in the input plane results in a phase shift in the output
plane:

(1.3-13a)

Alternatively, a frequency shift in the Fourier plane results in the equivalence

(1.3-13b)

Convolution. The two-dimensional Fourier transform of two convolved functions
is equal to the products of the transforms of the functions. Thus

(1.3-14)

The inverse theorem states that

(1.3-15)

Parseval 's Theorem. The energy in the spatial and Fourier transform domains is
related by

(1.3-16)

Autocorrelation Theorem. The Fourier transform of the spatial autocorrelation of a
function is equal to the magnitude squared of its Fourier transform. Hence

(1.3-17)

Spatial Differentials. The Fourier transform of the directional derivative of an
image function is related to the Fourier transform by

(1.3-18a)

OF F x a– y b–,( ){ } F ωx ωy,( ) i ωxa ωyb+( )–{ }exp=

OF
1– F ωx a– ωy b–,( ){ } F x y,( ) i ax by+( ){ }exp=

OF F x y,( ) �* H x y,( ){ } F ωx ωy,( )H ωx ωy,( )=

OF F x y,( )H x y,( ){ } 1

4π2
---------F ωx ωy,( ) �* H ωx ωy,( )=

F x y,( ) 2 xd yd
∞–

∞
∫∞–

∞
∫ 1

4π2
--------- F ωx ωy,( ) 2 ωxd ωyd

∞–

∞
∫∞–

∞
∫=

OF F α β,( )F∗ α x– β y–,( ) αd βd
∞–

∞
∫∞–

∞
∫ 

 
 

F ωx ωy,( ) 2=

OF
F x y,( )∂
x∂

--------------------
 
 
 

i– ωxF ωx ωy,( )=
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(1.3-18b)

Consequently, the Fourier transform of the Laplacian of an image function is equal
to

(1.3-19)

The Fourier transform convolution theorem stated by Eq. 1.3-14 is an extremely
useful tool for the analysis of additive linear systems. Consider an image function

 that is the input to an additive linear system with an impulse response
. The output image function is given by the convolution integral

(1.3-20)

Taking the Fourier transform of both sides of Eq. 1.3-20 and reversing the order of
integration on the right-hand side results in

 (1.3-21)

By the Fourier transform shift theorem of Eq. 1.3-13, the inner integral is equal to
the Fourier transform of  multiplied by an exponential phase-shift factor.
Thus

 (1.3-22)

Performing the indicated Fourier transformation gives

 (1.3-23)

Then an inverse transformation of Eq. 1.3-23 provides the output image function

 (1.3-24)

OF
F x y,( )∂
y∂

--------------------
 
 
 

i– ωyF ωx ωy,( )=

OF

2
F x y,( )∂
x
2∂

----------------------
2
F x y,( )∂
y
2∂

----------------------+
 
 
 

ωx
2 ωy

2
+( )– F ωx ωy,( )=

F x y,( )
H x y,( )

G x y,( ) F α β,( )H x α– y β–,( ) αd βd
∞–

∞
∫∞–

∞
∫=

G ωx ωy,( ) F α β,( ) H x α– y β–,( ) i ωxx ωyy+( )–{ }exp xd yd
∞–

∞
∫∞–

∞
∫ αd βd

∞–

∞
∫∞–

∞
∫=

H x y,( )

G ωx ωy,( ) F α β,( )H ωx ωy,( ) i ωxα ωyβ+( )–{ }exp αd βd
∞–

∞
∫∞–

∞
∫=

G ωx ωy,( ) H ωx ωy,( )F ωx ωy,( )=

G x y,( ) 1

4π2
--------- H ωx ωy,( )F ωx ωy,( ) i ωxx ωyy+( ){ }exp ωxd ωyd

∞–

∞
∫∞–

∞
∫=



IMAGE STOCHASTIC CHARACTERIZATION 15

Equations 1.3-20 and 1.3-24 represent two alternative means of determining the out-
put image response of an additive, linear, space-invariant system. The analytic or
operational choice between the two approaches, convolution or Fourier processing,
is usually problem dependent.

1.4. IMAGE STOCHASTIC CHARACTERIZATION

The following presentation on the statistical characterization of images assumes
general familiarity with probability theory, random variables, and stochastic pro-
cess. References 2 and 4 to 7 can provide suitable background. The primary purpose
of the discussion here is to introduce notation and develop stochastic image models.

It is often convenient to regard an image as a sample of a stochastic process. For
continuous images, the image function F(x, y, t) is assumed to be a member of a con-
tinuous three-dimensional stochastic process with space variables (x, y) and time
variable (t).

The stochastic process F(x, y, t) can be described completely by knowledge of its
joint probability density

      

for all sample points J, where (xj, yj, tj) represent space and time samples of image
function Fj(xj, yj, tj). In general, high-order joint probability densities of images are
usually not known, nor are they easily modeled. The first-order probability density
p(F; x, y, t) can sometimes be modeled successfully  on the basis of the physics of
the process or histogram measurements. For example, the first-order probability
density of random noise from an electronic sensor is usually well modeled by a
Gaussian density of the form

 (1.4-1)

where the parameters  and  denote the mean and variance of the
process. The Gaussian density is also a reasonably accurate model for the probabil-
ity density of the amplitude of unitary transform coefficients of an image. The
probability density of the luminance function must be a one-sided density because
the luminance measure is positive. Models that have found application include the
Rayleigh density,

 (1.4-2a)

the log-normal density,

p F1 F2… FJ x1 y1 t1 x2 y2 t2 … xJ yJ tJ, , , , , , , , ,;,,{ }

p F x y t, ,;{ } 2πσF
2
x y t, ,( )[ ]

1– 2⁄ F x y t, ,( ) ηF x y t, ,( )–[ ]2

2σF
2
x y t, ,( )

------------------------------------------------------------–
 
 
 

exp=

ηF x y t, ,( ) σF
2
x y t, ,( )

p F x y t, ,;{ } F x y t, ,( )
α2

---------------------
F x y t, ,( )[ ]2

2α2
-----------------------------–

 
 
 

exp=
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(1.4-2b)

and the exponential density,

 (1.4-2c)

all defined for  where  is a constant. The two-sided, or Laplacian density,

 (1.4-3)

where  is a constant, is often selected as a model for the probability density of the
difference of image samples. Finally, the uniform density

 (1.4-4)

for  is a common model for phase fluctuations of a random process. Con-
ditional probability densities are also useful in characterizing a stochastic process.
The conditional density of an image function evaluated at  given knowl-
edge of the image function at  is defined as

 (1.4-5)

Higher-order conditional densities are defined in a similar manner. 
Another means of describing a stochastic process is through computation of its

ensemble averages. The first moment or mean of the image function is defined as

 (1.4-6)

where  is the expectation operator, as defined by the right-hand side of Eq.
1.4-6.

The second moment or autocorrelation function is given by

 (1.4-7a)

or in explicit form

p F x y t, ,;{ } 2πF2 x y t, ,( )σF
2
x y t, ,( )[ ]

1– 2⁄ F x y t, ,( ){ }log ηF x y t, ,( )–[ ]2

2σF
2
x y t, ,( )

---------------------------------------------------------------------------–
 
 
 

exp=

p F x y t, ,;{ } α α F x y t, ,( )–{ }exp=

F 0,≥ α

p F x y t, ,;{ } α
2
--- α F x y t, ,( )–{ }exp=

α

p F x y t, ,;{ } 1

2π
------=

π– F π≤ ≤

x1 y1 t1, ,( )
x2 y2 t2, ,( )

p F1 x1 y1 t1, ,; F2 x2 y2 t2, ,;{ }
p F1 F2 x1 y1 t1 x2 y2 t2, , , , ,;,{ }

p F2 x2 y2 t2, ,;{ }
------------------------------------------------------------------------=

ηF x y t, ,( ) E F x y t, ,( ){ } F x y t, ,( )p F x y t, ,;{ } Fd
∞–

∞
∫= =

E ·{ }

R x1 y1 t1 x2 y2 t2, ,;, ,( ) E F x1 y1 t1, ,( )F∗ x2 y2 t2, ,( ){ }=
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 (1.4-7b)

The autocovariance of the image process is the autocorrelation about the mean,
defined as

(1.4-8a)

or

(1.4-8b)

Finally, the variance of an image process is

 (1.4-9)

An image process is called stationary in the strict sense if its moments are unaf-
fected by shifts in the space and time origins. The image process is said to be sta-
tionary in the wide sense if its mean is constant and its autocorrelation is dependent
on the differences in the image coordinates, x1 – x2, y1 – y2, t1 – t2, and not on their
individual values. In other words, the image autocorrelation is not a function of
position or time. For stationary image processes,

 (1.4-10a)

 (1.4-10b)

The autocorrelation expression may then be written as

 (1.4-11)

R x1 y1 t1 x2 y2 t2, ,;, ,( ) F x1 x1 y1, ,( )F∗ x2 y2 t2, ,( )
∞–

∞
∫∞–

∞
∫=

p F1 F2 x1 y1 t1 x2 y2 t2, , , , ,;,{ } F1d F2d×

K x1 y1 t1 x2 y2 t2, ,;, ,( ) E F x1 y1 t1, ,( ) ηF x1 y1 t1, ,( )–[ ] F∗ x2 y2 t2, ,( ) η∗
F x2 y2 t2, ,( )–[ ]{ }=

K x1 y1 t1 x2 y2 t2, ,;, ,( ) R x1 y1 t1 x2 y2 t2, ,;, ,( ) ηF x1 y1 t1, ,( ) η∗
F x2 y2 t2, ,( )–=

σF
2
x y t, ,( ) K x y t x y t, ,;, ,( )=

E F x y t, ,( ){ } ηF=

R x1 y1 t1 x2 y2 t2, ,;, ,( ) R x1 x2– y1 y2– t1 t2–, ,( )=

R τx τy τt, ,( ) E F x τx+ y τy+ t τt+, ,( )F∗ x y t, ,( ){ }=
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Because

 (1.4-12)

then for an image function with F real, the autocorrelation is real and an even func-
tion of . The power spectral density, also called the power spectrum, of a
stationary image process is defined as the three-dimensional Fourier transform of its
autocorrelation function as given by

(1.4-13)

In many imaging systems, the spatial and time image processes are separable so
that the stationary correlation function may be written as

 (1.4-14)

Furthermore, the spatial autocorrelation function is often considered as the product
of x and y axis autocorrelation functions, 

 (1.4-15)

for computational simplicity. For scenes of manufactured objects, there is often a
large amount of horizontal and vertical image structure, and the spatial separation
approximation may be quite good. In natural scenes, there usually is no preferential
direction of correlation; the spatial autocorrelation function tends to be rotationally
symmetric and not separable.

An image field is often modeled as a sample of a first-order Markov process for
which the correlation between points on the image field is proportional to their geo-
metric separation. The autocovariance function for the two-dimensional Markov
process is

 (1.4-16)

where C is an energy scaling constant and  and  are spatial scaling constants.
The corresponding power spectrum is

 (1.4-17)

R τ– x τ– y τ– t, ,( ) R∗ τx τy τt, ,( )=

τx τy τt, ,

W ωx ωy ωt, ,( ) R τx τy τt, ,( ) i ωxτx ωyτy ωtτt+ +( )–{ }exp τxd τyd τtd∞–

∞
∫∞–

∞
∫∞–

∞
∫=

R τx τy τt, ,( ) Rxy τx τy,( )Rt τt( )=

Rxy τx τy,( ) Rx τx( )Ry τy( )=

Rxy τx τy,( ) C αx
2τx
2 αy

2τy
2

+–
 
 
 

exp=

αx αy

W ωx ωy,( ) 1

αxαy
----------------

2C

1 ωx
2 αx

2⁄ ωy
2 αy

2⁄+[ ]+
------------------------------------------------------=
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As a simplifying assumption, the Markov process is often assumed to be of separa-
ble form with an autocovariance function

 (1.4-18)

The power spectrum of this process is

 (1.4-19)

In the discussion of the deterministic characteristics of an image, both time and
space averages of the image function have been defined. An ensemble average has
also been defined for the statistical image characterization. A question of interest is:
What is the relationship between the spatial-time averages and the ensemble aver-
ages? The answer is that for certain stochastic processes, which are called ergodic
processes, the spatial-time averages and the ensemble averages are equal. Proof of
the ergodicity of a process in the general case is often difficult; it usually suffices to
determine second-order ergodicity in which the first- and second-order space-time
averages are equal to the first- and second-order ensemble averages.

Often, the probability density or moments of a stochastic image field are known
at the input to a system, and it is desired to determine the corresponding information
at the system output. If the system transfer function is algebraic in nature, the output
probability density can be determined in terms of the input probability density by a
probability density transformation. For example, let the system output be related to
the system input by

 (1.4-20)

where  is a monotonic operator on F(x, y). The probability density of the out-
put field is then

 (1.4-21)

The extension to higher-order probability densities is straightforward, but often
cumbersome.

The moments of the output of a system can be obtained directly from knowledge
of the output probability density, or in certain cases, indirectly in terms of the system
operator. For example, if the system operator is additive linear, the mean of the sys-
tem output is

Kxy τx τy,( ) C αx τx– αy τy–{ }exp=

W ωx ωy,( )
4αxαyC

αx
2 ωx

2
+( ) αy

2 ωy
2

+( )
------------------------------------------------=

G x y t, ,( ) OF F x y t, ,( ){ }=

OF ·{ }

p G x y t, ,;{ } p F x y t, ,;{ }
dOF F x y t, ,( ){ } dF⁄
-----------------------------------------------------=
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 (1.4-22)

It can be shown that if a system operator is additive linear, and if the system input
image field is stationary in the strict sense, the system output is also stationary in the
strict sense. Furthermore, if the input is stationary in the wide sense, the output is
also wide-sense stationary. 

Consider an additive linear space-invariant system whose output is described by
the three-dimensional convolution integral

 (1.4-23)

where H(x, y, t) is the system impulse response. The mean of the output is then

 (1.4-24)

If the input image field is stationary, its mean  is a constant that may be brought
outside the integral. As a result,

(1.4-25)

where  is the transfer function of the linear system evaluated at the origin
in the spatial-time frequency domain. Following the same techniques, it can easily
be shown that the autocorrelation functions of the system input and output are
related by

 (1.4-26)

Taking Fourier transforms on both sides of Eq. 1.4-26 and invoking the Fourier
transform convolution theorem, one obtains the relationship between the power
spectra of the input and output image,

(1.4-27a)

or

 (1.4-27b)

This result is found useful in analyzing the effect of noise in imaging systems.

E G x y t, ,( ){ } E OF F x y t, ,( ){ }{ } OF E F x y t, ,( ){ }{ }= =

G x y t, ,( ) F x α– y β t γ–,–,( )H α β γ, ,( ) αd β γdd
∞–

∞
∫∞–

∞
∫∞–

∞
∫=

E G x y t, ,( ){ } E F x α– y β t γ–,–,( ){ }H α β γ, ,( ) αd β γdd
∞–

∞
∫∞–

∞
∫∞–

∞
∫=

ηF

E G x y t, ,( ){ } ηF H α β γ, ,( ) αd β γdd
∞–

∞
∫∞–

∞
∫∞–

∞
∫ ηF H 0 0 0, ,( )= =

H 0 0 0, ,( )

RG τx τy τt, ,( ) RF τx τy τt, ,( ) �* H τx τy τt, ,( ) �* H∗ τ– x τ– y τ– t, ,( )=

WG ωx ωy ωt, ,( ) WF ωx ωy ωt, ,( )H ωx ωy ωt, ,( )H ∗ ωx ωy ωt, ,( )=

WG ωx ωy ωt, ,( ) WF ωx ωy ωt, ,( ) H ωx ωy ωt, ,( ) 2=
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2
PSYCHOPHYSICAL VISION PROPERTIES

For efficient design of imaging systems for which the output is a photograph or dis-
play to be viewed by a human observer, it is obviously beneficial to have an under-
standing of the mechanism of human vision. Such knowledge can be utilized to
develop conceptual models of the human visual process. These models are vital in
the design of image processing systems and in the construction of measures of
image fidelity and intelligibility.

2.1. LIGHT PERCEPTION

Light, according to Webster's Dictionary (1), is “radiant energy which, by its action
on the organs of vision, enables them to perform their function of sight.” Much is
known about the physical properties of light, but the mechanisms by which light
interacts with the organs of vision is not as well understood. Light is known to be a
form of electromagnetic radiation lying in a relatively narrow region of the electro-
magnetic spectrum over a wavelength band of about 350 to 780 nanometers (nm). A
physical light source may be characterized by the rate of radiant energy (radiant
intensity) that it emits at a particular spectral wavelength. Light entering the human
visual system originates either from a self-luminous source or from light reflected
from some object or from light transmitted through some translucent object. Let

 represent the spectral energy distribution of light emitted from some primary
light source, and also let  and  denote the wavelength-dependent transmis-
sivity and reflectivity, respectively, of an object. Then, for a transmissive object, the
observed light spectral energy distribution is

(2.1-1)

E λ( )
t λ( ) r λ( )

C λ( ) t λ( )E λ( )=
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and for a reflective object

(2.1-2)

Figure 2.1-1 shows plots of the spectral energy distribution of several common
sources of light encountered in imaging systems: sunlight, a tungsten lamp, a

FIGURE 2.1-1. Spectral energy distributions of common physical light sources.

C λ( ) r λ( )E λ( )=
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light-emitting diode, a mercury arc lamp, and a helium–neon laser (2). A human
being viewing each of the light sources will perceive the sources differently. Sun-
light appears as an extremely bright yellowish-white light, while the tungsten light
bulb appears less bright and somewhat yellowish. The light-emitting diode appears
to be a dim green; the mercury arc light is a highly bright bluish-white light; and the
laser produces an extremely bright and pure red beam. These observations provoke
many questions. What are the attributes of the light sources that cause them to be
perceived differently? Is the spectral energy distribution sufficient to explain the dif-
ferences in perception? If not, what are adequate descriptors of visual perception?
As will be seen, answers to these questions are only partially available.

There are three common perceptual descriptors of a light sensation: brightness,
hue, and saturation. The characteristics of these descriptors are considered below.

If two light sources with the same spectral shape are observed, the source of
greater physical intensity will generally appear to be perceptually brighter. How-
ever, there are numerous examples in which an object of uniform intensity appears
not to be of uniform brightness. Therefore, intensity is not an adequate quantitative
measure of brightness.

The attribute of light that distinguishes a red light from a green light or a yellow
light, for example, is called the hue of the light. A prism and slit arrangement
(Figure 2.1-2) can produce narrowband wavelength light of varying color. However,
it is clear that the light wavelength is not an adequate measure of color because
some colored lights encountered in nature are not contained in the rainbow of light
produced by a prism. For example, purple light is absent. Purple light can be
produced by combining equal amounts of red and blue narrowband lights. Other
counterexamples exist. If two light sources with the same spectral energy distribu-
tion are observed under identical conditions, they will appear to possess the same
hue. However, it is possible to have two light sources with different spectral energy
distributions that are perceived identically. Such lights are called metameric pairs.

The third perceptual descriptor of a colored light is its saturation, the attribute
that distinguishes a spectral light from a pastel light of the same hue. In effect, satu-
ration describes the whiteness of a light source. Although it is possible to speak of
the percentage saturation of a color referenced to a spectral color on a  chromaticity
diagram of the type shown in Figure 3.3-3, saturation is not usually considered to be
a quantitative measure.

FIGURE 2.1-2. Refraction of light from a prism.
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As an aid to classifying colors, it is convenient to regard colors as being points in
some color solid, as shown in Figure 2.1-3. The Munsell system of color
classification actually has a form similar in shape to this figure (3). However, to be
quantitatively useful, a color solid should possess metric significance. That is, a unit
distance within the color solid should represent a constant perceptual color
difference regardless of the particular pair of colors considered. The subject of
perceptually significant color solids is considered later.

2.2. EYE PHYSIOLOGY

A conceptual technique for the establishment of a model of the human visual system
would be to perform a physiological analysis of the eye, the nerve paths to the brain,
and those parts of the brain involved in visual perception. Such a task, of course, is
presently beyond human abilities because of the large number of infinitesimally
small elements in the visual chain. However, much has been learned from physio-
logical studies of the eye that is helpful in the development of visual models (4–7).

FIGURE 2.1-3. Perceptual representation of light.
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Figure 2.2-1 shows the horizontal cross section of a human eyeball. The front
of the eye is covered by a transparent surface called the cornea. The remaining outer
cover, called the sclera, is composed of a fibrous coat that surrounds the choroid, a
layer containing blood capillaries. Inside the choroid is the retina, which is com-
posed of two types of receptors: rods and cones. Nerves connecting to the retina
leave the eyeball through the optic nerve bundle. Light entering the cornea is
focused on the retina surface by a lens that changes shape under muscular control to

FIGURE 2.2-1. Eye cross section.

FIGURE 2.2-2. Sensitivity of rods and cones based on measurements by Wald.
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perform proper focusing of near and distant objects. An iris acts as a diaphram to
control the amount of light entering the eye.

The rods in the retina are long slender receptors; the cones are generally shorter and
thicker in structure. There are also important operational distinctions. The rods are
more sensitive than the cones to light. At low levels of illumination, the rods provide a
visual response called scotopic vision. Cones respond to higher levels of illumination;
their response is called photopic vision. Figure 2.2-2 illustrates the relative sensitivities
of rods and cones as a function of illumination wavelength (7,8). An eye contains
about 6.5 million cones and 100 million cones distributed over the retina (4).  Figure
2.2-3 shows the distribution of rods and cones over a  horizontal line on the retina
(4). At a point near the optic nerve called the fovea, the density of cones is greatest.
This is the region of sharpest photopic vision. There are no rods or cones in the vicin-
ity of the optic nerve, and hence the eye has a blind spot in this region.

FIGURE 2.2-3. Distribution of rods and cones on the retina.
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In recent years, it has been determined experimentally that there are three basic
types of cones in the retina (9, 10). These cones have different absorption character-
istics as a function of wavelength with peak absorptions in the red, green, and blue
regions of the optical spectrum. Figure 2.2-4 shows curves of the measured spectral
absorption of pigments in the retina for a particular subject (10). Two major points
of note regarding the curves are that the  cones, which are primarily responsible
for blue light perception, have relatively low sensitivity, and the absorption curves
overlap considerably. The existence of the three types of cones provides a physio-
logical basis for the trichromatic theory of color vision.

When a light stimulus activates a rod or cone, a photochemical transition occurs,
producing a nerve impulse. The manner in which nerve impulses propagate through
the visual system is presently not well established. It is known that the optic nerve
bundle contains on the order of 800,000 nerve fibers. Because there are over
100,000,000 receptors in the retina, it is obvious that in many regions of the retina,
the rods and cones must be interconnected to nerve fibers on a many-to-one basis.
Because neither the photochemistry of the retina nor the propagation of nerve
impulses within the eye is well understood, a deterministic characterization of the
visual process is unavailable. One must be satisfied with the establishment of mod-
els that characterize, and hopefully predict, human visual response. The following
section describes several visual phenomena that should be considered in the model-
ing of the human visual process.

2.3. VISUAL PHENOMENA

The visual phenomena described below are interrelated, in some cases only mini-
mally, but in others, to a very large extent. For simplification in presentation and, in
some instances, lack of knowledge, the phenomena are considered disjoint.

FIGURE 2.2-4. Typical spectral absorption curves of pigments of the retina.
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. 

Contrast Sensitivity. The response of the eye to changes in the intensity of illumina-
tion is known to be nonlinear. Consider a patch of light of intensity  surrounded
by a background of intensity I (Figure 2.3-1a). The just noticeable difference  is to
be determined as a function of I. Over a wide range of intensities, it is found that the
ratio , called the Weber fraction, is nearly constant at a value of about 0.02
(11; 12, p. 62). This result does not hold at very low or very high intensities, as illus-
trated by Figure 2.3-1a (13). Furthermore, contrast sensitivity is dependent on the
intensity of the surround. Consider the experiment of Figure 2.3-1b, in which two
patches of light, one of   intensity I and the other of intensity , are sur-
rounded by light of intensity . The Weber fraction  for this experiment is
plotted in Figure  2.3-1b as a function of the intensity of the background. In this
situation it is found that the range over which the Weber fraction remains constant is
reduced considerably compared to the experiment of Figure 2.3-1a. The envelope of
the lower limits of the curves of Figure 2.3-lb is equivalent to the curve of Figure
2.3-1a. However, the range over which  is approximately constant for a fixed
background intensity  is still comparable to the dynamic range of most electronic
imaging systems.

FIGURE 2.3-1. Contrast sensitivity measurements.
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FIGURE 2.3-2. Mach band effect.

(a) Step chart photo

(c) Ramp chart photo
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(d) Ramp chart intensity distribution

(b) Step chart intensity distribution
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Because the differential of the logarithm of intensity is

(2.3-1)

equal changes in the logarithm of the intensity of a light can be related to equal just
noticeable changes in its intensity over the region of intensities, for which the Weber
fraction is constant. For this reason, in many image processing systems, operations
are performed on the logarithm of the intensity of an image point rather than the
intensity.

Mach Band. Consider the set of gray scale strips shown in of Figure 2.3-2a. The
reflected light intensity from each strip is uniform over its width and differs from its
neighbors by a constant amount; nevertheless, the visual appearance is that each
strip is darker at its right side than at its left. This is called the Mach band effect (14).
Figure 2.3-2c is a photograph of the Mach band pattern of Figure 2.3-2d. In the pho-
tograph, a bright bar appears at position B and a dark bar appears at D. Neither bar
would be predicted purely on the basis of the intensity distribution. The apparent
Mach band overshoot in brightness is a consequence of the spatial frequency
response of the eye. As will be seen shortly, the eye possesses a lower sensitivity to
high and low spatial frequencies than to midfrequencies. The implication for the
designer of image processing systems is that perfect fidelity of edge contours can be
sacrificed to some extent because the eye has imperfect response to high-spatial-
frequency brightness transitions.

Simultaneous Contrast. The simultaneous contrast phenomenon (7) is illustrated in
Figure 2.3-3. Each small square is actually the same intensity, but because of the dif-
ferent intensities of the surrounds, the small squares do not appear equally bright.
The hue of a patch of light is also dependent on the wavelength composition of sur-
rounding light. A white patch on a black background will appear to be yellowish if
the surround is a blue light.

Chromatic Adaption. The hue of a perceived color depends on the adaption of a
viewer (15). For example, the American flag will not immediately appear red, white,
and blue if the viewer has  been subjected to high-intensity red light before viewing the
flag. The colors of the flag will appear to shift in hue toward the red complement, cyan.

FIGURE 2.3-3. Simultaneous contrast.
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Color Blindness. Approximately 8% of the males and 1% of the females in the
world population are subject to some form of color blindness (16, p. 405). There are
various degrees of color blindness. Some people, called monochromats, possess
only rods or rods plus one type of cone, and therefore are only capable of monochro-
matic vision. Dichromats are people who possess two of the three types of cones.
Both monochromats and dichromats can distinguish colors insofar as they have
learned to associate particular colors with particular objects. For example, dark
roses are assumed to be red, and light roses are assumed to be yellow. But if a red
rose were painted yellow such that its reflectivity was maintained at the same value,
a monochromat might still call the rose red. Similar examples illustrate the inability
of dichromats to distinguish hue accurately.

2.4. MONOCHROME VISION MODEL

One of the modern techniques of optical system design entails the treatment of an
optical system as a two-dimensional linear system that is linear in intensity and can
be characterized by a two-dimensional transfer function (17). Consider the linear
optical system of Figure 2.4-1. The system input is a spatial light distribution
obtained by passing a constant-intensity light beam through a transparency with a
spatial sine-wave transmittance. Because the system is linear, the spatial output
intensity distribution will also exhibit sine-wave intensity variations with possible
changes in the amplitude and phase of the output intensity compared to the input
intensity. By varying the spatial frequency (number of intensity cycles per linear
dimension) of the input transparency, and recording the output intensity level and
phase, it is possible, in principle, to obtain the optical transfer function (OTF) of the
optical system.

Let  represent the optical transfer function of a two-dimensional linear
system where  and  are angular spatial frequencies with
spatial periods  and  in the x and y coordinate directions, respectively. Then,
with  denoting the input intensity distribution of the object and 

FIGURE 2.4-1. Linear systems analysis of an optical system.
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representing the output intensity distribution of the image, the frequency spectra of
the input and output signals are defined as

(2.4-1)

(2.4-2)

The input and output intensity spectra are related by

(2.4-3)

The spatial distribution of the image intensity can be obtained by an inverse Fourier
transformation of Eq. 2.4-2, yielding

(2.4-4)

In many systems, the designer is interested only in the magnitude variations of the
output intensity with respect to the magnitude variations of the input intensity, not
the phase variations. The ratio of the magnitudes of the Fourier transforms of the
input and output signals,

(2.4-5)

is called the modulation transfer function (MTF) of the optical system.
Much effort has been given to application of the linear systems concept to the

human visual system (18–24). A typical experiment to test the validity of the linear
systems model is as follows. An observer is shown two sine-wave grating transpar-
encies, a reference grating of constant contrast and spatial frequency and a variable-
contrast test grating whose spatial frequency is set at a value different from that of
the reference. Contrast is defined as the ratio

where max and min are the maximum and minimum of the grating intensity,
respectively. The contrast of the test grating is varied until the brightnesses of the
bright and dark regions of the two transparencies appear identical. In this manner it is
possible to develop a plot of the MTF of the human visual system.  Figure 2.4-2a is a
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FIGURE 2.4-2. Hypothetical measurements of the spatial frequency response of the human
visual system.

FIGURE 2.4-3. MTF measurements of the human visual system by modulated sine-wave
grating.

C
on

tr
as

t

Spatial frequency



36 PSYCHOPHYSICAL VISION PROPERTIES

hypothetical plot of the MTF as a function of the input signal contrast. Another indi-
cation of the form of the MTF can be obtained by observation of the composite sine-
wave grating of Figure 2.4-3, in which spatial frequency increases in one coordinate
direction and contrast increases in the other direction. The envelope of the visible
bars generally follows the MTF curves of Figure 2.4-2a (23).

Referring to Figure 2.4-2a, it is observed that the MTF measurement depends on
the input contrast level. Furthermore, if the input sine-wave grating is rotated rela-
tive to the optic axis of the eye, the shape of the MTF is altered somewhat. Thus, it
can be concluded that the human visual system, as measured by this experiment, is
nonlinear and anisotropic (rotationally variant).

It has been postulated that the nonlinear response of the eye to intensity variations
is logarithmic in nature and occurs near the beginning of the visual information
processing system, that is, near the rods and cones, before spatial interaction occurs
between visual signals from individual rods and cones. Figure 2.4-4 shows a simple
logarithmic eye model for monochromatic vision. If the eye exhibits a logarithmic
response to input intensity, then if a signal grating contains a recording of an
exponential sine wave, that is, , the human visual system can be
linearized. A hypothetical MTF obtained by measuring an observer's response to an
exponential sine-wave grating (Figure 2.4-2b) can be fitted reasonably well by a sin-
gle curve for low-and mid-spatial frequencies. Figure 2.4-5 is a plot of the measured
MTF of the human visual system obtained by  Davidson (25) for an exponential

FIGURE 2.4-4. Logarithmic model of monochrome vision.

FIGURE 2.4-5. MTF measurements with exponential sine-wave grating.
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sine-wave test signal. The high-spatial-frequency portion of the curve has been
extrapolated for an average input contrast.

The logarithmic/linear system eye model of Figure 2.4-4 has proved to provide a
reasonable prediction of visual response over a wide range of intensities. However,
at high spatial frequencies and at very low or very high intensities, observed
responses depart from responses predicted by the model. To establish a more accu-
rate model, it is necessary to consider the physical mechanisms of the human visual
system.

The nonlinear response of rods and cones to intensity variations is still a subject
of active research. Hypotheses have been introduced suggesting that the nonlinearity
is based on chemical activity, electrical effects, and neural feedback. The basic loga-
rithmic model assumes the form

(2.4-6)

where the  are constants and  denotes the input field to the nonlinearity
and  is its output. Another model that has been suggested (7, p. 253) follows
the fractional response

(2.4-7)

where  and  are constants. Mannos and Sakrison (26) have studied the effect
of various nonlinearities employed in an analytical visual fidelity measure. Their
results, which are discussed in greater detail in Chapter 3, establish that a power law
nonlinearity of the form

(2.4-8)

where s is a constant, typically 1/3 or 1/2, provides good agreement between the
visual fidelity measure and subjective assessment. The three models for the nonlin-
ear response of rods and cones defined by Eqs. 2.4-6 to 2.4-8 can be forced to a
reasonably close agreement over some midintensity range by an appropriate choice
of scaling constants.

The physical mechanisms accounting for the spatial frequency response of the eye
are partially optical and partially neural. As an optical instrument, the eye has limited
resolution because of the finite size of the lens aperture, optical aberrations, and the
finite dimensions of the rods and cones. These effects can be modeled by a low-pass
transfer function inserted between the receptor and the nonlinear response element.
The most significant contributor to the frequency response of the eye is the lateral
inhibition process (27). The basic mechanism of lateral inhibition is illustrated in
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Figure 2.4-6. A neural signal is assumed to be generated by a weighted contribution
of many spatially adjacent rods and cones. Some receptors actually exert an inhibi-
tory influence on the neural response. The weighting values are, in effect,  the
impulse response of the human visual system beyond the retina. The two-dimen-
sional Fourier transform of this impulse response is the postretina transfer function.

When a light pulse is presented to a human viewer, there is a measurable delay in
its perception. Also, perception continues beyond the termination of the pulse for a
short period of time. This delay and lag effect arising from neural temporal response
limitations in the human visual system can be modeled by a linear temporal transfer
function.

Figure 2.4-7 shows a model for monochromatic vision based on results of the
preceding discussion. In the model, the output of the wavelength-sensitive receptor
is fed to a low-pass type of linear system that represents the optics of the eye. Next
follows a general monotonic nonlinearity that represents the nonlinear intensity
response of rods or cones. Then the lateral inhibition process is characterized by a
linear system with a bandpass response. Temporal filtering effects are modeled by
the following linear system. Hall and Hall (28) have investigated this model exten-
sively and have found transfer functions for the various elements that accurately
model the total system response. The monochromatic vision model of Figure 2.4-7,
with appropriately scaled parameters, seems to be sufficiently detailed for most
image processing applications. In fact, the simpler logarithmic model of Figure
2.4-4 is probably adequate for the bulk of applications.

FIGURE 2.4-6. Lateral inhibition effect.
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2.5. COLOR VISION MODEL

There have been many theories postulated to explain human color vision, beginning
with the experiments of Newton and Maxwell (29–32). The classical model of
human color vision, postulated by Thomas Young in 1802 (31), is the trichromatic
model in which it is assumed that the eye possesses three types of sensors, each
sensitive over a different wavelength band. It is interesting to note that there was no
direct physiological evidence of the existence of three distinct types of sensors until
about 1960 (9,10).

Figure 2.5-1 shows a color vision model proposed by Frei (33). In this model,
three receptors with spectral sensitivities , which represent the
absorption pigments of the retina, produce signals

(2.5-1a)

(2.5-1b)

(2.5-1c)

where  is the spectral energy distribution of the incident light source. The three
signals  are then subjected to a logarithmic transfer function and combined
to produce the outputs

(2.5-2a)

(2.5-2b)

(2.5-2c)

FIGURE 2.4-7. Extended model of monochrome vision.
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Finally, the signals  pass through linear systems with transfer functions
, ,  to produce output signals  that provide

the basis for perception of color by the brain.
In the model of Figure 2.5-1, the signals  and  are related to the chromaticity

of a colored light while signal  is proportional to its luminance. This model has
been found to predict many color vision phenomena quite accurately, and also to sat-
isfy the basic laws of colorimetry. For example, it is known that if the spectral
energy of a colored light changes by a constant multiplicative factor, the hue and sat-
uration of the light, as described quantitatively by its chromaticity coordinates,
remain invariant over a wide dynamic range. Examination of Eqs. 2.5-1 and 2.5-2
indicates that the chrominance signals  and  are unchanged in this case, and
that the luminance signal  increases in a logarithmic manner. Other, more subtle
evaluations of the model are described by Frei (33).

As shown in Figure 2.2-4, some indication of the spectral sensitivities  of
the three types of retinal cones has been obtained by spectral absorption measure-
ments of cone pigments. However, direct physiological measurements are difficult
to perform accurately. Indirect estimates of cone spectral sensitivities have been
obtained from measurements of the color response of color-blind peoples by Konig
and Brodhun (34). Judd (35) has used these data to produce a linear transformation
relating the spectral sensitivity functions  to spectral tristimulus values
obtained by colorimetric testing. The resulting sensitivity curves, shown in Figure
2.5-2, are unimodal and strictly positive, as expected from physiological consider-
ations (34).

The logarithmic color vision model of Figure 2.5-1 may easily be extended, in
analogy with the monochromatic vision model of Figure 2.4-7, by inserting a linear
transfer function after each cone receptor to account for the optical response of the
eye. Also, a general nonlinearity may be substituted for the logarithmic transfer
function. It should be noted that the order of the receptor summation and the transfer
function operations can be reversed without affecting the output, because both are

FIGURE 2.5-1 Color vision model.
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linear operations. Figure 2.5-3 shows the extended model for color vision. It is
expected that the spatial frequency response of the  neural signal through the
color vision model should be similar to the luminance spatial frequency response
discussed in Section 2.4. Sine-wave response measurements for colored lights
obtained by van der Horst et al. (36), shown in Figure 2.5-4, indicate that the chro-
matic response is shifted toward low spatial frequencies relative to the luminance
response. Lateral inhibition effects should produce a low spatial frequency rolloff
below the measured response.

Color perception is relative; the perceived color of a given spectral energy distri-
bution is dependent on the viewing surround and state of adaption of the viewer. A
human viewer can adapt remarkably well to the surround or viewing illuminant of a
scene and essentially normalize perception to some reference white or overall color
balance of the scene. This property is known as chromatic adaption.

FIGURE 2.5-2. Spectral sensitivity functions of retinal cones based on Konig’s data.

FIGURE 2.5-3. Extended model of color vision.
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The simplest visual model for chromatic adaption, proposed by von Kries (37,
16, p. 435), involves the insertion of automatic gain controls between the cones and
first linear system of Figure 2.5-2. These gains

 (2.5-3)

for i = 1, 2, 3 are adjusted such that the modified cone response is unity when view-
ing a reference white with spectral energy distribution . Von Kries's model is
attractive because of its qualitative reasonableness and simplicity, but chromatic
testing (16, p. 438) has shown that the model does not completely predict the chro-
matic adaptation effect. Wallis (38) has suggested that chromatic adaption may, in
part, result from a post-retinal neural inhibition mechanism that linearly attenuates
slowly varying visual field components. The mechanism could be modeled by the
low-spatial-frequency attenuation associated with the post-retinal transfer functions

 of Figure 2.5-3. Undoubtedly, both retinal and post-retinal mechanisms
are responsible for the chromatic adaption effect. Further analysis and testing are
required to model the effect adequately.
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3
 

PHOTOMETRY AND COLORIMETRY

Chapter 2 dealt with human vision from a qualitative viewpoint in an attempt to
establish models for monochrome and color vision. These models may be made
quantitative by specifying measures of human light perception. Luminance mea-
sures are the subject of the science of photometry, while color measures are treated
by the science of colorimetry.

3.1. PHOTOMETRY

A source of radiative energy may be characterized by its spectral energy distribution
, which specifies the time rate of energy the source emits per unit wavelength

interval. The total power emitted by a radiant source, given by the integral of the
spectral energy distribution,

(3.1-1)

is called the radiant flux of the source and is normally expressed in watts (W).
A body that exists at an elevated temperature radiates electromagnetic energy

proportional in amount to its temperature. A blackbody is an idealized type of heat
radiator whose radiant flux is the maximum obtainable at any wavelength for a body
at a fixed temperature. The spectral energy distribution of a blackbody is given by
Planck's law (1):

(3.1-2)
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where  is the radiation wavelength, T is the temperature of the body, and  and
 are constants. Figure 3.1-1a is a plot of the spectral energy of a blackbody as a

function of temperature and wavelength. In the visible region of the electromagnetic
spectrum, the blackbody spectral energy distribution function of Eq. 3.1-2 can be
approximated by Wien's radiation law (1):

(3.1-3)

Wien's radiation function is plotted in Figure 3.1-1b over the visible spectrum.
The most basic physical light source, of course, is the sun. Figure 2.1-1a shows a

plot of the measured spectral energy distribution of sunlight (2). The dashed line in

FIGURE 3.1-1. Blackbody radiation functions.

FIGURE 3.1-2. CIE standard illumination sources.

λ C1

C2

C λ( )
C1

λ5
C2 λT⁄{ }exp

----------------------------------------=



PHOTOMETRY 47

this figure, approximating the measured data, is a 6000 kelvin (K) blackbody curve.
Incandescent lamps are often approximated as blackbody radiators of a given tem-
perature in the range 1500 to 3500 K (3).

The Commission Internationale de l'Eclairage (CIE), which is an international
body concerned with standards for light and color, has established several standard
sources of light, as illustrated in Figure 3.1-2 (4). Source SA is a tungsten filament
lamp. Over the wavelength band 400 to 700 nm, source SB approximates direct sun-
light, and source SC approximates light from an overcast sky. A hypothetical source,
called Illuminant E, is often employed in colorimetric calculations. Illuminant E is
assumed to emit constant radiant energy at all wavelengths.

Cathode ray tube (CRT) phosphors are often utilized as light sources in image
processing systems. Figure 3.1-3 describes the spectral energy distributions of
common phosphors (5). Monochrome television receivers generally use a P4 phos-
phor, which provides a relatively bright blue-white display. Color television displays
utilize  cathode ray tubes with red, green, and blue emitting phosphors arranged in
triad dots or strips. The P22 phosphor is typical of the spectral energy distribution of
commercial phosphor mixtures. Liquid crystal displays (LCDs) typically project a
white light through red, green and blue vertical strip pixels. Figure 3.1-4 is a plot of
typical color filter transmissivities (6). 

Photometric measurements seek to describe quantitatively  the perceptual bright-
ness of visible electromagnetic energy (7,8). The link between photometric mea-
surements and radiometric measurements (physical intensity measurements) is the
photopic luminosity function, as shown in Figure 3.1-5a (9). This curve, which is a
CIE standard, specifies the spectral sensitivity of the human visual system to optical
radiation as a function of wavelength for a typical person referred to as the standard

FIGURE 3.1-3. Spectral energy distribution of CRT phosphors.
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observer. In essence, the curve is a standardized version of the measurement of cone
sensitivity given in Figure 2.2-2 for photopic vision at relatively high levels of illu-
mination. The standard luminosity function for scotopic vision at relatively low
levels of illumination is illustrated in Figure 3.1-5b. Most imaging system designs
are based on the photopic luminosity function, commonly called the relative lumi-
nous efficiency.

The perceptual brightness sensation evoked by a light source with spectral energy
distribution  is specified by its luminous flux, as defined by

(3.1-4)

where  represents the relative luminous efficiency and  is a scaling con-
stant. The modern unit of luminous flux is the lumen (lm), and the corresponding
value for the scaling constant is  = 685 lm/W. An infinitesimally narrowband
source of 1 W of light at the peak wavelength of 555 nm of the relative luminous
efficiency curve therefore results in a luminous flux of 685 lm.

FIGURE 3.1-4. Transmissivities of LCD color filters.
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3.2. COLOR MATCHING

The basis of the trichromatic theory of color vision is that it is possible to match
an arbitrary color by superimposing appropriate amounts of three primary colors
(10–14). In an additive color reproduction system such as color television, the
three primaries are individual red, green, and blue light sources that are projected
onto a common region of space to reproduce a colored light. In a subtractive color
system, which is the basis of most color photography and color printing, a white
light sequentially passes through cyan, magenta, and yellow filters to reproduce a
colored light.

3.2.1. Additive Color Matching

An additive color-matching experiment is illustrated in Figure 3.2-1. In
Figure 3.2-1a, a patch of light (C) of arbitrary spectral energy distribution , as
shown in Figure 3.2-2a, is assumed to be imaged onto the surface of an ideal
diffuse reflector (a surface that reflects uniformly over all directions and all
wavelengths). A reference white light (W) with an energy distribution, as in
Figure 3.2-2b, is imaged onto the surface along with three primary lights (P1),
(P2), (P3) whose spectral energy distributions are sketched in Figure 3.2-2c to e.
The three primary lights are first overlapped and their intensities are adjusted until
the overlapping region of the three primary lights perceptually matches the
reference white in terms of brightness, hue, and saturation. The amounts of the
three primaries , ,  are then recorded in some physical units,
such as watts. These are the matching values of the reference white. Next, the
intensities of the primaries are adjusted until a match is achieved with
the colored light (C), if a match is possible. The procedure to be followed
if a  match cannot be achieved is considered later. The intensities of the primaries

FIGURE 3.1-5. Relative luminous efficiency functions.
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, ,  when a match is obtained are recorded, and normalized match-
ing values , , , called tristimulus values, are computed as

(3.2-1)

FIGURE 3.2-1. Color matching.

A1 C( ) A2 C( ) A3 C( )
T1 C( ) T2 C( ) T3 C( )

T1 C( )
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A2 C( )
A2 W( )
----------------= T3 C( )

A3 C( )
A3 W( )
----------------=
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If a match cannot be achieved by the procedure illustrated in Figure 3.2-1a, it is
often possible to perform the color matching outlined in Figure 3.2-1b. One of the
primaries, say (P3), is superimposed with the light (C), and the intensities of all
three primaries are adjusted until a match is achieved between the overlapping
region of primaries (P1) and (P2) with the overlapping region of (P3) and (C). If
such a match is obtained, the tristimulus values are

(3.2-2)

In this case, the tristimulus value  is negative. If a match cannot be achieved
with this geometry, a match is attempted between (P1) plus (P3) and (P2) plus (C). If
a match is achieved by this configuration, tristimulus value  will be negative.
If this configuration fails, a match is attempted between (P2) plus (P3) and (P1) plus
(C). A correct match is denoted with a negative value for .

FIGURE 3.2-2. Spectral energy distributions.
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Finally, in the rare instance in which a match cannot be achieved by either of the
configurations of Figure 3.2-1a or b, two of the primaries are superimposed with (C)
and an attempt is made to match the overlapped region with the remaining primary.
In the case illustrated in Figure 3.2-1c, if a match is achieved, the tristimulus values
become

(3.2-3)

If a match is not obtained by this configuration, one of the other two possibilities
will yield a match.

The process described above is a direct method for  specifying a color quantita-
tively. It has two drawbacks: The method is cumbersome and it depends on the per-
ceptual variations of a single observer. In Section 3.3 we consider standardized
quantitative color measurement in detail.

3.2.2. Subtractive Color Matching

A subtractive color-matching experiment is shown in Figure 3.2-3. An illumination
source with spectral energy distribution  passes sequentially through three dye
filters that are nominally cyan, magenta, and yellow. The spectral absorption of the
dye filters is a function of the dye concentration. It should be noted that the spectral
transmissivities of practical dyes change shape in a nonlinear manner with dye con-
centration.

 In the first step of the subtractive color-matching process, the dye concentrations
of the three spectral filters are varied until a perceptual match is obtained with a refer-
ence white (W). The dye concentrations are the matching values of the color match

, , . Next, the three dye concentrations are varied until a match  is
obtained with a desired color (C). These matching values , are
then used to compute the tristimulus values , , , as in  Eq. 3.2-1.

FIGURE 3.2-3. Subtractive color matching.
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It should be apparent that there is no fundamental theoretical difference between
color matching by an additive or a subtractive system. In a subtractive   system, the
yellow dye acts as a variable absorber of blue light, and with ideal dyes, the yellow
dye effectively forms a blue primary light. In a similar manner, the magenta filter
ideally forms the green primary, and the cyan filter ideally forms the red primary.
Subtractive color systems ordinarily utilize cyan, magenta, and yellow dye spectral
filters rather than red, green, and blue dye filters because the cyan, magenta, and
yellow filters are notch filters which permit a greater transmission of light energy
than do narrowband red, green, and blue bandpass filters. In color printing, a fourth
filter layer of variable gray level density is often introduced to achieve a higher con-
trast in reproduction because common dyes do not possess a wide density range.

3.2.3. Axioms of Color Matching

The color-matching experiments described for additive and subtractive color match-
ing have been performed quite accurately by a number of researchers. It has been
found that perfect color matches sometimes cannot be obtained at either very high or
very low levels of illumination. Also, the color matching results do depend to some
extent on the spectral composition of the surrounding light. Nevertheless, the simple
color matching experiments have been found to hold over a wide range of condi-
tions.

Grassman (15) has developed a set of eight axioms that define trichromatic color
matching and that serve as a basis for quantitative color measurements. In the
following presentation of these axioms, the symbol  indicates a color match; the
symbol  indicates an additive color mixture; the symbol  indicates units of a
color. These axioms are:

1. Any color can be matched by a mixture of no more than three colored lights.

2. A color match at one radiance level holds over a wide range of levels.

3. Components of a mixture of colored lights cannot be resolved by the human eye.

4. The luminance of a color mixture is equal to the sum of the luminance of its
components.

5. Law of addition. If color (M) matches color (N) and color (P) matches color (Q),
then color (M) mixed with color (P) matches color (N) mixed with color (Q):

(3.2-4)

6. Law of subtraction.  If the mixture of (M) plus (P) matches the mixture of (N)
plus (Q) and if (P) matches (Q), then (M) matches (N):

(3.2-5)

7. Transitive law.  If (M) matches (N) and if (N) matches (P), then (M) matches (P):

◊
⊕ •

M( ) N( )◊ P( ) Q( )◊ M( ) P( )⊕[ ] N( ) Q( )⊕[ ]◊⇒∩

M( ) P( )⊕[ ] N( ) Q( )⊕[ ]◊ P( ) Q( )◊[ ]∩ M( ) N( )◊⇒
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(3.2-6)

8. Color matching. (a) c units of (C) matches the mixture of m units of (M) plus n
units of (N) plus p units of (P): 

(3.2-7)

or (b) a mixture of c units of C plus m units of M matches the mixture of n units
of N plus p units of P:

(3.2-8)

or (c) a mixture of c units of (C) plus m units of (M) plus n units of (N) matches p
units of P:

(3.2-9)

With Grassman's laws now specified, consideration is given to the development of a
quantitative theory for color matching.

3.3. COLORIMETRY CONCEPTS

Colorimetry is the science of quantitatively measuring color. In the trichromatic
color system, color measurements are in terms of the tristimulus values of a color or
a mathematical function of the tristimulus values.

Referring to Section 3.2.3, the axioms of color matching state that a color C can
be matched by three primary colors P1, P2, P3. The qualitative match is expressed as

(3.3-1)

where , ,  are the matching values of the color (C). Because the
intensities of incoherent light sources add linearly, the spectral energy distribution of
a color mixture is equal to the sum of the spectral energy distributions of its compo-
nents. As a consequence of this fact and Eq. 3.3-1, the spectral energy distribution

 can be replaced by its color-matching equivalent according to the relation

(3.3-2)
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Equation 3.3-2 simply means that the spectral energy distributions on both sides of
the equivalence operator  evoke the same color sensation. Color matching is usu-
ally specified in terms of tristimulus values, which are normalized matching values,
as defined by

(3.3-3)

where  represents the matching value of the reference white. By this substitu-
tion, Eq. 3.3-2 assumes the form

(3.3-4)

From Grassman's fourth law, the luminance of a color mixture Y(C) is equal to
the luminance of its primary components. Hence

(3.3-5a)

or

(3.3-5b)

where  is the relative luminous efficiency and  represents the spectral
energy distribution of a primary. Equations 3.3-4 and 3.3-5 represent the quantita-
tive foundation for colorimetry.

3.3.1. Color Vision Model Verification

Before proceeding further with quantitative descriptions of the color-matching pro-
cess, it is instructive to determine whether the matching experiments and the axioms
of color matching are satisfied by the color vision model presented in Section 2.5. In
that model, the responses of the three types of receptors with sensitivities ,

,  are modeled as

(3.3-6a)

(3.3-6b)

(3.3-6c)
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If a viewer observes the primary mixture instead of C, then from Eq. 3.3-4, substitu-
tion for  should result in the same cone signals . Thus

(3.3-7a)

(3.3-7b)

(3.3-7c)

Equation 3.3-7 can be written more compactly in matrix form by defining

(3.3-8)

Then

(3.3-9)

or in yet more abbreviated form,

(3.3-10)

where the vectors and matrices of Eq. 3.3-10 are defined in correspondence with
Eqs. 3.3-7 to 3.3-9. The vector space notation used in this section is consistent with
the notation formally introduced in Appendix 1. Matrices are denoted as boldface
uppercase symbols, and vectors are denoted as boldface lowercase symbols. It
should be noted that for a given set of primaries, the matrix K is constant valued,
and for a given reference white, the white matching values of the matrix A are con-
stant. Hence, if a set of cone signals  were known for a color (C), the corre-
sponding tristimulus values  could in theory be obtained from

(3.3-11)
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provided that the matrix inverse of [KA] exists. Thus, it has been shown that with
proper selection of the tristimulus signals , any color can be matched in the
sense that the cone signals will be the same for the primary mixture as for the actual
color C. Unfortunately, the cone signals  are not easily measured physical
quantities, and therefore, Eq. 3.3-11 cannot be used directly to compute the tristimu-
lus values of a color. However, this has not been the intention of the derivation.
Rather, Eq. 3.3-11 has been developed to show the consistency of the color-match-
ing experiment with the color vision model.

3.3.2. Tristimulus Value Calculation

It is possible indirectly to compute the tristimulus values of an arbitrary color for a
particular set of primaries if the tristimulus values of the spectral colors (narrow-
band light) are known for that set of primaries. Figure 3.3-1 is a typical sketch of the
tristimulus values required to match a unit energy spectral color with three arbitrary
primaries. These tristimulus values, which are fundamental to the definition of a pri-
mary system, are denoted as , , , where  is a particular wave-
length in the visible region. A unit energy spectral light ( ) at wavelength  with
energy distribution  is matched according to the equation

(3.3-12)

Now, consider an arbitrary color [C] with spectral energy distribution . At
wavelength ,  units of the color are matched by , ,

 tristimulus units of the primaries as governed by

(3.3-13)

Integrating each side of Eq. 3.3-13 over  and invoking the sifting integral gives the
cone signal for the color (C). Thus

(3.3-14)

By correspondence with Eq. 3.3-7, the tristimulus values of (C) must be equivalent
to the second integral on the right of Eq. 3.3-14. Hence

(3.3-15)
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From Figure 3.3-1 it is seen that the tristimulus values obtained from solution of
Eq. 3.3-11 may be negative at some wavelengths. Because the tristimulus values
represent units of energy, the physical interpretation of this mathematical result is
that a color match can be obtained by adding the primary with negative tristimulus
value to the original color and then matching this resultant color with the remaining
primary. In this sense, any color can be matched by any set of primaries. However,
from a practical viewpoint, negative tristimulus values are not physically realizable,
and hence there are certain colors that cannot be matched in a practical color display
(e.g., a color television receiver) with fixed primaries. Fortunately, it is possible to
choose primaries so that most commonly occurring natural colors can be matched.

The three tristimulus values T1, T2, T'3 can be considered to form the three axes of
a color space as illustrated in Figure 3.3-2. A particular color may be described as a
a vector in the color space, but it must be remembered that it is the coordinates of
the vectors (tristimulus values), rather than the vector length, that specify the color.
In Figure 3.3-2, a triangle, called a Maxwell triangle, has been drawn between the
three primaries. The intersection point of a color vector with the triangle gives an
indication of the hue and saturation of the color in terms of the distances of the point
from the vertices of the triangle.

FIGURE 3.3-1. Tristimulus values of typical red, green, and blue primaries required to
match unit energy throughout the spectrum.

FIGURE 3.3-2 Color space for typical red, green, and blue primaries.
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Often the luminance of a color is not of interest in a color match. In such situa-
tions, the hue and saturation of color (C) can be described in terms of chromaticity
coordinates, which are normalized tristimulus values, as defined by

(3.3-16a)

(3.3-16b)

(3.3-16c)

Clearly, , and hence only two coordinates are necessary to describe a
color match. Figure 3.3-3 is a plot of the chromaticity coordinates of the spectral
colors for typical primaries. Only those colors within the triangle defined by the
three primaries are realizable by physical primary light sources.

3.3.3. Luminance Calculation

The tristimulus values of a color specify the amounts of the three primaries required
to match a color where the units are measured relative to a match of a reference
white. Often, it is necessary to determine the absolute rather than the relative
amount of light from each primary needed to reproduce a color match. This informa-
tion is found from luminance measurements of calculations of a color match.

FIGURE 3.3-3. Chromaticity diagram for typical red, green, and blue primaries.
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From Eq. 3.3-5 it is noted that the luminance of a matched color Y(C) is equal to
the sum of the luminances of its primary components according to the relation

(3.3-17)

The integrals of Eq. 3.3-17,

(3.3-18)

are called luminosity coefficients of the primaries. These coefficients represent the
luminances of unit amounts of the three primaries for a match to a specific reference
white. Hence the luminance of a matched color can be written as

(3.3-19)

Multiplying the right and left sides of Eq. 3.3-19 by the right and left sides, respec-
tively, of the definition of the chromaticity coordinate

(3.3-20)

and rearranging gives

(3.3-21a)

Similarly,

(3.3-21b)

(3.3-21c)

Thus the tristimulus values of a color can be expressed in terms of the luminance
and chromaticity coordinates of the color.

Y C( ) Tj C( ) Aj C( )Pj λ( )V λ( ) λd∫
j 1=

3

∑=

Y Pj( ) Aj C( )Pj λ( )V λ( ) λd∫=

Y C( ) T1 C( )Y P1( ) T2 C( )Y P2( ) T3 C( )Y P3( )+ +=

t1 C( )
T1 C( )

T1 C( ) T2 C( ) T3 C( )+ +
----------------------------------------------------------=

T1 C( )
t1 C( )Y C( )

t1 C( )Y P1( ) t2 C( )Y P2( ) t3 C( )Y P3( )+ +
--------------------------------------------------------------------------------------------------=

T2 C( )
t2 C( )Y C( )

t1 C( )Y P1( ) t2 C( )Y P2( ) t3 C( )Y P3( )+ +
--------------------------------------------------------------------------------------------------=

T3 C( )
t3 C( )Y C( )

t1 C( )Y P1( ) t2 C( )Y P2( ) t3 C( )Y P3( )+ +
--------------------------------------------------------------------------------------------------=
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3.4. TRISTIMULUS VALUE TRANSFORMATION

From Eq. 3.3-7 it is clear that there is no unique set of primaries for matching colors.
If the tristimulus values of a color are known for one set of primaries, a simple coor-
dinate conversion can be performed to determine the tristimulus values for another
set of primaries (16). Let (P1), (P2), (P3) be the original set of primaries with spec-
tral energy distributions , , , with the units of a match determined
by a white reference (W) with matching values , , . Now, consider
a new set of primaries , ,  with spectral energy distributions ,

, . Matches are made to a reference white , which may be different
than the reference white of the original set of primaries, by matching values ,

, . Referring to Eq. 3.3-10, an arbitrary color (C) can be matched by the
tristimulus values , ,  with the original set of primaries or by the
tristimulus values , ,  with the new set of primaries, according to
the matching matrix relations

(3.4-1)

The tristimulus value units of the new set of primaries, with respect to the original
set of primaries, must now be found. This can be accomplished by determining the
color signals of the reference white for the second set of primaries in terms of both
sets of primaries. The color signal equations for the reference white  become

(3.4-2)

where . Finally, it is necessary to relate the two sets of
primaries by determining the color signals of each of the new primary colors ,

,  in terms of both primary systems. These color signal equations are

(3.4-3a)

(3.4-3b)

(3.4-3c)

where

P1 λ( ) P2 λ( ) P3 λ( )
A1 W( ) A2 W( ) A3 W( )

P̃1( ) P̃2( ) P̃3( ) P̃1 λ( )
P̃2 λ( ) P̃3 λ( ) W̃( )

Ã1 W( )
Ã2 W( ) Ã3 W( )

T1 C( ) T2 C( ) T3 C( )
T̃1 C( ) T̃2 C( ) T̃3 C( )

e C( ) KA W( )t C( ) K̃Ã W̃( ) t̃ C( )= =

W̃

e W̃( ) KA W( )t W̃( ) K̃Ã W̃( ) t̃ W̃( )= =

T̃1 W̃( ) T̃2 W̃( ) T3
˜ W̃( ) 1= = =

P̃1( )
P̃2( ) P̃3( )

e P1
˜( ) KA W( )t P1

˜( ) K̃Ã W̃( ) t̃ P1
˜( )= =

e P2
˜( ) KA W( )t P2

˜( ) K̃Ã W̃( ) t̃ P2
˜( )= =

e P3
˜( ) KA W( )t P3

˜( ) K̃Ã W̃( ) t̃ P3
˜( )= =

t̃ P̃1( )

1

A1 W̃( )
----------------

0

0

= t̃ P̃2( )

0

1

A2 W̃( )
----------------

0

= t̃ P̃2( )

0

0

1

A3 W̃( )
----------------

=
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Matrix equations 3.4-1 to 3.4-3 may be solved jointly to obtain a relationship
between the tristimulus values of the original and new primary system:

(3.4-4a)

(3.4-4b)

(3.4-4c)

where  denotes the determinant of matrix T. Equations 3.4-4 then may be written
in terms of the chromaticity coordinates , ,  of the new set of pri-
maries referenced to the original primary coordinate system. 

With this revision,

(3.4-5)

T̃1 C( )

T1 C( ) T1 P̃2( ) T1 P̃3( )

T2 C( ) T2 P̃2( ) T2 P̃3( )

T3 C( ) T3 P̃2( ) T3 P̃3( )

T1 W̃( ) T1 P̃2( ) T1 P̃3( )

T2 W̃( ) T2 P̃2( ) T2 P̃3( )

T3 W̃( ) T3 P̃2( ) T3 P̃3( )

-------------------------------------------------------------------------=

T̃2 C( )

T1 P̃1( ) T1 C( ) T1 P̃3( )

T2 P̃1( ) T2 C( ) T2 P̃3( )

T3 P̃1( ) T3 C( ) T3 P̃3( )

T1 P̃1( ) T1 W̃( ) T1 P̃3( )

T2 P̃1( ) T2 W̃( ) T2 P̃3( )

T3 P̃1( ) T3 W̃( ) T3 P̃3( )

-------------------------------------------------------------------------=

T̃3 C( )

T1 P̃1( ) T1 P̃2( ) T1 C( )

T2 P̃1( ) T2 P̃2( ) T2 C( )

T3 P̃1( ) T3 P̃2( ) T3 C( )

T1 P̃1( ) T1 P̃2( ) T1 W̃( )

T2 P̃1( ) T2 P̃2( ) T2 W̃( )

T3 P̃1( ) T3 P̃2( ) T3 W̃( )

-------------------------------------------------------------------------=

T

ti P̃1( ) ti P̃2( ) ti P̃3( )

T̃1 C( )

T̃2 C( )

T̃3 C( )

m11 m12 m13

m21 m22 m31

m31 m32 m33

T1 C( )

T2 C( )

T3 C( )

=
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where

and

Thus, if the tristimulus values are known for a given set of primaries, conversion to
another set of primaries merely entails a simple linear transformation of coordinates.

3.5. COLOR SPACES

It has been shown that a color (C) can be matched by its tristimulus values ,
,  for a given set of primaries. Alternatively, the color may be specified

by its chromaticity values ,  and its luminance Y(C). Appendix 2 presents
formulas for color coordinate conversion between tristimulus values and chromatic-
ity coordinates for various representational combinations. A third approach in speci-
fying a color is to represent the color by a linear or nonlinear invertible function of
its tristimulus or chromaticity values.

In this section we describe several standard and nonstandard color spaces for the
representation of color images. They are categorized as colorimetric, subtractive,
video, or nonstandard. Figure 3.5-1 illustrates the relationship between these color
spaces. The figure also lists several example color spaces.

mij

∆i j

∆i

------=

∆1 T1 W̃( )∆11 T2 W̃( )∆12 T3 W̃( )∆13+ +=

∆2 T1 W̃( )∆21 T2 W̃( )∆22 T3 W̃( )∆23+ +=

∆3 T1 W̃( )∆31 T2 W̃( )∆32 T3 W̃( )∆33+ +=

∆11 t2 P̃2( )t3 P̃3( ) t3 P̃2( )t2 P̃3( )–=

∆12 t3 P̃2( )t1 P̃3( ) t1 P̃2( )t3 P̃3( )–=

∆13 t1 P̃2( )t2 P̃3( ) t2 P̃2( )t1 P̃3( )–=

∆21 t3 P̃1( )t2 P̃3( ) t2 P̃1( )t3 P̃3( )–=

∆22 t1 P̃1( )t3 P̃3( ) t3 P̃1( )t1 P̃3( )–=

∆23 t2 P̃1( )t1 P̃3( ) t1 P̃1( )t2 P̃3( )–=

∆31 t2 P̃1( )t3 P̃2( ) t3 P̃1( )t2 P̃2( )–=

∆32 t3 P̃1( )t1 P̃2( ) t1 P̃1( )t3 P̃2( )–=

∆33 t1 P̃1( )t2 P̃2( ) t2 P̃1( )t1 P̃2( )–=

T1 C( )
T2 C( ) T3 C( )

t1 C( ) t2 C( )
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Natural color images, as opposed to computer-generated images, usually origi-
nate from a color scanner or a color video camera. These devices incorporate three
sensors that are spectrally sensitive to the red, green, and blue portions of the light
spectrum. The color sensors typically generate red, green, and blue color signals that
are linearly proportional to the amount of red, green, and blue light detected by each
sensor. These signals are linearly proportional to the tristimulus values of a color at
each pixel. As indicated in Figure 3.5-1, linear RGB images are the basis for the gen-
eration of the various color space image representations.

3.5.1. Colorimetric Color Spaces

The class of colorimetric color spaces includes all linear RGB images and the stan-
dard colorimetric images derived from them by linear and nonlinear intercomponent
transformations.

FIGURE 3.5-1. Relationship of color spaces.
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RCGCBC Spectral Primary Color Coordinate System. In 1931, the CIE developed a
standard primary reference system with three monochromatic primaries at wave-
lengths: red = 700 nm; green = 546.1 nm; blue = 435.8 nm (11). The units of the
tristimulus values are such that the tristimulus values RC, GC, BC are equal when
matching an equal-energy white, called Illuminant E, throughout the visible spectrum.
The primary system is defined by tristimulus curves of the spectral colors, as shown in
Figure 3.5-2. These curves have been obtained indirectly by experimental color-match-
ing experiments performed by a number of observers.  The collective color-matching
response of these observers has been called the CIE Standard Observer. Figure 3.5-3 is
a chromaticity diagram for the CIE spectral coordinate system.
 

FIGURE 3.5-2. Tristimulus values of CIE spectral primaries required to match unit energy
throughout the spectrum. Red = 700 nm, green = 546.1 nm, and blue = 435.8 nm.

FIGURE 3.5-3. Chromaticity diagram for CIE spectral primary system.
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RNGNBN NTSC Receiver Primary Color Coordinate System. Commercial televi-
sion receivers employ a cathode ray tube with three phosphors that glow in the red,
green, and blue regions of the visible spectrum. Although the phosphors of
commercial television receivers differ from manufacturer to manufacturer, it is
common practice to reference them to the National Television Systems Committee
(NTSC) receiver phosphor standard (14). The standard observer data for the CIE
spectral primary system is related to the NTSC primary system by a pair of linear
coordinate conversions.

Figure 3.5-4 is a chromaticity diagram for the NTSC primary system. In this
system, the units of the tristimulus values are normalized so that the tristimulus
values are equal when matching the Illuminant C white reference. The NTSC
phosphors are not pure monochromatic sources of radiation, and hence the gamut of
colors producible by the NTSC phosphors is smaller than that available from the
spectral primaries. This fact is clearly illustrated by Figure 3.5-3, in which the gamut
of NTSC reproducible colors is plotted in the spectral primary chromaticity diagram
(11). In modern practice, the NTSC chromaticities are combined with Illuminant
D65.

REGEBE EBU Receiver Primary Color Coordinate System. The European Broad-
cast Union (EBU) has established a receiver primary system whose chromaticities
are close in value to the CIE chromaticity coordinates, and the reference white is
Illuminant C (17). The EBU chromaticities are also combined with the D65 illumi-
nant.

RRGRBR CCIR Receiver Primary Color Coordinate Systems. In 1990, the Interna-
tional  Telecommunications  Union  (ITU)  issued  its  Recommendation  601, which

 

FIGURE 3.5-4. Chromaticity diagram for NTSC receiver phosphor primary system.
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specified the receiver primaries for standard resolution digital television (18). Also,
in 1990 the ITU published its Recommendation 709 for digital high-definition tele-
vision systems (19). Both standards are popularly referenced as CCIR Rec. 601 and
CCIR Rec. 709, abbreviations of the former name of the standards committee,
Comité Consultatif International des Radiocommunications.

RSGSBS SMPTE Receiver Primary Color Coordinate System. The Society of
Motion Picture and Television Engineers (SMPTE) has established a standard
receiver primary color coordinate system with primaries that match modern receiver
phosphors better than did the older NTSC primary system (20). In this coordinate
system, the reference white is Illuminant D65.

XYZ Color Coordinate System. In the CIE spectral primary system, the tristimulus
values required to achieve a color match are sometimes negative. The CIE has
developed a standard artificial primary coordinate system in which all tristimulus
values required to match colors are positive (4). These artificial primaries are shown
in the CIE primary chromaticity diagram of Figure 3.5-3 (11). The XYZ system
primaries have been chosen so that the Y tristimulus value is equivalent to the lumi-
nance of the color to be matched. Figure 3.5-5 is the chromaticity diagram for the
CIE XYZ primary system referenced to equal-energy white (4). The linear transfor-
mations between RCGCBC and XYZ are given by

FIGURE 3.5-5. Chromaticity diagram for CIE XYZ primary system.
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(3.5-1a)

(3.5-1b)

The color conversion matrices of Eq. 3.5-1 and those color conversion matrices
defined later are quoted to eight decimal places (21,22). In many instances, this quo-
tation is to a greater number of places than the original specification. The number of
places has been increased to reduce computational errors when concatenating trans-
formations between color representations.

The color conversion matrix between XYZ and any other linear RGB color space
can be computed by the following algorithm.

1. Compute the colorimetric weighting coefficients a(1), a(2), a(3) from

(3.5-2a)

where xk, yk, zk are the chromaticity coordinates of the RGB primary set.

2. Compute the RGB-to-XYZ conversion matrix.

(3.5-2b)

The XYZ-to-RGB conversion matrix is, of course, the matrix inverse of . Table
3.5-1 lists the XYZ tristimulus values of several standard illuminants. The XYZ chro-
maticity coordinates of the standard linear RGB color systems are presented in Table
3.5-2.

From Eqs. 3.5-1 and 3.5-2 it is possible to derive a matrix transformation
between RCGCBC and any linear colorimetric RGB color space. The book CD con-
tains a file that lists the transformation matrices (22) between the standard RGB
color coordinate systems and XYZ and UVW, defined below.

X

Y

Z

0.49018626 0.30987954 0.19993420

0.17701522 0.81232418 0.01066060

0.00000000 0.01007720 0.98992280

RC

GC

BC

=

RC

GC

BC

2.36353918 0.89582361– 0.46771557–

0.51511248– 1.42643694 0.08867553

0.00524373 0.01452082– 1.00927709

X

Y

Z

=

a 1( )

a 2( )

a 3( )

xR xG xB

yR yG yB

zR zG zB

1–
xW yW⁄

1

zW yW⁄

=

M 1 1,( ) M 1 2,( ) M 1 3,( )
M 2 1,( ) M 2 2,( ) M 2 3,( )
M 3 1,( ) M 3 2,( ) M 3 3,( )

xR xG xB

yR yG yB

zR zG zB

a 1( ) 0 0

0 a 2( ) 0

0 0 a 3( )

=

M
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TABLE 3.5-1. XYZ Tristimulus Values of Standard Illuminants

TABLE 3.5-2. XYZ Chromaticity Coordinates of Standard Primaries

UVW Uniform Chromaticity Scale Color Coordinate System. In 1960, the CIE.
adopted a coordinate system, called the Uniform Chromaticity Scale (UCS), in
which, to a good approximation, equal changes in the chromaticity coordinates
result in equal, just noticeable changes in the perceived hue and saturation of a color.
The V component of the UCS coordinate system represents luminance. The u, v
chromaticity coordinates are related to the x, y chromaticity coordinates by the rela-
tions (23)

Illuminant X0 Y0 Z0

A 1.098700 1.000000 0.355900

C 0.980708 1.000000 1.182163

D50 0.964296 1.000000 0.825105

D65 0.950456 1.000000 1.089058

E 1.000000 1.000000 1.000000

Standard x y z

CIE   RC 0.640000 0.330000 0.030000

 GC 0.300000 0.600000 0.100000

BC 0.150000 0.06000 0.790000

NTSC  RN 0.670000 0.330000 0.000000

GN 0.210000 0.710000 0.080000

BN 0.140000 0.080000 0.780000

SMPTE RS 0.630000 0.340000 0.030000

GS 0.310000 0.595000 0.095000

BS 0.155000 0.070000 0.775000

EBU RE 0.640000 0.330000 0.030000

GE 0.290000 0.60000 0.110000

BE 0.150000 0.060000 0.790000

CCIR RR 0.640000 0.330000 0.030000

GR 0.30000 0.600000 0.100000

BR 0.150000 0.060000 0.790000
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(3.5-3a)

(3.5-3b)

(3.5-3c)

(3.5-3d)

Figure 3.5-6 is a UCS chromaticity diagram.
The tristimulus values of the uniform chromaticity scale coordinate system UVW

are related to the tristimulus values of the spectral coordinate primary system by

(3.5-4a)

(3.5-4b)

FIGURE 3.5-6. Chromaticity diagram for CIE uniform chromaticity scale primary system.

u
4x

2x– 12y 3+ +
-----------------------------------=

v
6y

2x– 12y 3+ +
-----------------------------------=

x
3u

2u 8v– 4–
---------------------------=

y
2v

2u 8v– 4–
---------------------------=

U

V

W

0.32679084 0.20658636 0.13328947

0.17701522 0.81232418 0.01066060

0.02042971 1.06858510 0.41098519

RC

GC

BC

=

RC

GC

BC

2.84373542 0.50732308 0.93543113–

0.63965541– 1.16041034 0.17735107

1.52178123 3.04235208– 2.01855417

U

V

W

=



COLOR SPACES 71

U*V*W* Color Coordinate System. The U*V*W* color coordinate system, adopted
by the CIE in 1964, is an extension of the UVW coordinate system in an attempt to
obtain a color solid for which unit shifts in luminance and chrominance are uniformly
perceptible. The U*V*W* coordinates are defined as (24)

(3.5-5a)

(3.5-5b)

(3.5-5c)

where the luminance Y is measured over a scale of 0.0 to 1.0 and uo and vo are the
chromaticity coordinates of the reference illuminant.

The UVW and U*V*W* coordinate systems were rendered obsolete in 1976 by
the introduction by the CIE of the more accurate L*a*b* and L*u*v* color coordi-
nate systems. Although depreciated by the CIE, much valuable data has been col-
lected in the UVW and U*V*W* color systems.

L*a*b* Color Coordinate System. The L*a*b* cube root color coordinate system
was developed to provide a computationally simple measure of color in agreement
with the Munsell color system (25). The color coordinates are

for (3.5-6a)

for (3.5-6b)

(3.5-6c)

(3.5-6d)

where

for (3.6-6e)

for (3.6-6f)

U∗ 13W∗ u uo–( )=

V∗ 13W∗ v vo–( )=

W∗ 25 100Y( )1 3⁄
17–=

L∗
116

Y

Yo

----- 
  1 3⁄

16–

903.3
Y

Yo

-----








=

Y

Yo

----- 0.008856>

0.0
Y

Yo

----- 0.008856≤ ≤

a∗ 500 f
X

Xo

------
 
 
 

f
Y

Yo

-----
 
 
 

–=

b∗ 200 f
X

Xo

------
 
 
 

f
Z

Zo

-----
 
 
 

–=

f w( )
w

1 3⁄

7.787 w( ) 0.1379+





=

w 0.008856>

0.0 w 0.008856≤ ≤
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The terms Xo, Yo, Zo are the tristimulus values for the reference white. Basically, L*
is correlated with brightness, a* with redness-greenness, and b* with yellowness-
blueness. The inverse relationship between L*a*b* and XYZ is

(3.5-7a)

(3.5-7b)

(3.5-7c)

where

for (3.6-7d)

if (3.6-7e)

L*u*v* Color Coordinate System. The L*u*v* coordinate system (26), which has
evolved from the L*a*b* and the U*V*W* coordinate systems, became a CIE stan-
dard in 1976. It is defined as

for (3.5-8a)

for (3.5-8b)

 (3.5-8c)

(3.5-8d)

where

(3.5-8e)

(3.5-8f)

X Xo g
L∗ 16+

25
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Y Yo g f
Y
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  a∗

500
---------+

 
 
 

=

Z Zo g f
Y
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  b∗

200
---------–

 
 
 

=

g w( )
w

3

0.1284 w 0.1379–( )





=

w 0.20681>

0.0 w 0.20689≤ ≤

L∗

25 100
Y

Yo

----- 
  1 3⁄

16–

903.3
Y
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-----










=

Y

Yo

----- 0.008856≥

Y

Yo

----- 0.008856<

u∗ 13L∗ u′ u′o–( )=

v∗ 13L∗ v′ v′o–( )=

u′ 4X

X 15Y 3Z+ +
--------------------------------=

v′ 9Y

X 15Y 3Z+ +
--------------------------------=
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and  and  are obtained by substitution of the tristimulus values Xo, Yo, Zo for
the reference white. The inverse relationship is given by

(3.5-9a)

(3.5-9b)

(3.5-9c)

where

(3.5-9d)

(3.5-9e)

Figure 3.5-7 shows the linear RGB components of an NTSC receiver primary
color image. This color image is printed in the color insert. If printed properly, the
color image and its monochromatic component images will appear to be of “nor-
mal” brightness. When displayed electronically, the linear images will appear too
dark. Section 3.5.3 discusses the proper display of electronic images. Figures 3.5-8
to 3.5-10 show the XYZ, Yxy, and L*a*b* components of Figure 3.5-7. Section
10.1.1 describes amplitude-scaling methods for the display of image components
outside the unit amplitude range. The amplitude range of each component is printed
below each photograph.

3.5.2. Subtractive Color Spaces

The color printing and color photographic processes (see Section 11-3) are based on
a subtractive color representation. In color printing, the linear RGB color compo-
nents are transformed to cyan (C), magenta (M), and yellow (Y) inks, which are
overlaid at each pixel on a, usually, white paper. The simplest transformation rela-
tionship is

(3.5-10a)

(3.5-10b)

(3.5-10c)

u′o v′o

X
9u′
4v′
--------Y=

Y Yo
L∗ 16+

25
------------------ 

  3

=

Z Y
12 3u′– 20v′–

4v′
-------------------------------------=

u′ u∗
13L∗
------------ u′o+=

v'
v∗

13L∗
------------ u′o+=

C 1.0 R–=

M 1.0 G–=

Y 1.0 B–=
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where the linear RGB components are tristimulus values over [0.0, 1.0]. The inverse
relations are

(3.5-11a)

(3.5-11b)

(3.5-11c)

In high-quality printing systems, the RGB-to-CMY transformations, which are usu-
ally proprietary, involve color component cross-coupling and point nonlinearities.

FIGURE 3.5-7. Linear RGB components of the dolls_linear color image. See insert

for a color representation of this figure.

(a) Linear R, 0.000 to 0.965 

(b) Linear G, 0.000 to 1.000 (c) Linear B, 0.000 to 0.965 

R 1.0 C–=

G 1.0 M–=

B 1.0 Y–=
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To achieve dark black printing without using excessive amounts of CMY inks, it
is common to add a fourth component, a black ink, called the key (K) or black com-
ponent. The black component is set proportional to the smallest of the CMY compo-
nents as computed by Eq. 3.5-10. The common RGB-to-CMYK transformation,
which is based on the undercolor removal algorithm (27), is

(3.5-12a)

(3.5-12b)

(3.5-12c)

(3.5-12d)

FIGURE 3.5-8. XYZ components of the dolls_linear color image.

(b) Y, 0.000 to 0.985 (c) Z, 0.000 to 1,143

(a) X, 0.000 to 0.952

C 1.0 R uKb––=

M 1.0 G uKb––=

Y 1.0 B uKb––=

K bKb=
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where

(3.5-12e)

and  is the undercolor removal factor and  is the blackness
factor. Figure 3.5-11 presents the CMY components of the color image of Figure 3.5-7.

3.5.3 Video Color Spaces

The red, green, and blue signals from video camera sensors typically are linearly
proportional to the light striking each sensor. However, the light generated by cathode
tube  displays  is  approximately  proportional  to  the  display  amplitude  drive signals

FIGURE 3.5-9. Yxy components of the dolls_linear color image.

(c) y, 0.080 to 0.710(b) x, 0.140 to 0.670

(a) Y, 0.000 to 0.965

Kb MIN 1.0 R 1.0 G 1.0 B–,–,–{ }=

0.0 u 1.0≤ ≤ 0.0 b 1.0≤ ≤
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raised to a power in the range 2.0 to 3.0 (28).  To obtain a good-quality display, it is
necessary to compensate for this point nonlinearity. The compensation process,
called gamma correction, involves passing the camera sensor signals through a
point nonlinearity with a power, typically, of about 0.45. In television systems, to
reduce receiver cost, gamma correction is performed at the television camera rather
than at the receiver. A linear RGB image that has been gamma corrected is called a
gamma RGB image. Liquid crystal displays are reasonably linear in the sense that
the light generated is approximately proportional to the display amplitude drive
signal. But because LCDs are used in lieu of CRTs in many applications, they usu-
ally employ circuitry to compensate for the gamma correction at the sensor.

FIGURE 3.5-10. L*a*b* components of the dolls_linear color image.

(c) b*, −65.224 to 90.171(b) a*, −55.928 to 69.291

(a) L*, −16.000 to 99.434
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In high-precision applications, gamma correction follows a linear law for low-
amplitude components and a power law for high-amplitude components according
to the relations (22)

for (3.5-13a)

for (3.5-13b)

FIGURE 3.5-11. CMY components of the dolls_linear color image.

(a) C, 0.0035 to 1.000

(c) Y, 0.0035 to 1.000(b) M, 0.000 to 1.000

K̃

c1K
c2

c3+

c4K





=

K b≥

0.0 K b<≤
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where K denotes a linear RGB component and  is the gamma-corrected component.
The constants ck and the breakpoint b are specified in Table 3.5-3 for the general case
and for conversion to the SMPTE, CCIR and CIE lightness components. Figure 3.5-12
is a plot of the gamma correction curve for the CCIR Rec. 709 primaries.

TABLE 3.5-3. Gamma Correction Constants

The inverse gamma correction relation is

for (3.5-14a)

for (3.5-14b)

General SMPTE CCIR CIE L*

c1 1.00 1.1115 1.099 116.0

c2 0.45 0.45 0.45 0.3333

c3 0.00 -0.1115 -0.099 -16.0

c4 0.00 4.0 4.5 903.3

b 0.00 0.0228 0.018 0.008856

FIGURE 3.5-12. Gamma correction curve for the CCIR Rec. 709 primaries.

K̃

k

K̃ c3–

c1

---------------
 
 
  1 c2⁄

K̃

c4

-----








=

K̃ c4b≥

0.0 K̃ c4b<≤
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Figure 3.5-13 shows the gamma RGB components of the color image of Figure
3.5-7. The gamma color image is printed in the color insert. The gamma components
have been printed as if they were linear components to illustrate the effects of the
point transformation. When viewed on an electronic display, the gamma RGB color
image will appear to be of “normal” brightness.

YIQ NTSC Transmission Color Coordinate System. In the development of the
color television system in the United States, NTSC formulated a color coordinate
system for transmission composed of three values, Y, I, Q (14). The Y value, called
luma, is proportional to the gamma-corrected luminance of a color. The other two
components, I and Q, called chroma, jointly describe the hue and saturation

FIGURE 3.5-13. Gamma RGB components of the dolls_gamma color image. See insert
for a color representation of this figure.

(a) Gamma R, 0.000 to 0.984

(b) Gamma G, 0.000 to 1.000 (c) Gamma B, 0.000 to 0.984
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attributes of an image. The reasons for transmitting the YIQ components rather than
the gamma-corrected  components directly from a color camera were two
fold: The Y signal alone could be used with existing monochrome receivers to dis-
play monochrome images; and it was found possible to limit the spatial bandwidth
of the I and Q signals without noticeable image degradation. As a result of the latter
property, a clever analog modulation scheme was developed such that the bandwidth
of a color television carrier could be restricted to the same bandwidth as a mono-
chrome carrier.

The YIQ transformations for an Illuminant C reference white are given by

(3.5-15a)

(3.5-15b)

where the tilde denotes that the component has been gamma corrected.
Figure 3.5-14 presents the YIQ components of the gamma color image of Figure

3.5-13.

YUV EBU Transmission Color Coordinate System. In the PAL and SECAM color
television systems (29) used in many countries, the luma Y and two color differ-
ences,

(3.5-16a)

(3.5-16b)

are used as transmission coordinates, where  and  are the gamma-corrected
EBU red and blue components, respectively. The YUV coordinate system was ini-
tially proposed as the NTSC transmission standard but was later replaced by the YIQ
system because it was found (4) that the I and Q signals could be reduced in band-
width to a greater degree than the U and V signals for an equal level of visual qual-
ity. The I and Q signals are related to the U and V signals by a simple rotation of
coordinates in color space:

R̃NG̃NB̃N

Y

I

Q

0.29889531 0.58662247 0.11448223

0.59597799 0.27417610– 0.32180189–

0.21147017 0.52261711– 0.31114694

R̃N

G̃N

B̃N

=

R̃N

G̃N

B̃N

1.00000000 0.95608445 0.62088850

1.00000000 0.27137664– 0.64860590–

1.00000000 1.10561724– 1.70250126

Y

I

Q

=

U
B̃E Y–
2.03

----------------=

V
R̃E Y–
1.14

----------------=

R̃E B̃E
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(3.5-17a)

(3.5-17b)

It should be noted that the U and V components of the YUV video color space are not
equivalent to the U and V components of the UVW uniform chromaticity system.

YCbCr CCIR Rec. 601 Transmission Color Coordinate System. The CCIR Rec.
601 color coordinate system YCbCr is defined for the transmission of luma and
chroma components coded in the integer range 0 to 255. The YCbCr transformations
for unit range components are defined as (28)

FIGURE 3.5-14. YIQ components of the gamma corrected dolls_gamma color image.

(a) Y, 0.000 to 0.994

(c) Q, = 0.147 to 0.169(b) l, −0.276 to 0.347

I U– 33°sin V 33°cos+=

Q U 33°cos V 33°sin+=
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(3.5-18a)

(3.5-18b)

where the tilde denotes that the component has been gamma corrected.

Photo YCC Color Coordinate System. Eastman Kodak company has developed an
image storage system, called PhotoCD, in which a photographic negative is
scanned, converted to a luma/chroma format similar to Rec. 601YCbCr, and
recorded in a proprietary compressed form on a compact disk. The PhotoYCC
format and its associated RGB display format have become defacto standards.
PhotoYCC employs the CCIR Rec. 709 primaries for scanning. The conversion to
YCC is defined as (27,28,30)

(3.5-19a)

Transformation from PhotoCD components for display is not an exact inverse of Eq.
3.5-19a, in order to preserve the extended dynamic range of film images. The
YC1C2-to-RDGDBD display components is given by

(3.5-19b)

3.5.4. Nonstandard Color Spaces

Several nonstandard color spaces used for image processing applications are
described in this section.

Y

Cb

Cr

0.29900000 0.58700000 0.11400000

0.16873600– 0.33126400– 0.50000000

0.50000000 0.4186680– 0.08131200–

R̃S

G̃S

B̃S

=

R̃S

G̃S

B̃S

1.00000000 0.0009264– 1.40168676

1.00000000 0.34369538– 0.71416904–

1.00000000 1.77216042 0.00099022

Y

Cb

Cr

=

Y

C1

C2

0.299 0.587 0.114

0.299– 0.587– 0.500

0.500 0.587– 0.114

R̃709

G̃709

B̃709

=

RD

GD

BD

0.969 0.000 1.000

0.969 0.194– 0.509–

0.969 1.000 0.000

Y

C1

C2

=
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IHS Color Coordinate System. The IHS coordinate system (31) has been used
within the image processing community as a quantitative means of specifying the
intensity, hue, and saturation of a color. It is defined by the relations

(3.5-20a)

(3.5-20b)

(3.5-20c)

By this definition, the color blue is the zero reference for hue. The inverse relation-
ship is

(3.5-21a)

(3.5-21b)

(3.5-21c)

Figure 3.5-15 shows the IHS components of the gamma RGB image of Figure
3.5-13.

Karhunen–Loeve Color Coordinate System. Typically, the R, G, and B tristimulus
values of a color image are highly correlated with one another (32). In the develop-
ment of efficient quantization, coding, and processing techniques for color images,
it is often desirable to work with components that are uncorrelated. If the second-
order moments of the RGB tristimulus values are known, or at least estimable, it is
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possible to derive an orthogonal coordinate system, in which the components are
uncorrelated, by a Karhunen–Loeve (K–L) transformation of the RGB tristimulus
values. The K-L color transform is defined as

(3.5-22a)

FIGURE 3.5-15. IHS components of the dolls_gamma color image.

(c) S, 0.000 to 0.476(b) H, −3.136 to 3.142

(a) l, 0.000 to 0.989

K1

K2

K3

m11 m12 m13

m21 m22 m23

m31 m32 m33

R

G

B

=
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(3.5-22b)

where the transformation matrix with general term  composed of the eigenvec-
tors of the RGB covariance matrix with general term . The transformation matrix
satisfies the relation

(3.5-23)

where , ,  are the eigenvalues of the covariance matrix and

(3.5-24a)

(3.5-24b)

(3.5-24c)

(3.5-24d)

(3.5-24e)

(3.5-24f)

In Eq. 3.5-23,  is the expectation operator and the overbar denotes the mean
value of a random variable.

Retinal Cone Color Coordinate System. As indicated in Chapter 2, in the discus-
sion of models of the human visual system for color vision, indirect measurements
of the spectral sensitivities , ,  have been made for the three types
of retinal cones. It has been found that these spectral sensitivity functions can be lin-
early related to spectral tristimulus values established by colorimetric experimenta-
tion. Hence a set of cone signals T1, T2, T3 may be regarded as tristimulus values in
a retinal cone color coordinate system. The tristimulus values of the retinal cone
color coordinate system are related to the XYZ system by the coordinate conversion
matrix (33)

R

G

B

m11 m21 m31

m12 m22 m32

m13 m23 m33

K1

K2

K3

=

mij

uij

m11 m12 m13
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m31 m32 m33
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u12 u22 u23
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m11 m21 m31
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m13 m23 m33

λ1 0 0

0 λ2 0

0 0 λ3

=

λ1 λ2 λ3
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PART 2

DIGITAL IMAGE CHARACTERIZATION

Digital image processing is based on the conversion of a continuous image field to
equivalent digital form. This part of the book considers the image sampling and
quantization processes that perform the analog image to digital image conversion.
The inverse operation of producing continuous image displays from digital image
arrays is also analyzed. Vector-space methods of image representation are developed
for deterministic and stochastic image arrays.

Digital Image Processing: PIKS Inside, Third Edition. William K. Pratt
Copyright © 2001 John Wiley & Sons, Inc.

ISBNs: 0-471-37407-5 (Hardback); 0-471-22132-5 (Electronic)
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4
IMAGE SAMPLING AND 
RECONSTRUCTION

In digital image processing systems, one usually deals with arrays of numbers
obtained by spatially sampling points of a physical image. After processing, another
array of numbers is produced, and these numbers are then used to reconstruct a con-
tinuous image for viewing. Image samples nominally represent some physical mea-
surements of a continuous image field, for example, measurements of the image
intensity or photographic density. Measurement uncertainties exist in any physical
measurement apparatus. It is important to be able to model these measurement
errors in order to specify the validity of the measurements and to design processes
for compensation of the measurement errors. Also, it is often not possible to mea-
sure an image field directly. Instead, measurements are made of some function
related to the desired image field, and this function is then inverted to obtain the
desired image field. Inversion operations of this nature are discussed in the sections
on image restoration. In this chapter the image sampling and reconstruction process
is considered for both theoretically exact and practical systems.

4.1. IMAGE SAMPLING AND RECONSTRUCTION CONCEPTS

In the design and analysis of image sampling and reconstruction systems, input
images are usually regarded as deterministic fields (1–5). However, in some
situations it is advantageous to consider the input to an image processing system,
especially a noise input, as a sample of a two-dimensional random process (5–7).
Both viewpoints are developed here for the analysis of image sampling and
reconstruction methods.

Digital Image Processing: PIKS Inside, Third Edition. William K. Pratt
Copyright © 2001 John Wiley & Sons, Inc.

ISBNs: 0-471-37407-5 (Hardback); 0-471-22132-5 (Electronic)
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4.1.1. Sampling Deterministic Fields

Let  denote a continuous, infinite-extent, ideal image field representing the
luminance, photographic density, or some desired parameter of a physical image. In
a perfect image sampling system, spatial samples of the ideal image would, in effect,
be obtained by multiplying the ideal image by a spatial sampling function

(4.1-1)

composed of an infinite array of Dirac delta functions arranged in a grid of spacing
 as shown in Figure 4.1-1. The sampled image is then represented as

(4.1-2)

where it is observed that  may be brought inside the summation and evalu-
ated only at the sample points . It is convenient, for purposes of analysis,
to consider the spatial frequency domain representation  of the sampled
image obtained by taking the continuous two-dimensional Fourier transform of the
sampled image. Thus

(4.1-3)

FIGURE 4.1-1. Dirac delta function sampling array.
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By the Fourier transform convolution theorem, the Fourier transform of the sampled
image can be expressed as the convolution of the Fourier transforms of the ideal
image  and the sampling function  as expressed by

(4.1-4)

The two-dimensional Fourier transform of the spatial sampling function is an infi-
nite array of Dirac delta functions in the spatial frequency domain as given by
(4, p. 22)

(4.1-5)

where  and  represent the Fourier domain sampling fre-
quencies. It will be assumed that the spectrum of the ideal image is bandlimited to
some bounds such that  for  and . Performing the
convolution of Eq. 4.1-4 yields

(4.1-6)

Upon changing the order of summation and integration and invoking the sifting
property of the delta function, the sampled image spectrum becomes

(4.1-7)

As can be seen from Figure 4.1-2, the spectrum of the sampled image consists of the
spectrum of the ideal image infinitely repeated over the frequency plane in a grid of
resolution . It should be noted that if  and  are chosen too
large with respect to the spatial frequency limits of , the individual spectra
will overlap.

A continuous image field may be obtained from the image samples of 
by linear spatial interpolation or by linear spatial filtering of the sampled image. Let

 denote the continuous domain impulse response of an interpolation filter and
 represent its transfer function.  Then the reconstructed image is obtained
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by a convolution of the samples with the reconstruction filter impulse response. The
reconstructed image then becomes

(4.1-8)

Upon substituting for  from Eq. 4.1-2 and performing the convolution, one
obtains

(4.1-9)

Thus it is seen that the impulse response function  acts as a two-dimensional
interpolation waveform for the image samples. The spatial frequency spectrum of
the reconstructed image obtained from Eq. 4.1-8 is equal to the product of the recon-
struction filter transform and the spectrum of the sampled image,

(4.1-10)

or, from Eq. 4.1-7,

(4.1-11)

FIGURE 4.1-2. Typical sampled image spectra.
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It is clear from Eq. 4.1-11 that if there is no spectrum overlap and if  filters
out all spectra for , the spectrum of the reconstructed image can be made
equal to the spectrum of the ideal image, and therefore the images themselves can be
made identical. The first condition is met for a bandlimited image if the sampling
period is chosen such that the rectangular region bounded by the image cutoff
frequencies  lies within a rectangular region defined by one-half the sam-
pling frequency. Hence

(4.1-12a)

or, equivalently,

(4.1-12b)

In physical terms, the sampling period must be equal to or smaller than one-half the
period of the finest detail within the image. This sampling condition is equivalent to
the one-dimensional sampling theorem constraint for time-varying signals that
requires a time-varying signal to be sampled at a rate of at least twice its highest-fre-
quency component. If equality holds in Eq. 4.1-12, the image is said to be sampled
at its Nyquist rate; if  and  are smaller than required by the Nyquist criterion,
the image is called oversampled; and if the opposite case holds, the image is under-
sampled.

If the original image is sampled at a spatial rate sufficient to prevent spectral
overlap in the sampled image, exact reconstruction of the ideal image can be
achieved by spatial filtering the samples with an appropriate filter. For example, as
shown in Figure 4.1-3, a filter with a transfer function of the form

for  and (4.1-13a)

otherwise (4.1-13b)

where K is a scaling constant, satisfies the condition of exact reconstruction if
 and . The point-spread function or impulse response of this

reconstruction filter is

 (4.1-14)
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With this filter, an image is reconstructed with an infinite sum of  func-
tions, called sinc functions. Another type of reconstruction filter that could be
employed is the cylindrical filter with a transfer function

for   (4.1-15a)

otherwise  (4.1-15b)

provided that . The impulse response for this filter is

FIGURE 4.1-3. Sampled image reconstruction filters.
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(4.1-16)

where  is a first-order Bessel function. There are a number of reconstruction
filters, or equivalently, interpolation waveforms, that could be employed to provide
perfect image reconstruction. In practice, however, it is often difficult to implement
optimum reconstruction filters for imaging systems.

4.1.2. Sampling Random Image Fields

In the previous discussion of image sampling and reconstruction, the ideal input
image field has been considered to be a deterministic function. It has been shown
that if the Fourier transform of the ideal image is bandlimited, then discrete image
samples taken at the Nyquist rate are sufficient to reconstruct an exact replica of the
ideal image with proper sample interpolation. It will now be shown that similar
results hold for sampling two-dimensional random fields.

Let  denote a continuous two-dimensional stationary random process
with known mean  and autocorrelation function

(4.1-17)

where  and . This process is spatially sampled by a Dirac
sampling array yielding

(4.1-18)

The autocorrelation of the sampled process is then

(4.1-19)

The first term on the right-hand side of Eq. 4.1-19 is the autocorrelation of the
stationary ideal image field. It should be observed that the product of the two Dirac
sampling functions on the right-hand side of Eq. 4.1-19 is itself a Dirac sampling
function of the form
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(4.1-20)

Hence the sampled random field is also stationary with an autocorrelation function

(4.1-21)

Taking the two-dimensional Fourier transform of Eq. 4.1-21 yields the power spec-
trum of the sampled random field. By the Fourier transform convolution theorem

(4.1-22)

where  and  represent the power spectral densities of the
ideal image and sampled ideal image, respectively, and  is the Fourier
transform of the Dirac sampling array. Then, by the derivation leading to Eq. 4.1-7,
it is found that the spectrum of the sampled field can be written as

(4.1-23)

Thus the sampled image power spectrum is composed of the power spectrum of the
continuous ideal image field replicated over the spatial frequency domain at integer
multiples of the sampling spatial frequency . If the power spectrum
of the continuous ideal image field is bandlimited such that  for

 and , where  and are  cutoff frequencies, the individual
spectra of Eq. 4.1-23 will not overlap if the spatial sampling periods are chosen such
that  and . A continuous random field  may be recon-
structed from samples of the random ideal image field by the interpolation formula

(4.1-24)

where  is the deterministic interpolation function. The reconstructed field and
the ideal image field can be made equivalent in the mean-square sense (5, p. 284),
that is,

(4.1-25)

if the Nyquist sampling criteria are met and if suitable interpolation functions, such
as the sinc function or Bessel function of Eqs. 4.1-14 and 4.1-16, are utilized.
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The preceding results are directly applicable to the practical problem of sampling
a deterministic image field plus additive noise, which is modeled as a random field.
Figure 4.1-4 shows the spectrum of a sampled noisy image. This sketch indicates a
significant potential problem. The spectrum of the noise may be wider than the ideal
image spectrum, and if the noise process is undersampled, its tails will overlap into
the passband of the image reconstruction filter, leading to additional noise artifacts.
A solution to this problem is to prefilter the noisy image before sampling to reduce
the noise bandwidth.

4.2. IMAGE SAMPLING SYSTEMS

In a physical image sampling system, the sampling array will be of finite extent, the
sampling pulses will be of finite width, and the image may be undersampled. The
consequences of nonideal sampling are explored next.

As a basis for the discussion, Figure 4.2-1 illustrates a common image scanning
system. In operation, a narrow light beam is scanned directly across a positive
photographic transparency of an ideal image. The light passing through the
transparency is collected by a condenser lens and is directed toward the surface of a
photodetector. The electrical output of the photodetector is integrated over the time
period during which the light beam strikes a resolution cell. In the analysis it will be
assumed that the sampling is noise-free. The results developed in Section 4.1 for

FIGURE 4.1-4. Spectra of a sampled noisy image.
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sampling noisy images can be combined with the results developed in this section
quite readily. Also, it should be noted that the analysis is easily extended to a wide
class of physical image sampling systems.

4.2.1. Sampling Pulse Effects

Under the assumptions stated above, the sampled image function is given by

(4.2-1)

where the sampling array

(4.2-2)

is composed of (2J + 1)(2K + 1) identical pulses  arranged in a grid of spac-
ing . The symmetrical limits on the summation are chosen for notational
simplicity. The sampling pulses are assumed scaled such that

(4.2-3)

For purposes of analysis, the sampling function may be assumed to be generated by
a finite array of Dirac delta functions  passing through a linear filter with
impulse response . Thus

FIGURE 4.2-1. Image scanning system.
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(4.2-4)

where

(4.2-5)

Combining Eqs. 4.2-1 and 4.2-2 results in an expression for the sampled image
function,

(4.2-6)

The spectrum of the sampled image function is given by

(4.2-7)

where  is the Fourier transform of . The Fourier transform of the
truncated sampling array is found to be (5, p. 105)

 (4.2-8)

Figure 4.2-2 depicts . In the limit as J and K become large, the right-hand
side of Eq. 4.2-7 becomes an array of Dirac delta functions.

FIGURE 4.2-2. Truncated sampling train and its Fourier spectrum.
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In an image reconstruction system, an image is reconstructed by interpolation of
its samples. Ideal interpolation waveforms such as the sinc function of Eq. 4.1-14 or
the Bessel function of Eq. 4.1-16 generally extend over the entire image field. If the
sampling array is truncated, the reconstructed image will be in error near its bound-
ary because the tails of the interpolation waveforms will be truncated in the vicinity
of the boundary (8,9). However, the error is usually negligibly small at distances of
about 8 to 10 Nyquist samples or greater from the boundary.

The actual numerical samples of an image are obtained by a spatial integration of
 over some finite resolution cell. In the scanning system of Figure 4.2-1, the

integration is inherently performed on the photodetector surface. The image sample
value of the resolution cell (j, k) may then be expressed as

(4.2-9)

where Ax and Ay denote the maximum dimensions of the resolution cell. It is
assumed that only one sample pulse exists during the integration time of the detec-
tor. If this assumption is not valid, consideration must be given to the difficult prob-
lem of sample crosstalk. In the sampling system under discussion, the width of the
resolution cell may be larger than the sample spacing. Thus the model provides for
sequentially overlapped samples in time.

By a simple change of variables, Eq. 4.2-9 may be rewritten as

(4.2-10)

Because only a single sampling pulse is assumed to occur during the integration
period, the limits of Eq. 4.2-10 can be extended infinitely . In this formulation, Eq.
4.2-10 is recognized to be equivalent to a convolution of the ideal continuous image

 with an impulse response function  with reversed coordinates,
followed by sampling over a finite area with Dirac delta functions. Thus, neglecting
the effects of the finite size of the sampling array, the model for finite extent pulse
sampling becomes

(4.2-11)

In most sampling systems, the sampling pulse is symmetric, so that .
Equation 4.2-11 provides a simple relation that is useful in assessing the effect

of finite extent pulse sampling. If the ideal image is bandlimited and Ax and Ay sat-
isfy the Nyquist criterion, the finite extent of the sample pulse represents an equiv-
alent linear spatial degradation (an image blur) that occurs before ideal sampling.
Part 4 considers methods of compensating for this degradation. A finite-extent
sampling pulse is not always a detriment, however. Consider the situation in which
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the ideal image is insufficiently bandlimited so that it is undersampled. The finite-
extent pulse, in effect, provides a low-pass filtering of the ideal image, which, in
turn, serves to limit its spatial frequency content, and hence to minimize aliasing
error.

4.2.2. Aliasing Effects

To achieve perfect image reconstruction in a sampled imaging system, it is neces-
sary to bandlimit the image to be sampled, spatially sample the image at the Nyquist
or higher rate, and properly interpolate the image samples. Sample interpolation is
considered in the next section; an analysis is presented here of the effect of under-
sampling an image.

If there is spectral overlap resulting from undersampling, as indicated by the
shaded regions in Figure 4.2-3, spurious spatial frequency components will be intro-
duced into the reconstruction. The effect is called an aliasing error (10,11). Aliasing
effects in an actual image are shown in Figure 4.2-4. Spatial undersampling of the
image creates artificial low-spatial-frequency components in the reconstruction. In
the field of optics, aliasing errors are called moiré patterns.

From Eq. 4.1-7 the spectrum of a sampled image can be written in the form

(4.2-12)

FIGURE 4.2-3. Spectra of undersampled two-dimensional function.
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FIGURE 4.2-4. Example of aliasing error in a sampled image.

(a) Original image

(b) Sampled image
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where  represents the spectrum of the original image sampled at period
. The term

(4.2-13)

for  and  describes the spectrum of the higher-order components of the
sampled image repeated over spatial frequencies  and . If
there were no spectral foldover, optimal interpolation of the sampled image
components could be obtained by passing the sampled image through a zonal low-
pass filter defined by

for  and (4.2-14a)

otherwise (4.2-14b)

where K is a scaling constant. Applying this interpolation strategy to an undersam-
pled image yields a reconstructed image field

(4.2-15)

where

(4.2-16)

represents the aliasing error artifact in the reconstructed image. The factor K has
absorbed the amplitude scaling factors. Figure 4.2-5 shows the reconstructed image

FIGURE 4.2-5. Reconstructed image spectrum.
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spectrum that illustrates the spectral foldover in the zonal low-pass filter passband.
The aliasing error component of Eq. 4.2-16 can be reduced substantially  by low-
pass filtering before sampling to attenuate the spectral foldover.

Figure 4.2-6 shows a model for the quantitative analysis of aliasing effects. In
this model, the ideal image  is assumed to be a sample of a two-dimensional
random process with known power-spectral density . The ideal image is
linearly filtered by a presampling spatial filter with a transfer function .
This filter is assumed to be a low-pass type of filter with a smooth attenuation of
high spatial frequencies (i.e., not a zonal low-pass filter with a sharp cutoff). The fil-
tered image is then spatially sampled by an ideal Dirac delta function sampler at a
resolution . Next, a reconstruction filter interpolates the image samples to pro-
duce a replica of the ideal image. From Eq. 1.4-27, the power spectral density at the
presampling filter output is found to be

(4.2-17)

and the Fourier spectrum of the sampled image field is

(4.2-18)

Figure 4.2-7 shows the sampled image power spectral density and the foldover alias-
ing spectral density from the first sideband with and without presampling low-pass
filtering.

It is desirable to isolate the undersampling effect from the effect of improper
reconstruction. Therefore, assume for this analysis that the reconstruction filter

 is an optimal filter of the form given in Eq. 4.2-14. The energy passing
through the reconstruction filter for j = k = 0 is then

(4.2-19)

FIGURE 4.2-6. Model for analysis of aliasing effect.
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Ideally, the presampling filter should be a low-pass zonal filter with a transfer func-
tion identical to that of the reconstruction filter as given by Eq. 4.2-14. In this case,
the sampled image energy would assume the maximum value

(4.2-20)

Image resolution degradation resulting from the presampling filter may then be
measured by the ratio

(4.2-21)

The aliasing error in a sampled image system is generally measured in terms of
the energy, from higher-order sidebands, that folds over into the passband of the
reconstruction filter. Assume, for simplicity, that the sampling rate is sufficient so
that the spectral foldover from spectra centered at  is negligible
for  and . The total aliasing error energy, as indicated by the doubly cross-
hatched region of Figure 4.2-7, is then

(4.2-22)

where

(4.2-23)

FIGURE 4.2-7. Effect of presampling filtering on a sampled image.
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denotes the energy of the output of the presampling filter. The aliasing error is
defined as (10)

(4.2-24)

Aliasing error can be reduced by attenuating high spatial frequencies of 
with the presampling filter. However, any attenuation within the passband of the
reconstruction filter represents a loss of resolution of the sampled image. As a result,
there is a trade-off between sampled image resolution and aliasing error.

Consideration is now given to the aliasing error versus resolution performance of
several practical types of presampling filters. Perhaps the simplest means of spa-
tially filtering an image formed by incoherent light is to pass the image through a
lens with a restricted aperture. Spatial filtering can then be achieved by controlling
the degree of lens misfocus. Figure 11.2-2 is a plot of the optical transfer function of
a circular lens as a function of the degree of lens misfocus. Even a perfectly focused
lens produces some blurring because of the diffraction limit of its aperture. The
transfer function of a diffraction-limited circular lens of diameter d is given by
(12, p. 83)

for (4.2-25a)

for (4.2-25b)

where  and R is the distance from the lens to the focal plane. In Section
4.2.1, it was noted that sampling with a finite-extent sampling pulse is equivalent to
ideal sampling of an image that has been passed through a spatial filter whose
impulse response is equal to the pulse shape of the sampling pulse with reversed
coordinates. Thus the sampling pulse may be utilized to perform presampling filter-
ing. A common pulse shape is the rectangular pulse

for (4.2-26a)

for (4.2-26b)

obtained with an incoherent light imaging system of a scanning microdensitometer.
The transfer function for a square scanning spot is
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 (4.2-27)

Cathode ray tube displays produce display spots with a two-dimensional Gaussian
shape of the form

 (4.2-28)

where  is a measure of the spot spread. The equivalent transfer function of the
Gaussian-shaped scanning spot

 (4.2-29)

Examples of the aliasing error-resolution trade-offs for a diffraction-limited aper-
ture, a square sampling spot, and a Gaussian-shaped spot are presented in Figure
4.2-8 as a function of the parameter . The square pulse width is set at ,
so that the first zero of the sinc function coincides with the lens cutoff frequency.
The spread of the Gaussian spot is set at , corresponding to two stan-
dard deviation units in crosssection. In this example, the input image spectrum is
modeled as

FIGURE 4.2-8. Aliasing error and resolution error obtained with different types of
prefiltering.
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 (4.2-30)

where A is an amplitude constant, m is an integer governing the rate of falloff of the
Fourier spectrum, and  is the spatial frequency at the half-amplitude point. The
curves of Figure 4.2-8 indicate that the Gaussian spot and square spot scanning pre-
filters provide about the same results, while the diffraction-limited lens yields a
somewhat greater loss in resolution for the same aliasing error level. A defocused
lens would give even poorer results.

4.3. IMAGE RECONSTRUCTION SYSTEMS

In Section 4.1 the conditions for exact image reconstruction were stated: The origi-
nal image must be spatially sampled at a rate of at least twice its highest spatial fre-
quency, and the reconstruction filter, or equivalent interpolator, must be designed to
pass the spectral component at j = 0, k = 0 without distortion and reject all spectra
for which . With physical image reconstruction systems, these conditions are
impossible to achieve exactly. Consideration is now given to the effects of using
imperfect reconstruction functions.

4.3.1. Implementation Techniques

In most digital image processing systems, electrical image samples are sequentially
output from the processor in a normal raster scan fashion. A continuous image is
generated from these electrical samples by driving an optical display such as a cath-
ode ray tube (CRT) with the intensity of each point set proportional to the image
sample amplitude. The light array on the CRT can then be imaged onto a ground-
glass screen for viewing or onto photographic film for recording with a light projec-
tion system incorporating an incoherent spatial filter possessing a desired optical
transfer function. Optimal transfer functions with a perfectly flat passband over the
image spectrum and a sharp cutoff to zero outside the spectrum cannot be physically
implemented.

The most common means of image reconstruction is by use of electro-optical
techniques. For example, image reconstruction can be performed quite simply by
electrically defocusing the writing spot of a CRT display. The drawback of this tech-
nique is the difficulty of accurately controlling the spot shape over the image field.
In a scanning microdensitometer, image reconstruction is usually accomplished by
projecting a rectangularly shaped spot of light onto photographic film. Generally,
the spot size is set at the same size as the sample spacing to fill the image field com-
pletely. The resulting interpolation is simple to perform, but not optimal. If a small
writing spot can be achieved with a CRT display or a projected light display, it is
possible approximately to synthesize any desired interpolation by subscanning a res-
olution cell, as shown in Figure 4.3-1.
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The following subsections introduce several one- and two-dimensional interpola-
tion functions and discuss their theoretical performance. Chapter 13 presents meth-
ods of digitally implementing image reconstruction systems.

FIGURE 4.3-1. Image reconstruction by subscanning.

FIGURE 4.3-2. One-dimensional interpolation waveforms.
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4.3.2. Interpolation Functions

Figure 4.3-2 illustrates several one-dimensional interpolation functions. As stated
previously, the  sinc  function,  provides  an  exact  reconstruction,  but  it cannot be
physically generated by an incoherent optical filtering system. It is possible to
approximate the sinc function by truncating it and then performing subscanning
(Figure 4.3-1). The simplest interpolation waveform is the square pulse function,
which results in a zero-order interpolation of the samples. It is defined mathemati-
cally as

for (4.3-1)

and zero otherwise, where for notational simplicity, the sample spacing is assumed
to be of unit dimension. A triangle function, defined as

for (4.3-2a)

for (4.3-2b)

FIGURE 4.3-3. One-dimensional interpolation.
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provides the first-order linear sample interpolation with trianglar interpolation
waveforms. Figure 4.3-3 illustrates one-dimensional interpolation using sinc,
square, and triangle functions.

The triangle function may be considered to be the result of convolving a square
function with itself. Convolution of the triangle function with the square function
yields a bell-shaped interpolation waveform (in Figure 4.3-2d). It is defined as

for (4.3-3a)

for (4.3-3b)

for (4.3-3c)

This process quickly converges to the Gaussian-shaped waveform of Figure 4.3-2f.
Convolving the bell-shaped waveform with the square function results in a third-
order polynomial function called a cubic B-spline (13,14). It is defined mathemati-
cally as

for (4.3-4a)

for (4.3-4b)

The cubic B-spline is a particularly attractive candidate for image interpolation
because of its properties of continuity and smoothness at the sample points. It can be
shown by direct differentiation of Eq. 4.3-4, that R3(x) is continuous in its first and
second derivatives at the sample points.

As mentioned earlier, the sinc function can be approximated by truncating its
tails. Typically, this is done over a four-sample interval. The problem with this
approach is that the slope discontinuity at the ends of the waveform leads to ampli-
tude ripples in a reconstructed function. This problem can be eliminated by generat-
ing a cubic convolution function (15,16), which forces the slope of the ends of the
interpolation to be zero. The cubic convolution interpolation function can be
expressed in the following general form:

for (4.3-5a)

for (4.3-5b)
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where Ai, Bi, Ci, Di are weighting factors. The weighting factors are determined by
satisfying two sets of extraneous conditions:

1.  at x = 0, and  at x = 1, 2.

2. The first-order derivative  at x = 0, 1, 2.

These conditions results in seven equations for the eight unknowns and lead to the
parametric expression

for (4.3-6a)

for (4.3-6b)

where  of Eq. 4.3-5 is the remaining unknown weighting factor. Rifman
(15) and Bernstein (16) have set , which causes  to have the same
slope, - 1, at x = 1 as the sinc function. Keys (17) has proposed setting ,
which provides an interpolation function that approximates the original unsam-
pled image to as high a degree as possible in the sense of a power series expan-
sion. The factor a in Eq. 4.3-6 can be used as a tuning parameter to obtain a best
visual interpolation (18,19).

Table 4.3-1 defines several orthogonally separable two-dimensional interpola-
tion functions for which . The separable square function has a
square peg shape. The separable triangle function has the shape of a pyramid.
Using a triangle interpolation function for one-dimensional interpolation is
equivalent to linearly connecting adjacent sample peaks as shown in Figure
4.3-3c. The extension to two dimensions does not hold because, in general, it is
not possible to fit a plane to four adjacent samples. One approach, illustrated in
Figure 4.3-4a, is to perform a planar fit in a piecewise fashion. In region I of
Figure 4.3-4a, points are linearly interpolated in the plane defined by pixels A, B,
C, while in region II, interpolation is performed in the plane defined by pixels B,
C, D. A computationally simpler method, called bilinear interpolation, is
described in Figure 4.3-4b. Bilinear interpolation is performed by linearly interpo-
lating points along separable orthogonal coordinates of the continuous image
field. The resultant interpolated surface of Figure 4.3-4b, connecting pixels A, B,
C, D, is generally nonplanar. Chapter 13 shows that bilinear interpolation is equiv-
alent to interpolation with a pyramid function.
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TABLE 4.3-1. Two-Dimensional Interpolation Functions

4.3.3. Effect of Imperfect Reconstruction Filters

The performance of practical image reconstruction systems will now be analyzed. It
will be assumed that the input to the image reconstruction system is composed of
samples of an ideal image obtained by sampling with a finite array of Dirac
samples at the Nyquist rate. From Eq. 4.1-9 the reconstructed image is found to be

(4.3-7)
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where R(x, y) is the two-dimensional interpolation function of the image reconstruc-
tion system. Ideally, the reconstructed image would be the exact replica of the ideal
image as obtained from Eq. 4.1-9. That is,

(4.3-8)

where  represents an optimum interpolation function such as given by Eq.
4.1-14 or 4.1-16. The reconstruction error over the bounds of the sampled image is
then

(4.3-9)

There are two contributors to the reconstruction error: (1) the physical system
interpolation function R(x, y) may differ from the ideal interpolation function

, and (2) the finite bounds of the reconstruction, which cause truncation of
the interpolation functions at the boundary. In most sampled imaging systems, the
boundary reconstruction error is ignored because the error generally becomes negli-
gible at distances of a few samples from the boundary. The utilization of nonideal
interpolation functions leads to a potential loss of image resolution and to the intro-
duction of high-spatial-frequency artifacts. 

The effect of an imperfect reconstruction filter may be analyzed conveniently by
examination of the frequency spectrum of a reconstructed image, as derived in Eq.
4.1-11:

(4.3-10)

FIGURE 4.3-4. Two-dimensional linear interpolation.
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Ideally,  should select the spectral component for j = 0, k = 0 with uniform
attenuation at all spatial frequencies and should reject all other spectral components.
An imperfect filter may attenuate the frequency components of the zero-order spec-
tra, causing a loss of image resolution, and may also permit higher-order spectral
modes to contribute to the restoration, and therefore introduce distortion in the resto-
ration. Figure 4.3-5 provides a graphic example of the effect of an imperfect image
reconstruction filter. A typical cross section of a sampled image is shown in Figure
4.3-5a. With an ideal reconstruction filter employing sinc functions for interpola-
tion, the central image spectrum is extracted and all sidebands are rejected, as shown
in Figure 4.3-5c. Figure 4.3-5d is a plot of the transfer function for a zero-order
interpolation reconstruction filter in which the reconstructed pixel amplitudes over
the pixel sample area are set at the sample value. The resulting spectrum shown in
Figure 4.3-5e exhibits distortion from attenuation of the central spectral mode and
spurious high-frequency signal components.

Following the analysis leading to Eq. 4.2-21, the resolution loss resulting from
the use of a nonideal reconstruction function R(x, y) may be specified quantitatively
as

(4.3-11)

FIGURE 4.3-5. Power spectra for perfect and imperfect reconstruction: (a) Sampled image
input ; (b) sinc function reconstruction filter transfer function ; (c) sinc
function interpolator output ; (d) zero-order interpolation reconstruction filter
transfer function ; (e) zero-order interpolator output .
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where

(4.3-12)

represents the actual interpolated image energy in the Nyquist sampling band limits,
and

(4.3-13)

is the ideal interpolated image energy. The interpolation error attributable to high-
spatial-frequency artifacts may be defined as

(4.3-14)

where

(4.3-15)

denotes the total energy of the interpolated image and

(4.3-16)

is that portion of the interpolated image energy lying outside the Nyquist band lim-
its.

Table 4.3-2 lists the resolution error and interpolation error obtained with several
separable two-dimensional interpolation functions. In this example, the power spec-
tral density of the ideal image is assumed to be of the form

for  (4.3-17)

and zero elsewhere. The interpolation error contribution of highest-order
components, , is assumed negligible. The table indicates that zero-order
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TABLE 4.3-2. Interpolation Error and Resolution Error for Various Separable Two-
Dimensional Interpolation Functions

interpolation with a square interpolation function results in a significant amount of
resolution error. Interpolation error reduces significantly for higher-order convolu-
tional interpolation functions, but at the expense of resolution error.
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5
DISCRETE IMAGE MATHEMATICAL 
CHARACTERIZATION

Chapter 1 presented a mathematical characterization of continuous image fields.
This chapter develops a vector-space algebra formalism for representing discrete
image fields from a deterministic and statistical viewpoint. Appendix 1   presents a
summary of vector-space algebra concepts.

5.1. VECTOR-SPACE IMAGE REPRESENTATION

In Chapter 1 a generalized continuous image function F(x, y, t) was selected to
represent the luminance, tristimulus value, or some other appropriate measure of a
physical imaging system. Image sampling techniques, discussed in Chapter 4,
indicated means by which a discrete array F(j, k) could be extracted from the contin-
uous image field at some time instant over some rectangular area ,

. It is often helpful to regard this sampled image array as a 
element matrix

(5.1-1)

for  where the indices of the sampled array are reindexed for consistency
with standard vector-space notation. Figure 5.1-1 illustrates the geometric relation-
ship between the Cartesian coordinate system of a continuous image and its array of
samples. Each image sample is called a pixel.

J– j J≤ ≤
K– k K≤ ≤ N1 N2×
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For purposes of analysis, it is often convenient to convert the image matrix to
vector form by column (or row) scanning F, and then stringing the elements together
in a long vector (1). An equivalent scanning operation can be expressed in quantita-
tive form by the use of a  operational vector  and a  matrix 
defined as

(5.1-2)

Then the vector representation of the image matrix F is given by the stacking opera-
tion

(5.1-3)

In essence, the vector  extracts the nth column from F and the matrix  places
this column into the nth segment of the vector f. Thus, f contains the column-

FIGURE 5.1-1. Geometric relationship between a continuous image and its array of
samples.
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scanned elements of F. The inverse relation of casting the vector f into matrix form
is obtained from

(5.1-4)

With the matrix-to-vector operator of Eq. 5.1-3 and the vector-to-matrix operator of
Eq. 5.1-4, it is now possible easily to convert between vector and matrix representa-
tions of a two-dimensional array. The advantages of dealing with images in vector
form are a more compact notation and the ability to apply results derived previously
for one-dimensional signal processing applications. It should be recognized that Eqs
5.1-3 and 5.1-4 represent more than a lexicographic ordering between an array and a
vector; these equations define mathematical operators that may be manipulated ana-
lytically. Numerous examples of the applications of the stacking operators are given
in subsequent sections. 

5.2. GENERALIZED TWO-DIMENSIONAL LINEAR OPERATOR

A large class of image processing operations are linear in nature; an output image
field is formed from linear combinations of pixels of an input image field. Such
operations include superposition, convolution, unitary transformation, and discrete
linear filtering.

Consider the  element input image array . A generalized linear
operation on this image field results in a  output image array  as
defined by

(5.2-1)

where the operator kernel  represents a weighting constant, which,
in general, is a function of both input and output image coordinates (1).

For the analysis of linear image processing operations, it is convenient to adopt
the vector-space formulation developed in Section 5.1. Thus, let the input image
array  be represented as matrix F or alternatively, as a vector f obtained by
column scanning F. Similarly, let the output image array  be represented
by the matrix P or the column-scanned vector p. For notational simplicity, in the
subsequent discussions, the input and output image arrays are assumed to be square
and of dimensions  and , respectively. Now, let T
denote the  matrix performing a linear transformation on the  input
image vector f yielding the  output image vector

(5.2-2)
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The matrix T may be partitioned into  submatrices  and written as

(5.2-3)

From Eq. 5.1-3, it is possible to relate the output image vector p to the input image
matrix F by the equation

(5.2-4)

Furthermore, from Eq. 5.1-4, the output image matrix P is related to the input image
vector p by

(5.2-5)

Combining the above yields the relation between the input and output image matri-
ces,

(5.2-6)

where it is observed that the operators  and  simply extract the partition 
from T. Hence

(5.2-7)

If the linear transformation is separable such that T may be expressed in the
direct product form
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where  and  are row and column operators on F, then

(5.2-9)

As a consequence,

(5.2-10)

Hence the output image matrix P can be produced by sequential row and column
operations.

In many image processing applications, the linear transformations operator T is
highly structured, and computational simplifications are possible. Special cases of
interest are listed below and illustrated in Figure 5.2-1 for the case in which the
input and output images are of the same dimension, .

FIGURE 5.2-1. Structure of linear operator matrices.
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1. Column processing of  F:

(5.2-11)

where  is the transformation matrix for the jth column.

2. Identical column processing of F:

(5.2-12)

3. Row processing of  F:

(5.2-13)

where  is the transformation matrix for the jth row.

4. Identical row processing of F:

(5.2-14a)

and

(5.2-14b)

5. Identical row and identical column processing of  F:

(5.2-15)

The number of computational operations for each of these cases is tabulated in Table
5.2-1.

Equation 5.2-10 indicates that separable two-dimensional linear transforms can
be computed by sequential one-dimensional row and column operations on a data
array. As indicated by Table 5.2-1, a considerable savings in computation is possible
for such transforms: computation by Eq 5.2-2 in the general case requires 
operations; computation by Eq. 5.2-10, when it applies, requires only 
operations. Furthermore, F may be stored in a serial memory and fetched line by
line. With this technique, however, it is necessary to transpose the result of the col-
umn transforms in order to perform the row transforms. References 2 and 3 describe
algorithms for line storage matrix transposition.
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TABLE 5.2-1. Computational Requirements for Linear Transform Operator

5.3. IMAGE STATISTICAL CHARACTERIZATION

The statistical descriptors of continuous images presented in Chapter 1 can be
applied directly to characterize discrete images. In this section, expressions are
developed for the statistical moments of discrete image arrays. Joint probability
density models for discrete image fields are described in the following section. Ref-
erence 4 provides background information for this subject.

The moments of a discrete image process may be expressed conveniently in
vector-space form. The mean value of the discrete image function is a matrix of the
form

(5.3-1)

If the image array is written as a column-scanned vector, the mean of the image vec-
tor is

(5.3-2)

The correlation function of the image array is given by

(5.3-3)

where the  represent points of the image array. Similarly, the covariance function
of the image array is

(5.3-4)
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Finally, the variance function of the image array is obtained directly from the cova-
riance function as

(5.3-5)

If the image array is represented in vector form, the correlation matrix of f can be
written in terms of the correlation of elements of F as

(5.3-6a)

or

(5.3-6b)
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is the  correlation matrix of the mth and nth columns of F. Hence it is possi-
ble to express  in partitioned form as
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The covariance matrix of f can be found from its correlation matrix and mean vector
by the relation
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(5.3-10)

If the image matrix F is wide-sense stationary, the correlation function can be
expressed as

(5.3-11)

where  and . Correspondingly, the covariance matrix parti-
tions of Eq. 5.3-9 are related by

(5.3-12a)

(5.3-12b)

where . Hence, for a wide-sense-stationary image array

(5.3-13)

The matrix of Eq. 5.3-13 is of block Toeplitz form (5). Finally, if the covariance
between elements is separable into the product of row and column covariance func-
tions, then the covariance matrix of the image vector can be expressed as the direct
product of row and column covariance matrices. Under this condition

(5.3-14)

where  is a  covariance matrix of each column of F and  is a 
covariance matrix of the rows of F.
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As a special case, consider the situation in which adjacent pixels along an image
row have a correlation of  and a self-correlation of unity. Then the
covariance matrix reduces to

(5.3-15)

FIGURE 5.3-1. Covariance measurements of the smpte_girl_luminance mono-
chrome image.
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where  denotes the variance of pixels along a row. This is an example of the
covariance matrix of a Markov process, analogous to the continuous autocovariance
function . Figure 5.3-1 contains a plot by Davisson (6) of the measured
covariance of pixels along an image line of the monochrome image of Figure 5.3-2.
The data points can be fit quite well with a Markov covariance function with

. Similarly, the covariance between lines can be modeled well with a
Markov covariance function with . If the horizontal and vertical covari-
ances were exactly separable, the covariance function for pixels along the image
diagonal would be equal to the product of the horizontal and vertical axis covariance
functions. In this example, the approximation was found to be reasonably accurate
for up to five pixel separations.

The discrete power-spectral density of a discrete image random process may be
defined, in analogy with the continuous power spectrum of Eq. 1.4-13, as the two-
dimensional discrete Fourier transform of its stationary autocorrelation function.
Thus, from Eq. 5.3-11

(5.3-16)

Figure 5.3-3 shows perspective plots of the power-spectral densities for separable
and circularly symmetric Markov processes.

FIGURE 5.3-2. Photograph of smpte_girl_luminance image.
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5.4. IMAGE PROBABILITY DENSITY MODELS

A discrete image array  can be completely characterized statistically by its
joint probability density, written in matrix form as

FIGURE 5.3-3. Power spectral densities of Markov process sources; N = 256, log magnitude
displays.

(a) Separable

u

v

(b) Circularly symmetric

u

v

F n1 n2,( )
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(5.4-1a)

or in corresponding vector form as

(5.4-1b)

where  is the order of the joint density. If all pixel values are statistically
independent, the joint density factors into the product

(5.4-2)

of its first-order marginal densities.
The most common joint probability density is the joint Gaussian, which may be

expressed as

(5.4-3)

where  is the covariance matrix of f,  is the mean of f and  denotes the
determinant of . The joint Gaussian density is useful as a model for the density of
unitary transform coefficients of an image. However, the Gaussian density is not an
adequate model for the luminance values of an image because luminance is a posi-
tive quantity and the Gaussian variables are bipolar.

Expressions for joint densities, other than the Gaussian density, are rarely found
in the literature. Huhns (7) has developed a technique of generating high-order den-
sities in terms of specified first-order marginal densities and a specified covariance
matrix between the ensemble elements.

In Chapter 6, techniques are developed for quantizing variables to some discrete
set of values called reconstruction levels. Let  denote the reconstruction level
of the pixel at vector coordinate (q). Then the probability of occurrence of the possi-
ble states of the image vector can be written in terms of the joint probability distri-
bution as

(5.4-4)

where  Normally, the reconstruction levels are set identically for
each vector component and the joint probability distribution reduces to

(5.4-5)
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Probability distributions of image values can be estimated by histogram measure-
ments. For example, the first-order probability distribution

(5.4-6)

of the amplitude value at vector coordinate q can be estimated by examining a large
collection of images representative of a given image class (e.g., chest x-rays, aerial
scenes of crops). The first-order histogram estimate of the probability distribution is
the frequency ratio

(5.4-7)

where  represents the total number of images examined and  denotes the
number for which  for j = 0, 1,..., J – 1. If the image source is statistically
stationary, the first-order probability distribution of Eq. 5.4-6 will be the same for all
vector components q. Furthermore, if the image source is ergodic, ensemble aver-
ages (measurements over a collection of pictures) can be replaced by spatial aver-
ages. Under the ergodic assumption, the first-order probability distribution can be
estimated by measurement of the spatial histogram

(5.4-8)

where  denotes the number of pixels in an image for which  for
 and . For example, for an image with 256 gray levels, 

denotes the number of pixels possessing gray level j for .
Figure 5.4-1 shows first-order histograms of the red, green, and blue components

of a color image. Most natural images possess many more dark pixels than bright
pixels, and their histograms tend to fall off exponentially at higher luminance levels.

Estimates of the second-order probability distribution for ergodic image sources
can be obtained by measurement of the second-order spatial histogram, which is a
measure of the joint occurrence of pairs of pixels separated by a specified distance.
With reference to Figure 5.4-2, let  and  denote a pair of pixels
separated by r radial units at an angle  with respect to the horizontal axis. As a
consequence of the rectilinear grid, the separation parameters may only assume cer-
tain discrete values. The second-order spatial histogram is then the frequency ratio

(5.4-9)
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where  denotes the number of pixel pairs for which  and
. The factor QT in the denominator of Eq. 5.4-9 represents the total

number of pixels lying in an image region for which the separation is . Because
of boundary effects, QT < Q.

Second-order spatial histograms of a monochrome image are presented in Figure
5.4-3 as a function of pixel separation distance and angle. As the separation
increases, the pairs of pixels become less correlated and the histogram energy tends
to spread more uniformly about the plane.

FIGURE 5.4-1. Histograms of the red, green and blue components of the smpte_girl
_linear color image.

NS j1 j2,( ) F n1 n2,( ) rj1
=

F n3 n4,( ) rj2
=

r θ,( )
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5.5. LINEAR OPERATOR STATISTICAL REPRESENTATION

If an input image array is considered to be a sample of a random process with known
first and second-order moments, the first- and second-order moments of the output
image array can be determined for a given linear transformation. First, the mean of
the output image array is

(5.5-1a)

FIGURE 5.4-2. Geometric relationships of pixel pairs.

FIGURE 5.4-3. Second-order histogram of the smpte_girl_luminance monochrome

image;  and .
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Because the expectation operator is linear,

(5.5-1b)

The correlation function of the output image array is

(5.5-2a)

or in expanded form

(5.5-2b)

After multiplication of the series and performance of the expectation operation, one
obtains

(5.5-3)

where  represents the correlation function of the input image array.
In a similar manner, the covariance function of the output image is found to be

(5.5-4)

E P m1 m2,( ){ } E F n1 n2,( ){ }O n1 n2 m1 m2,;,( )
n2 1=

N2

∑
n1 1=

N1

∑=

RP m1 m2 m3 m4,;,( ) E P m1 m2,( )P∗ m3 m4,( ){ }=

RP m1 m2 m3 m4,;,( ) E F n1 n2,( )O n1 n2 m1 m2,;,( )
n2 1=

N2

∑
n1 1=

N1

∑ ×







=

F∗ n3 n4,( )O∗ n3 n3 m3 m4,;,( )
n4 1=

N2

∑
n3 1=

N1

∑






RP m1 m2 m3 m4,;,( ) RF n1 n2 n3 n4, , ,( )O n1 n2 m1 m2,;,( )
n4 1=

N2

∑
n3 1=

N1

∑
n2 1=

N2

∑
n1 1=

N1

∑=

O× ∗ n3 n3 m3 m4,;,( )

RF n1 n2 n3 n4,;,( )

KP m1 m2 m3 m4,;,( ) KF n1 n2 n3 n4, , ,( )O n1 n2 m1 m2,;,( )
n4 1=

N2

∑
n3 1=

N1

∑
n2 1=

N2

∑
n1 1=

N1

∑=

O× ∗ n3 n3 m3 m4,;,( )



138 DISCRETE IMAGE MATHEMATICAL CHARACTERIZATION

If the input and output image arrays are expressed in vector form, the formulation of
the moments of the transformed image becomes much more compact. The mean of
the output vector p is

(5.5-5)

and the correlation matrix of p is

(5.5-6)

Finally, the covariance matrix of p is

(5.5-7)

Applications of this theory to superposition and unitary transform operators are
given in following chapters.

A special case of the general linear transformation , of fundamental
importance, occurs when the covariance matrix of Eq. 5.5-7 assumes the form

(5.5-8)

where  is a diagonal matrix. In this case, the elements of p are uncorrelated. From
Appendix A1.2, it is found that the transformation T, which produces the diagonal
matrix , has rows that are eigenvectors of . The diagonal elements of  are the
corresponding eigenvalues of . This operation is called both a matrix diagonal-
ization and a principal components transformation.
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6
 

IMAGE QUANTIZATION

Any analog quantity that is to be processed by a digital computer or digital system
must be converted to an integer number proportional to its amplitude. The conver-
sion process between analog samples and discrete-valued samples is called quanti-
zation. The following section includes an analytic treatment of the quantization
process, which is applicable not only for images but for a wide class of signals
encountered in image processing systems. Section 6.2 considers the processing of
quantized variables. The last section discusses the subjective effects of quantizing
monochrome and color images.

6.1. SCALAR QUANTIZATION

Figure 6.1-1 illustrates a typical example of the quantization of a scalar signal. In the
quantization process, the amplitude of an analog signal sample is compared to a set
of decision levels. If the sample amplitude falls between two decision levels, it is
quantized to a fixed reconstruction level lying in the quantization band. In a digital
system, each quantized sample is assigned a binary code. An equal-length binary
code is indicated in the example.

For the development of quantitative scalar signal quantization techniques, let f
and  represent the amplitude of a real, scalar signal sample and its quantized value,
respectively. It is assumed that f is a sample of a random process with known proba-
bility density . Furthermore, it is assumed that f is constrained to lie in the range

(6.1-1)

f̂

p f( )

aL f aU≤ ≤
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where  and  represent upper and lower limits.
Quantization entails specification of a set of decision levels  and a set of recon-

struction levels  such that if

(6.1-2)

the sample is quantized to a reconstruction value . Figure 6.1-2a illustrates the
placement of decision and reconstruction levels along a line for J quantization lev-
els. The staircase representation of Figure 6.1-2b is another common form of
description.

Decision and reconstruction levels are chosen to minimize some desired quanti-
zation error measure between f and . The quantization error measure usually
employed is the mean-square error because this measure is tractable, and it usually
correlates reasonably well with subjective criteria. For J quantization levels, the
mean-square quantization error is

(6.1-3)

FIGURE 6.1-1. Sample quantization.
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For a large number of quantization levels J, the probability density may be repre-
sented as a constant value  over each quantization band. Hence

(6.1-4)

which evaluates to

(6.1-5)

The optimum placing of the reconstruction level  within the range  to  can
be determined by minimization of  with respect to . Setting

(6.1-6)

yields 

(6.1-7)

FIGURE 6.1-2. Quantization decision and reconstruction levels.
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Therefore, the optimum placement of reconstruction levels is at the midpoint
between each pair of decision levels. Substitution for this choice of reconstruction
levels into the expression for the quantization error yields

(6.1-8)

The optimum choice for decision levels may be found by minimization of  in Eq.
6.1-8 by the method of Lagrange multipliers. Following this procedure, Panter and
Dite (1) found that the decision levels may be computed to a good approximation
from the integral equation

(6.1-9a)

where

(6.1-9b)

for j = 0, 1,..., J. If the probability density of the sample is uniform, the decision lev-
els will be uniformly spaced. For nonuniform probability densities, the spacing of
decision levels is narrow in large-amplitude regions of the probability density func-
tion and widens in low-amplitude portions of the density. Equation 6.1-9 does not
reduce to closed form for most probability density functions commonly encountered
in image processing systems models, and hence the decision levels must be obtained
by numerical integration.

If the number of quantization levels is not large, the approximation of Eq. 6.1-4
becomes inaccurate, and exact solutions must be explored. From Eq. 6.1-3, setting
the partial derivatives of the error expression with respect to the decision and recon-
struction levels equal to zero yields

(6.1-10a)

(6.1-10b)
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Upon simplification, the set of equations

(6.1-11a)

(6.1-11b)

is obtained. Recursive solution of these equations for a given probability distribution
 provides optimum values for the decision and reconstruction levels. Max (2)

has developed a solution for optimum decision and reconstruction levels for a Gaus-
sian density and has computed tables of optimum levels as a function of the number
of quantization steps. Table 6.1-1 lists placements of decision and quantization lev-
els for uniform, Gaussian, Laplacian, and Rayleigh densities for the Max quantizer.

If the decision and reconstruction levels are selected to satisfy Eq. 6.1-11, it can
easily be shown that the mean-square quantization error becomes

(6.1-12)

In the special case of a uniform probability density, the minimum mean-square
quantization error becomes

(6.1-13)

Quantization errors for most other densities must be determined by computation.
It is possible to perform nonlinear quantization by a companding operation, as

shown in Figure 6.1-3, in which the sample is transformed nonlinearly, linear quanti-
zation is performed, and the inverse nonlinear transformation is taken (3). In the com-
panding system of quantization, the probability density of the transformed samples is
forced to be uniform. Thus, from Figure 6.1-3, the transformed sample value is

(6.1-14)

where the nonlinear transformation  is chosen such that the probability density
of g is uniform. Thus,

FIGURE 6.1-3. Companding quantizer.
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TABLE 6.1-1. Placement of Decision and Reconstruction Levels for Max Quantizer

Uniform Gaussian Laplacian Rayleigh

Bits di ri di ri di ri di ri
1 –1.0000 –0.5000 – –0.7979 – –0.7071 0.0000 1.2657

0.0000  0.5000 0.0000   0.7979 0.0000   0.7071 2.0985 2.9313

  1.0000 –

2 –1.0000 –0.7500 – –1.5104 –1.8340 0.0000 0.8079

–0.5000 –0.2500 –0.9816 –0.4528 –1.1269 –0.4198 1.2545 1.7010

–0.0000   0.2500   0.0000   0.4528   0.0000   0.4198 2.1667 2.6325

  0.5000   0.7500   0.9816   1.5104   1.1269   1.8340 3.2465 3.8604

  1.0000

3 –1.0000 –0.8750 – –2.1519 – –3.0867 0.0000 0.5016

–0.7500 –0.6250 –1.7479 –1.3439 –2.3796 –1.6725 0.7619 1.0222

–0.5000 –0.3750 –1.0500 –0.7560 –1.2527 –0.8330 1.2594 1.4966

–0.2500 –0.1250 –0.5005 –0.2451 –0.5332 –0.2334 1.7327 1.9688

  0.0000   0.1250   0.0000   0.2451   0.0000   0.2334 2.2182 2.4675

  0.2500   0.3750   0.5005   0.7560   0.5332   0.8330 2.7476 3.0277

  0.5000   0.6250   1.0500   1.3439   1.2527   1.6725 3.3707 3.7137

  0.7500   0.8750   1.7479   2.1519   2.3796   3.0867 4.2124 4.7111

  1.0000

4 –1.0000 –0.9375 – –2.7326 – –4.4311 0.0000 0.3057

–0.8750 –0.8125 –2.4008 –2.0690 –3.7240 –3.0169 0.4606 0.6156

–0.7500 –0.6875 –1.8435 –1.6180 –2.5971 –2.1773 0.7509 0.8863

–0.6250 –0.5625 –1.4371 –1.2562 –1.8776 –1.5778 1.0130 1.1397

–0.5000 –0.4375 –1.0993 –0.9423 –1.3444 –1.1110 1.2624 1.3850

–0.3750 –0.3125 –0.7995 –0.6568 –0.9198 –0.7287 1.5064 1.6277

–0.2500 –0.1875 –0.5224 –0.3880 –0.5667 –0.4048 1.7499 1.8721

–0.1250 –0.0625 –0.2582 –0.1284 –0.2664 –0.1240 1.9970 2.1220

  0.0000   0.0625   0.0000   0.1284   0.0000   0.1240 2.2517 2.3814

  0.1250   0.1875   0.2582   0.3880   0.2644   0.4048 2.5182 2.6550

  0.2500   0.3125   0.5224   0.6568   0.5667   0.7287 2.8021 2.9492

  0.3750   0.4375   0.7995   0.9423   0.9198   1.1110 3.1110 3.2729

  0.5000   0.5625   1.0993   1.2562   1.3444   1.5778 3.4566 3.6403

  0.6250   0.6875   1.4371   1.6180   1.8776   2.1773 3.8588 4.0772

  0.7500   0.8125   1.8435   2.0690   2.5971   3.0169 4.3579 4.6385

  0.8750   0.9375   2.4008   2.7326   3.7240   4.4311 5.0649 5.4913

  1.0000

∞ ∞

∞ ∞ ∞

∞ ∞

∞ ∞ ∞

∞ ∞

∞ ∞ ∞

∞ ∞

∞ ∞ ∞
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(6.1-15)

for . If f is a zero mean random variable, the proper transformation func-
tion is (4)

(6.1-16)

That is, the nonlinear transformation function is equivalent to the cumulative proba-
bility distribution of f. Table 6.1-2 contains the companding transformations and
inverses for the Gaussian, Rayleigh, and Laplacian probability densities. It should
be noted that nonlinear quantization by the companding technique is an approxima-
tion to optimum quantization, as specified by the Max solution. The accuracy of the
approximation improves as the number of quantization levels increases.

6.2. PROCESSING QUANTIZED VARIABLES

Numbers within a digital computer that represent image variables, such as lumi-
nance or tristimulus values, normally are input as the integer codes corresponding to
the quantization reconstruction levels of the variables, as illustrated in Figure 6.1-1.
If the quantization is linear, the jth integer value is given by

(6.2-1)

where J is the maximum integer value, f is the unquantized pixel value over a
lower-to-upper range of  to , and  denotes the nearest integer value of the
argument. The corresponding reconstruction value is

(6.2-2)

Hence,  is linearly proportional to j. If the computer processing operation is itself
linear, the integer code j can be numerically processed rather than the real number .
However, if nonlinear processing is to be performed, for example, taking the loga-
rithm of a pixel, it is necessary to process  as a real variable rather than the integer j
because the operation is scale dependent. If the quantization is nonlinear, all process-
ing must be performed in the real variable domain.

In a digital computer, there are two major forms of numeric representation: real
and integer. Real numbers are stored in floating-point form, and typically have a
large dynamic range with fine precision. Integer numbers can be strictly positive or
bipolar (negative or positive).  The two's complement number system is commonly
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used in computers and digital processing hardware for representing bipolar integers.
The general format is as follows:

S.M1,M2,...,MB-1

where S is a sign bit (0 for positive, 1 for negative), followed, conceptually, by a
binary point, Mb denotes a magnitude bit, and B is the number of bits in the com-
puter word. Table 6.2-1 lists the two's complement correspondence between integer,
fractional, and decimal numbers for a 4-bit word. In this representation, all pixels
are scaled in amplitude between –1.0 and .  One of the advantages of

TABLE 6.2-1. Two’s Complement Code for 4-Bit Code Word

Code
Fractional

Value
Decimal

Value

0.111 + +0.875

0.110 + +0.750

0.101 + +0.625

0.100 + +0.500

0.011 + +0.375

0.010 + +0.250

0.001 + +0.125

0.000  0  0.000

1.111 – –0.125

1.110 – –0.250

1.101 – –0.375

1.100 – –0.500

1.011 – –0.625

1.010 – –0.750

1.001 – –0.875

1.000 – –1.000

1.0 2
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this representation is that pixel scaling is independent of precision in the sense that a
pixel  is bounded over the range

regardless of the number of bits in a word.

6.3. MONOCHROME AND COLOR IMAGE QUANTIZATION

This section considers the subjective and quantitative effects of the quantization of
monochrome and color images.

6.3.1. Monochrome Image Quantization

Monochrome images are typically input to a digital image processor as a sequence
of uniform-length binary code words. In the literature, the binary code is often
called a pulse code modulation (PCM) code. Because uniform-length code words
are used for each image sample, the number of amplitude quantization levels is
determined by the relationship

(6.3-1)

where B represents the number of code bits allocated to each sample.
A bit rate compression can be achieved for PCM coding by the simple expedient

of restricting the number of bits assigned to each sample. If image quality is to be
judged by an analytic measure, B is simply taken as the smallest value that satisfies
the minimal acceptable image quality measure. For a subjective assessment, B is
lowered until quantization effects become unacceptable. The eye is only capable of
judging the absolute brightness of about 10 to 15 shades of gray, but it is much more
sensitive to the difference in the brightness of adjacent gray shades. For a reduced
number of quantization levels, the first noticeable artifact is a gray scale contouring
caused by a jump in the reconstructed image brightness between quantization levels
in a region where the original image is slowly changing in brightness. The minimal
number of quantization bits required for basic PCM coding to prevent gray scale
contouring is dependent on a variety of factors, including the linearity of the image
display and noise effects before and after the image digitizer.

Assuming that an image sensor produces an output pixel sample proportional to the
image intensity, a question of concern then is: Should the image intensity itself, or
some function of the image intensity, be quantized? Furthermore, should the quantiza-
tion scale be linear or nonlinear? Linearity or nonlinearity of the quantization scale can 

F j k,( )

1.0– F j k,( ) 1.0<≤

L 2
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FIGURE 6.3-1. Uniform quantization of the peppers_ramp_luminance monochrome

image.

(b) 7 bit, 128 levels(a) 8 bit, 256 levels

(c) 6 bit, 64 levels (d) 5 bit, 32 levels

(e) 4 bit, 16 levels (f ) 3 bit, 8 levels
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be viewed as a matter of implementation. A given nonlinear quantization scale can
be realized by the companding operation of Figure 6.1-3, in which a nonlinear
amplification weighting of the continuous signal to be quantized is performed,
followed by linear quantization, followed by an inverse weighting of the quantized
amplitude. Thus, consideration is limited here to linear quantization of companded
pixel samples.

There have been many experimental studies to determine the number and place-
ment of quantization levels required to minimize the effect of gray scale contouring
(5–8). Goodall (5) performed some of the earliest experiments on digital television
and concluded that 6 bits of intensity quantization (64 levels) were required for good
quality and that 5 bits (32 levels) would suffice for a moderate amount of contour-
ing. Other investigators have reached similar conclusions. In most studies, however,
there has been some question as to the linearity and calibration of the imaging sys-
tem. As noted in Section 3.5.3, most television cameras and monitors exhibit a non-
linear response to light intensity. Also, the photographic film that is often used to
record the experimental results is highly nonlinear. Finally, any camera or monitor
noise tends to diminish the effects of contouring.

Figure 6.3-1 contains photographs of an image linearly quantized with a variable
number of quantization levels. The source image is a split image in which the left
side is a luminance image and the right side is a computer-generated linear ramp. In
Figure 6.3-1, the luminance signal of the image has been uniformly quantized with
from 8 to 256 levels (3 to 8 bits). Gray scale contouring in these pictures is apparent
in the ramp part of the split image for 6 or fewer bits. The contouring of the lumi-
nance image part of the split image becomes noticeable for 5 bits.

As discussed in Section 2-4, it has been postulated that the eye responds
logarithmically or to a power law of incident light amplitude. There have been several
efforts to quantitatively model this nonlinear response by a lightness function  ,
which is related to incident luminance. Priest et al. (9) have proposed a square-root
nonlinearity

(6.3-2)

where  and . Ladd and Pinney (10) have suggested a cube-
root scale

(6.3-3)

A logarithm scale

(6.3-4)

Λ

Λ 100.0Y( )1 2⁄
=

0.0 Y 1.0≤ ≤ 0.0 Λ 10.0≤ ≤

Λ 2.468 100.0Y( )1 3⁄
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100.0Y{ }log[ ]=
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where  has also been proposed by Foss et al. (11). Figure 6.3-2 com-
pares these three scaling functions.

In an effort to reduce the grey scale contouring of linear quantization, it is reason-
able to apply a lightness scaling function prior to quantization, and then to apply its
inverse to the reconstructed value in correspondence to the companding quantizer of
Figure 6.1-3. Figure 6.3-3 presents a comparison of linear, square-root, cube-root,
and logarithmic quantization for a 4-bit quantizer. Among the lightness scale quan-
tizers, the gray scale contouring appears least for the square-root scaling. The light-
ness quantizers exhibit less contouring than the linear quantizer in dark areas but
worse contouring for bright regions.

6.3.2. Color Image Quantization

A color image may be represented by its red, green, and blue source tristimulus val-
ues or any linear or nonlinear invertible function of the source tristimulus values. If
the red, green, and blue tristimulus values are to be quantized individually, the selec-
tion of the number and placement of quantization levels follows the same general
considerations as for a monochrome image. The eye exhibits a nonlinear response to
spectral lights as well as white light, and therefore, it is subjectively preferable to
compand the tristimulus values before quantization. It is known, however, that the
eye is most sensitive to brightness changes in the blue region of the spectrum, mod-
erately sensitive to brightness changes in the green spectral region, and least sensi-
tive to red changes. Thus, it is possible to assign quantization levels on this basis
more efficiently than simply using an equal number for each tristimulus value.

FIGURE 6.3-2. Lightness scales.

0.01 Y 1.0≤ ≤
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Figure 6.3-4 is a general block diagram for a color image quantization system. A
source image described by source tristimulus values R, G, B is converted to three
components x(1), x(2), x(3), which are then quantized. Next, the quantized compo-
nents , ,  are converted back to the original color coordinate system,
producing the quantized tristimulus values , , . The quantizer in Figure 6.3-4
effectively partitions the color space of the color coordinates x(1), x(2), x(3) into
quantization cells and assigns a single color value to all colors within a cell. To be
most efficient, the three color components x(1), x(2), x(3) should be quantized jointly.
However, implementation considerations often dictate separate quantization of the
color components. In such a system, x(1), x(2), x(3) are individually quantized over

FIGURE 6.3-3. Comparison of lightness scale quantization of the peppers_ramp
_luminance image for 4 bit quantization.

(a) Linear (b) Log

(c) Square root (d) Cube root

x̂ 1( ) x̂ 2( ) x̂ 3( )
R̂ Ĝ B̂
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their maximum ranges. In effect, the physical color solid is enclosed in a rectangular
solid, which is then divided into rectangular quantization cells.

If the source tristimulus values are converted to some other coordinate system for
quantization, some immediate problems arise. As an example, consider the
quantization of the UVW tristimulus values. Figure 6.3-5 shows the locus of
reproducible colors for the RGB source tristimulus values plotted as a cube and the
transformation of this color cube into the UVW coordinate system. It is seen that
the RGB cube becomes a parallelepiped. If the UVW tristimulus values are to be
quantized individually over their maximum and minimum limits, many of the
quantization cells represent nonreproducible colors and hence are wasted. It is only
worthwhile to quantize colors within the parallelepiped, but this generally is a
difficult operation to implement efficiently.

In the present analysis, it is assumed that each color component is linearly quan-
tized over its maximum range into  levels, where B(i) represents the number of
bits assigned to the component x(i). The total number of bits allotted to the coding is
fixed at

(6.3-5)

FIGURE 6.3-4 Color image quantization model.

FIGURE 6.3-5. Loci of reproducible colors for RNGNBN and UVW coordinate systems.

2
B i( )

BT B 1( ) B 2( ) B 3( )+ +=
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Let  represent the upper bound of x(i) and  the lower bound. Then each
quantization cell has dimension

(6.3-6)

Any color with color component x(i) within the quantization cell will be quantized
to the color component value . The maximum quantization error along each
color coordinate axis is then

FIGURE 6.3-6. Chromaticity shifts resulting from uniform quantization of the
smpte_girl_linear color image.

aU i( ) aL i( )

q i( )
aU i( ) aL i( )–

2
B i( )

--------------------------------=

x̂ i( )
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(6.3-7)

Thus, the coordinates of the quantized color become

(6.3-8)

subject to the conditions . It should be observed that the values of
 will always lie within the smallest cube enclosing the color solid for the given

color coordinate system. Figure 6.3-6 illustrates chromaticity shifts of various colors
for quantization in the RN GN BN and Yuv coordinate systems (12).

Jain and Pratt (12) have investigated the optimal assignment of quantization deci-
sion levels for color images in order to minimize the geodesic color distance
between an original color and its reconstructed representation. Interestingly enough,
it was found that quantization of the RN GN BN color coordinates provided better
results than for other common color coordinate systems. The primary reason was
that all quantization levels were occupied in the RN GN BN system, but many levels
were unoccupied with the other systems. This consideration seemed to override the
metric nonuniformity of the RN GN BN color space.
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PART 3

DISCRETE TWO-DIMENSIONAL 
LINEAR PROCESSING

Part 3 of the book is concerned with a unified analysis of discrete two-dimensional
linear processing operations. Several forms of discrete two-dimensional
superposition and convolution operators are developed and related to one another.
Two-dimensional transforms, such as the Fourier, Hartley, cosine, and Karhunen–
Loeve transforms, are introduced. Consideration is given to the utilization of two-
dimensional transforms as an alternative means of achieving convolutional
processing more efficiently.
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7
SUPERPOSITION AND CONVOLUTION

In Chapter 1, superposition and convolution operations were derived for continuous
two-dimensional image fields. This chapter provides a derivation of these operations
for discrete two-dimensional images. Three types of superposition and convolution
operators are defined: finite area, sampled image, and circulant area. The finite-area
operator is a linear filtering process performed on a discrete image data array. The
sampled image operator is a discrete model of a continuous two-dimensional image
filtering process. The circulant area operator provides a basis for a computationally
efficient means of performing either finite-area or sampled image superposition and
convolution.

7.1. FINITE-AREA SUPERPOSITION AND CONVOLUTION

Mathematical expressions for finite-area superposition and convolution are devel-
oped below for both series and vector-space formulations.

7.1.1. Finite-Area Superposition and Convolution: Series Formulation

Let  denote an image array for n1, n2 = 1, 2,..., N. For notational simplicity,
all arrays in this chapter are assumed square. In correspondence with Eq. 1.2-6, the
image array can be represented at some point  as a sum of amplitude
weighted Dirac delta functions by the discrete sifting summation

(7.1-1)
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The term

if  and (7.1-2a)

otherwise (7.1-2b)

is a discrete delta function. Now consider a spatial linear operator  that pro-
duces an output image array

 (7.1-3)

by a linear spatial combination of pixels within a neighborhood of . From
the sifting summation of Eq. 7.1-1,

(7.1-4a)

or

(7.1-4b)

recognizing that  is a linear operator and that  in the summation of
Eq. 7.1-4a is a constant in the sense that it does not depend on . The term

 for  is the response at output coordinate  to a
unit amplitude input at coordinate . It is called the impulse response function
array of the linear operator and is written as

for  (7.1-5)

and is zero otherwise. For notational simplicity, the impulse response array is con-
sidered to be square.

In Eq. 7.1-5 it is assumed that the impulse response array is of limited spatial
extent. This means that an output image pixel is influenced by input image pixels
only within some finite area  neighborhood of the corresponding output image
pixel. The output coordinates  in Eq. 7.1-5 following the semicolon indicate
that in the general case, called finite area superposition, the impulse response array
can change form for each point  in the processed array . Follow-
ing this nomenclature, the finite area superposition operation is defined as
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(7.1-6)

The limits of the summation are

 (7.1-7)

where  and  denote the maximum and minimum of the argu-
ments, respectively. Examination of the indices of the impulse response array at its
extreme positions indicates that M = N + L - 1, and hence the processed output array
Q is of larger dimension than the input array F. Figure 7.1-1 illustrates the geometry
of finite-area superposition. If the impulse response array H is spatially invariant,
the superposition operation reduces to the convolution operation.

(7.1-8)

Figure 7.1-2 presents a graphical example of convolution with a  impulse
response array.

Equation 7.1-6 expresses the finite-area superposition operation in left-justified
form in which the input and output arrays are aligned at their upper left corners. It is
often notationally convenient to utilize a definition in which the output array is cen-
tered with respect to the input array. This definition of centered superposition is
given by

FIGURE 7.1-1. Relationships between input data, output data, and impulse response arrays
for finite-area superposition; upper left corner justified array definition.
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(7.1-9)

where  and . The limits of the summa-
tion are

(7.1-10)

Figure 7.1-3 shows the spatial relationships between the arrays F, H, and Qc for cen-
tered superposition with a  impulse response array.

In digital computers and digital image processors, it is often convenient to restrict
the input and output arrays to be of the same dimension. For such systems, Eq. 7.1-9
needs only to be evaluated over the range  . When the impulse response

FIGURE 7.1-2. Graphical example of finite-area convolution with a 3 × 3 impulse response
array; upper left corner justified array definition.
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array is located on the border of the input array, the product computation of Eq.
7.1-9 does not involve all of the elements of the impulse response array. This situa-
tion is illustrated in Figure 7.1-3, where the impulse response array is in the upper
left corner of the input array. The input array pixels “missing” from the computation
are shown crosshatched in Figure 7.1-3. Several methods have been proposed to
deal with this border effect. One method is to perform the computation of all of the
impulse response elements as if the missing pixels are of some constant value. If the
constant value is zero, the result is called centered, zero padded superposition. A
variant of this method is to regard the missing pixels to be mirror images of the input
array pixels, as indicated in the lower left corner of Figure 7.1-3. In this case the
centered, reflected boundary superposition definition becomes

(7.1-11)

where the summation limits are

(7.1-12)

FIGURE 7.1-3. Relationships between input data, output data, and impulse response arrays
for finite-area superposition; centered array definition.
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and

for (7.1-13a)

for (7.1-13b)

for (7.1-13c)

In many implementations, the superposition computation is limited to the range
, and the border elements of the  array Qc are set

to zero. In effect, the superposition operation is computed only when the impulse
response array is fully embedded within the confines of the input array. This region
is described by the dashed lines in Figure 7.1-3. This form of superposition is called
centered, zero boundary superposition.

If the impulse response array H is spatially invariant, the centered definition for
convolution becomes

(7.1-14)

The  impulse response array, which is called a small generating kernel (SGK),
is fundamental to many image processing algorithms (1). When the SGK is totally
embedded within the input data array, the general term of the centered convolution
operation can be expressed explicitly as

(7.1-15)

for . In Chapter 9 it will be shown that convolution with arbitrary-size
impulse response arrays can be achieved by sequential convolutions with SGKs.

The four different forms of superposition and convolution are each useful in var-
ious image processing applications. The upper left corner–justified definition is
appropriate for computing the correlation function between two images. The cen-
tered, zero padded and centered, reflected boundary definitions are generally
employed for image enhancement filtering. Finally, the centered, zero boundary def-
inition is used for the computation of spatial derivatives in edge detection. In this
application, the derivatives are not meaningful in the border region.
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Figure 7.1-4 shows computer printouts of pixels in the upper left corner of a
convolved image for the four types of convolution boundary conditions. In this
example, the source image is constant of maximum value 1.0. The convolution
impulse response array is a  uniform array.

7.1.2. Finite-Area Superposition and Convolution: Vector-Space Formulation

If the arrays F and Q of Eq. 7.1-6 are represented in vector form by the  vec-
tor f and the  vector q, respectively, the finite-area superposition operation
can be written as (2)

(7.1-16)

where D is a  matrix containing the elements of the impulse response. It is
convenient to partition the superposition operator matrix D into submatrices of
dimension . Observing the summation limits of Eq. 7.1-7, it is seen that

(7.1-17)

FIGURE 7.1-4 Finite-area convolution boundary conditions, upper left corner of convolved
image.

0.040  0.080  0.120  0.160  0.200  0.200  0.200

0.080  0.160  0.240  0.320  0.400  0.400  0.400

0.120  0.240  0.360  0.480  0.600  0.600  0.600

0.160  0.320  0.480  0.640  0.800  0.800  0.800

0.200  0.400  0.600  0.800  1.000  1.000  1.000

0.200  0.400  0.600  0.800  1.000  1.000  1.000

0.200  0.400  0.600  0.800  1.000  1.000  1.000 
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1.000  1.000  1.000  1.000  1.000  1.000  1.000

1.000  1.000  1.000  1.000  1.000  1.000  1.000

1.000  1.000  1.000  1.000  1.000  1.000  1.000

1.000  1.000  1.000  1.000  1.000  1.000  1.000

(a) Upper left corner justified (b) Centered, zero boundary

(c) Centered, zero padded (d) Centered, reflected
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The general nonzero term of D is then given by

 (7.1-18)

Thus, it is observed that D is highly structured and quite sparse, with the center band
of submatrices containing stripes of zero-valued elements.

If the impulse response is position invariant, the structure of D does not depend
explicitly on the output array coordinate . Also,

(7.1-19)

As a result, the columns of D are shifted versions of the first column. Under these
conditions, the finite-area superposition operator is known as the finite-area convo-
lution operator. Figure 7.1-5a contains a notational example of the finite-area con-
volution operator for a  (N = 2) input data array, a  (M = 4) output data
array, and a  (L = 3) impulse response array. The integer pairs (i, j) at each ele-
ment of D represent the element (i, j) of . The basic structure of D can be seen
more clearly in the larger matrix depicted in Figure 7.l-5b. In this example, M = 16,

FIGURE 7.1-5 Finite-area convolution operators: (a) general impulse array, M = 4, N = 2,
L = 3; (b) Gaussian-shaped impulse array, M = 16, N = 8, L = 9.
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N = 8, L = 9, and the impulse response has a symmetrical Gaussian shape. Note that
D is a 256 × 64 matrix in this example.

Following the same technique as that leading to Eq. 5.4-7, the matrix form of the
superposition operator may be written as

(7.1-20)

If the impulse response is spatially invariant and is of separable form such that

(7.1-21)

where  and  are column vectors representing row and column impulse
responses, respectively, then

 (7.1-22)

The matrices  and  are  matrices of the form

(7.1-23)

The two-dimensional convolution operation may then be computed by sequential
row and column one-dimensional convolutions. Thus

(7.1-24)

In vector form, the general finite-area superposition or convolution operator requires
 operations if the zero-valued multiplications of D are avoided. The separable

operator of Eq. 7.1-24 can be computed with only  operations.
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7.2. SAMPLED IMAGE SUPERPOSITION AND CONVOLUTION

Many applications in image processing require a discretization of the superposition
integral relating the input and output continuous fields of a linear system. For exam-
ple, image blurring by an optical system, sampling with a finite-area aperture or
imaging through atmospheric turbulence, may be modeled by the superposition inte-
gral equation

(7.2-1a)

where  and  denote the input and output fields of a linear system,
respectively, and the kernel  represents the impulse response of the linear
system model. In this chapter, a tilde over a variable indicates that the spatial indices
of the variable are bipolar; that is, they range from negative to positive spatial limits.
In this formulation, the impulse response may change form as a function of its four
indices: the input and output coordinates. If the linear system is space invariant, the
output image field may be described by the convolution integral

(7.2-1b)

For discrete processing, physical image sampling will be performed on the output
image field. Numerical representation of the integral must also be performed in
order to relate the physical samples of the output field to points on the input field.

Numerical representation of a superposition or convolution integral is an impor-
tant topic because improper representations may lead to gross modeling errors or
numerical instability in an image processing application. Also, selection of a numer-
ical representation algorithm usually has a significant impact on digital processing
computational requirements.

As a first step in the discretization of the superposition integral, the output image
field is physically sampled by a  array of Dirac pulses at a resolu-
tion  to obtain an array whose general term is

(7.2-2)

where . Equal horizontal and vertical spacing of sample pulses is assumed
for notational simplicity. The effect of finite area sample pulses can easily be incor-
porated by replacing the impulse response with , where

 represents the pulse shape of the sampling pulse. The delta function may
be brought under the integral sign of the superposition integral of Eq. 7.2-la to give

(7.2-3)
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It should be noted that the physical sampling is performed on the observed image
spatial variables (x, y); physical sampling does not affect the dummy variables of
integration .

Next, the impulse response must be truncated to some spatial bounds. Thus, let

(7.2-4)

for  and . Then,

(7.2-5)

Truncation of the impulse response is equivalent to multiplying the impulse
response by a window function V(x, y), which is unity for  and  and
zero elsewhere. By the Fourier convolution theorem, the Fourier spectrum of G(x, y)
is equivalently convolved with the Fourier transform of V(x, y), which is a two-
dimensional sinc function. This distortion of the Fourier spectrum of G(x, y) results
in the introduction of high-spatial-frequency artifacts (a Gibbs phenomenon) at spa-
tial frequency multiples of . Truncation distortion can be reduced by using a
shaped window, such as the Bartlett, Blackman, Hamming, or Hanning windows
(3), which smooth the sharp cutoff effects of a rectangular window. This step is
especially important for image restoration modeling because ill-conditioning of the
superposition operator may lead to severe amplification of the truncation artifacts.

In the next step of the discrete representation, the continuous ideal image array
 is represented by mesh points on a rectangular grid of resolution  and

dimension . This is not a physical sampling process, but merely
an abstract numerical representation whose general term is described by

(7.2-6)

where , with  and  denoting the upper and lower index limits.
If the ultimate objective is to estimate the continuous ideal image field by pro-

cessing the physical observation samples, the mesh spacing  should be fine
enough to satisfy the Nyquist criterion for the ideal image. That is, if the spectrum of
the ideal image is bandlimited and the limits are known, the mesh spacing should be
set at the corresponding Nyquist spacing. Ideally, this will permit perfect interpola-
tion of the estimated points  to reconstruct .

The continuous integration of Eq. 7.2-5 can now be approximated by a discrete
summation by employing a quadrature integration formula (4). The physical image
samples may then be expressed as

(7.2-7)
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where  is a weighting coefficient for the particular quadrature formula
employed. Usually, a rectangular quadrature formula is used, and the weighting
coefficients are unity. In any case, it is notationally convenient to lump the weight-
ing coefficient and the impulse response function together so that

(7.2-8)

Then,

(7.2-9)

Again, it should be noted that  is not spatially discretized; the function is simply
evaluated at its appropriate spatial argument. The limits of summation of Eq. 7.2-9
are

(7.2-10)

where  denotes the nearest integer value of the argument.
Figure 7.2-1 provides an example relating actual physical sample values

 to mesh points  on the ideal image field. In this exam-
ple, the mesh spacing is twice as large as the physical sample spacing. In the figure,

 

FIGURE 7.2-1. Relationship of physical image samples to mesh points on an ideal image
field for numerical representation of a superposition integral.
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the values of the impulse response function that are utilized in the summation of
Eq. 7.2-9 are represented as dots.

An important observation should be made about the discrete model of Eq. 7.2-9
for a sampled superposition integral; the physical area of the ideal image field

 containing mesh points contributing to physical image samples is larger
than the sample image  regardless of the relative number of physical
samples and mesh points. The dimensions of the two image fields, as shown in
Figure 7.2-2, are related by

(7.2-11)

to within an accuracy of one sample spacing.
At this point in the discussion, a discrete and finite model for the sampled super-

position integral has been obtained in which the physical samples 
are related to points on an ideal image field  by a discrete mathemati-
cal superposition operation. This discrete superposition is an approximation to con-
tinuous superposition because of the truncation of the impulse response function

 and quadrature integration. The truncation approximation can, of
course, be made arbitrarily small by extending the bounds of definition of the
impulse response, but at the expense of large dimensionality. Also, the quadrature
integration approximation can be improved by use of complicated formulas of
quadrature, but again the price paid is computational complexity. It should be noted,
however, that discrete superposition is a perfect approximation to continuous super-
position if the spatial functions of Eq. 7.2-1 are all bandlimited and the physical

FIGURE 7.2-2. Relationship between regions of physical samples and mesh points for
numerical representation of a superposition integral.
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sampling and numerical representation periods are selected to be the corresponding
Nyquist period (5).

It is often convenient to reformulate Eq. 7.2-9 into vector-space form. Toward
this end, the arrays  and  are reindexed to  and  arrays, respectively,
such that all indices are positive. Let

(7.2-12a)

where  and let

(7.2-12b)

where . Also, let the impulse response be redefined such that

(7.2-12c)

Figure 7.2-3 illustrates the geometrical relationship between these functions.
The discrete superposition relationship of Eq. 7.2-9 for the shifted arrays

becomes

(7.2-13)

for  where

Following the techniques outlined in Chapter 5, the vectors g and f may be formed
by column scanning the matrices G and F to obtain

(7.2-14)

where B is a  matrix of the form
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The general term of B is defined as

(7.2-16)

for  and  where  represents the nearest
odd integer dimension of the impulse response in resolution units . For descrip-
tional simplicity, B is called the blur matrix of the superposition integral.

If the impulse response function is translation invariant such that

(7.2-17)

then the discrete superposition operation of Eq. 7.2-13 becomes a discrete convolu-
tion operation of the form

(7.2-18)

If the physical sample and quadrature mesh spacings are equal, the general term
of the blur matrix assumes the form

(7.2-19)

FIGURE 7.2-3. Sampled image arrays.
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In Eq. 7.2-19, the mesh spacing variable  is understood. In addition,

(7.2-20)

Consequently, the rows of B are shifted versions of the first row. The operator B
then becomes a sampled infinite area convolution operator, and the series form rep-
resentation of Eq. 7.2-19 reduces to

(7.2-21)

where the sampling spacing is understood.
Figure 7.2-4a is a notational example of the sampled image convolution operator

for a  (N = 4) data array, a  (M = 2) filtered data array, and a 
(L = 3) impulse response array. An extension to larger dimension is shown in Figure
7.2-4b for M = 8, N = 16, L = 9 and a Gaussian-shaped impulse response.

When the impulse response is spatially invariant and orthogonally separable,

(7.2-22)

where  and  are  matrices of the form

FIGURE 7.2-4. Sampled infinite area convolution operators: (a) General impulse array,
M = 2, N = 4, L = 3; (b) Gaussian-shaped impulse array, M = 8, N = 16, L = 9.
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(7.2-23)

The two-dimensional convolution operation then reduces to sequential row and col-
umn convolutions of the matrix form of the image array. Thus

(7.2-24)

The superposition or convolution operator expressed in vector form requires 
operations if the zero multiplications of B are avoided. A separable convolution
operator can be computed in matrix form with only  operations.

7.3. CIRCULANT SUPERPOSITION AND CONVOLUTION

In circulant superposition (2), the input data, the processed output, and the impulse
response arrays are all assumed spatially periodic over a common period.  To unify
the presentation, these arrays will be defined in terms of the spatially limited arrays
considered previously. First, let the  data array  be embedded in the
upper left corner of a  array  of zeros, giving

for (7.3-1a)

for (7.3-1b)

In a similar manner, an extended impulse response array is created by embedding
the spatially limited impulse array in a  matrix of zeros. Thus, let
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Periodic arrays  and  are now formed by replicating the
extended arrays over the spatial period J. Then, the circulant superposition of these
functions is defined as

(7.3-3)

Similarity of this equation with Eq. 7.1-6 describing finite-area superposition is evi-
dent. In fact, if J is chosen such that J = N + L – 1, the terms 
for . The similarity of the circulant superposition operation and the sam-
pled image superposition operation should also be noted. These relations become
clearer in the vector-space representation of the circulant superposition operation.

Let the arrays FE and KE be expressed in vector form as the  vectors fE and
kE, respectively. Then, the circulant superposition operator can be written as

(7.3-4)

where C is a  matrix containing elements of the array HE. The circulant
superposition operator can then be conveniently expressed in terms of  subma-
trices Cmn as given by

(7.3-5)

where

(7.3-6)

FE n1 n2,( ) HE l1 l2 m
1
m
2

,;,( )

KE m1 m2,( ) FE n1 n2,( )HE m1 n
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1+– m

2
n
2
1+– m

1
m
2

,;,( )
n
2

1=

J

∑
n
1

1=

J

∑=

FE n1 n2,( ) F n
1
n
2

,( )=
1 ni N≤ ≤

J
2
1×

kE CfE=

J
2
J
2×

J J×

C

C
1 1, 0 0 … 0 C

1 J L– 2+, … C
1 J,

C
2 1, C

2 2, 0 … 0 0

·
0 CL 1– J,

C
2 1, CL 2, 0 … 0

0 CL 1+ 2,

0

0 … 0 CJ J L– 1+, CJ J L– 2+, … CJ J,

=

……

…
…

…
…

…

Cm
2
n
2

, m
1
n
1

,( ) HE k1 k2 m1 m2,;,( )=
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FIGURE 7.3-1. Circulant convolution operators: (a) General impulse array, J = 4, L = 3;
(b) Gaussian-shaped impulse array, J = 16, L = 9.
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for  and  with modulo J and HE(0, 0) = 0. It
should be noted that each row and column of C contains L nonzero submatrices. If
the impulse response array is spatially invariant, then

(7.3-7)

and the submatrices of the rows (columns) can be obtained by a circular shift of the
first row (column). Figure 7.3-la illustrates the circulant convolution operator for

 (J = 4) data and filtered data arrays and for a  (L = 3) impulse response
array. In Figure 7.3-lb, the operator is shown for J = 16 and L = 9 with a Gaussian-
shaped impulse response.

Finally, when the impulse response is spatially invariant and orthogonally separa-
ble,

(7.3-8)

where  and  are  matrices of the form

(7.3-9)

Two-dimensional circulant convolution may then be computed as

(7.3-10)

7.4. SUPERPOSITION AND CONVOLUTION OPERATOR RELATIONSHIPS

The elements of the finite-area superposition operator D and the elements of the
sampled image superposition operator B can be extracted from circulant superposi-
tion operator C by use of selection matrices defined as (2)

1 ni J≤ ≤ 1 mi J≤ ≤ ki mi ni 1+–( )=

Cm
2
n
2

, Cm
2
1 n

2
1+,+=

16 16× 3 3×

C CC CR⊗=

CR CC J J×

CR

hR 1( ) 0 … 0 hR L( ) … hR 3( ) hR 2( )

hR 2( ) hR 1( ) … 0 0 hR 3( )

hR L 1–( ) … 0 hR L( )

hR L( ) hR L 1–( ) 0

0 hR L( )

0

0 … 0 hR L( ) … … hR 2( ) hR 1( )

=

…

…
…

…
… …

KE CCFECR
T

=
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(7.4-1a)

(7.4-1b)

where  and  are  matrices, IK is a  identity matrix, and  is a
 matrix. For future reference, it should be noted that the generalized

inverses of S1 and S2 and their transposes are

(7.4-2a)

(7.4-2b)

(7.4-2c)

(7.4-2d)

Examination of the structure of the various superposition operators indicates that

(7.4-3a)

(7.4-3b)

That is, the matrix D is obtained by extracting the first M rows and N columns of sub-
matrices Cmn of C. The first M rows and N columns of each submatrix are also
extracted. A similar explanation holds for the extraction of B from C. In Figure 7.3-1,
the elements of C to be extracted to form D and B are indicated by boxes.

From the definition of the extended input data array of Eq. 7.3-1, it is obvious
that the spatially limited input data vector f can be obtained from the extended data
vector fE by the selection operation

(7.4-4a)

and furthermore,

(7.4-4b)

S1J
K( )

IK 0=

S2J
K( )

0A IK 0=

S1J
K( )

S2J
K( )

K J× K K× 0A
K L 1–×

S1J
K( )[ ]

–
S1J

K( )[ ]
T

=

S1J
K( )[ ]
T

[ ]
–

S1J
K

=

S2J
K( )[ ]

–
S2J

K( )[ ]
T

=

S2J
K( )[ ]
T

[ ]
–

S2J
K

=

D S1J
M( )

S1J
M( )⊗[ ]C S1J

N( )
S1J

N( )⊗[ ]
T

=

B S2J
M( )

S2J
M( )⊗[ ]C S1J

N( )
S1J

N( )⊗[ ]
T

=

f S1J
N( )

S1J
N( )⊗[ ]fE=

fE S1J
N( )

S1J
N( )⊗[ ]
T
f=
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It can also be shown that the output vector for finite-area superposition can be
obtained from the output vector for circulant superposition by the selection opera-
tion

(7.4-5a)

The inverse relationship also exists in the form

(7.4-5b)

For sampled image superposition

(7.4-6)

but it is not possible to obtain kE from g because of the underdeterminacy of the
sampled image superposition operator. Expressing both q and kE of Eq. 7.4-5a in
matrix form leads to

(7.4-7)

As a result of the separability of the selection operator, Eq. 7.4-7 reduces to

(7.4-8)

Similarly, for Eq. 7.4-6 describing sampled infinite-area superposition,

FIGURE 7.4-1. Location of elements of processed data Q and G from KE.

q S1J
M( )

S1J
M( )⊗[ ]kE=

kE S1J
M( )

S1J
M( )⊗[ ]

T
q=

g S2J
M( )

S2J
M( )⊗[ ]kE=

Q Mm
T
S1J

M( )
S1J

M( )⊗[ ]NnKEvnum
T

n 1=

J

∑
m 1=

M

∑=

Q S1J
M( )[ ]KE S1J

M( )[ ]
T

=
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(7.4-9)

Figure 7.4-1 illustrates the locations of the elements of G and Q extracted from KE
for finite-area and sampled infinite-area superposition.

In summary, it has been shown that the output data vectors for either finite-area
or sampled image superposition can be obtained by a simple selection operation on
the output data vector of circulant superposition. Computational advantages that can
be realized from this result are considered in Chapter 9.
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8
UNITARY TRANSFORMS

Two-dimensional unitary transforms have found two major applications in image
processing. Transforms have been utilized to extract features from images. For
example, with the Fourier transform, the average value or dc term is proportional to
the average image amplitude, and the high-frequency terms (ac term) give an indica-
tion of the amplitude and orientation of edges within an image. Dimensionality
reduction in computation is a second image processing application. Stated simply,
those transform coefficients that are small may be excluded from processing opera-
tions, such as filtering, without much loss in processing accuracy. Another applica-
tion in the field of image coding is transform image coding, in which a bandwidth
reduction is achieved by discarding or grossly quantizing low-magnitude transform
coefficients. In this chapter we consider the properties of unitary transforms com-
monly used in image processing.

8.1. GENERAL UNITARY TRANSFORMS

A unitary transform is a specific type of linear transformation in which the basic lin-
ear operation of Eq. 5.4-1 is exactly invertible and the operator kernel satisfies cer-
tain orthogonality conditions (1,2). The forward unitary transform of the 
image array  results in a  transformed image array as defined by

(8.1-1)

N1 N2×
F n1 n2,( ) N1 N2×

F m1 m2,( ) F n1 n2,( )A n1 n2 m1 m2,;,( )
n2 1=

N2

∑
n1 1=

N1

∑=

Digital Image Processing: PIKS Inside, Third Edition. William K. Pratt
Copyright © 2001 John Wiley & Sons, Inc.

ISBNs: 0-471-37407-5 (Hardback); 0-471-22132-5 (Electronic)
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where  represents the forward transform kernel. A reverse or
inverse transformation provides a mapping from the transform domain to the image
space as given by

(8.1-2)

where  denotes the inverse transform kernel. The transformation is
unitary if the following orthonormality conditions are met:

(8.1-3a)

(8.1-3b)

(8.1-3c)

(8.1-3c)

The transformation is said to be separable if its kernels can be written in the form

(8.1-4a)

(8.1-4b)

where the kernel subscripts indicate row and column one-dimensional transform
operations. A separable two-dimensional unitary transform can be computed in two
steps. First, a one-dimensional transform is taken along each column of the image,
yielding

(8.1-5)

Next, a second one-dimensional unitary transform is taken along each row of
, giving

(8.1-6)

A n1 n2 m1 m2,;,( )

F n1 n2,( ) F m1 m2,( )B n1 n2 m1 m2,;,( )
m2 1=

N2

∑
m1 1=

N1

∑=

B n1 n2 m1 m2,;,( )

A n1 n2 m1 m2,;,( )A∗ j1 j2 m1 m2,;,( )
m2

∑
m1

∑ δ n1 j1– n2 j2–,( )=

B n1 n2 m1 m2,;,( )B∗ j1 j2 m1 m2,;,( )
m2

∑
m1

∑ δ n1 j1– n2 j2–,( )=

A n1 n2 m1 m2,;,( )A∗ n1 n2 k1 k2,;,( )
n2

∑
n1

∑ δ m1 k1– m2 k2–,( )=

B n1 n2 m1 m2,;,( )B∗ n1 n2 k1 k2,;,( )
n2

∑
n1

∑ δ m1 k1– m2 k2–,( )=

A n1 n2 m1 m2,;,( ) AC n1 m1,( )AR n2 m2,( )=

B n1 n2 m1 m2,;,( ) BC n1 m1,( )BR n2 m2,( )=

P m1 n2,( ) F n1 n2,( )AC n1 m1,( )
n1 1=

N1

∑=

P m1 n2,( )

F m1 m2,( ) P m1 n2,( )AR n2 m2,( )
n2 1=

N2

∑=
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Unitary transforms can conveniently be expressed in vector-space form (3). Let F
and f denote the matrix and vector representations of an image array, and let  and

 be the matrix and vector forms of the transformed image. Then, the two-dimen-
sional unitary transform written in vector form is given by

(8.1-7)

where A is the forward transformation matrix. The reverse transform is

(8.1-8)

where B represents the inverse transformation matrix. It is obvious then that

(8.1-9)

For a unitary transformation, the matrix inverse is given by

(8.1-10)

and A is said to be a unitary matrix. A real unitary matrix is called an orthogonal
matrix. For such a matrix,

(8.1-11)

If the transform kernels are separable such that

(8.1-12)

where  and  are row and column unitary transform matrices, then the trans-
formed image matrix can be obtained from the image matrix by

(8.1-13a)

The inverse transformation is given by

(8.1-13b)

F
ffff

ffff Af=

f Bffff=

B A
1–

=

A
1–

A∗T=

A
1–

A
T

=

A AC AR⊗=

AR AC

F ACFAR

T
=

F BCF BR
T

=
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where  and .

Separable unitary transforms can also be expressed in a hybrid series–vector
space form as a sum of vector outer products. Let  and  represent rows
n1 and n2 of the unitary matrices AR and AR, respectively. Then, it is easily verified
that

(8.1-14a)

Similarly,

(8.1-14b)

where  and  denote rows m1 and m2 of the unitary matrices BC and
BR, respectively. The vector outer products of Eq. 8.1-14 form a series of matrices,
called basis matrices, that provide matrix decompositions of the image matrix F or
its unitary transformation F.

There are several ways in which a unitary transformation may be viewed. An
image transformation can be interpreted as a decomposition of the image data into a
generalized two-dimensional spectrum (4). Each spectral component in the trans-
form domain corresponds to the amount of energy of the spectral function within the
original image. In this context, the concept of frequency may now be generalized to
include transformations by functions other than sine and cosine waveforms. This
type of generalized spectral analysis is useful in the investigation of specific decom-
positions that are best suited for particular classes of images. Another way to visual-
ize an image transformation is to consider the transformation as a multidimensional
rotation of coordinates. One of the major properties of a unitary transformation is
that measure is preserved. For example, the mean-square difference between two
images is equal to the mean-square difference between the unitary transforms of the
images. A third approach to the visualization of image transformation is to consider
Eq. 8.1-2 as a means of synthesizing an image with a set of two-dimensional mathe-
matical functions  for a fixed transform domain coordinate

. In this interpretation, the kernel  is called a two-dimen-
sional basis function and the transform coefficient  is the amplitude of the
basis function required in the synthesis of the image.

In the remainder of this chapter, to simplify the analysis of two-dimensional uni-
tary transforms, all image arrays are considered square of dimension N. Further-
more, when expressing transformation operations in series form, as in Eqs. 8.1-1
and 8.1-2, the indices are renumbered and renamed. Thus the input image array is
denoted by F(j, k) for j, k = 0, 1, 2,..., N - 1, and the transformed image array is rep-
resented by F(u, v) for u, v = 0, 1, 2,..., N - 1. With these definitions, the forward uni-
tary transform becomes

BC AC
1–= BR AR

1–=

aC n1( ) aR n2( )

F F n1 n2,( )aC n1( )aR
T
n2( )

n2 1=

N2

∑
n1 1=

N1

∑=

F F m1 m2,( )bC m1( )bR
T
m2( )

m2 1=

N2

∑
m1 1=

N1

∑=

bC m1( ) bR m2( )

B n1 n2 m1 m2,;,( )
m1 m2,( ) B n1 n2 m1 m2,;,( )

F m1 m2,( )



FOURIER TRANSFORM 189

(8.1-15a)

and the inverse transform is

(8.1-15b)

8.2. FOURIER TRANSFORM

The discrete two-dimensional Fourier transform of an image array is defined in
series form as (5–10)

(8.2-1a)

where , and the discrete inverse transform is given by

(8.2-1b)

The indices (u, v) are called the spatial frequencies of the transformation in analogy
with the continuous Fourier transform. It should be noted that Eq. 8.2-1 is not uni-
versally accepted by all authors; some prefer to place all scaling constants in the
inverse transform equation, while still others employ a reversal in the sign of the
kernels.

Because the transform kernels are separable and symmetric, the two dimensional
transforms can be computed as sequential row and column one-dimensional trans-
forms. The basis functions of the transform are complex exponentials that may be
decomposed into sine and cosine components. The resulting Fourier transform pairs
then become

(8.2-2a)

(8.2-2b)

Figure 8.2-1 shows plots of the sine and cosine components of the one-dimensional
Fourier basis functions for N = 16. It should be observed that the basis functions are
a rough approximation to continuous sinusoids only for low frequencies; in fact, the

F u v,( ) F j k,( )A j k u v,;,( )
k 0=

N 1–

∑
j 0=

N 1–

∑=

F j k,( ) F u v,( )B j k u v,;,( )
v 0=

N 1–

∑
u 0=

N 1–

∑=

F u v,( ) 1

N
---- F j k,( ) 2πi–

N
----------- uj vk+( )

 
 
 

exp

k 0=

N 1–

∑
j 0=

N 1–

∑=

i 1–=

F j k,( ) 1

N
---- F u v,( ) 2πi

N
-------- uj vk+( )

 
 
 

exp

v 0=

N 1–

∑
u 0=

N 1–

∑=

A j k u v,;,( ) 2πi–
N

----------- uj vk+( )
 
 
 

exp
2π
N
------ uj vk+( )

 
 
 

cos i
2π
N
------ uj vk+( )

 
 
 

sin–= =

B j k u v,;,( ) 2πi
N

-------- uj vk+( )
 
 
 

exp
2π
N
------ uj vk+( )

 
 
 

cos i
2π
N
------ uj vk+( )

 
 
 

sin+= =
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highest-frequency basis function is a square wave. Also, there are obvious redun-
dancies between the sine and cosine components.

The Fourier transform plane possesses many interesting structural properties.
The spectral component at the origin of the Fourier domain

(8.2-3)

is equal to N times the spatial average of the image plane. Making the substitutions
,  in Eq. 8.2-1, where m and n are constants, results in

FIGURE 8.2-1 Fourier transform basis functions, N = 16.

F 0 0,( ) 1

N
---- F j k,( )

k 0=

N 1–

∑
j 0=

N 1–

∑=

u u mN+= v v nN+=
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(8.2-4)

For all integer values of m and n, the second exponential term of Eq. 8.2-5 assumes
a value of unity, and the transform domain is found to be periodic. Thus, as shown in
Figure 8.2-2a,

(8.2-5)

for .
The two-dimensional Fourier transform of an image is essentially a Fourier series

representation of a two-dimensional field. For the Fourier series representation to be
valid, the field must be periodic. Thus, as shown in Figure 8.2-2b, the original image
must be considered to be periodic horizontally and vertically. The right side of the
image therefore abuts the left side, and the top and bottom of the image are adjacent.
Spatial frequencies along the coordinate axes of the transform plane arise from these
transitions.

If the image array represents a luminance field,  will be a real positive
function. However, its Fourier transform will, in general, be complex. Because the
transform domain contains  components, the real and imaginary, or phase and
magnitude components, of each coefficient, it might be thought that the Fourier
transformation causes an increase in dimensionality. This, however, is not the case
because  exhibits a property of conjugate symmetry. From Eq. 8.2-4, with m
and n set to integer values, conjugation yields

FIGURE 8.2-2. Periodic image and Fourier transform arrays.

F u mN+ v nN+,( ) 1

N
---- F j k,( ) 2πi–

N
----------- uj vk+( )

 
 
 

exp 2πi– mj nk+( ){ }exp

k 0=

N 1–

∑
j 0=

N 1–

∑=

F u mN+ v nN+,( ) F u v,( )=

m n, 0 1 2 …,±,±,=

F j k,( )

2N
2

F u v,( )
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(8.2-6)

By the substitution  and  it can be shown that

(8.2-7)

for . As a result of the conjugate symmetry property, almost one-
half of the transform domain samples are redundant; that is, they can be generated
from other transform samples. Figure 8.2-3 shows the transform plane with a set of
redundant components crosshatched. It is possible, of course, to choose the left half-
plane samples rather than the upper plane samples as the nonredundant set.

Figure 8.2-4 shows a monochrome test image and various versions of its Fourier
transform, as computed by Eq. 8.2-1a, where the test image has been scaled over
unit range . Because the dynamic range of transform components is
much larger than the exposure range of photographic film, it is necessary to com-
press the coefficient values to produce a useful display. Amplitude compression to a
unit range display array  can be obtained by clipping large-magnitude values
according to the relation

FIGURE 8.2-3. Fourier transform frequency domain.

F * u mN+ v nN+,( ) 1

N
---- F j k,( ) 2πi–

N
----------- uj vk+( )

 
 
 

exp

k 0=

N 1–

∑
j 0=

N 1–

∑=

u u–= v v–=

F u v,( ) F * u– mN+ v– nN+,( )=

n 0 1 2 …,±,±,=

0.0 F j k,( ) 1.0≤ ≤

D u v,( )
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if (8.2-8a)

if (8.2-8b)

where  is the clipping factor and  is the maximum coefficient
magnitude. Another form of amplitude compression is to take the logarithm of each
component as given by

(8.2-9)

FIGURE 8.2-4. Fourier transform of the smpte_girl_luma image.

(a) Original (b) Clipped magnitude, nonordered

(c) Log magnitude, nonordered (d) Log magnitude, ordered

D u v,( )
1.0

F u v,( )
c Fmax

---------------------







=

F u v,( ) c Fmax≥

F u v,( ) c Fmax<

0.0 c< 1.0≤ Fmax

D u v,( ) a b F u v,( )+{ }log

a b Fmax+{ }log
-------------------------------------------------=
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where a and b are scaling constants. Figure 8.2-4b is a clipped magnitude display of
the magnitude of the Fourier transform coefficients. Figure 8.2-4c is a logarithmic
display for a = 1.0 and b = 100.0.

In mathematical operations with continuous signals, the origin of the transform
domain is usually at its geometric center. Similarly, the Fraunhofer diffraction pat-
tern of a photographic transparency of transmittance  produced by a coher-
ent optical system has its zero-frequency term at the center of its display. A
computer-generated two-dimensional discrete Fourier transform with its origin at its
center can be produced by a simple reordering of its transform coefficients. Alterna-
tively, the quadrants of the Fourier transform, as computed by Eq. 8.2-la, can be
reordered automatically by multiplying the image function by the factor 
prior to the Fourier transformation. The proof of this assertion follows from Eq.
8.2-4 with the substitution . Then, by the identity 

(8.2-10)

Eq. 8.2-5 can be expressed as

(8.2-11)

Figure 8.2-4d contains a log magnitude display of the reordered Fourier compo-
nents. The conjugate symmetry in the Fourier domain is readily apparent from the
photograph.

The Fourier transform written in series form in Eq. 8.2-1 may be redefined in
vector-space form as

(8.2-12a)

(8.2-12b)

where f and  are vectors obtained by column scanning the matrices F and F,
respectively. The transformation matrix A can be written in direct product form as

(8.2-13)

F x y,( )

1–( )j k+

m n 1

2
---= =

iπ j k+( ){ }exp 1–( ) j k+
=

F u N 2⁄+ v N 2⁄+,( ) 1

N
---- F j k,( ) 1–( )j k+ 2πi–

N
----------- uj vk+( )

 
 
 

exp

k 0=

N 1–

∑
j 0=

N 1–
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where

(8.2-14)

with . As a result of the direct product decomposition of A, the
image matrix and transformed image matrix are related by

(8.2-15a)

(8.2-15b)

The properties of the Fourier transform previously proved in series form obviously
hold in the matrix formulation.

One of the major contributions to the field of image processing was the discovery
(5) of an efficient computational algorithm for the discrete Fourier transform (DFT).
Brute-force computation of the discrete Fourier transform of a one-dimensional
sequence of N values requires on the order of  complex multiply and add opera-
tions. A fast Fourier transform (FFT) requires on the order of  operations.
For large images the computational savings are substantial. The original FFT algo-
rithms were limited to images whose dimensions are a power of 2 (e.g.,

). Modern algorithms exist for less restrictive image dimensions.
Although the Fourier transform possesses many desirable analytic properties, it

has a major drawback: Complex, rather than real number computations are
necessary. Also, for image coding it does not provide as efficient image energy
compaction as other transforms.

8.3. COSINE, SINE, AND HARTLEY TRANSFORMS

The cosine, sine, and Hartley transforms are unitary transforms that utilize
sinusoidal basis functions, as does the Fourier transform. The cosine and sine
transforms are not simply the cosine and sine parts of the Fourier transform. In fact,
the cosine and sine parts of the Fourier transform, individually, are not orthogonal
functions. The Hartley transform jointly utilizes sine and cosine basis functions, but
its coefficients are real numbers, as contrasted with the Fourier transform whose
coefficients are, in general, complex numbers.
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8.3.1. Cosine Transform

The cosine transform, discovered by Ahmed et al. (12), has found wide application
in transform image coding. In fact, it is the foundation of the JPEG standard (13) for
still image coding and the MPEG standard for the coding of moving images (14).
The forward cosine transform is defined as (12)

(8.3-1a)

(8.3-1b)

where  and  for w = 1, 2,..., N – 1. It has been observed
that the basis functions of the cosine transform are actually a class of discrete Che-
byshev polynomials (12).

Figure 8.3-1 is a plot of the cosine transform basis functions for N = 16. A photo-
graph of the cosine transform of the test image of Figure 8.2-4a is shown in Figure
8.3-2a. The origin is placed in the upper left corner of the picture, consistent with
matrix notation. It should be observed that as with the Fourier transform, the image
energy tends to concentrate toward the lower spatial frequencies.

The cosine transform of a  image can be computed by reflecting the image
about its edges to obtain a  array, taking the FFT of the array and then
extracting the real parts of the Fourier transform (15). Algorithms also exist for the
direct computation of each row or column of Eq. 8.3-1 with on the order of 
real arithmetic operations (12,16).

8.3.2. Sine Transform

The sine transform, introduced by Jain (17), as a fast algorithmic substitute for the
Karhunen–Loeve transform of a Markov process is defined in one-dimensional form
by the basis functions

(8.3-2)

for u, j = 0, 1, 2,..., N – 1. Consider the tridiagonal matrix
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(8.3-3)

where  and  is the adjacent element correlation of a
Markov process covariance matrix. It can be shown (18) that the basis functions of

FIGURE 8.3-1. Cosine transform basis functions, N = 16.
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Eq. 8.3-2, inserted as the elements of a unitary matrix A, diagonalize the matrix T in
the sense that

(8.3-4)

Matrix D is a diagonal matrix composed of the terms

(8.3-5)

for k = 1, 2,..., N. Jain (17) has shown that the cosine and sine transforms are interre-
lated in that they diagonalize a family of tridiagonal matrices.

FIGURE 8.3-2. Cosine, sine, and Hartley transforms of the smpte_girl_luma image,

log magnitude displays

(a) Cosine

(b) Sine (c) Hartley
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The two-dimensional sine transform is defined as

(8.3-6)

Its inverse is of identical form.
Sine transform basis functions are plotted in Figure 8.3-3 for N = 15. Figure

8.3-2b is a photograph of the sine transform of the test image. The sine transform
can also be computed directly from Eq. 8.3-10, or efficiently with a Fourier trans-
form algorithm (17).

FIGURE 8.3-3. Sine transform basis functions, N = 15.
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8.3.3. Hartley Transform

Bracewell (19,20) has proposed a discrete real-valued unitary transform, called the
Hartley transform, as a substitute for the Fourier transform in many filtering appli-
cations. The name derives from the continuous integral version introduced by Hart-
ley in 1942 (21). The discrete two-dimensional Hartley transform is defined by the
transform pair

(8.3-7a)

(8.3-7b)

where . The structural similarity between the Fourier and Hartley
transforms becomes evident when comparing Eq. 8.3-7 and Eq. 8.2-2.

It can be readily shown (17) that the  function is an orthogonal function.
Also, the Hartley transform possesses equivalent but not mathematically identical
structural properties of the discrete Fourier transform (20). Figure 8.3-2c is a photo-
graph of the Hartley transform of the test image.

The Hartley transform can be computed efficiently by a FFT-like algorithm (20).
The choice between the Fourier and Hartley transforms for a given application is
usually based on computational efficiency. In some computing structures, the Hart-
ley transform may be more efficiently computed, while in other computing environ-
ments, the Fourier transform may be computationally superior.

8.4. HADAMARD, HAAR, AND DAUBECHIES TRANSFORMS

The Hadamard, Haar, and Daubechies transforms are related members of a family of
nonsinusoidal transforms.

8.4.1. Hadamard Transform

The Hadamard transform (22,23) is based on the Hadamard matrix (24), which is a
square array of plus and minus 1s whose rows and columns are orthogonal. A nor-
malized  Hadamard matrix satisfies the relation

(8.4-1)

The smallest orthonormal Hadamard matrix is the  Hadamard matrix given by
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(8.4-2)

It is known that if a Hadamard matrix of size N exists (N > 2), then N = 0 modulo 4
(22). The existence of a Hadamard matrix for every value of N satisfying this
requirement has not been shown, but constructions are available for nearly all per-
missible values of N up to 200. The simplest construction is for a Hadamard matrix
of size N = 2n, where n is an integer. In this case, if  is a Hadamard matrix of size
N, the matrix

(8.4-3)

is a Hadamard matrix of size 2N. Figure 8.4-1 shows Hadamard matrices of size 4
and 8 obtained by the construction of Eq. 8.4-3.

Harmuth (25) has suggested a frequency interpretation for the Hadamard matrix
generated from the core matrix of Eq. 8.4-3; the number of sign changes along each
row of the Hadamard matrix divided by 2 is called the sequency of the row. It is  pos-
sible to construct a Hadamard matrix of order  whose number of sign
changes per row increases from 0 to N – 1. This attribute is called the sequency
property of the unitary matrix.

FIGURE 8.4-1. Nonordered Hadamard matrices of size 4 and 8.
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The rows of the Hadamard matrix of Eq. 8.4-3 can be considered to be samples
of rectangular waves with a subperiod of 1/N units. These continuous functions are
called Walsh functions (26). In this context, the Hadamard matrix merely performs
the decomposition of a function by a set of rectangular waveforms rather than the
sine–cosine waveforms with the Fourier transform. A series formulation exists for
the Hadamard transform (23). 

Hadamard transform basis functions for the ordered transform with N = 16 are
shown in Figure 8.4-2. The ordered Hadamard transform of the test image in shown
in Figure 8.4-3a. 

FIGURE 8.4-2. Hadamard transform basis functions, N = 16.
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8.4.2. Haar Transform

The Haar transform (1,26,27) is derived from the Haar matrix. The following are
 and  orthonormal Haar matrices:

(8.4-4)

(8.4-5)

Extensions to higher-order Haar matrices follow the structure indicated by Eqs.
8.4-4 and 8.4-5. Figure 8.4-4 is a plot of the Haar basis functions for .

FIGURE 8.4-3. Hadamard and Haar transforms of the smpte_girl_luma image, log
magnitude displays.
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The Haar transform can be computed recursively (29) using the following 
recursion matrix

(8.4-6)

where  is a  scaling matrix and  is a  wavelet matrix defined
as

(8.4-7a)

FIGURE 8.4-4. Haar transform basis functions, N = 16.
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(8.4-7b)

The elements of the rows of  are called first-level scaling signals, and the
elements of the rows of  are called first-level Haar wavelets (29).

The first-level Haar transform of a  vector  is

(8.4-8)

where

(8.4-9a)

(8.4-9b)

The vector  represents the running average or trend of the elements of , and the
vector  represents the running fluctuation of the elements of . The next step in
the recursion process is to compute the second-level Haar transform from the trend
part of the first-level transform and concatenate it with the first-level fluctuation
vector. This results in

(8.4-10)

where

(8.4-11a)

(8.4-11b)

are  vectors. The process continues until the full transform

(8.4-12)

is obtained where . It should be noted that the intermediate levels are unitary
transforms.
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The Haar transform can be likened to a sampling process in which rows of the
transform matrix sample an input data sequence with finer and finer resolution
increasing of powers of 2. In image processing applications, the Haar transform pro-
vides a transform domain in which a type of differential energy is concentrated in
localized regions.

8.4.3. Daubechies Transforms

Daubechies (30) has discovered a class of wavelet transforms that utilize running
averages and running differences of the elements of a vector, as with the Haar trans-
form. The difference between the Haar and Daubechies transforms is that the aver-
ages and differences are grouped in four or more elements.

The Daubechies transform of support four, called Daub4, can be defined in a
manner similar to the Haar recursive generation process. The first-level scaling and
wavelet matrices are defined as

(8.4-13a)

WN = (8.4-13b)

where
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(8.4-14b)

(8.4-14c)

(8.4-14d)
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In Eqs. 8.4-13a and 8.4-13b, the row-to-row shift is by two elements, and the last
two scale factors wrap around on the last rows. Following the recursion process of
the Haar transform results in the Daub4 transform final stage:

(8.4-15)

Daubechies has extended the wavelet transform concept for higher degrees of
support, 6, 8, 10,..., by straightforward extension of Eq. 8.4-13 (29). Daubechies
also has also constructed another family of wavelets, called coiflets, after a sugges-
tion of Coifman (29).

8.5. KARHUNEN–LOEVE TRANSFORM

Techniques for transforming continuous signals into a set of uncorrelated represen-
tational coefficients were originally developed by Karhunen (31) and Loeve (32).
Hotelling (33) has been credited (34) with the conversion procedure that transforms
discrete signals into a sequence of uncorrelated coefficients. However, most of the
literature in the field refers to both discrete and continuous transformations as either
a Karhunen–Loeve transform or an eigenvector transform.

The Karhunen–Loeve transformation is a transformation of the general form

(8.5-1)

for which the kernel A(j, k; u, v) satisfies the equation

(8.5-2)

where  denotes the covariance function of the image array and 
is a constant for fixed (u, v). The set of functions defined by the kernel are the eigen-
functions of the covariance function, and  represents the eigenvalues of the
covariance function. It is usually not possible to express the kernel in explicit form.
 If the covariance function is separable such that

(8.5-3)

then the Karhunen-Loeve kernel is also separable and

(8.5-4)
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The row and column kernels satisfy the equations

(8.5-5a)

(8.5-5b)

In the special case in which the covariance matrix is of separable first-order Markov
process form, the eigenfunctions can be written in explicit form. For a one-dimen-
sional Markov process with correlation factor , the eigenfunctions and eigenvalues
are given by (35)

(8.5-6)

and

for (8.5-7)

where w(u) denotes the root of the transcendental equation

(8.5-8)

The eigenvectors can also be generated by the recursion formula (36)

(8.5-9a)

for 

(8.5-9b)

(8.5-9c)

by initially setting A(u, 0) = 1 and subsequently normalizing the eigenvectors.
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If the image array and transformed image array are expressed in vector form, the
Karhunen–Loeve transform pairs are

(8.5-10)

(8.5-11)

The transformation matrix A satisfies the relation

(8.5-12)

where  is the covariance matrix of f, A is a matrix whose rows are eigenvectors of
, and  is a diagonal matrix of the form

(8.5-13)

If  is of separable form, then

(8.5-14)

where AR and AC satisfy the relations

(8.5-15a)

(8.5-15b)

and  for u, v = 1, 2,..., N.
Figure 8.5-1 is a plot of the Karhunen–Loeve basis functions for a one-

dimensional Markov process with adjacent element correlation .
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9
LINEAR PROCESSING TECHNIQUES

Most discrete image processing computational algorithms are linear in nature; an
output image array is produced by a weighted linear combination of elements of an
input array. The popularity of linear operations stems from the relative simplicity of
spatial linear processing as opposed to spatial nonlinear processing. However, for
image processing operations, conventional linear processing is often computation-
ally infeasible without efficient computational algorithms because of the large
image arrays. This chapter considers indirect computational techniques that permit
more efficient linear processing than by conventional methods.

9.1. TRANSFORM DOMAIN PROCESSING

Two-dimensional linear transformations have been defined in Section 5.4 in series
form as

(9.1-1)

and defined in vector form as

(9.1-2)

It will now be demonstrated that such linear transformations can often be computed
more efficiently by an indirect computational procedure utilizing two-dimensional
unitary transforms than by the direct computation indicated by Eq. 9.1-1 or 9.1-2.

P m1 m2,( ) F n1 n2,( )T n1 n2 m1 m2,;,( )
n2 1=

N2

∑
n1 1=

N1

∑=

p Tf=
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Figure 9.1-1 is a block diagram of the indirect computation technique called gen-
eralized linear filtering (1). In the process, the input array  undergoes a
two-dimensional unitary transformation, resulting in an array of transform coeffi-
cients . Next, a linear combination of these coefficients is taken according
to the general relation

(9.1-3)

where  represents the linear filtering transformation function.
Finally, an inverse unitary transformation is performed to reconstruct the processed
array . If this computational procedure is to be more efficient than direct
computation by Eq. 9.1-1, it is necessary that fast computational algorithms exist for
the unitary transformation, and also the kernel  must be reasonably
sparse; that is, it must contain many zero elements.

The generalized linear filtering process can also be defined in terms of vector-
space computations as shown in Figure 9.1-2. For notational simplicity, let N1 = N2
= N and M1 = M2 = M. Then the generalized linear filtering process can be described
by the equations

(9.1-4a)

(9.1-4b)

(9.1-4c)

FIGURE 9.1-1. Direct processing and generalized linear filtering; series formulation.
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where  is a  unitary transform matrix, T is a  linear filtering
transform operation, and  is a  unitary transform matrix. From
Eq. 9.1-4, the input and output vectors are related by

(9.1-5)

Therefore, equating Eqs. 9.1-2 and 9.1-5 yields the relations between T and T given
by

(9.1-6a)

(9.1-6b)

If direct processing is employed, computation by Eq. 9.1-2 requires  oper-
ations, where  is a measure of the sparseness of T. With the generalized
linear filtering technique, the number of operations required for a given operator are:

Forward transform:  by direct transformation

  by fast transformation

Filter multiplication:

Inverse transform:  by direct transformation

  by fast transformation

FIGURE 9.1-2. Direct processing and generalized linear filtering; vector formulation.
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where  is a measure of the sparseness of T. If  and direct unitary
transform computation is performed, it is obvious that the generalized linear filter-
ing concept is not as efficient as direct computation. However, if fast transform
algorithms, similar in structure to the fast Fourier transform, are employed, general-
ized linear filtering will be more efficient than direct processing if the sparseness
index satisfies the inequality

(9.1-7)

In many applications, T will be sufficiently sparse such that the inequality will be
satisfied. In fact, unitary transformation tends to decorrelate the elements of T caus-
ing T to be sparse. Also, it is often possible to render the filter matrix sparse by
setting small-magnitude elements to zero without seriously affecting computational
accuracy (1).

In subsequent sections, the structure of superposition and convolution operators
is analyzed to determine the feasibility of generalized linear filtering in these appli-
cations.

9.2. TRANSFORM DOMAIN SUPERPOSITION

The superposition operations discussed in Chapter 7 can often be performed more
efficiently by transform domain processing rather than by direct processing. Figure
9.2-1a and b illustrate block diagrams of the computational steps involved in direct
finite area or sampled image superposition. In Figure 9.2-1d and e, an alternative
form of processing is illustrated in which a unitary transformation operation is per-
formed on the data vector f before multiplication by a finite area filter matrix D or
sampled image filter matrix B. An inverse transform reconstructs the output vector.
From Figure 9.2-1, for finite-area superposition, because

(9.2-1a)

and

(9.2-1b)

then clearly the finite-area filter matrix may be expressed as

(9.2-2a)
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FIGURE 9.2-1. Data and transform domain superposition.
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Similarly,

(9.2-2b)

If direct finite-area superposition is performed, the required number of
computational operations is approximately , where L is the dimension of the
impulse response matrix. In this case, the sparseness index of D is

(9.2-3a)

Direct sampled image superposition requires on the order of  operations, and
the corresponding sparseness index of B is

(9.2-3b)

Figure 9.2-1f is a block diagram of a system for performing circulant superposition
by transform domain processing. In this case, the input vector kE is the extended
data vector, obtained by embedding the input image array  in the left cor-
ner of a  array of zeros and then column scanning the resultant matrix. Follow-
ing the same reasoning as above, it is seen that

(9.2-4a)

and hence,

(9.2-4b)

As noted in Chapter 7, the equivalent output vector for either finite-area or sampled
image superposition can be obtained by an element selection operation of kE. For
finite-area superposition,

(9.2-5a)

and for sampled image superposition

(9.2-5b)
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Also, the matrix form of the output for finite-area superposition is related to the
extended image matrix KE by

(9.2-6a)

For sampled image superposition,

(9.2-6b)

The number of computational operations required to obtain kE by transform domain
processing is given by the previous analysis for M = N = J.

Direct transformation

Fast transformation:

If C is sparse, many of the  filter multiplication operations can be avoided.
From the discussion above, it can be seen that the secret to computationally effi-

cient superposition is to select a transformation that possesses a fast computational
algorithm that results in a relatively sparse transform domain superposition filter
matrix. As an example, consider finite-area convolution performed by Fourier
domain processing (2,3). Referring to Figure 9.2-1, let

(9.2-7)

where

          with 

for x, y = 1, 2,..., K. Also, let  denote the  vector representation of the
extended spatially invariant impulse response array of Eq. 7.3-2 for J = K. The Fou-
rier transform of  is denoted as

(9.2-8)

These transform components are then inserted as the diagonal elements of a 
matrix

(9.2-9)
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Then, it can be shown, after considerable manipulation, that the Fourier transform
domain superposition matrices for finite area and sampled image convolution can be
written as (4)

(9.2-10)

for N = M – L + 1 and

(9.2-11)

where N = M + L + 1 and

(9.2-12a)

(9.2-12b)

Thus the transform domain convolution operators each consist of a scalar weighting
matrix  and an interpolation matrix  that performs the dimensionality con-
version between the - element input vector and the - element output vector.
Generally, the interpolation matrix is relatively sparse, and therefore, transform domain
superposition is quite efficient.

Now, consider circulant area convolution in the transform domain. Following the
previous analysis it is found (4) that the circulant area convolution filter matrix
reduces to a scalar operator

(9.2-13)

Thus, as indicated in Eqs. 9.2-10 to 9.2-13, the Fourier domain convolution filter
matrices can be expressed in a compact closed form for analysis or operational stor-
age. No closed-form expressions have been found for other unitary transforms.

Fourier domain convolution is computationally efficient because the convolution
operator C is a circulant matrix, and the corresponding filter matrix CCCC is of diagonal
form. Actually, as can be seen from Eq. 9.1-6, the Fourier transform basis vectors
are eigenvectors of C (5). This result does not hold true for superposition in general,
nor for convolution using other unitary transforms. However, in many instances, the
filter matrices D, B, and C are relatively sparse, and computational savings can
often be achieved by transform domain processing.
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Figure 9.2-2 shows the Fourier and Hadamard domain filter matrices for the three
forms of convolution for a one-dimensional input vector and a Gaussian-shaped
impulse response (6). As expected, the transform domain representations are much
more sparse than the data domain representations. Also, the Fourier domain
circulant convolution filter is seen to be of diagonal form. Figure 9.2-3 illustrates the
structure of the three convolution matrices for two-dimensional convolution (4).

9.3. FAST FOURIER TRANSFORM CONVOLUTION

As noted previously, the equivalent output vector for either finite-area or sampled
image convolution can be obtained by an element selection operation on the
extended output vector kE for circulant convolution or its matrix counterpart KE.

FIGURE 9.2-2. One-dimensional Fourier and Hadamard domain convolution matrices.

(b) Sampled data convolution

Signal Fourier Hadamard

(a) Finite length convolution

(c) Circulant convolution
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This result, combined with Eq. 9.2-13, leads to a particularly efficient means of con-
volution computation indicated by the following steps:

1. Embed the impulse response matrix in the upper left corner of an all-zero
 matrix,  for finite-area convolution or  for sampled

infinite-area convolution, and take the two-dimensional Fourier trans-
form of the extended impulse response matrix, giving

FIGURE 9.2-3. Two-dimensional Fourier domain convolution matrices.

Spatial domain Fourier domain

(a) Finite-area convolution

(b) Sampled image convolution

(c) Circulant convolution

J J× J M≥ J N≥
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(9.3-1)

2. Embed the input data array in the upper left corner of an all-zero 
matrix, and take the two-dimensional Fourier transform of the extended
input data matrix to obtain

(9.3-2)

3. Perform the scalar multiplication

(9.3-3)

where .

4. Take the inverse Fourier transform

(9.3-4)

5. Extract the desired output matrix

(9.3-5a)

or

(9.3-5b)

It is important that the size of the extended arrays in steps 1 and 2 be chosen large
enough to satisfy the inequalities indicated. If the computational steps are performed
with J = N, the resulting output array, shown in Figure 9.3-1, will contain erroneous
terms in a boundary region of width L – 1 elements, on the top and left-hand side of
the output field. This is the wraparound error associated with incorrect use of the
Fourier domain convolution method. In addition, for finite area (D-type) convolu-
tion, the bottom and right-hand-side strip of output elements will be missing. If the
computation is performed with J = M, the output array will be completely filled with
the correct terms for D-type convolution. To force J = M for B-type convolution, it is
necessary to truncate the bottom and right-hand side of the input array. As a conse-
quence, the top and left-hand-side elements of the output array are erroneous.
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Figure 9.3-2 illustrates the Fourier transform convolution process with proper
zero padding. The example in Figure 9.3-3 shows the effect of no zero padding. In
both examples, the image has been filtered using a  uniform impulse
response array. The source image of Figure 9.3-3 is  pixels. The source
image of Figure 9.3-2 is  pixels. It has been obtained by truncating the bot-
tom 10 rows and right 10 columns of the source image of Figure 9.3-3. Figure 9.3-4
shows computer printouts of the upper left corner of the processed images. Figure
9.3-4a is the result of finite-area convolution. The same output is realized in Figure
9.3-4b for proper zero padding. Figure 9.3-4c shows the wraparound error effect for
no zero padding.

In many signal processing applications, the same impulse response operator is
used on different data, and hence step 1 of the computational algorithm need not be
repeated. The filter matrix HHHHE may be either stored functionally or indirectly as a
computational algorithm. Using a fast Fourier transform algorithm, the forward and
inverse transforms require on the order of  operations each. The scalar
multiplication requires  operations, in general, for a total of  opera-
tions. For an  input array, an  output array, and an  impulse
response array, finite-area convolution requires  operations, and sampled
image convolution requires  operations. If the dimension of the impulse
response L is sufficiently large with respect to the dimension of the input array N,
Fourier domain convolution will be more efficient than direct convolution, perhaps
by an order of magnitude or more. Figure 9.3-5 is a plot of L versus N for equality

FIGURE 9.3-1. Wraparound error effects.
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FIGURE 9.3-2. Fourier transform convolution of the candy_502_luma image with
proper zero padding, clipped magnitude displays of Fourier images.

(a) HE

(c) FE

(e) KE

(b)    E

(d )   E

(f )   E
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FIGURE 9.3-3. Fourier transform convolution of the candy_512_luma image with
improper zero padding, clipped magnitude displays of Fourier images.

(a) HE

(c) FE

(e) kE

(b)   E

(d )   E

(f )   E
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between direct and Fourier domain finite area convolution. The jaggedness of the
plot, in this example, arises from discrete changes in J (64, 128, 256,...) as N
increases.

Fourier domain processing is more computationally efficient than direct process-
ing for image convolution if the impulse response is sufficiently large. However, if
the image to be processed is large, the relative computational advantage of Fourier
domain processing diminishes. Also, there are attendant problems of computational 

FIGURE 9.3-4. Wraparound error for Fourier transform convolution, upper left
corner of processed image.
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(a) Finite-area convolution

(b) Fourier transform convolution with proper zero padding

(c) Fourier transform convolution without zero padding
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accuracy with large Fourier transforms. Both difficulties can be alleviated by a
block-mode filtering technique in which a large image is separately processed in
adjacent overlapped blocks (2, 7–9).

Figure 9.3-6a illustrates the extraction of a  pixel block from the upper
left corner of a large image array. After convolution with a  impulse response,
the resulting  pixel block is placed in the upper left corner of an output 

FIGURE 9.3-5. Comparison of direct and Fourier domain processing for finite-area convo-
lution.

FIGURE 9.3-6. Geometric arrangement of blocks for block-mode filtering.

NB NB×
L L×

MB MB×
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data array as indicated in Figure 9.3-6a. Next, a second block of  pixels is
extracted from the input array to produce a second block of  output pixels
that will lie adjacent to the first block. As indicated in Figure 9.3-6b, this second
input block must be overlapped by (L – 1) pixels in order to generate an adjacent
output block. The computational process then proceeds until all input blocks are
filled along the first row. If a partial input block remains along the row, zero-value
elements can be added to complete the block. Next, an input block, overlapped by
(L –1) pixels with the first row blocks, is extracted to produce the first block of the
second output row. The algorithm continues in this fashion until all output points are
computed.

A total of

(9.3-6)

operations is required for Fourier domain convolution over the full size image array.
With block-mode filtering with  input pixel blocks, the required number of
operations is

(9.3-7)

where R represents the largest integer value of the ratio . Hunt (9) has
determined the optimum block size as a function of the original image size and
impulse response size.

9.4. FOURIER TRANSFORM FILTERING

The discrete Fourier transform convolution processing algorithm of  Section 9.3 is
often utilized for computer simulation of continuous Fourier domain filtering. In this
section we consider discrete Fourier transform filter design techniques.

9.4.1. Transfer Function Generation

The first step in the discrete Fourier transform filtering process is generation of the
discrete domain transfer function. For simplicity, the following discussion is limited
to one-dimensional signals. The extension to two dimensions is straightforward.

Consider a one-dimensional continuous signal  of wide extent which is
bandlimited such that its Fourier transform  is zero for  greater than a cut-
off frequency . This signal is to be convolved with a continuous impulse function

 whose transfer function  is also bandlimited to . From Chapter 1 it is
known that the convolution can be performed either in the spatial domain by the
operation

NB NB×
MB MB×
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(9.4-1a)

or in the continuous Fourier domain by

(9.4-1b)

Chapter 7 has presented techniques for the discretization of the convolution inte-
gral of Eq. 9.4-1. In this process, the continuous impulse response function 
must be truncated by spatial multiplication of a window function y(x) to produce the
windowed impulse response

(9.4-2)

where y(x) = 0 for . The window function is designed to smooth the truncation
effect. The resulting convolution integral is then approximated as

(9.4-3)

Next, the output signal  is sampled over 2J + 1 points at a resolution
, and the continuous integration is replaced by a quadrature summation at

the same resolution , yielding the discrete representation

(9.4-4)

where K is the nearest integer value of the ratio .
Computation of Eq. 9.4-4 by discrete Fourier transform processing requires

formation of the discrete domain transfer function . If the continuous domain
impulse response function  is known analytically, the samples of the
windowed impulse response function are inserted as the first L = 2K + 1 elements of
a J-element sequence and the remaining J – L elements are set to zero. Thus, let

(9.4-5)

 L terms

where . The terms of  can be extracted from the continuous
impulse response function  and the window function by the sampling
operation
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(9.4-6)

The next step in the discrete Fourier transform convolution algorithm is to perform a
discrete Fourier transform of  over P points to obtain

(9.4-7)

where .
If the continuous domain transfer function  is known analytically, then

 can be obtained directly. It can be shown that

(9.4-8a)

(9.4-8b)

for u = 0, 1,..., P/2, where

(9.4-8c)

and  is the continuous domain Fourier transform of the window function y(x). If
 and  are known analytically, then, in principle,  can be obtained

by analytically performing the convolution operation of Eq. 9.4-8c and evaluating
the resulting continuous function at points . In practice, the analytic convo-
lution is often difficult to perform, especially in two dimensions. An alternative is to
perform an analytic inverse Fourier transformation of the transfer function  to
obtain its continuous domain impulse response  and then form  from the
steps of Eqs. 9.4-5 to 9.4-7. Still another alternative is to form  from 
according to Eqs. 9.4-8a and 9.4-8b, take its discrete inverse Fourier transform, win-
dow the resulting sequence, and then form  from Eq. 9.4-7.

9.4.2. Windowing Functions

The windowing operation performed explicitly in the spatial domain according to
Eq. 9.4-6 or implicitly in the Fourier domain by Eq. 9.4-8 is absolutely imperative if
the wraparound error effect described in Section 9.3 is to be avoided. A common
mistake in image filtering is to set the values of the discrete impulse response func-
tion arbitrarily equal to samples of the continuous impulse response function. The
corresponding extended discrete impulse response function will generally possess
nonzero elements in each of its J elements. That is, the length L of the discrete
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impulse response embedded in the extended vector of Eq. 9.4-5 will implicitly be set
equal to J. Therefore, all elements of the output filtering operation will be subject to
wraparound error.

A variety of window functions have been proposed for discrete linear filtering
(10–12). Several of the most common are listed in Table 9.4-1 and sketched in
Figure 9.4-1. Figure 9.4-2 shows plots of the transfer functions of these window
functions. The window transfer functions consist of a main lobe and sidelobes
whose peaks decrease in magnitude with increasing frequency. Examination of the
structure of Eq. 9.4-8 indicates that the main lobe causes a loss in frequency
response over the signal passband from 0 to , while the sidelobes are responsible
for an aliasing error because the windowed impulse response function  is not
bandlimited. A tapered window function reduces the magnitude of the sidelobes and
consequently attenuates the aliasing error, but the main lobe becomes wider, causing
the signal frequency response within the passband to be reduced. A design trade-off
must be made between these complementary sources of error. Both sources of
degradation can be reduced by increasing the truncation length of the windowed
impulse response, but this strategy will either result in a shorter length output
sequence or an increased number of computational operations.

TABLE 9.4-1.  Window Functionsa

Function Definition

Rectangular w(n) = 1

Barlett (triangular) w(n) = 

Hanning w(n) = 

Hamming w(n) = 0.54 - 0.46 cos 

Blackman w(n) = 0.42 – 0.5 cos 

Kaiser

a  is the modified zeroth-order Bessel function of the first kind and  is a design parameter.
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9.4.3. Discrete Domain Transfer Functions

In practice, it is common to define the discrete domain transform directly in the dis-
crete Fourier transform frequency space. The following are definitions of several
widely used transfer functions for a  pixel image. Applications of these filters
are presented in Chapter 10.

1. Zonal low-pass filter:

 and 

and 

  and 

  and (9.4-9a)

otherwise (9.4-9b)

where C is the filter cutoff frequency for . Figure 9.4-3 illustrates the
low-pass filter zones.

FIGURE 9.4-1. One-dimensional window functions.
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2. Zonal high-pass filter:

(9.4-10a)

and 

and 

  and 

  and (9.4-10b)

 otherwise (9.4-10c)

FIGURE 9.4-2. Transfer functions of one-dimensional window functions.

(a) Rectangular (b) Triangular

(c) Hanning

(e) Blackman

(d) Hamming
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3. Gaussian filter:

and 

and 

and 

 and (9.4-11a)

where

(9.4-11b)

and su and sv are the Gaussian filter spread factors.

FIGURE 9.4-3. Zonal filter transfer function definition.
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4. Butterworth low-pass filter:

and

and

and

  and (9.4-12a)

where

(9.4-12b)

where the integer variable n is the order of the filter. The Butterworth low-pass filter

provides an attenuation of 50% at the cutoff frequency .

5. Butterworth high-pass filter:

 and

and

 and

 and (9.4-13a)

where

(9.4-13b)

Figure 9.4-4 shows the transfer functions of zonal and Butterworth low- and high-
pass filters for a  pixel image.

9.5. SMALL GENERATING KERNEL CONVOLUTION

It is possible to perform convolution on a  image array F( j , k) with an
arbitrary  impulse response array H( j, k) by a sequential technique called small
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generating kernel (SGK) convolution (13–16). Figure 9.5-1 illustrates the decompo-
sition process in which a  prototype impulse response array H( j, k) is sequen-
tially decomposed into  pixel SGKs according to the relation

(9.5-1)

where  is the synthesized impulse response array, the symbol  denotes cen-
tered two-dimensional finite-area convolution, as defined by Eq. 7.1-14, and 
is the ith  pixel SGK of the decomposition, where . The SGK
convolution technique can be extended to larger SGK kernels. Generally, the SGK
synthesis of Eq. 9.5-1 is not exact. Techniques have been developed for choosing the
SGKs to minimize the mean-square error between  and  (13).

FIGURE 9.4-4. Zonal and Butterworth low- and high-pass transfer functions; 512 × 512 images;
cutoff frequency = 64.

(a) Zonal low-pass (b) Butterworth low-pass

(c) Zonal high-pass (d ) Butterworth high-pass
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Ĥ j k,( ) H j k,( )



238 LINEAR PROCESSING TECHNIQUES

Two-dimensional convolution can be performed sequentially without approxima-
tion error by utilizing the singular-value decomposition technique described in
Appendix A1.2 in conjunction with the SGK decimation (17–19). With this method,
called SVD/SGK convolution, the impulse response array  is regarded as a
matrix H. Suppose that H is orthogonally separable such that it can be expressed in
the outer product form

(9.5-2)

where a and b are column and row operator vectors, respectively. Then, the two-
dimensional convolution operation can be performed by first convolving the col-
umns of  with the impulse response sequence a(j) corresponding to the vec-
tor a, and then convolving the rows of that resulting array with the sequence b(k)
corresponding to the vector b. If H is not separable, the matrix can be expressed as a
sum of separable matrices by the singular-value decomposition by which

(9.5-3a)

(9.5-3b)

where  is the rank of H, si is the ith singular value of H. The vectors ai and bi
are the  eigenvectors of HHT and HTH, respectively.

Each eigenvector ai and bi of Eq. 9.5-3 can be considered to be a one-dimen-
sional sequence, which can be decimated by a small generating kernel expansion as

(9.5-4a)

(9.5-4b)

where  and  are  impulse response sequences corresponding to the
ith singular-value channel and the qth SGK expansion. The terms ci and ri are col-
umn and row gain constants. They are equal to the sum of the elements of their
respective sequences if the sum is nonzero, and equal to the sum of the magnitudes

FIGURE 9.5-1. Cascade decomposition of a two-dimensional impulse response array into
small generating kernels.
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otherwise. The former case applies for a unit-gain filter impulse response, while the
latter case applies for a differentiating filter.

As a result of the linearity of the SVD expansion of Eq. 9.5-3b, the large size
impulse response array  corresponding to the matrix Hi of Eq. 9.5-3a can be
synthesized by sequential  convolutions according to the relation

(9.5-5)

where  is the qth SGK of the ith SVD channel. Each  is formed by an
outer product expansion of a pair of the  and  terms of Eq. 9.5-4. The
ordering is important only for low-precision computation when roundoff error becomes
a consideration. Figure 9.5-2 is the flowchart for SVD/SGK convolution. The weight-
ing terms in the figure are

(9.5-6)

Reference 19 describes the design procedure for computing the .
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PART 4

IMAGE IMPROVEMENT

The use of digital processing techniques for image improvement has received much
interest with the publicity given to applications in space imagery and medical
research. Other applications include image improvement for photographic surveys
and industrial radiographic analysis.  

Image improvement is a term coined to denote three types of image manipulation
processes: image enhancement, image restoration, and geometrical image modi-
fication. Image enhancement entails operations that improve the appearance to a
human viewer, or operations to convert an image to a format better suited to
machine processing. Image restoration has commonly been defined as the
modification of an observed image in order to compensate for defects in the imaging
system that produced the observed image. Geometrical image modification includes
image magnification, minification, rotation, and nonlinear spatial warping. 

Chapter 10 describes several techniques of monochrome and color image
enhancement. The chapters that follow develop models for image formation and
restoration, and present methods of point and spatial image restoration. The final
chapter of this part considers geometrical image modification.
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10
IMAGE ENHANCEMENT

Image enhancement processes consist of a collection of techniques that seek to
improve the visual appearance of an image or to convert the image to a form better
suited for analysis by a human or a machine. In an image enhancement system, there
is no conscious effort to improve the fidelity of a reproduced image with regard to
some ideal form of the image, as is done in image restoration. Actually, there is
some evidence to indicate that often a distorted image, for example, an image with
amplitude overshoot and undershoot about its object edges, is more subjectively
pleasing than a perfectly reproduced original.

For image analysis purposes, the definition of image enhancement stops short of
information extraction. As an example, an image enhancement system might
emphasize the edge outline of objects in an image by high-frequency filtering. This
edge-enhanced image would then serve as an input to a machine that would trace the
outline of the edges, and perhaps make measurements of the shape and size of the
outline. In this application, the image enhancement processor would emphasize
salient features of the original image and simplify the processing task of a data-
extraction machine.

There is no general unifying theory of image enhancement at present because
there is no general standard of image quality that can serve as a design criterion for
an image enhancement processor. Consideration is given here to a variety of tech-
niques that have proved useful for human observation improvement and image anal-
ysis.

10.1. CONTRAST MANIPULATION

One of the most common defects of photographic or electronic images is poor con-
trast resulting from a reduced, and perhaps nonlinear, image amplitude range. Image 
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contrast can often be improved by amplitude rescaling of each pixel (1,2).
Figure 10.1-1a illustrates a transfer function for contrast enhancement of a typical
continuous amplitude low-contrast image. For continuous amplitude images, the
transfer function operator can be implemented by photographic techniques, but it is
often difficult to realize an arbitrary transfer function accurately. For quantized
amplitude images, implementation of the transfer function is a relatively simple
task. However, in the design of the transfer function operator, consideration must be
given to the effects of amplitude quantization. With reference to Figure l0.l-lb,
suppose that an original image is quantized to J levels, but it occupies a smaller
range. The output image is also assumed to be restricted to J levels, and the mapping
is linear. In the mapping strategy indicated in Figure 10.1-1b, the output level
chosen is that level closest to the exact mapping of an input level. It is obvious from
the diagram that the output image will have unoccupied levels within its range, and
some of the gray scale transitions will be larger than in the original image. The latter
effect may result in noticeable gray scale contouring. If the output image is
quantized to more levels than the input image, it is possible to approach a
linear placement of output levels, and hence, decrease the gray scale contouring
effect.

FIGURE 10.1-1. Continuous and quantized image contrast enhancement.
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10.1.1. Amplitude Scaling

A digitally processed image may occupy a range different from the range of the
original image. In fact, the numerical range of the processed image may encompass
negative values, which cannot be mapped directly into a light intensity range. Figure
10.1-2 illustrates several possibilities of scaling an output image back into the
domain of values occupied by the original image. By the first technique, the pro-
cessed image is linearly mapped over its entire range, while by the second technique,
the extreme amplitude values of the processed image are clipped to maximum and
minimum    limits. The second technique is often subjectively preferable, especially
for images in which a relatively small number of pixels exceed the limits. Contrast
enhancement algorithms often possess an option to clip a fixed percentage of the
amplitude values on each end of the amplitude scale. In medical image enhancement
applications, the contrast modification operation shown in Figure 10.2-2b, for ,
is called a window-level transformation. The window value is the width of the linear
slope, ; the level is located at the midpoint c of the slope line. The third
technique of amplitude scaling, shown in Figure 10.1-2c, utilizes an absolute value
transformation for visualizing an image with negatively valued pixels.  This is a

FIGURE 10.1-2. Image scaling methods.

(a) Linear image scaling

(b) Linear image scaling with clipping

(c) Absolute value scaling

a 0≥

b a–
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useful transformation for systems that utilize the two's complement numbering con-
vention for amplitude representation. In such systems, if the amplitude of a pixel
overshoots +1.0 (maximum luminance white) by a small amount, it wraps around by
the same amount to –1.0, which is also maximum luminance white. Similarly, pixel
undershoots remain near black.

Figure 10.1-3 illustrates the amplitude scaling of the Q component of the YIQ
transformation, shown in Figure 3.5-14, of a monochrome image containing nega-
tive pixels. Figure 10.1-3a presents the result of amplitude scaling with the linear
function of Figure 10.1-2a over the amplitude range of the image. In this example,
the most negative pixels are mapped to black (0.0), and the most positive pixels are
mapped to white (1.0). Amplitude scaling in which negative value pixels are clipped
to zero is shown in Figure 10.1-3b. The black regions of the image correspond to

FIGURE 10.1-3. Image scaling of the Q component of the YIQ representation of the

dolls_gamma color image.

(a) Linear, full range, − 0.147 to 0.169

(b) Clipping, 0.000 to 0.169 (c) Absolute value, 0.000 to 0.169
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FIGURE 10.1-4. Window-level contrast stretching of an earth satellite image.

(a) Original (b) Original histogram

(c) Min. clip = 0.17, max. clip = 0.64

(e) Min. clip = 0.24, max. clip = 0.35

(d) Enhancement histogram

(f) Enhancement histogram
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negative pixel values of the Q component. Absolute value scaling is presented in
Figure 10.1-3c.

Figure 10.1-4 shows examples of contrast stretching of a poorly digitized original
satellite image along with gray scale histograms of the original and enhanced pic-
tures. In Figure 10.1-4c, the clip levels are set at the histogram limits of the original,
while in Figure 10.1-4e, the clip levels truncate 5% of the original image upper and
lower level amplitudes. It is readily apparent from the histogram of Figure 10.1-4f
that the contrast-stretched image of Figure 10.1-4e has many unoccupied amplitude
levels. Gray scale contouring is at the threshold of visibility.

10.1.2. Contrast Modification

Section 10.1.1 dealt with amplitude scaling of images that do not properly utilize the
dynamic range of a display; they may lie partly outside the dynamic range or
occupy only a portion of the dynamic range. In this section, attention is directed to
point transformations that modify the contrast of an image within a display's
dynamic range.

Figure 10.1-5a contains an original image of a jet aircraft that has been digitized to
256 gray levels and numerically scaled over the range of 0.0 (black) to 1.0 (white).

FIGURE 10.1-5. Window-level contrast stretching of the jet_mon image.

(a) Original (b) Original histogram

(c) Transfer function (d) Contrast stretched
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The histogram of the image is shown in Figure 10.1-5b. Examination of the
histogram of the image reveals that the image contains relatively few low- or high-
amplitude pixels. Consequently, applying the window-level contrast stretching
function of Figure 10.1-5c results in the image of Figure 10.1-5d, which possesses
better visual contrast but does not exhibit noticeable visual clipping. 

Consideration will now be given to several nonlinear point transformations, some
of which will be seen to improve visual contrast, while others clearly impair visual
contrast.

Figures 10.1-6 and 10.1-7 provide examples of power law point transformations
in which the processed image is defined by

(10.1-1)

FIGURE 10.1-6. Square and cube contrast modification of the jet_mon image.

(a) Square function (b) Square output

(c) Cube function (d) Cube output

G j k,( ) F j k,( )[ ]p
=
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where  represents the original image and p is the power law vari-
able. It is important that the amplitude limits of Eq. 10.1-1 be observed; processing
of the integer code (e.g., 0 to 255) by Eq. 10.1-1 will give erroneous results. The
square function provides the best visual result. The rubber band transfer function
shown in Figure 10.1-8a provides a simple piecewise linear approximation to the
power law curves. It is often useful in interactive enhancement machines in which
the inflection point is interactively placed. 

The Gaussian error function behaves like a square function for low-amplitude
pixels and like a square root function for high- amplitude pixels. It is defined as

(10.1-2a)

FIGURE 10.1-7. Square root and cube root contrast modification of the jet_mon image.

(a) Square root function (b) Square root output

(c) Cube root function (d ) Cube root output
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where

(10.1-2b)

and a is the standard deviation of the Gaussian distribution.
The logarithm function is useful for scaling image arrays with a very wide

dynamic range. The logarithmic point transformation is given by

(10.1-3)

under the assumption that  where a is a positive scaling factor.
Figure 8.2-4 illustrates the logarithmic transformation applied to an array of Fourier
transform coefficients.

There are applications in image processing in which monotonically decreasing
and nonmonotonic amplitude scaling is useful. For example, contrast reverse and
contrast inverse transfer functions, as illustrated in Figure 10.1-9, are often helpful
in visualizing detail in dark areas of an image. The reverse function is defined as

(10.1-4)

FIGURE 10.1-8. Rubber-band contrast modification of the jet_mon image.

(b) Rubber-band output(a) Rubber-band function

erf x{ } 2

π
------- y

2
–{ }exp yd

0

x∫=

G j k,( ) e 1.0 aF j k,( )+{ }log

e 2.0{ }log
--------------------------------------------------=

0.0 F j k,( ) 1.0,≤ ≤

G j k,( ) 1.0 F j k,( )–=
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where  The inverse function

for (10.1-5a)

for (10.1-5b)

is clipped at the 10% input amplitude level to maintain the output amplitude within
the range of unity.

Amplitude-level slicing, as illustrated in Figure 10.1-10, is a useful interactive
tool for visually analyzing the spatial distribution of pixels of certain amplitude
within an image. With the function of Figure 10.1-10a, all pixels within the ampli-
tude passband are rendered maximum white in the output, and pixels outside the
passband are rendered black. Pixels outside the amplitude passband are displayed in
their original state with the function of Figure 10.1-10b.

FIGURE 10.1-9. Reverse and inverse function contrast modification of the jet_mon image.

(b) Reverse function output

(c) Inverse function (d) Inverse function output

(a) Reverse function

0.0 F j k,( ) 1.0≤ ≤

G j k,( )

1.0

0.1

F j k,( )
----------------






=

0.0 F j k,( ) 0.1<≤

0.1 F j k,( ) 1.0≤ ≤
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10.2. HISTOGRAM MODIFICATION

The luminance histogram of a typical natural scene that has been linearly quantized
is usually highly skewed toward the darker levels; a majority of the pixels possess
a luminance less than the average. In such images, detail in the darker regions is
often not perceptible. One means of enhancing these types of images is a technique
called histogram modification, in which the original image is rescaled so that the
histogram of the enhanced image follows some desired form. Andrews, Hall, and
others (3–5) have produced enhanced imagery by a histogram equalization process
for which the histogram of the enhanced image is forced to be uniform. Frei (6) has
explored the use of histogram modification procedures that produce enhanced
images possessing exponential or hyperbolic-shaped histograms. Ketcham (7) and
Hummel (8) have demonstrated improved results by an adaptive histogram modifi-
cation procedure.

FIGURE 10.1-10. Level slicing contrast modification functions.
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10.2.1. Nonadaptive Histogram Modification

Figure 10.2-1 gives an example of histogram equalization. In the figure,  for
c = 1, 2,..., C, represents the fractional number of pixels in an input image whose
amplitude is quantized to the cth reconstruction level. Histogram equalization seeks
to produce an output image field G by point rescaling such that the normalized
gray-level histogram  for d = 1, 2,..., D. In the example of Figure
10.2-1, the number of output levels is set at one-half of the number of input levels. The
scaling algorithm is developed as follows. The average value of the histogram is
computed. Then, starting at the lowest gray level of the original, the pixels in the
quantization bins are combined until the sum is closest to the average. All of these
pixels are then rescaled to the new first reconstruction level at the midpoint of the
enhanced image first quantization bin. The process is repeated for higher-value gray
levels. If the number of reconstruction levels of the original image is large, it is
possible to rescale the gray levels so that the enhanced image histogram is almost
constant. It should be noted that the number of reconstruction levels of the enhanced
image must be less than the number of levels of the original image to provide proper
gray scale redistribution if all pixels in each quantization level are to be treated
similarly. This process results in a somewhat larger quantization error. It is possible to
perform the gray scale histogram equalization process with the same number of gray
levels for the original and enhanced images, and still achieve a constant histogram of
the enhanced image, by randomly redistributing pixels from input to output
quantization bins.

FIGURE 10.2-1. Approximate gray level histogram equalization with unequal number of
quantization levels.

HF c( )

HG d( ) 1 D⁄=
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The histogram modification process can be considered to be a monotonic point
transformation  for which the input amplitude variable  is
mapped into an output variable  such that the output probability distri-
bution  follows some desired form for a given input probability distri-
bution  where ac and bd are reconstruction values of the cth and dth
levels. Clearly, the input and output probability distributions must each sum to unity.
Thus,

(10.2-1a)

(10.2-1b)

Furthermore, the cumulative distributions must equate for any input index c. That is,
the probability that pixels in the input image have an amplitude less than or equal to
ac must be equal to the probability that pixels in the output image have amplitude
less than or equal to bd, where  because the transformation is mono-
tonic. Hence

(10.2-2)

The summation on the right is the cumulative probability distribution of the input
image. For a given image, the cumulative distribution is replaced by the cumulative
histogram to yield the relationship

(10.2-3)

Equation 10.2-3 now must be inverted to obtain a solution for gd in terms of fc. In
general, this is a difficult or impossible task to perform analytically, but certainly
possible by numerical methods. The resulting solution is simply a table that indi-
cates the output image level for each input image level.

The histogram transformation can be obtained in approximate form by replacing
the discrete probability distributions of Eq. 10.2-2 by continuous probability densi-
ties. The resulting approximation is

(10.2-4)

gd T fc{ }= f1 fc fC≤ ≤
g1 gd gD≤ ≤

PR gd bd={ }
PR fc ac={ }

PR fc ac={ }
c 1=

C

∑ 1=

PR gd bd={ }
d 1=

D

∑ 1=

bd T ac{ }=

PR gn bn={ }
n 1=

d

∑ PR fm am={ }
m 1=

c

∑=

PR gn bn={ }
n 1=

d

∑ HF m( )
m 1=

c

∑=

p
gmin

g

∫ g g( ) gd p
fmin

f

∫ f f( ) fd=
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FIGURE 10.2-2. Histogram equalization of the projectile image.

(a) Original (b) Original histogram

(d) Enhanced (e) Enhanced histogram

(c) Transfer function
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where  and  are the probability densities of f and g, respectively. The
integral on the right is the cumulative distribution function  of the input vari-
able f. Hence,

(10.2-5)

In the special case, for which the output density is forced to be the uniform density,

(10.2-6)

for , the histogram equalization transfer function becomes

(10.2-7)

Table 10.2-1 lists several output image histograms and their corresponding transfer
functions.

Figure 10.2-2 provides an example of histogram equalization for an x-ray of a
projectile. The original image and its histogram are shown in Figure 10.2-2a and b,
respectively. The transfer function of Figure 10.2-2c is equivalent to the cumulative
histogram of the original image. In the histogram equalized result of Figure 10.2-2,
ablating material from the projectile, not seen in the original, is clearly visible. The
histogram of the enhanced image appears peaked, but close examination reveals that
many gray level output values are unoccupied. If the high occupancy gray levels
were to be averaged with their unoccupied neighbors, the resulting histogram would
be much more uniform.

Histogram equalization usually performs best on images with detail hidden in
dark regions. Good-quality originals are often degraded by histogram equalization.
As an example, Figure 10.2-3 shows the result of histogram equalization on the jet
image.

Frei (6) has suggested the histogram hyperbolization procedure listed in Table
10.2-1 and described in Figure 10.2-4. With this method, the input image histogram
is modified by a transfer function such that the output image probability density is of
hyperbolic form. Then the resulting gray scale probability density following the
assumed logarithmic or cube root response of the photoreceptors of the eye model
will be uniform. In essence, histogram equalization is performed after the cones of
the retina.

10.2.2. Adaptive Histogram Modification

The histogram modification methods discussed in Section 10.2.1 involve applica-
tion of the same transformation or mapping function to each pixel in an image. The
mapping function is based on the histogram of the entire image. This process can be

pf f( ) pg g( )
Pf f( )

p
gmin

g

∫ g
g( ) gd Pf f( )=

pg g( ) 1

gmax gmin–
-----------------------------=

gmin g gmax≤ ≤

g gmax gmin–( )Pf f( ) gmin+=
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made spatially adaptive by applying histogram modification to each pixel based on
the histogram of pixels within a moving window neighborhood. This technique is
obviously computationally intensive, as it requires histogram generation, mapping
function computation, and mapping function application at each pixel.

Pizer et al. (9) have proposed an adaptive histogram equalization technique in
which histograms are generated only at a rectangular grid of points and the mappings
at each pixel are generated by interpolating mappings of the four nearest grid points.
Figure 10.2-5 illustrates the geometry. A histogram is computed at each grid point in
a window about the grid point. The window dimension can be smaller or larger than
the grid spacing. Let M00, M01, M10, M11 denote the histogram modification map-
pings generated at four neighboring grid points. The mapping to be applied at pixel
F(j, k) is determined by a bilinear interpolation of the mappings of the four nearest
grid points as given by

(10.2-8a)

FIGURE 10.2-3. Histogram equalization of the jet_mon image.

(a) Original

(b) Transfer function (c) Histogram equalized

M a bM00 1 b–( )M10+[ ] 1 a–( ) bM01 1 b–( )M11+[ ]+=
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where

(10.2-8b)

(10.2-8c)

Pixels in the border region of the grid points are handled as special cases of
Eq. 10.2-8. Equation 10.2-8 is best suited for general-purpose computer calculation. 

FIGURE 10.2-4. Histogram hyperbolization.

FIGURE 10.2-5. Array geometry for interpolative adaptive histogram modification. * Grid
point; • pixel to be computed.

a
k k0–

k1 k0–
----------------=

b
j j0–

j1 j0–
--------------=
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For parallel processors, it is often more efficient to use the histogram generated in
the histogram window of Figure 10.2-5 and apply the resultant mapping function
to all pixels in the mapping window of the figure. This process is then repeated at all
grid points. At each pixel coordinate (j, k), the four histogram modified pixels
obtained from the four overlapped mappings are combined by bilinear interpolation.
Figure 10.2-6 presents a comparison between nonadaptive and adaptive histogram
equalization of a monochrome image. In the adaptive histogram equalization exam-
ple, the histogram window is .

10.3. NOISE CLEANING

An image may be subject to noise and interference from several sources, including
electrical sensor noise, photographic grain noise, and channel errors. These noise

FIGURE 10.2-6. Nonadaptive and adaptive histogram equalization of the brainscan image.

(c) Adaptive(b) Nonadaptive

(a) Original

64 64×
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effects can be reduced by classical statistical filtering techniques to be discussed in
Chapter 12. Another approach, discussed in this section, is the application of ad hoc
noise cleaning techniques.

Image noise arising from a noisy sensor or channel transmission errors usually
appears as discrete isolated pixel variations that are not spatially correlated. Pixels
that are in error often appear visually to be markedly different from their neighbors.
This observation is the basis of many noise cleaning algorithms (10–13). In this sec-
tion we describe several linear and nonlinear techniques that have proved useful for
noise reduction.

Figure 10.3-1 shows two test images, which will be used to evaluate noise clean-
ing techniques. Figure 10.3-1b has been obtained by adding uniformly distributed
noise to the original image of Figure 10.3-1a. In the impulse noise example of
Figure 10.3-1c, maximum-amplitude pixels replace original image pixels in a spa-
tially random manner.

FIGURE 10.3-1. Noisy test images derived from the peppers_mon image.

(a) Original

(b) Original with uniform noise (c) Original with impulse noise
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10.3.1. Linear Noise Cleaning

Noise added to an image generally has a higher-spatial-frequency spectrum than the
normal image components because of its spatial decorrelatedness. Hence, simple
low-pass filtering can be effective for noise cleaning. Consideration will now be
given to convolution and Fourier domain methods of noise cleaning.

Spatial Domain Processing. Following the techniques outlined in Chapter 7, a spa-
tially filtered output image  can be formed by discrete convolution of an
input image  with a  impulse response array  according to the
relation

(10.13-1)

where C = (L + 1)/2. Equation 10.3-1 utilizes the centered convolution notation
developed by Eq. 7.1-14, whereby the input and output arrays are centered with
respect to one another, with the outer boundary of  of width  pixels
set to zero.

For noise cleaning, H should be of low-pass form, with all positive elements.
Several common  pixel impulse response arrays of low-pass form are listed
below.

Mask 1: (10.3-2a)

Mask 2: (10.3-2b)

Mask 3: (10.3-2c)

These arrays, called noise cleaning masks, are normalized to unit weighting so that
the noise-cleaning process does not introduce an amplitude bias in the processed
image. The effect of noise cleaning with the arrays on the uniform noise and impulse
noise test images is shown in Figure 10.3-2. Mask 1 and 2 of Eq. 10.3-2 are special
cases of a  parametric low-pass filter whose impulse response is defined as

(10.3-3)
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FIGURE 10.3-2. Noise cleaning with 3 × 3 low-pass impulse response arrays on the noisy
test images.

(e) Uniform noise, mask 3 (f ) Impulse noise, mask 3

(c) Uniform noise, mask 2 (d ) Impulse noise, mask 2

(a) Uniform noise, mask 1 (b) Impulse noise, mask 1
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The concept of low-pass filtering noise cleaning can be extended to larger
impulse response arrays. Figures 10.3-3 and 10.3-4 present noise cleaning results for 
several  impulse response arrays for uniform and impulse noise. As expected,
use of a larger impulse response array provides more noise smoothing, but at the
expense of the loss of fine image detail.

Fourier Domain Processing. It is possible to perform linear noise cleaning in the
Fourier domain (13) using the techniques outlined in Section 9.3. Properly executed,
there is no difference in results between convolution and Fourier filtering; the
choice is a matter of implementation considerations.

High-frequency noise effects can be reduced by Fourier domain filtering with a
zonal low-pass filter with a transfer function defined by Eq. 9.3-9. The sharp cutoff
characteristic of the zonal low-pass filter leads to ringing artifacts in a filtered
image. This deleterious effect can be eliminated by the use of a smooth cutoff filter,

FIGURE 10.3-3. Noise cleaning with 7 × 7 impulse response arrays on the noisy test image
with uniform noise.

(a) Uniform rectangle (b) Uniform circular

(c) Pyramid (d) Gaussian, s = 1.0

7 7×
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such as the Butterworth low-pass filter whose transfer function is specified by
Eq. 9.4-12. Figure 10.3-5 shows the results of zonal and Butterworth low-pass filter-
ing of noisy images.

Unlike convolution, Fourier domain processing, often provides quantitative and
intuitive insight into the nature of the noise process, which is useful in designing
noise cleaning spatial filters. As an example, Figure 10.3-6a shows an original
image subject to periodic interference. Its two-dimensional Fourier transform,
shown in Figure 10.3-6b, exhibits a strong response at the two points in the Fourier
plane corresponding to the frequency response of the interference. When multiplied
point by point with the Fourier transform of the original image, the bandstop filter of
Figure 10.3-6c attenuates the interference energy in the Fourier domain. Figure
10.3-6d shows the noise-cleaned result obtained by taking an inverse Fourier trans-
form of the product.

FIGURE 10.3-4. Noise cleaning with 7 × 7 impulse response arrays on the noisy test image
with impulse noise.

(a) Uniform rectangle (b) Uniform circular

(c) Pyramid (d) Gaussian, s = 1.0
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Homomorphic Filtering. Homomorphic filtering (14) is a useful technique for
image enhancement when an image is subject to multiplicative noise or interference.
Figure 10.3-7 describes the process. The input image  is assumed to be mod-
eled as the product of a noise-free image  and an illumination interference
array . Thus,

(10.3-4)

Ideally,  would be a constant for all . Taking the logarithm of Eq. 10.3-4
yields the additive linear result

FIGURE 10.3-5. Noise cleaning with zonal and Butterworth low-pass filtering on the noisy
test images; cutoff frequency = 64.

(a) Uniform noise, zonal (b) Impulse noise, zonal

(c) Uniform noise, Butterworth (d ) Impulse noise, Butterworth

F j k,( )
S j k,( )

I j k,( )

F j k,( ) I j k,( )S j k,( )=

I j k,( ) j k,( )
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(10.3-5)

Conventional linear filtering techniques can now be applied to reduce the log inter-
ference component. Exponentiation after filtering completes the enhancement pro-
cess. Figure 10.3-8 provides an example of homomorphic filtering. In this example,
the illumination field  increases from left to right from a value of 0.1 to 1.0.

FIGURE 10.3-6. Noise cleaning with Fourier domain band stop filtering on the parts
image with periodic interference.

FIGURE 10.3-7. Homomorphic filtering.

(a) Original (b) Original Fourier transform 

(c) Bandstop filter (d ) Noise cleaned

F j k,( ){ }log I j k,( ){ }log S j k,( ){ }log+=

I j k,( )
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Therefore, the observed image appears quite dim on its left side. Homomorphic
filtering (Figure 10.3-8c) compensates for the nonuniform illumination.

10.3.2. Nonlinear Noise Cleaning

The linear processing techniques described previously perform reasonably well on
images with continuous noise, such as additive uniform or Gaussian distributed
noise. However, they tend to provide too much smoothing for impulselike noise.
Nonlinear techniques often provide a better trade-off between noise smoothing and
the retention of fine image detail. Several nonlinear techniques are presented below.
Mastin (15) has performed subjective testing of several of these operators.

FIGURE 10.3-8. Homomorphic filtering on the washington_ir image with a Butter-
worth high-pass filter; cutoff frequency = 4.

(a) Illumination field (b) Original

(c) Homomorphic filtering
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Outlier. Figure 10.3-9 describes a simple outlier noise cleaning technique in which
each pixel is compared to the average of its eight neighbors. If the magnitude of the
difference is greater than some threshold level, the pixel is judged to be noisy, and it
is replaced by its neighborhood average. The eight-neighbor average can be com-
puted by convolution of the observed image with the impulse response array

(10.3-6)

Figure 10.3-10 presents the results of outlier noise cleaning for a threshold level of
10%.

FIGURE 10.3-9. Outlier noise cleaning algorithm.

FIGURE 10.3-10. Noise cleaning with the outlier algorithm on the noisy test images.

H
1

8
---

1 1 1

1 0 1

1 1 1

=

(a) Uniform noise (b) Impulse noise
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The outlier operator can be extended straightforwardly  to larger windows. Davis
and Rosenfeld (16) have suggested a variant of the outlier technique in which the
center pixel in a window is replaced by the average of its k neighbors whose ampli-
tudes are closest to the center pixel.

Median Filter. Median filtering is a nonlinear signal processing technique devel-
oped by Tukey (17) that is useful for noise suppression in images. In one-dimen-
sional form, the median filter consists of a sliding window encompassing an odd
number of pixels. The center pixel in the window is replaced by the median of the
pixels in the window. The median of a discrete sequence a1, a2,..., aN for N odd is
that member of the sequence for which (N – 1)/2 elements are smaller or equal in
value and (N – 1)/2 elements are larger or equal in value. For example, if the values
of the pixels within a window are 0.1, 0.2, 0.9, 0.4, 0.5, the center pixel would be
replaced by the value 0.4, which is the median value of the sorted sequence 0.1, 0.2,
0.4, 0.5, 0.9. In this example, if the value 0.9 were a noise spike in a monotonically
increasing sequence, the median filter would result in a considerable improvement.
On the other hand, the value 0.9 might represent a valid signal pulse for a wide-
bandwidth sensor, and the resultant image would suffer some loss of resolution.
Thus, in some cases the median filter will provide noise suppression, while in other
cases it will cause signal suppression.

Figure 10.3-11 illustrates some examples of the operation of a median filter and a
mean (smoothing) filter for a discrete step function, ramp function, pulse function,
and a triangle function with a window of five pixels. It is seen from these examples
that the median filter has the usually desirable property of not affecting step func-
tions or ramp functions. Pulse functions, whose periods are less than one-half the
window width, are suppressed. But the peak of the triangle is flattened.

Operation of the median filter can be analyzed to a limited extent. It can be
shown that the median of the product of a constant K and a sequence  is

(10.3-7)

However, for two arbitrary sequences  and , it does not follow that the
median of the sum of the sequences is equal to the sum of their medians. That is, in
general,

(10.3-8)

The sequences 0.1, 0.2, 0.3, 0.4, 0.5 and 0.1, 0.2, 0.3, 0.2, 0.1 are examples for
which the additive linearity property does not hold.

There are various strategies for application of the median filter for noise suppres-
sion. One method would be to try a median filter with a window of length 3. If there
is no significant signal loss, the window length could be increased to 5 for median

f j( )

MED K f j( )[ ]{ } K MED f j( ){ }[ ]=

f j( ) g j( )

MED f j( ) g j( )+{ } MED f j( ){ } MED g j( ){ }+≠
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filtering of the original. The process would be terminated when the median filter
begins to do more harm than good. It is also possible to perform cascaded median
filtering on a signal using a fixed-or variable-length window. In general, regions that
are unchanged by a single pass of the filter will remain unchanged in subsequent
passes. Regions in which the signal period is lower than one-half the window width
will be continually altered by each successive pass. Usually, the process will con-
tinue until the resultant period is greater than one-half the window width, but it can
be shown that some sequences will never converge (18).

The concept of the median filter can be extended easily to two dimensions by uti-
lizing a two-dimensional window of some desired shape such as a rectangle or dis-
crete approximation to a circle. It is obvious that a two-dimensional  median
filter will provide a greater degree of noise suppression than sequential processing
with  median filters, but two-dimensional processing also results in greater sig-
nal suppression. Figure 10.3-12 illustrates the effect of two-dimensional median
filtering of a spatial peg function with a  square filter and a  plus sign–
shaped filter. In this example, the square median has deleted the corners of the peg,
but the plus median has not affected the corners.

Figures 10.3-13 and 10.3-14 show results of plus sign shaped median filtering
on the noisy test images of Figure 10.3-1 for impulse and uniform noise, respectively.

FIGURE 10.3-11. Median filtering on one-dimensional test signals.

L L×

L 1×

3 3× 5 5×
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In the impulse noise example, application of the  median significantly reduces
the noise effect, but some residual noise remains. Applying two  median filters
in cascade provides further improvement. The  median filter removes almost
all of the impulse noise. There is no visible impulse noise in the  median filter
result, but the image has become somewhat blurred. In the case of uniform noise,
median filtering provides little visual improvement.

Huang et al. (19) and Astola and Campbell (20) have developed fast median fil-
tering algorithms. The latter can be generalized to implement any rank ordering.

Pseudomedian Filter. Median filtering is computationally intensive; the number of
operations grows exponentially with window size. Pratt et al. (21) have proposed a
computationally simpler operator, called the pseudomedian filter, which possesses
many of the properties of the median filter.

Let {SL} denote a sequence of elements s1, s2,..., sL. The pseudomedian of the
sequence is

FIGURE 10.3-12. Median filtering on two-dimensional test signals.

3 3×
3 3×

5 5×
7 7×
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(10.3-9)

where for M = (L + 1)/2

(10.3-10a)

(10.3-10b)

FIGURE 10.3-13. Median filtering on the noisy test image with uniform noise.

(a) 3 × 3 median filter (b) 3 × 3 cascaded median filter

(c) 5 × 5 median filter (d) 7 × 7 median filter

PMED SL{ } 1 2⁄( )MAXIMIN SL{ } 1 2⁄( )MINIMAX SL{ }+=

MAXIMIN SL{ } MAX MIN s1 … sM, ,( )[ ] MIN s2 … sM 1+, ,( )[ ],{=

… MIN sL M 1+– … sL, ,( )[ ], }

MINIMAX SL{ } MIN MAX s1 … sM, ,( )[ ] MAX s2 … sM 1+, ,( )[ ],{=

… MAX sL M 1+– … sL, ,( )[ ], }
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Operationally, the sequence of L elements is decomposed into subsequences of M
elements, each of which is slid to the right by one element in relation to its
predecessor, and the appropriate MAX and MIN operations are computed. As will
be demonstrated, the MAXIMIN and MINIMAX operators are, by themselves,
useful operators. It should be noted that it is possible to recursively decompose the
MAX and MIN functions on long sequences into sliding functions of length 2 and 3
for pipeline computation (21).

The one-dimensional pseudomedian concept can be extended in a variety of
ways. One approach is to compute the MAX and MIN functions over rectangular
windows. As with the median filter, this approach tends to over smooth an image.
A plus-shape pseudomedian generally provides better subjective results. Consider
a plus-shaped window containing the following two-dimensional set elements {SE}

FIGURE 10.3-14. Median filtering on the noisy test image with uniform noise.

(a) 3 × 3 median filter

(b) 5 × 5 median filter (c) 7 × 7 median filter
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Let the sequences {XC} and {YR} denote the elements along the horizontal and ver-
tical axes of the window, respectively. Note that the element xM is common to both
sequences. Then the plus-shaped pseudomedian can be defined as

(10.3-11)

The MAXIMIN operator in one- or two-dimensional form is useful for removing
bright impulse noise but has little or no effect on dark impulse noise. Conversely,
the MINIMAX operator does a good job in removing dark, but not bright, impulse
noise. A logical conclusion is to cascade the operators.

Figure 10.3-16 shows the results of MAXIMIN, MINIMAX, and pseudomedian
filtering on an image subjected to salt and pepper noise. As observed, the
MAXIMIN operator reduces the salt noise, while the MINIMAX operator reduces
the pepper noise. The pseudomedian provides attenuation for both types of noise.
The cascade MINIMAX and MAXIMIN operators, in either order, show excellent
results.

Wavelet De-noising. Section 8.4-3 introduced wavelet transforms. The usefulness
of wavelet transforms for image coding derives from the property that most of the
energy of a transformed image is concentrated in the trend transform components
rather than the fluctuation components (22). The fluctuation components may be
grossly quantized without serious image degradation. This energy compaction prop-
erty can also be exploited for noise removal. The concept, called wavelet de-noising
(22,23), is quite simple. The wavelet transform coefficients are thresholded such
that the presumably noisy, low-amplitude coefficients are set to zero.

y1

·

·

·

x1 … xM … xC

·

·

·

yR

PMED SE{ } 1 2⁄( )MAX MAXIMIN XC{ } MAXIMIN YR{ },[ ]=

1 2⁄( )+ MIN MINIMAX XC{ } MINIMAX YR{ },[ ]
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FIGURE 10.3-15. 5 × 5 plus-shape MINIMAX, MAXIMIN, and pseudomedian filtering on
the noisy test images.

(a) Original (b) MAXIMIN

(c) MINIMAX (d) Pseudomedian

(e) MINIMAX of MAXIMIN (f ) MAXIMIN of MINIMAX
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10.4. EDGE CRISPENING

Psychophysical experiments indicate that a photograph or visual signal with
accentuated or crispened edges is often more subjectively pleasing than an exact
photometric reproduction. Edge crispening can be accomplished in a variety of
ways.

10.4.1. Linear Edge Crispening

Edge crispening can be performed by discrete convolution, as defined by Eq. 10.3-1,
in which the impulse response array H is of high-pass form. Several common 
high-pass masks are given below (24–26).

Mask 1:

(10.4-1a)

Mask 2:

(10.4-1b)

Mask 3:

(10.3-1c)

These masks possess the property that the sum of their elements is unity, to avoid
amplitude bias in the processed image. Figure 10.4-1 provides examples of edge
crispening on a monochrome image with the masks of Eq. 10.4-1. Mask 2 appears to
provide the best visual results.

To obtain edge crispening on electronically scanned images, the scanner signal
can be passed through an electrical filter with a high-frequency bandpass character-
istic. Another possibility for scanned images is the technique of unsharp masking
(27,28). In this process, the image is effectively scanned with two overlapping aper-
tures, one at normal resolution and the other at a lower spatial resolution, which
upon sampling produces normal and low-resolution images  and ,
respectively. An unsharp masked image

(10.4-2)
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is then generated by forming the weighted difference between the normal and low-
resolution images, where c is a weighting constant. Typically, c is in the range 3/5 to
5/6, so that the ratio of normal to low-resolution components in the masked image is
from 1.5:1 to 5:1. Figure 10.4-2 illustrates typical scan signals obtained when scan-
ning over an object edge. The masked signal has a longer-duration edge gradient as
well as an overshoot and undershoot, as compared to the original signal. Subjec-
tively, the apparent sharpness of the original image is improved. Figure 10.4-3
presents examples of unsharp masking in which the low-resolution image is
obtained by convolution with a uniform  impulse response array. The sharpen-
ing effect is stronger as L increases and c decreases.

Linear edge crispening can be performed by Fourier domain filtering. A zonal
high-pass filter with a transfer function given by Eq. 9.4-10 suppresses all spatial
frequencies below the cutoff frequency except for the dc component, which is nec-
essary to maintain the average amplitude of the filtered image. Figure 10.4-4 shows

FIGURE 10.4-1. Edge crispening with 3 × 3 masks on the chest_xray image.

(a) Original (b) Mask 1

(c) Mask 2 (d) Mask 3

L L×
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the result of zonal high-pass filtering of an image. Zonal high-pass filtering often
causes ringing in a filtered image. Such ringing can be reduced significantly by utili-
zation of a high-pass filter with a smooth cutoff response. One such filter is the
Butterworth high-pass filter, whose transfer function is defined by Eq. 9.4-13.

Figure 10.4-4 shows the results of zonal and Butterworth high-pass filtering. In
both examples, the filtered images are biased to a midgray level for display.

10.4.2. Statistical Differencing

Another form of edge crispening, called statistical differencing (29, p. 100),
involves the generation of an image by dividing each pixel value by its estimated
standard deviation  according to the basic relation

(10.4-3)

where the estimated standard deviation

(10.4-4)

FIGURE 10.4-2. Waveforms in an unsharp masking image enhancement system.
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is computed at each pixel over some  neighborhood where W = 2w + 1. The
function  is the estimated mean value of the original image at point (j, k),
which is computed as

(10.4-5)

The enhanced image  is increased in amplitude with respect to the original at
pixels that deviate significantly from their neighbors, and is decreased in relative
amplitude elsewhere. The process is analogous to automatic gain control for an
audio signal.

FIGURE 10.4-3. Unsharp mask processing for L × L uniform low-pass convolution on the

chest_xray image.

(a) L = 3, c = 0.6

(d ) L = 7, c = 0.8(c) L = 7, c = 0.6

(b) L = 3, c = 0.8
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Wallis (30) has suggested a generalization of the statistical differencing operator
in which the enhanced image is forced to a form with desired first- and second-order
moments. The Wallis operator is defined by

(10.4-6)

where Md and Dd represent desired average mean and standard deviation factors,
 is a maximum gain factor that prevents overly large output values when

 is small and  is a mean proportionality factor controlling the
background flatness of the enhanced image.

The Wallis operator can be expressed in a more general form as

(10.4-7)

where  is a spatially dependent gain factor and  is a spatially depen-
dent background factor. These gain and background factors can be derived directly
from Eq. 10.4-4, or they can be specified in some other manner. For the Wallis oper-
ator, it is convenient to specify the desired average standard deviation Dd such that
the spatial gain ranges between maximum Amax and minimum Amin limits. This can
be accomplished by setting Dd to the value

FIGURE 10.4-4. Zonal and Butterworth high-pass filtering on the chest_xray image;

cutoff frequency = 32.

(a) Zonal filtering (b) Butterworth filtering
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FIGURE 10.4-5. Wallis statistical differencing on the bridge image for Md = 0.45,

Dd = 0.28, p = 0.20, Amax = 2.50, Amin = 0.75 using a 9 × 9 pyramid array.

(a) Original

(c) Standard deviation, 0.01 to 0.26

(e) Spatial gain, 0.75 to 2.35

(b) Mean, 0.00 to 0.98

(d ) Background, 0.09 to 0.88

(f) Wallis enhancement, − 0.07 to 1.12
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(10.4-8)

where Dmax is the maximum value of . The summations of Eqs. 10.4-4 and
10.4-5 can be implemented by convolutions with a uniform impulse array. But,
overshoot and undershoot effects may occur. Better results are usually obtained with
a pyramid or Gaussian-shaped array.

Figure 10.4-5 shows the mean, standard deviation, spatial gain, and Wallis statis-
tical differencing result on a monochrome image. Figure 10.4-6 presents a medical
imaging example.

10.5. COLOR IMAGE ENHANCEMENT

The image enhancement techniques discussed previously have all been applied to
monochrome images. This section considers the enhancement of natural color
images and introduces the pseudocolor and false color image enhancement methods.
In the literature, the terms pseudocolor and false color have often been used improp-
erly. Pseudocolor produces a color image from a monochrome image, while false
color produces an enhanced color image from an original natural color image or
from multispectral image bands.

10.5.1. Natural Color Image Enhancement

The monochrome image enhancement methods described previously can be applied
to natural color images by processing each color component individually. However,

FIGURE 10.4-6. Wallis statistical differencing on the chest_xray image for Md = 0.64,

Dd = 0.22, p = 0.20, Amax = 2.50, Amin = 0.75 using a 11 × 11 pyramid array.

(a) Original (b) Wallis enhancement

Dd

AminAmaxDmax

Amax Amin–
--------------------------------------=

D j k,( )
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care must be taken to avoid changing the average value of the processed image com-
ponents. Otherwise, the processed color image may exhibit deleterious shifts in hue
and saturation.

Typically, color images are processed in the RGB color space. For some image
enhancement algorithms, there are computational advantages to processing in a
luma-chroma space, such as YIQ, or a lightness-chrominance space, such as L*u*v*.
As an example, if the objective is to perform edge crispening of a color image, it is
usually only necessary to apply the enhancement method to the luma or lightness
component. Because of the high-spatial-frequency response limitations of human
vision, edge crispening of the chroma or chrominance components may not be per-
ceptible.

Faugeras (31) has investigated color image enhancement in a perceptual space
based on a color vision model similar to the model presented in Figure 2.5-3. The
procedure is to transform the RGB tristimulus value original images according to the
color vision model to produce a set of three perceptual space images that, ideally,
are perceptually independent. Then, an image enhancement method is applied inde-
pendently to the perceptual space images. Finally, the enhanced perceptual space
images are subjected to steps that invert the color vision model and produce an
enhanced color image represented in RGB color space.

10.5.2. Pseudocolor

Pseudocolor (32–34) is a color mapping of a monochrome image array which is
intended to enhance the detectability of detail within the image. The pseudocolor
mapping of an array  is defined as

(10.5-1a)

(10.5-1b)

(10.5-1c)

where , ,  are display color components and ,
,  are linear or nonlinear functional operators. This map-

ping defines a path in three-dimensional color space parametrically in terms of the
array . Figure 10.5-1 illustrates the RGB color space and two color mappings
that originate at black and terminate at white. Mapping A represents the achromatic
path through all shades of gray; it is the normal representation of a monochrome
image. Mapping B is a spiral path through color space.

Another class of pseudocolor mappings includes those mappings that exclude all
shades of gray. Mapping C, which follows the edges of the RGB color cube, is such
an example. This mapping follows the perimeter of the gamut of reproducible colors
as depicted by the uniform chromaticity scale (UCS) chromaticity chart shown in

F j k,( )
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Figure 10.5-2. The luminances of the colors red, green, blue, cyan, magenta, and
yellow that lie along the perimeter of reproducible colors are noted in the figure. It is
seen that the luminance of the pseudocolor scale varies between a minimum of
0.114 for blue to a maximum of 0.886 for yellow. A maximum luminance of unity is
reached only for white. In some applications it may be desirable to fix the luminance
of all displayed colors so that discrimination along the pseudocolor scale is by hue
and saturation attributes of a color only. Loci of constant luminance are plotted in
Figure 10.5-2.

Figure 10.5-2 also includes bounds for displayed colors of constant luminance.
For example, if the RGB perimeter path is followed, the maximum luminance of any
color must be limited to 0.114, the luminance of blue. At a luminance of 0.2, the
RGB perimeter path can be followed except for the region around saturated blue. At
higher luminance levels, the gamut of constant luminance colors becomes severely
limited. Figure 10.5-2b is a plot of the 0.5 luminance locus. Inscribed within this
locus is the locus of those colors of largest constant saturation. A pseudocolor scale
along this path would have the property that all points differ only in hue.

With a given pseudocolor path in color space, it is necessary to choose the scaling
between the data plane variable and the incremental path distance. On the UCS
chromaticity chart, incremental distances are subjectively almost equally noticeable.
Therefore, it is reasonable to subdivide geometrically the path length into equal
increments. Figure 10.5-3 shows examples of pseudocoloring of a gray scale chart
image and a seismic image.

10.5.3. False Color

False color is a point-by-point mapping of an original color image, described by its
three primary colors, or of a set of multispectral image planes of a scene, to a color

FIGURE 10.5-1. Black-to-white and RGB perimeter pseudocolor mappings.
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space defined by display tristimulus values that are linear or nonlinear functions of
the original image pixel values (35,36). A common intent is to provide a displayed
image with objects possessing different or false colors from what might be expected.

FIGURE 10.5-2. Luminance loci for NTSC colors.
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For example, blue sky in a normal scene might be converted to appear red, and
green grass transformed to blue. One possible reason for such a color mapping is to
place normal objects in a strange color world so that a human observer will pay
more attention to the objects than if they were colored normally.

Another reason for false color mappings is the attempt to color a normal scene to
match the color sensitivity of a human viewer. For example, it is known that the
luminance response of cones in the retina peaks in the green region of the visible
spectrum. Thus, if a normally red object is false colored to appear green, it may
become more easily detectable. Another psychophysical property of color vision
that can be exploited is the contrast sensitivity of the eye to changes in blue light. In
some situation it may be worthwhile to map the normal colors of objects with fine
detail into shades of blue.

FIGURE 10.5-3. Pseudocoloring of the gray_chart and seismic images. See insert for

a color representation of this figure.

(a) Gray scale chart (b) Pseudocolor of chart

(c) Seismic (d ) Pseudocolor of seismic
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A third application of false color is to produce a natural color representation of a
set of multispectral images of a scene. Some of the multispectral images may even
be obtained from sensors whose wavelength response is outside the visible wave-
length range, for example, infrared or ultraviolet.

In a false color mapping, the red, green, and blue display color components are
related to natural or multispectral images Fi by

(10.5-2a)

(10.5-2b)

(10.5-2c)

where , ,  are general functional operators. As a simple exam-
ple, the set of red, green, and blue sensor tristimulus values (RS = F1, GS = F2, BS =
F3) may be interchanged according to the relation

(10.5-3)

Green objects in the original will appear red in the display, blue objects will appear
green, and red objects will appear blue. A general linear false color mapping of nat-
ural color images can be defined as

(10.5-4)

This color mapping should be recognized as a linear coordinate conversion of colors
reproduced by the primaries of the original image to a new set of primaries.
Figure 10.5-4 provides examples of false color mappings of a pair of images.

10.6. MULTISPECTRAL IMAGE ENHANCEMENT

Enhancement procedures are often performed on multispectral image bands of a
scene in order to accentuate salient features to assist in subsequent human interpre-
tation or machine analysis (35,37). These procedures include individual image band
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enhancement techniques, such as contrast stretching, noise cleaning, and edge crisp-
ening, as described earlier. Other methods, considered in this section, involve the
joint processing of multispectral image bands.

Multispectral image bands can be subtracted in pairs according to the relation

(10.6-1)

in order to accentuate reflectivity variations between the multispectral bands. An
associated advantage is the removal of any unknown but common bias components
that may exist. Another simple but highly effective means of multispectral image
enhancement is the formation of ratios of the image bands. The ratio image between
the mth and nth multispectral bands is defined as

FIGURE 10.5-4. False coloring of multispectral images. See insert for a color representation
of this figure.

(a) Infrared band (b) Blue band

(c) R = infrared, G = 0, B = blue (d ) R = infrared, G = 1/2 [infrared + blue], B = blue

Dm n, j k,( ) Fm j k,( ) Fn j k,( )–=
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(10.6-2)

It is assumed that the image bands are adjusted to have nonzero pixel values. In
many multispectral imaging systems, the image band  can be modeled by
the product of an object reflectivity function  and an illumination function

that is identical for all multispectral bands. Ratioing of such imagery provides
an automatic compensation of the illumination factor. The ratio

, for which  represents a quantization level uncer-
tainty, can vary considerably if  is small. This variation can be reduced
significantly by forming the logarithm of the ratios defined by (24)

(10.6-3)

There are a total of N(N – 1) different difference or ratio pairs that may be formed
from N multispectral bands. To reduce the number of combinations to be consid-
ered, the differences or ratios are often formed with respect to an average image
field:

(10.6-4)

Unitary transforms between multispectral planes have also been employed as a
means of enhancement. For N image bands, a  vector

(10.6-5)

is formed at each coordinate (j, k). Then, a transformation

(10.6-6)
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is formed where A is a  unitary matrix. A common transformation is the prin-
cipal components decomposition, described in Section 5.8, in which the rows of the
matrix A are composed of the eigenvectors of the covariance matrix Kx between the
bands. The matrix A performs a diagonalization of the covariance matrix Kx such
that the covariance matrix of the transformed imagery bands

(10.6-7)

is a diagonal matrix  whose elements are the eigenvalues of Kx arranged in
descending value. The principal components decomposition, therefore, results in a
set of decorrelated data arrays whose energies are ranged in amplitude. This process,
of course, requires knowledge of the covariance matrix between the multispectral
bands. The covariance matrix must be either modeled, estimated, or measured. If the
covariance matrix is highly nonstationary, the principal components method
becomes difficult to utilize.

Figure 10.6-1 contains a set of four multispectral images, and Figure 10.6-2
exhibits their corresponding log ratios (37). Principal components bands of these
multispectral images are illustrated in Figure 10.6-3 (37).

FIGURE 10.6-1. Multispectral images.

N N×

Ky AKxA
T ΛΛΛΛ= =

ΛΛΛΛ

(a) Band 4 (green) (b) Band 5 (red)

(c) Band 6 (infrared 1) (d ) Band 7 (infrared 2)
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FIGURE 10.6-2. Logarithmic ratios of multispectral images.

(a) Band 4
Band 5

(c) Band 4
Band 7

(e) Band 5
Band 7

(b) Band 4
Band 6

(d ) Band 5
Band 6

(f ) Band 6
Band 7
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11
IMAGE RESTORATION MODELS

Image restoration may be viewed as an estimation process in which operations are
performed on an observed or measured image field to estimate the ideal image field
that would be observed if no image degradation were present in an imaging system.
Mathematical models are described in this chapter for image degradation in general
classes of imaging systems. These models are then utilized in subsequent chapters as
a basis for the development of image restoration techniques.

11.1. GENERAL IMAGE RESTORATION MODELS

In order effectively to design a digital image restoration system, it is necessary
quantitatively to characterize the image degradation effects of the physical imaging
system, the image digitizer, and the image display. Basically, the procedure is to
model the image degradation effects and then perform operations to undo the model
to obtain a restored image. It should be emphasized that accurate image modeling is
often the key to effective image restoration. There are two basic approaches to the
modeling of image degradation effects: a priori modeling and a posteriori modeling.
In the former case, measurements are made on the physical imaging system, digi-
tizer, and display to determine their response for an arbitrary image field. In some
instances it will be possible to model the system response deterministically, while in
other situations it will only be possible to determine the system response in a sto-
chastic sense. The a posteriori modeling approach is to develop the model for the
image degradations based on measurements of a particular image to be restored.
Basically, these two approaches differ only in the manner in which information is
gathered to describe the character of the image degradation. 
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Figure 11.1-1 shows a general model of a digital imaging system and restoration
process. In the model, a continuous image light distribution  dependent
on spatial coordinates (x, y), time (t), and spectral wavelength  is assumed to
exist as the driving force of a physical imaging system subject to point and spatial
degradation effects and corrupted by deterministic and stochastic disturbances.
Potential degradations include diffraction in the optical system, sensor nonlineari-
ties, optical system aberrations, film nonlinearities, atmospheric turbulence effects,
image motion blur, and geometric distortion. Noise disturbances may be caused by
electronic imaging sensors or film granularity. In this model, the physical imaging
system produces a set of output image fields  at time instant  described
by the general relation

(11.1-1)

where  represents a general operator that is dependent on the space coordi-
nates (x, y), the time history (t), the wavelength , and the amplitude of the light
distribution (C). For a monochrome imaging system, there will only be a single out-
put field, while for a natural color imaging system,  may denote the red,
green, and blue tristimulus bands for i = 1, 2, 3, respectively. Multispectral imagery
may also involve several output bands of data.

In the general model of Figure 11.1-1, each observed image field  is
digitized, following the techniques outlined in Part 3, to produce an array of image
samples  at each time instant . The output samples of the digitizer
are related to the input observed field by

(11.1-2)

FIGURE 11.1-1. Digital image restoration model.
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where  is an operator modeling the image digitization process.
A digital image restoration system that follows produces an output array

 by the transformation

(11.1-3)

where  represents the designed restoration operator. Next, the output samples
of the digital restoration system are interpolated by the image display system to pro-
duce a continuous image estimate . This operation is governed by the
relation

(11.1-4)

where  models the display transformation.
The function of the digital image restoration system is to compensate for degra-

dations of the physical imaging system, the digitizer, and the image display system
to produce an estimate of a hypothetical ideal image field  that would be
displayed if all physical elements were perfect. The perfect imaging system would
produce an ideal image field modeled by

(11.1-5)

where  is a desired temporal and spectral response function, T is the observa-
tion period, and  is a desired point and spatial response function.

Usually, it will not be possible to restore perfectly the observed image such that
the output image field is identical to the ideal image field. The design objective of
the image restoration processor is to minimize some error measure between

 and . The discussion here is limited, for the most part, to a
consideration of techniques that minimize the mean-square error between the ideal
and estimated image fields as defined by

(11.1-6)

where  denotes the expectation operator. Often, it will be desirable to place
side constraints on the error minimization, for example, to require that the image
estimate be strictly positive if it is to represent light intensities that are positive.

Because the restoration process is to be performed digitally, it is often more con-
venient to restrict the error measure to discrete points on the ideal and estimated
image fields. These discrete arrays are obtained by mathematical models of perfect
image digitizers that produce the arrays
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(11.1-7a)

(11.1-7b)

It is assumed that continuous image fields are sampled at a spatial period  satisfy-
ing the Nyquist criterion. Also, quantization error is assumed negligible. It should be
noted that the processes indicated by the blocks of Figure 11.1-1 above the dashed
division line represent mathematical modeling and are not physical operations per-
formed on physical image fields and arrays. With this discretization of the continu-
ous ideal and estimated image fields, the corresponding mean-square restoration
error becomes

(11.1-8)

With the relationships of Figure 11.1-1 quantitatively established, the restoration
problem may be formulated as follows:

Given the sampled observation  expressed in terms of the
image light distribution , determine the transfer function 
that minimizes the error measure between  and  subject
to desired constraints.

There are no general solutions for the restoration problem as formulated above
because of the complexity of the physical imaging system. To proceed further, it is
necessary to be more specific about the type of degradation and the method of resto-
ration. The following sections describe models for the elements of the generalized
imaging system of Figure 11.1-1.

11.2. OPTICAL SYSTEMS MODELS

One of the major advances in the field of optics during the past 40 years has been the
application of system concepts to optical imaging. Imaging devices consisting of
lenses, mirrors, prisms,  and so on, can be considered to provide a deterministic
transformation of an input spatial light distribution to some output spatial light dis-
tribution. Also, the system concept can be extended to encompass the spatial propa-
gation of light through free space or some dielectric medium.

In the study of geometric optics, it is assumed that light rays always travel in a
straight-line path in a homogeneous medium. By this assumption, a bundle of rays
passing through a clear aperture onto a screen produces a geometric light projection
of the aperture. However, if the light distribution at the region between the light and

FI
i( )
n1 n2 tj, ,( ) FI

i( )
x y tj, ,( )δ x n1∆– y n2∆–,( )=

F̂I
i( )
n1 n2 tj, ,( ) F̂I

i( )
x y tj, ,( )δ x n1∆– y n2∆–,( )=

∆

Ei E FI
i( )
n1 n2 tj, ,( ) F̂I

i( )
n1 n2 tj, ,( )–[ ]

2

 
 
 

=

FS
i( )
m1 m2 tj, ,( )

C x y t λ, , ,( ) OK ·{ }
FI

i( )
x y tj, ,( ) F̂I

i( )
x y tj, ,( )



OPTICAL SYSTEMS MODELS 301

dark areas on the screen is examined in detail, it is found that the boundary is not
sharp. This effect is more pronounced as the aperture size is decreased. For a pin-
hole aperture, the entire screen appears diffusely illuminated. From a simplistic
viewpoint, the aperture causes a bending of rays called diffraction. Diffraction of
light can be quantitatively characterized by considering light as electromagnetic
radiation that satisfies Maxwell's equations. The formulation of a complete theory of
optical imaging from the basic electromagnetic principles of diffraction theory is a
complex and lengthy task. In the following, only the key points of the formulation
are presented; details may be found in References 1 to 3.

Figure 11.2-1 is a diagram of a generalized optical imaging system. A point in the
object plane at coordinate  of intensity  radiates energy toward an
imaging system characterized by an entrance pupil, exit pupil, and intervening sys-
tem transformation. Electromagnetic waves emanating from the optical system are
focused to a point  on the image plane producing an intensity . The
imaging system is said to be diffraction limited if the light distribution at the image
plane produced by a point-source object consists of a converging spherical wave
whose extent is limited only by the exit pupil. If the wavefront of the electromag-
netic radiation emanating from the exit pupil is not spherical, the optical system is
said to possess aberrations.

In most optical image formation systems, the optical radiation emitted by an
object arises from light transmitted or reflected from an incoherent light source. The
image radiation can often be regarded as quasimonochromatic in the sense that the
spectral bandwidth of the image radiation detected at the image plane is small with
respect to the center wavelength of the radiation. Under these joint assumptions, the
imaging system of Figure 11.2-1 will respond as a linear system in terms of the
intensity of its input and output fields. The relationship between the image intensity
and object intensity for the optical system can then be represented by the superposi-
tion integral equation

(11.2-1)

FIGURE 11.2-1. Generalized optical imaging system.
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where  represents the image intensity response to a point source of
light. Often, the intensity impulse response is space invariant and the input–output
relationship is given by the convolution equation

(11.2-2)

In this case, the normalized Fourier transforms

(11.2-3a)

(11.2-3b)

of the object and image intensity fields are related by

(11.2-4)

where , which is called the optical transfer function (OTF), is defined by

(11.2-5)

The absolute value  of the OTF is known as the modulation transfer
function (MTF) of the optical system.

The most common optical image formation system is a circular thin lens. Figure
11.2-2 illustrates the OTF for such a lens as a function of its degree of misfocus
(1, p. 486; 4). For extreme misfocus, the OTF will actually become negative at some
spatial frequencies. In this state, the lens will cause a contrast reversal: Dark objects
will appear light, and vice versa.

Earth's atmosphere acts as an imaging system for optical radiation transversing a
path through the atmosphere. Normally, the index of refraction of the atmos-
phere remains relatively constant over the optical extent of an object, but in
some instances atmospheric turbulence can produce a spatially variable index of 
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refraction that leads to an effective blurring of any imaged object. An equivalent
impulse response

(11.2-6)

where the Kn are constants, has been predicted and verified mathematically by
experimentation (5) for long-exposure image formation. For convenience in analy-
sis, the function 5/6 is often replaced by unity to obtain a Gaussian-shaped impulse
response model of the form

(11.2-7)

where K is an amplitude scaling constant and bx and by are blur-spread factors.
Under the assumption that the impulse response of a physical imaging system is

independent of spectral wavelength and time, the observed image field can be mod-
eled by the superposition integral equation

(11.2-8)

where  is an operator that models the spectral and temporal characteristics of
the physical imaging system. If the impulse response is spatially invariant, the
model reduces to the convolution integral equation

FIGURE 11.2-2. Cross section of transfer function of a lens. Numbers indicate degree of
misfocus.
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(11.2-9)

11.3. PHOTOGRAPHIC PROCESS MODELS

There are many different types of materials and chemical processes that have been
utilized for photographic image recording. No attempt is made here either to survey
the field of photography or to deeply investigate the physics of photography. Refer-
ences 6 to 8 contain such discussions. Rather, the attempt here is to develop mathe-
matical models of the photographic process in order to characterize quantitatively
the photographic components of an imaging system.

11.3.1. Monochromatic Photography

The most common material for photographic image recording is silver halide emul-
sion, depicted in Figure 11.3-1. In this material, silver halide grains are suspended in
a transparent layer of gelatin that is deposited on a glass, acetate, or paper backing.
If the backing is transparent, a transparency can be produced, and if the backing is a
white paper, a reflection print can be obtained. When light strikes a grain, an electro-
chemical conversion process occurs, and part of the grain is converted to metallic
silver. A development center is then said to exist in the grain. In the development
process, a chemical developing agent causes grains with partial silver content to be
converted entirely  to metallic silver. Next, the film is fixed by chemically removing
unexposed grains.

The photographic process described above is called a non reversal process. It
produces a negative image in the sense that the silver density is inversely propor-
tional to the exposing light. A positive reflection print of an image can be obtained
in a two-stage process with nonreversal materials. First, a negative transparency is
produced, and then the negative transparency is illuminated to expose negative
reflection print paper. The resulting silver density on the developed paper is then
proportional to the light intensity that exposed the negative transparency.

A positive transparency of an image can be obtained with a reversal type of film.
This film is exposed and undergoes a first development similar to that of a nonreversal
film. At this stage in the photographic process, all grains that have been exposed

FIGURE 11.3-1. Cross section of silver halide emulsion.
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to light are converted completely to metallic silver. In the next step, the metallic
silver grains are chemically removed. The film is then uniformly exposed to light, or
alternatively, a chemical process is performed to expose the remaining silver halide
grains. Then the exposed grains are developed and fixed to produce a positive trans-
parency whose density is proportional to the original light exposure.

The relationships between light intensity exposing a film and the density of silver
grains in a transparency or print can be described quantitatively by sensitometric
measurements. Through sensitometry, a model is sought that will predict the spec-
tral light distribution passing through an illuminated transparency or reflected from
a print as a function of the spectral light distribution of the exposing light and certain
physical parameters of the photographic process. The first stage of the photographic
process, that of exposing the silver halide grains, can be modeled to a first-order
approximation by the integral equation

(11.3-1)

where X(C) is the integrated exposure,  represents the spectral energy distribu-
tion of the exposing light,  denotes the spectral sensitivity of the film or paper
plus any spectral losses resulting from filters or optical elements, and kx is an expo-
sure constant that is controllable by an aperture or exposure time setting. Equation
11.3-1 assumes a fixed exposure time. Ideally, if the exposure time were to be
increased by a certain factor, the exposure would be increased by the same factor.
Unfortunately, this relationship does not hold exactly. The departure from linearity
is called a reciprocity failure of the film. Another anomaly in exposure prediction is
the intermittency effect, in which the exposures for a constant intensity light and for
an intermittently flashed light differ even though the incident energy is the same for
both sources. Thus, if Eq. 11.3-1 is to be utilized as an exposure model, it is neces-
sary to observe its limitations: The equation is strictly valid only for a fixed expo-
sure time and constant-intensity illumination.

The transmittance  of a developed reversal or non-reversal transparency as a
function of wavelength can be ideally related to the density of silver grains by the
exponential law of absorption as given by

(11.3-2)

where  represents the characteristic density as a function of wavelength for a
reference exposure value, and de is a variable proportional to the actual exposure.
For monochrome transparencies, the characteristic density function  is reason-
ably constant over the visible region. As Eq. 11.3-2 indicates, high silver densities
result in low transmittances, and vice versa. It is common practice to change the pro-
portionality constant of Eq. 11.3-2 so that measurements are made in exponent ten
units. Thus, the transparency transmittance can be equivalently written as
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(11.3-3)

where dx is the density variable, inversely proportional to exposure, for exponent 10
units. From Eq. 11.3-3, it is seen that the photographic density is logarithmically
related to the transmittance. Thus,

(11.3-4)

The reflectivity  of a photographic print as a function of wavelength is also
inversely proportional to its silver density, and follows the exponential law of
absorption of Eq. 11.3-2. Thus, from Eqs. 11.3-3 and 11.3-4, one obtains directly

(11.3-5)

(11.3-6)

where dx is an appropriately evaluated variable proportional to the exposure of the
photographic paper.

The relational model between photographic density and transmittance or reflectivity
is straightforward and reasonably accurate. The major problem is the next step of
modeling the relationship between the exposure X(C) and the density variable dx.
Figure 11.3-2a shows a typical curve of the transmittance of a nonreversal transparency

FIGURE 11.3-2. Relationships between transmittance, density, and exposure for a
nonreversal film.
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as a function of exposure. It is to be noted that the curve is highly nonlinear except
for a relatively narrow region in the lower exposure range. In Figure 11.3-2b, the
curve of Figure 11.3-2a has been replotted as transmittance versus the logarithm of
exposure. An approximate linear relationship is found to exist between transmit-
tance and the logarithm of exposure, but operation in this exposure region is usually
of little use in imaging systems. The parameter of interest in photography is the pho-
tographic density variable dx, which is plotted as a function of exposure and loga-
rithm of exposure in Figure 11.3-2c and 11.3-2d. The plot of density versus
logarithm of exposure is known as the H & D curve after Hurter and Driffield, who
performed fundamental investigations of the relationships between density and
exposure. Figure 11.3-3 is a plot of the H & D curve for a reversal type of film. In
Figure 11.3-2d, the central portion of the curve, which is approximately linear, has
been approximated by the line defined by

(11.3-7)

where  represents the slope of the line and KF denotes the intercept of the line with
the log exposure axis. The slope of the curve  (gamma,) is a measure of the contrast
of the film, while the factor KF is a measure of the film speed; that is, a measure of
the base exposure required to produce a negative in the linear region of the H & D
curve. If the exposure is restricted to the linear portion of the H & D curve, substitu-
tion of Eq. 11.3-7 into Eq. 11.3-3 yields a transmittance function

(11.3-8a)

where

(11.3-8b)

FIGURE 11.3-3. H & D curves for a reversal film as a function of development time.
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With the exposure model of Eq. 11.3-1, the transmittance or reflection models of
Eqs. 11.3-3 and 11.3-5, and the H & D curve, or its linearized model of Eq. 11.3-7, it
is possible mathematically to model the monochrome photographic process.

11.3.2. Color Photography

Modern color photography systems utilize an integral tripack film, as illustrated in
Figure 11.3-4, to produce positive or negative transparencies. In a cross section of
this film, the first layer is a silver halide emulsion sensitive to blue light. A yellow
filter following the blue emulsion prevents blue light from passing through to the
green and red silver emulsions that follow in consecutive layers and are naturally
sensitive to blue light. A transparent base supports the emulsion layers. Upon devel-
opment, the blue emulsion layer is converted into a yellow dye transparency whose
dye concentration is proportional to the blue exposure for a negative transparency
and inversely proportional for a positive transparency. Similarly, the green and blue
emulsion layers become magenta and cyan dye layers, respectively. Color prints can
be obtained by a variety of processes (7). The most common technique is to produce
a positive print from a color negative transparency onto nonreversal color paper.

In the establishment of a mathematical model of the color photographic process,
each emulsion layer can be considered to react to light as does an emulsion layer of
a monochrome photographic material. To a first approximation, this assumption is
correct. However, there are often significant interactions between the emulsion and
dye layers, Each emulsion layer possesses a characteristic sensitivity, as shown by
the typical curves of Figure 11.3-5. The integrated exposures of the layers are given
by

(11.3-9a)

(11.3-9b)

(11.3-9c)

FIGURE 11.3-4. Color film integral tripack.

XR C( ) dR C λ( )LR λ( ) λd∫=

XG C( ) dG C λ( )LG λ( ) λd∫=

XB C( ) dB C λ( )LB λ( ) λd∫=
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where dR, dG, dB are proportionality constants whose values are adjusted so that the
exposures are equal for a reference white illumination and so that the film is not sat-
urated. In the chemical development process of the film, a positive transparency is
produced with three absorptive dye layers of cyan, magenta, and yellow dyes.

The transmittance  of the developed transparency is the product of the
transmittance of the cyan , the magenta , and the yellow  dyes.
Hence,

(11.3-10)

The transmittance of each dye is a function of its spectral absorption characteristic
and its concentration. This functional dependence is conveniently expressed in
terms of the relative density of each dye as

(11.3-11a)

(11.3-11b)

(11.3-11c)

where c, m, y represent the relative amounts of the cyan, magenta, and yellow dyes,
and , ,  denote the spectral densities of unit amounts of the
dyes. For unit amounts of the dyes, the transparency transmittance is

(11.3-12a)

FIGURE 11.3-5. Spectral sensitivities of typical film layer emulsions.

τT λ( )
τTC λ( ) τTM λ( ) τTY λ( )

τT λ( ) τTC λ( )τTM λ( )τTY λ( )=

τTC λ( ) 10
cDNC λ( )–

=

τTM λ( ) 10
mDNM λ( )–

=

τTY λ( ) 10
yDNY λ( )–

=

DNC λ( ) DNM λ( ) DNY λ( )

τTN λ( ) 10
DTN λ( )–

=
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where

(11.3-12b)

Such a transparency appears to be a neutral gray when illuminated by a reference
white light. Figure 11.3-6 illustrates the typical dye densities and neutral density for
a reversal film.

The relationship between the exposure values and dye layer densities is, in gen-
eral, quite complex. For example, the amount of cyan dye produced is a nonlinear
function not only of the red exposure, but is also dependent to a smaller extent on
the green and blue exposures. Similar relationships hold for the amounts of magenta
and yellow dyes produced by their exposures. Often, these interimage effects can be
neglected, and it can be assumed that the cyan dye is produced only by the red expo-
sure, the magenta dye by the green exposure, and the blue dye by the yellow expo-
sure. For this assumption, the dye density–exposure relationship can be
characterized by the Hurter–Driffield plot of equivalent neutral density versus the
logarithm of exposure for each dye. Figure 11.3-7 shows a typical H & D curve for a
reversal film. In the central portion of each H & D curve, the density versus expo-
sure characteristic can be modeled as

(11.3-13a)

(11.3-13b)

(11.3-13c)

FIGURE 11.3-6. Spectral dye densities and neutral density of a typical reversal color film.

DTN λ( ) DNC λ( ) DNM λ( ) DNY λ( )+ +=

c γC 10
log XR KFC+=

m γM 10
log XG KFM+=

y γY 10
log XB KFY+=
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where , , , representing the slopes of the curves in the linear region, are
called dye layer gammas.

The spectral energy distribution of light passing through a developed transpar-
ency is the product of the transparency transmittance and the incident illumination
spectral energy distribution  as given by

(11.3-14)

Figure 11.3-8 is a block diagram of the complete color film recording and reproduc-
tion process. The original light with distribution  and the light passing through
the transparency  at a given resolution element are rarely identical. That is, a
spectral match is usually not achieved in the photographic process. Furthermore, the
lights C and CT usually do not even provide a colorimetric match.

FIGURE 11.3-7. H & D curves for a typical reversal color film.

γC γM γY

E λ( )

CT λ( ) E λ( )10
cDNC λ( ) mDNM λ( ) yDNY λ( )+ +[ ]–

=

C λ( )
CT λ( )
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11.4. DISCRETE IMAGE RESTORATION MODELS

This chapter began with an introduction to a general model of an imaging system
and a digital restoration process. Next, typical components of the imaging system
were described and modeled within the context of the general model. Now, the dis-
cussion turns to the development of several discrete image restoration models. In the
development of these models, it is assumed that the spectral wavelength response
and temporal response characteristics of the physical imaging system can be sepa-
rated from the spatial and point characteristics. The following discussion considers
only spatial and point characteristics.

After each element of the digital image restoration system of Figure 11.1-1 is
modeled, following the techniques described previously, the restoration system may
be conceptually distilled to three equations:

Observed image:

(11.4-1a)

Compensated image:

(11.4-1b)

Restored image:

(11.4-1c)

FIGURE 11.3-8. Color film model.

FS m1 m2,( ) OM FI n1 n2,( ) N1 m1 m2,( ) … NN m1 m2,( ), , ,{ }=

FK k1 k2,( ) OR FS m1 m2,( ){ }=

F̂I n1 n2,( ) OD FK k1 k2,( ){ }=
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where FS represents an array of observed image samples, FI and  are arrays of
ideal image points and estimates, respectively, FK is an array of compensated image
points from the digital restoration system, Ni denotes arrays of noise samples from
various system elements, and , ,  represent general transfer
functions of the imaging system, restoration processor, and display system, respec-
tively. Vector-space equivalents of Eq. 11.4-1 can be formed for purposes of analysis
by column scanning of the arrays of Eq. 11.4-1. These relationships are given by

(11.4-2a)

(11.4-2b)

(11.4-2c)

Several estimation approaches to the solution of 11.4-1 or 11.4-2 are described in
the following chapters. Unfortunately, general solutions have not been found;
recourse must be made to specific solutions for less general models.

The most common digital restoration model is that of Figure 11.4-1a, in which a
continuous image field is subjected to a linear blur, the electrical sensor responds
nonlinearly to its input intensity, and the sensor amplifier introduces additive Gauss-
ian noise independent of the image field. The physical image digitizer that follows
may also introduce an effective blurring of the sampled image as the result of sam-
pling with extended pulses. In this model, display degradation is ignored.

FIGURE 11.4-1. Imaging and restoration models for a sampled blurred image with additive
noise.

F̂I

OM ·{ } OR ·{ } OD ·{ }

fS OM fI n1 ………… nN, , ,, , ,, , ,, , ,{ }=

fK OR fS{ }=

f̂I OD fK{ }=
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Figure 11.4-1b shows a restoration model for the imaging system. It is assumed
that the imaging blur can be modeled as a superposition operation with an impulse
response J(x, y) that may be space variant. The sensor is assumed to respond nonlin-
early to the input field FB(x, y) on a point-by-point basis, and its output is subject to
an additive noise field N(x, y). The effect of sampling with extended sampling
pulses, which are assumed symmetric, can be modeled as a convolution of FO(x, y)
with each pulse P(x, y) followed by perfect sampling.

The objective of the restoration is to produce an array of samples  that
are estimates of points on the ideal input image field FI(x, y) obtained by a perfect
image digitizer sampling at a spatial period . To produce a digital restoration
model, it is necessary quantitatively to relate the physical image samples 
to the ideal image points  following the techniques outlined in Section 7.2.
This is accomplished by truncating the sampling pulse equivalent impulse response
P(x, y) to some spatial limits , and then extracting points from the continuous
observed field FO(x, y) at a grid spacing . The discrete representation must then
be carried one step further by relating points on the observed image field FO(x, y) to
points on the image field FP(x, y) and the noise field N(x, y). The final step in the
development of the discrete restoration model involves discretization of the super-
position operation with J(x, y). There are two potential sources of error in this mod-
eling process: truncation of the impulse responses J(x, y) and P(x, y), and quadrature
integration errors. Both sources of error can be made negligibly small by choosing
the truncation limits TB and TP large and by choosing the quadrature spacings 
and  small. This, of course, increases the sizes of the arrays, and eventually, the
amount of storage and processing required. Actually,  as is subsequently shown, the
numerical stability of the restoration estimate may be impaired by improving the
accuracy of the discretization process!

The relative dimensions of the various arrays of the restoration model are impor-
tant. Figure 11.4-2 shows the nested nature of the arrays. The image array observed,

, is smaller than the ideal image array, , by the half-width of the
truncated impulse response J(x, y). Similarly, the array of physical sample points
FS(m1, m2) is smaller than the array of image points observed, , by the
half-width of the truncated impulse response .

It is convenient to form vector equivalents of the various arrays of the restoration
model in order to utilize the formal structure of vector algebra in the subsequent
restoration analysis. Again, following the techniques of Section 7.2, the arrays are
reindexed so that the first element appears in the upper-left corner of each array.
Next, the vector relationships between the stages of the model are obtained by col-
umn scanning of the arrays to give

(11.4-3a)

(11.4-3b)

(11.4-3c)

(11.4-3d)

F̂I n1 n2,( )

∆I
FS m1 m2,( )

FI n1 n2,( )

TP±
∆P

∆I
∆P

FO k1 k2,( ) FI n1 n2,( )

FO k1 k2,( )
P x y,( )

fS BPfO=

fO fP n+=

fP OP fB{ }=

fB BBfI=
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where the blur matrix BP contains samples of P(x, y) and BB contains samples of
J(x, y). The nonlinear operation of Eq. 1 l.4-3c is defined as a point-by-point nonlin-
ear transformation. That is,

(11.4-4)

Equations 11.4-3a to 11.4-3d can be combined to yield a single equation for the
observed physical image samples in terms of points on the ideal image:

(11.4-5)

Several special cases of Eq. 11.4-5 will now be defined. First, if the point nonlin-
earity is absent,

(11.4-6)

FIGURE 11.4-2. Relationships of sampled image arrays.

fP i( ) OP fB i( ){ }=

fS BPOP BBfI{ } BPn+=

fS BfI nB+=
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where B = BPBB and nB = BPn. This is the classical discrete model consisting of a
set of linear equations with measurement uncertainty. Another case that will be
defined for later discussion occurs when the spatial blur of the physical image digi-
tizer is negligible. In this case,

(11.4-7)

where B = BB is defined by Eq. 7.2-15.
Chapter 12 contains results for several image restoration experiments based on the

restoration model defined by Eq. 11.4-6. An artificial image has been generated for
these computer simulation experiments (9). The original image used for the analysis of
underdetermined restoration techniques, shown in Figure 11.4-3a, consists of a 
pixel square of intensity 245 placed against an extended background of intensity

FIGURE 11.4-3. Image arrays for underdetermined model.

(a) Original

(b) Impulse response

(c) Observation

fS OP BfI{ } n+=

4 4×
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10 referenced to  an intensity scale of  0 to 255. All images are zoomed for display
purposes. The Gaussian-shaped impulse response function is defined as

(11.4-8)

over a  point array where K is an amplitude scaling constant and bC and bR are
blur-spread constants.

In the computer simulation restoration experiments, the observed blurred image
model has been obtained by multiplying the column-scanned original image of
Figure 11.4-3a by the blur matrix B. Next, additive white Gaussian observation
noise has been simulated by adding output variables from an appropriate random
number generator to the blurred images. For display, all image points restored are
clipped to the intensity range 0 to 255.
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12
POINT AND SPATIAL IMAGE 
RESTORATION TECHNIQUES

A common defect in imaging systems is unwanted nonlinearities in the sensor and
display systems. Post processing correction of sensor signals and pre-processing
correction of display signals can reduce such degradations substantially (1). Such
point restoration processing is usually relatively simple to implement. One of the
most common image restoration tasks is that of spatial image restoration to compen-
sate for image blur and to diminish noise effects. References 2 to 6 contain surveys
of spatial image restoration methods.

12.1. SENSOR AND DISPLAY POINT NONLINEARITY CORRECTION

This section considers methods for compensation of point nonlinearities of sensors
and displays.

12.1.1. Sensor Point Nonlinearity Correction

In imaging systems in which the source degradation can be separated into cascaded
spatial and point effects, it is often possible directly to compensate for the point deg-
radation (7). Consider a physical imaging system that produces an observed image
field  according to the separable model

(12.1-1)

FO x y,( )

FO x y,( ) OQ OD C x y λ, ,( ){ }{ }=

Digital Image Processing: PIKS Inside, Third Edition. William K. Pratt
Copyright © 2001 John Wiley & Sons, Inc.
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where  is the spectral energy distribution of the input light field, 
represents the point amplitude response of the sensor and  denotes the spatial
and wavelength responses. Sensor luminance correction can then be accomplished
by passing the observed image through a correction system with a point restoration
operator  ideally chosen such that

(12.1-2)

For continuous images in optical form, it may be difficult to implement a desired
point restoration operator if the operator is nonlinear. Compensation for images in
analog electrical form can be accomplished with a nonlinear amplifier, while digital
image compensation can be performed by arithmetic operators or by a table look-up
procedure.

Figure 12.1-1 is a block diagram that illustrates the point luminance correction
methodology. The sensor input is a point light distribution function C that is con-
verted to a binary number B for eventual entry into a computer or digital processor.
In some imaging applications, processing will be performed directly on the binary
representation, while in other applications, it will be preferable to convert to a real
fixed-point computer number linearly proportional to the sensor input luminance. In
the former case, the binary correction unit will produce a binary number  that is
designed to be linearly proportional to C, and in the latter case, the fixed-point cor-
rection unit will produce a fixed-point number  that is designed to be equal to C.

A typical measured response B versus sensor input luminance level C is shown in
Figure 12.1-2a, while Figure 12.1-2b shows the corresponding compensated
response that is desired. The measured response can be obtained by scanning a gray
scale test chart of known luminance values and observing the digitized binary value
B at each step. Repeated measurements should be made to reduce the effects of
noise and measurement errors. For calibration purposes, it is convenient to regard
the binary-coded luminance as a fixed-point binary number. As an example, if the
luminance range is sliced to 4096 levels and coded with 12 bits, the binary represen-
tation would be

B = b8 b7 b6 b5 b4 b3 b2 b1. b–1 b–2 b–3 b–4 (12.1-3)

FIGURE 12.1-1. Point luminance correction for an image sensor.

C x y λ, ,( ) OQ ·{ }
OD ·{ }

OR ·{ }

OR OQ ·{ }{ } 1=

B̃

C̃
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The whole-number part in this example ranges from 0 to 255, and the fractional part
divides each integer step into 16 subdivisions. In this format, the scanner can pro-
duce output levels over the range

(12.1-4)

After the measured gray scale data points of Figure 12.1-2a have been obtained, a
smooth analytic curve

(12.1-5)

is fitted to the data. The desired luminance response in real number and binary num-
ber forms is

FIGURE 12.1-2. Measured and compensated sensor luminance response.

255.9375 B 0.0≤ ≤

C g B{ }=
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(12.1-6a)

(12.1-6b)

Hence, the required compensation relationships are 

(12.1-7a)

(12.1-7b)

The limits of the luminance function are commonly normalized to the range 0.0 to
1.0.

To improve the accuracy of the calibration procedure, it is first wise to perform a
rough calibration and then repeat the procedure as often as required to refine the cor-
rection curve. It should be observed that because B is a binary number, the corrected
luminance value  will be a quantized real number. Furthermore, the corrected
binary coded luminance  will be subject to binary roundoff of the right-hand side
of Eq. 12.1-7b. As a consequence of the nonlinearity of the fitted curve 
and the amplitude quantization inherent to the digitizer, it is possible that some of
the corrected binary-coded luminance values may be unoccupied. In other words,
the image histogram of  may possess gaps. To minimize this effect, the number of
output levels can be limited to less than the number of input levels. For example, B
may be coded to 12 bits and  coded to only 8 bits. Another alternative is to add
pseudorandom noise to  to smooth out the occupancy levels.

Many image scanning devices exhibit a variable spatial nonlinear point lumi-
nance response. Conceptually, the point correction techniques described previously
could be performed at each pixel value using the measured calibrated curve at that
point. Such a process, however, would be mechanically prohibitive. An alternative
approach, called gain correction, that is often successful is to model the variable
spatial response by some smooth normalized two-dimensional curve G(j, k) over the
sensor surface. Then, the corrected spatial response can be obtained by the operation

(12.1-8)

where  and  represent the raw and corrected sensor responses, respec-
tively.

Figure 12.1-3 provides an example of adaptive gain correction of a charge cou-
pled device (CCD) camera. Figure 12.1-3a is an image of a spatially flat light box
surface obtained with the CCD camera. A line profile plot of a diagonal line through
the original image is presented in Figure 12.1-3b. Figure 12.3-3c is the gain-cor-
rected original, in which  is obtained by Fourier domain low-pass filtering of

C̃ C=

B̃ Bmax

C Cmin–

Cmax Cmin–
-------------------------------=

C̃ g B{ }=

B̃ Bmax

g B{ } Cmin–

Cmax Cmin–
-------------------------------=

C̃

B̃

C g B{ }=

B̃

B̃

B̃

F̃ j k,( ) F j k,( )
G j k,( )
-----------------=

F j k,( ) F̃ j k,( )

G j k,( )
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the original image. The line profile plot of Figure 12.1-3d shows the “flattened”
result.

12.1.2. Display Point Nonlinearity Correction

Correction of an image display for point luminance nonlinearities is identical in
principle to the correction of point luminance nonlinearities of an image sensor. The
procedure illustrated in Figure 12.1-4 involves distortion of the binary coded image
luminance variable B to form a corrected binary coded luminance function  so that
the displayed luminance  will be linearly proportional to B. In this formulation,
the display may include a photographic record of a displayed light field. The desired
overall response is

(12.1-9)

Normally, the maximum and minimum limits of the displayed luminance
function  are not absolute quantities, but rather are transmissivities or reflectivities

FIGURE 12.1-3. Gain correction of a CCD camera image.

(a) Original

(c) Gain corrected (d) Line profile of gain corrected

(b) Line profile of original

B̃

C̃

C̃ B
C̃max C̃min–
B
max

------------------------------- C̃min+=

C̃
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normalized over a unit range. The measured response of the display and image
reconstruction system is modeled by the nonlinear function

(12.1-10)

Therefore, the desired linear response can be obtained by setting

(12.1-11)

where  is the inverse function of .
The experimental procedure for determining the correction function  will be

described for the common example of producing a photographic print from an
image display. The first step involves the generation of a digital gray scale step chart
over the full range of the binary number B. Usually, about 16 equally spaced levels
of B are sufficient. Next, the reflective luminance must be measured over each step
of the developed print to produce a plot such as in Figure 12.1-5. The data points are
then fitted by the smooth analytic curve , which forms the desired trans-
formation of Eq. 12.1-10. It is important that enough bits be allocated to B so that
the discrete mapping  can be approximated to sufficient accuracy. Also, the
number of bits allocated to  must be sufficient to prevent gray scale contouring as
the result of the nonlinear spacing of display levels. A 10-bit representation of B and
an 8-bit representation of  should be adequate in most applications.

Image display devices such as cathode ray tube displays often exhibit spatial
luminance variation. Typically, a displayed image is brighter at the center of the dis-
play screen than at its periphery. Correction techniques, as described by Eq. 12.1-8,
can be utilized for compensation of spatial luminance variations.

FIGURE 12.1-4. Point luminance correction of an image display.
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12.2. CONTINUOUS IMAGE SPATIAL FILTERING RESTORATION

For the class of imaging systems in which the spatial degradation can be modeled by
a linear-shift-invariant impulse response and the noise is additive, restoration of
continuous images can be performed by linear filtering techniques. Figure 12.2-1
contains a block diagram for the analysis of such techniques. An ideal image

 passes through a linear spatial degradation system with an impulse response
 and is combined with additive noise . The noise is assumed to be

uncorrelated with the ideal image. The image field observed can be represented by
the convolution operation as

(12.2-1a)

or 

(12.2-1b)

The restoration system consists of a linear-shift-invariant filter defined by the
impulse response . After restoration with this filter, the reconstructed image
becomes 

(12.2-2a)

or

(12.2-2b)

FIGURE 12.1-5. Measured image display response.
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Substitution of Eq. 12.2-lb into Eq. 12.2-2b yields

(12.2-3)

It is analytically convenient to consider the reconstructed image in the Fourier trans-
form domain. By the Fourier transform convolution theorem,

(12.2-4)

where , , , ,  are the two-dimen-
sional Fourier transforms of , , , , , respec-
tively.

The following sections describe various types of continuous image restoration
filters.

12.2.1. Inverse Filter

The earliest attempts at image restoration were based on the concept of inverse fil-
tering, in which the transfer function of the degrading system is inverted to yield a
restored image (8–12). If the restoration inverse filter transfer function is chosen so
that

(12.2-5)

then the spectrum of the reconstructed image becomes

(12.2-6)

FIGURE 12.2-1. Continuous image restoration model.
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Upon inverse Fourier transformation, the restored image field

(12.2-7)

is obtained. In the absence of source noise, a perfect reconstruction results, but if
source noise is present, there will be an additive reconstruction error whose value
can become quite large at spatial frequencies for which  is small.
Typically,  and  are small at high spatial frequencies, hence
image quality becomes severely impaired in high-detail regions of the recon-
structed image. Figure 12.2-2 shows typical frequency spectra involved in
inverse filtering.

The presence of noise may severely affect the uniqueness of a restoration esti-
mate. That is, small changes in  may radically change the value of the esti-
mate . For example, consider the dither function  added to an ideal
image to produce a perturbed image

(12.2-8)

There may be many dither functions for which

FIGURE 12.2-2. Typical spectra of an inverse filtering image restoration system.
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(12.2-9)

For such functions, the perturbed image field  may satisfy the convolution
integral of Eq. 12.2-1 to within the accuracy of the observed image field. Specifi-
cally, it can be shown that if the dither function is a high-frequency sinusoid of
arbitrary amplitude, then in the limit 

(12.2-10)

For image restoration, this fact is particularly disturbing, for two reasons. High-fre-
quency signal components may be present in an ideal image, yet their presence may
be masked by observation noise. Conversely, a small amount of observation noise
may lead to a reconstruction of  that contains very large amplitude high-fre-
quency components. If relatively small perturbations  in the observation
result in large dither functions for a particular degradation impulse response, the
convolution integral of Eq. 12.2-1 is said to be unstable or ill conditioned. This
potential instability is dependent on the structure of the degradation impulse
response function.

There have been several ad hoc proposals to alleviate noise problems inherent to
inverse filtering. One approach (10) is to choose a restoration filter with a transfer
function

(12.2-11)

where  has a value of unity at spatial frequencies for which the expected
magnitude of the ideal image spectrum is greater than the expected magnitude of the
noise spectrum, and zero elsewhere. The reconstructed image spectrum is then

(12.2-12)

The result is a compromise between noise suppression and loss of high-frequency
image detail.

Another fundamental difficulty with inverse filtering is that the transfer function
of the degradation may have zeros in its passband. At such points in the frequency
spectrum, the inverse filter is not physically realizable, and therefore the filter must
be approximated by a large value response at such points.
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12.2.2. Wiener Filter

It should not be surprising that inverse filtering performs poorly in the presence of
noise because the filter design ignores the noise process. Improved restoration qual-
ity is possible with Wiener filtering techniques, which incorporate a priori statistical
knowledge of the noise field (13–17).

In the general derivation of the Wiener filter, it is assumed that the ideal image
 and the observed image  of Figure 12.2-1 are samples of two-

dimensional, continuous stochastic fields with zero-value spatial means. The
impulse response of the restoration filter is chosen to minimize the mean-square res-
toration error

(12.2-13)

The mean-square error is minimized when the following orthogonality condition is
met (13):

(12.2-14)

for all image coordinate pairs  and . Upon substitution of Eq. 12.2-2a
for the restored image and some linear algebraic manipulation, one obtains

(12.2-15)

Under the assumption that the ideal image and observed image are jointly stationary,
the expectation terms can be expressed as covariance functions, as in Eq. 1.4-8. This
yields

(12.2-16)

Then, taking the two-dimensional Fourier transform of both sides of Eq. 12.2-16 and
solving for , the following general expression for the Wiener filter trans-
fer function is obtained: 

(12.2-17)

In the special case of the additive noise model of Figure 12.2-1:
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(12.2-18a)

(12.2-18b)

This leads to the additive noise Wiener filter

(12.2-19a)

or

(12.2-19b)

In the latter formulation, the transfer function of the restoration filter can be
expressed in terms of the signal-to-noise power ratio

(12.2-20)

at each spatial frequency. Figure 12.2-3 shows cross-sectional sketches of a typical
ideal image spectrum, noise spectrum, blur transfer function, and the resulting
Wiener filter transfer function. As noted from the figure, this version of the Wiener
filter acts as a bandpass filter. It performs as an inverse filter at low spatial frequen-
cies, and as a smooth rolloff low-pass filter at high spatial frequencies.

Equation 12.2-19 is valid when the ideal image and observed image stochastic
processes are zero mean. In this case, the reconstructed image Fourier transform is

(12.2-21)

If the ideal image and observed image means are nonzero, the proper form of the
reconstructed image Fourier transform is

(12.2-22a)

where

(12.2-22b)
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and  and  are the two-dimensional Fourier transforms of the
means of the ideal image and noise, respectively. It should be noted that Eq. 12.2-22
accommodates spatially varying mean models. In practice, it is common to estimate
the mean of the observed image by its spatial average  and apply the Wiener
filter of Eq. 12.2-19 to the observed image difference , and then
add back the ideal image mean  to the Wiener filter result.

It is useful to investigate special cases of Eq. 12.2-19. If the ideal image is
assumed to be uncorrelated with unit energy, and the Wiener filter
becomes

(12.2-23)

FIGURE 12.2-3. Typical spectra of a Wiener filtering image restoration system.
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This version of the Wiener filter provides less noise smoothing than does the general
case of Eq. 12.2-19. If there is no blurring of the ideal image, and
the Wiener filter becomes a noise smoothing filter with a transfer function

(12.2-24)

In many imaging systems, the impulse response of the blur may not be fixed;
rather, it changes shape in a random manner. A practical example is the blur caused
by imaging through a turbulent atmosphere. Obviously, a Wiener filter applied to
this problem would perform better if it could dynamically adapt to the changing blur
impulse response. If this is not possible, a design improvement in the Wiener filter
can be obtained by considering the impulse response to be a sample of a two-dimen-
sional stochastic process with a known mean shape and with a random perturbation
about the mean modeled by a known power spectral density. Transfer functions for
this type of restoration filter have been developed by Slepian (18).

12.2.3. Parametric Estimation Filters

Several variations of the Wiener filter have been developed for image restoration.
Some techniques are ad hoc, while others have a quantitative basis.

Cole (19) has proposed a restoration filter with a transfer function

(12.2-25)

The power spectrum of the filter output is

(12.2-26)

where  represents the power spectrum of the observation, which is
related to the power spectrum of the ideal image by

(12.2-27)

Thus, it is easily seen that the power spectrum of the reconstructed image is identical
to the power spectrum of the ideal image field. That is,

(12.2-28)
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For this reason, the restoration filter defined by Eq. 12.2-25 is called the image
power-spectrum filter. In contrast, the power spectrum for the reconstructed image
as obtained by the Wiener filter of Eq. 12.2-19 is

(12.2-29)

In this case, the power spectra of the reconstructed and ideal images become identi-
cal only for a noise-free observation. Although equivalence of the power spectra of
the ideal and reconstructed images appears to be an attractive feature of the image
power-spectrum filter, it should be realized that it is more important that the Fourier
spectra (Fourier transforms) of the ideal and reconstructed images be identical
because their Fourier transform pairs are unique, but power-spectra transform pairs
are not necessarily unique. Furthermore, the Wiener filter provides a minimum
mean-square error estimate, while the image power-spectrum filter may result in a
large residual mean-square error. 

Cole (19) has also introduced a geometrical mean filter, defined by the transfer
function

(12.2-30)

where  is a design parameter. If  and , the geometrical
mean filter reduces to the image power-spectrum filter as given in Eq. 12.2-25.

Hunt (20) has developed another parametric restoration filter, called the con-
strained least-squares filter, whose transfer function is of the form

(12.2-31)

where  is a design constant and  is a design spectral variable. If 
and  is set equal to the reciprocal of the spectral signal-to-noise power
ratio of Eq. 12.2-20, the constrained least-squares filter becomes equivalent to the
Wiener filter of Eq. 12.2-19b. The spectral variable can also be used to minimize
higher-order derivatives of the estimate.

12.2.4. Application to Discrete Images

The inverse filtering, Wiener filtering, and parametric estimation filtering tech-
niques developed for continuous image fields are often applied to the restoration of
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discrete images. The common procedure has been to replace each of the continuous
spectral functions involved in the filtering operation by its discrete two-dimensional
Fourier transform counterpart. However, care must be taken in this conversion pro-
cess so that the discrete filtering operation is an accurate representation of the con-
tinuous convolution process and that the discrete form of the restoration filter
impulse response accurately models the appropriate continuous filter impulse
response.

Figures 12.2-4 to 12.2-7 present examples of continuous image spatial filtering
techniques by discrete Fourier transform filtering. The original image of Figure
12.2-4a has been blurred with a Gaussian-shaped impulse response with  to
obtain the blurred image of Figure 12.2-4b. White Gaussian noise has been added to
the blurred image to give the noisy blurred image of Figure l2.2-4c, which has a sig-
nal-to-noise ratio of 10.0.

FIGURE 12.2-4. Blurred test images.

(a) Original

(b) Blurred, b = 2.0 (c) Blurred with noise, SNR = 10.0

b 2.0=
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Figure 12.2-5 shows the results of inverse filter image restoration of the blurred
and noisy-blurred images. In Figure 12.2-5a, the inverse filter transfer function
follows Eq. 12.2-5 (i.e., no high-frequency cutoff). The restored image for the noise-
free observation is corrupted completely by the effects of computational error. The
computation was performed using 32-bit floating-point arithmetic. In Figure 12.2-5c
the inverse filter restoration is performed with a circular cutoff inverse filter as
defined by Eq. 12.2-11 with  for the  pixel noise-free observation.
Some faint artifacts are visible in the restoration. In Figure 12.2-5e the cutoff fre-
quency is reduced to . The restored image appears relatively sharp and free
of artifacts. Figure 12.2-5b, d, and f show the result of inverse filtering on the noisy-
blurred observed image with varying cutoff frequencies. These restorations illustrate
the trade-off between the level of artifacts and the degree of deblurring.

Figure 12.2-6 shows the results of Wiener filter image restoration. In all cases,
the noise power spectral density is white and the signal power spectral density is
circularly symmetric Markovian with a correlation factor . For the noise-free
observation, the Wiener filter provides restorations that are free of artifacts but only
slightly sharper than the blurred observation. For the noisy observation, the
restoration artifacts are less noticeable than for an inverse filter.

Figure 12.2-7 presents restorations using the power spectrum filter. For a noise-
free observation, the power spectrum filter gives a restoration of similar quality to
an inverse filter with a low cutoff frequency. For a noisy observation, the power
spectrum filter restorations appear to be grainier than for the Wiener filter.

The continuous image field restoration techniques derived in this section are
advantageous in that they are relatively simple to understand and to implement
using Fourier domain processing. However, these techniques face several important
limitations. First, there is no provision for aliasing error effects caused by physical
undersampling of the observed image. Second, the formulation inherently assumes
that the quadrature spacing of the convolution integral is the same as the physical
sampling. Third, the methods only permit restoration for linear, space-invariant deg-
radation. Fourth, and perhaps most important, it is difficult to analyze the effects of
numerical errors in the restoration process and to develop methods of combatting
such errors. For these reasons, it is necessary to turn to the discrete model of a sam-
pled blurred image developed in Section 7.2 and then reformulate the restoration
problem on a firm numeric basic. This is the subject of the remaining sections of the
chapter.

12.3. PSEUDOINVERSE SPATIAL IMAGE RESTORATION

The matrix pseudoinverse defined in Chapter 5 can be used for spatial image resto-
ration of digital images when it is possible to model the spatial degradation as a
vector-space operation on a vector of ideal image points yielding a vector of physi-
cal observed samples obtained from the degraded image (21–23).

C 200= 512 512×

C 150=

ρ
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FIGURE 12.2-5. Inverse filter image restoration on the blurred test images.

(a) Noise-free, no cutoff (b) Noisy, C = 100

(c) Noise-free, C = 200 (d ) Noisy, C = 75

(e) Noise-free, C = 150 (f ) Noisy, C = 50
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FIGURE 12.2-6. Wiener filter image restoration on the blurred test images; SNR = 10.0.

(a) Noise-free, r = 0.9 (b) Noisy, r = 0.9

(c) Noise-free, r = 0.5 (d ) Noisy, r = 0.5

(e) Noise-free, r = 0.0 (f ) Noisy, r = 0.0
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12.3.1. Pseudoinverse: Image Blur

The first application of the pseudoinverse to be considered is that of the restoration
of a blurred image described by the vector-space model

(12.3-1)

as derived in Eq. 11.5-6, where g is a  vector    containing the 
physical samples of the blurred image, f is a  vector  containing

 points of the ideal image and B is the  matrix whose elements are points

FIGURE 12.2-7. Power spectrum filter image restoration on the blurred test images;
SNR = 10.0.

(a) Noise-free, r = 0.5 (b) Noisy, r = 0.5

(c) Noisy, r = 0.5 (d ) Noisy, r = 0.0
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on the impulse function. If the physical sample period and the quadrature represen-
tation period are identical, P will be smaller than Q, and the system of equations will
be underdetermined. By oversampling the blurred image, it is possible to force

 or even . In either case, the system of equations is called overdeter-
mined. An overdetermined set of equations can also be obtained if some of the
elements of the ideal image vector can be specified through a priori knowledge. For
example, if the ideal image is known to contain a limited size object against a black
background (zero luminance), the elements of f beyond the limits may be set to zero.

In discrete form, the restoration problem reduces to finding a solution  to Eq.
12.3-1 in the sense that

(12.3-2)

Because the vector g is determined by physical sampling and the elements of B are
specified independently by system modeling, there is no guarantee that a  even
exists to satisfy Eq. 12.3-2. If there is a solution, the system of equations is said to be
consistent; otherwise, the system of equations is inconsistent.

In Appendix 1 it is shown that inconsistency in the set of equations of Eq. 12.3-1
can be characterized as

(12.3-3)

where  is a vector of remainder elements whose value depends on f. If the set
of equations is inconsistent, a solution of the form

(12.3-4)

is sought for which the linear operator W minimizes the least-squares modeling
error

(12.3-5)

This error is shown, in Appendix 1, to be minimized when the operator W = B$ is
set equal to the least-squares inverse of B. The least-squares inverse is not necessar-
ily unique. It is also proved in Appendix 1 that the generalized inverse operator
W = B–, which is a special case of the least-squares inverse, is unique, minimizes
the least-squares modeling error, and simultaneously provides a minimum norm
estimate. That is, the sum of the squares of  is a minimum for all possible mini-
mum least-square error estimates. For the restoration of image blur, the generalized
inverse provides a lowest-intensity restored image.
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If Eq. 12.3-1 represents a consistent set of equations, one or more solutions may
exist for Eq. 12.3-2. The solution commonly chosen is the estimate that minimizes
the least-squares estimation error defined in the equivalent forms

(12.3-6a)

(12.3-6b)

In Appendix 1 it is proved that the estimation error is minimum for a generalized
inverse (W = B–) estimate. The resultant residual estimation error then becomes

(12.3-7a)

or

(12.3-7b)

The estimate is perfect, of course, if B–B = I.
Thus, it is seen that the generalized inverse is an optimal solution, in the sense

defined previously, for both  consistent and inconsistent sets of equations modeling
image blur. From Eq. 5.5-5, the generalized inverse has been found to be algebra-
ically equivalent to

(12.3-8a)

if the  matrix B is of rank Q. If B is of rank P, then

(12.3-8b)

For a consistent set of equations and a rank Q generalized inverse, the estimate

(12.3-9)

is obviously perfect. However, in all other cases, a residual estimation error may
occur. Clearly, it would be desirable to deal with an overdetermined blur matrix of
rank Q in order to achieve a perfect estimate. Unfortunately, this situation is rarely
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achieved in image restoration. Oversampling the blurred image can produce an
overdetermined set of equations , but the rank of the blur matrix is likely to
be much less than Q because the rows of the blur matrix will become more linearly
dependent with finer sampling.

A major problem in application of the generalized inverse to image restoration is
dimensionality. The generalized inverse is a  matrix where P is equal to the
number of pixel observations and Q is equal to the number of pixels to be estimated
in an image. It is usually not computationally feasible to use the generalized inverse
operator, defined by Eq. 12.3-8, over large images because of difficulties in reliably
computing the generalized inverse and the large number of vector multiplications
associated with Eq. 12.3-4. Computational savings can be realized if the blur matrix
B is separable such that

(12.3-10)

where BC and BR are column and row blur operators. In this case, the generalized
inverse is separable in the sense that

(12.3-11)

where  and  are generalized inverses of BC and BR, respectively. Thus, when
the blur matrix is of separable form, it becomes possible to form the estimate of the
image by sequentially applying the generalized inverse of the row blur matrix to
each row of the observed image array and then using the column generalized inverse
operator on each column of the array.

Pseudoinverse restoration of large images can be accomplished in an approxi-
mate fashion by a block mode restoration process, similar to the block mode filter-
ing technique of Section 9.3, in which the blurred image is partitioned into small
blocks that are restored individually. It is wise to overlap the blocks and accept only
the pixel estimates in the center of each restored block because these pixels exhibit
the least uncertainty. Section 12.3.3 describes an efficient computational algorithm
for pseudoinverse restoration for space-invariant blur.

Figure l2.3-1a shows a blurred image based on the model of Figure 11.5-3.
Figure 12.3-1b shows a restored image using generalized inverse image restoration.
In this example, the observation is noise free and the blur impulse response function
is Gaussian shaped, as defined in Eq. 11.5-8, with bR = bC = 1.2. Only the center

 region of the  blurred picture is displayed, zoomed to an image size of
 pixels. The restored image appears to be visually improved compared to

the blurred image, but the restoration is not identical to the original unblurred image
of Figure 11.5-3a. The figure also gives the percentage least-squares error (PLSE) as
defined in Appendix 3, between the blurred image and the original unblurred image,
and between the restored image and the original. The restored image has less error
than the blurred image.
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12.3.2. Pseudoinverse: Image Blur Plus Additive Noise

In many imaging systems, an ideal image is subject to both blur and additive noise;
the resulting vector-space model takes the form

(12.3-12)

where g and n are  vectors of the observed image field and noise field, respec-
tively, f is a  vector of ideal image points, and B is a  blur matrix. The
vector n is composed of two additive components: samples of an additive external
noise process and elements of the vector difference  arising from modeling
errors in the formulation of B. As a result of the noise contribution, there may be no
vector solutions  that satisfy Eq. 12.3-12. However, as indicated in Appendix 1, the
generalized inverse B– can be utilized to determine a least-squares error, minimum
norm estimate. In the absence of modeling error, the estimate

(12.3-13)

differs from the ideal image because of the additive noise contribution . Also,
for the underdetermined model,  will not be an identity matrix. If B is an over-
determined rank Q matrix, as defined in Eq. 12.3-8a, then , and the resulting
estimate is equal to the original image vector f plus a perturbation vector .
The perturbation error in the estimate can be measured as the ratio of the vector

FIGURE 12.3-1. Pseudoinverse image restoration for test image blurred with Gaussian
shape impulse response. M = 8, N = 12, L = 5; bR = bC = 1.2; noise-free observation. 

(a) Blurred, PLSE = 4.97% (b) Restored, PLSE = 1.41%
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norm of the perturbation to the vector norm of the estimate. It can be shown (24, p.
52) that the relative error is subject to the bound

(12.3-14)

The product , which is called the condition number C{B} of B, deter-
mines the relative error in the estimate in terms of the ratio of the vector norm of the
noise to the vector norm of the observation. The condition number can be computed
directly or found in terms of the ratio

(12.3-15)

of the largest W1 to smallest WN singular values of B. The noise perturbation error
for the underdetermined matrix B is also governed by Eqs. 12.3-14 and 12.3-15 if
WN is defined to be the smallest nonzero singular value of B (25, p. 41). Obviously,
the larger the condition number of the blur matrix, the greater will be the sensitivity
to noise perturbations.

Figure 12.3-2 contains image restoration examples for a Gaussian-shaped blur
function for several values of the blur standard deviation and a noise variance of
10.0 on an amplitude scale of 0.0 to 255.0. As expected, observation noise degrades
the restoration. Also as expected, the restoration for a moderate degree of blur is
worse than the restoration for less blur. However, this trend does not continue; the
restoration for severe blur is actually better in a subjective sense than for moderate
blur. This seemingly anomalous behavior, which results from spatial truncation of
the point-spread function, can be explained in terms of the condition number of the
blur matrix. Figure 12.3-3 is a plot of the condition number of the blur matrix of the
previous examples as a function of the blur coefficient (21). For small amounts of
blur, the condition number is low. A maximum is attained for moderate blur, fol-
lowed by a decrease in the curve for increasing values of the blur coefficient. The
curve tends to stabilize as the blur coefficient approaches infinity. This curve pro-
vides an explanation for the previous experimental results. In the restoration opera-
tion, the blur impulse response is spatially truncated over a square region of 
quadrature points. As the blur coefficient increases, for fixed M and N, the blur
impulse response becomes increasingly wider, and its tails become truncated to a
greater extent. In the limit, the nonzero elements in the blur matrix become constant
values, and the condition number assumes a constant level. For small values of the
blur coefficient, the truncation effect is negligible, and the condition number curve
follows an ascending path toward infinity with the asymptotic value obtained for a
smoothly represented blur impulse response. As the blur factor increases, the num-
ber of nonzero elements in the blur matrix increases, and the condition number
stabilizes to a constant value. In effect, a trade-off exists between numerical
errors caused by ill-conditioning and modeling accuracy. Although this conclusion
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FIGURE 12.3-2. Pseudoinverse image restoration for test image blurred with Gaussian
shape impulse response. M = 8, N = 12, L = 5; noisy observation, Var = 10.0.

bR = bC = 0.6
(a) PLSE = 1.30% (b) PLSE = 0.21%

Blurred Restored

bR = bC = 1.2
(c) PLSE = 4.91%    (d) PLSE = 2695.81%

bR = bC = 50.0
(e) PLSE = 7.99% (f ) PLSE = 7.29%
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is formulated on the basis of a particular degradation model, the inference seems to
be more general because the inverse of the integral operator that describes the blur is
unbounded. Therefore, the closer the discrete model follows the continuous model,
the greater the degree of ill-conditioning. A move in the opposite direction reduces
singularity but imposes modeling errors. This inevitable dilemma can only be bro-
ken with the intervention of correct a priori knowledge about the original image.

12.3.3. Pseudoinverse Computational Algorithms

Efficient computational algorithms have been developed by Pratt and Davarian (22)
for pseudoinverse image restoration for space-invariant blur. To simplify the expla-
nation of these algorithms, consideration will initially be  limited to a one-dimen-
sional example.

Let the vector fT and the vector be formed by selecting the center
portions of f and g, respectively. The truncated vectors are obtained by dropping L -
1 elements at each end of the appropriate vector. Figure 12.3-4a illustrates the rela-
tionships of all vectors for N = 9 original vector points, M = 7 observations and an
impulse response of length L = 3.

The elements  and  are entries in the adjoint model

(12.3-16a)

FIGURE 12.3-3. Condition number curve.

N 1× M 1× gT

fT gT

qE CfE nE+=
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where the extended vectors ,  and  are defined in correspondence with

(12.3-16b)

where g is a  vector,  and  are  vectors, and C is a  matrix. As
noted in Figure 12.3-4b, the vector q is identical to the image observation g over its

 center elements. The outer elements of q can be approximated by

(12.3-17)

where E, called an extraction weighting matrix, is defined as

(12.3-18)

where a and b are  submatrices, which perform a windowing function similar
to that described in Section 9.4.2 (22).

Combining Eqs. 12.3-17 and 12.3-18, an estimate of fT can be obtained from

(12.3-19)

FIGURE 12.3-4. One-dimensional sampled continuous convolution and discrete
convolution.
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FIGURE 12.3-5. Pseudoinverse image restoration for small degree of horizontal blur,
bR  = 1.5. 

(a) Original image vectors, f (b) Truncated image vectors, fT

(c) Observation vectors, g (d) Windowed observation vectors, q

(e) Restoration without windowing, fT (f ) Restoration with windowing, fT
^ ^
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Equation 12.3-19 can be solved efficiently using Fourier domain convolution
techniques, as described in Section 9.3. Computation of the pseudoinverse by Fou-
rier processing requires on the order of  operations in two
dimensions; spatial domain computation requires about  operations. As an
example, for M = 256 and L = 17, the computational savings are nearly 1750:1 (22).

Figure 12.3-5 is a computer simulation example of the operation of the pseudoin-
verse image restoration algorithm for one-dimensional blur of an image. In the first
step of the simulation, the center K pixels of the original image are extracted to form
the set of truncated image vectors  shown in Figure 12.3-5b. Next, the truncated
image vectors are subjected to a simulated blur with a Gaussian-shaped impulse
response with bR = 1.5 to produce the observation of Figure 12.3-5c. Figure 12.3-5d
shows the result of the extraction operation on the observation. Restoration results
without and with the extraction weighting operator E are presented in Figure
12.3-5e and f, respectively. These results graphically illustrate the importance of the

FIGURE 12.3-6. Pseudoinverse image restoration for moderate and high degrees of horizon-
tal blur.

J
2
1 4

2
Jlog+( )

M
2
N
2

fT

(a) Observation, g

Gaussian blur, bR = 2.0

Uniform motion blur, L = 15.0

(b) Restoration, fT
∧

(c) Observation, g (d) Restoration, fT
∧
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extraction operation. Without weighting, errors at the observation boundary
completely destroy the estimate in the boundary region, but with weighting the
restoration is subjectively satisfying, and the restoration error is significantly
reduced. Figure 12.3-6 shows simulation results for the experiment of Figure 12.3-5
when the degree of blur is increased by setting bR = 2.0. The higher degree of blur
greatly increases the ill-conditioning of the blur matrix, and the residual error in
formation of the modified observation after weighting leads to the disappointing
estimate of Figure 12.3-6b. Figure 12.3-6c and d illustrate the restoration improve-
ment obtained with the pseudoinverse algorithm for horizontal image motion blur.
In this example, the blur impulse response is constant, and the corresponding blur
matrix is better conditioned than the blur matrix for Gaussian image blur.

12.4. SVD PSEUDOINVERSE SPATIAL IMAGE RESTORATION

In  Appendix 1 it is shown that any matrix can be decomposed into a series of eigen-
matrices by the technique of singular value decomposition. For image restoration,
this concept has been extended (26–29) to the eigendecomposition of blur matrices
in the imaging model

(12.4-1)

From Eq. A1.2-3, the blur matrix B may be expressed as

(12.4-2)

where the  matrix U and the  matrix V are unitary matrices composed of
the eigenvectors of BBT and BTB, respectively and  is a  matrix whose diag-
onal terms  contain the eigenvalues of BBT and BTB. As a consequence of the
orthogonality of U and V, it is possible to express the blur matrix in the series form

(12.4-3)

where  and  are the ith columns of U and V, respectively, and R is the rank of
the matrix B.

From Eq. 12.4-2, because U and V are unitary matrices, the generalized inverse
of B is

(12.4-4)

Figure 12.4-1 shows an example of the SVD decomposition of a blur matrix. The
generalized inverse estimate can then be expressed as
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FIGURE 12.4-1. SVD decomposition of a blur matrix for bR = 2.0, M = 8, N = 16, L = 9.

(a) Blur matrix, B

(b) u1v1
T, l(1) = 0.871 (c) u2v2

T, l(2) = 0.573

(d) u3v3
T, l(3) = 0.285 (e) u4v4

T, l(4) = 0.108

(f) u5v5
T, l(5) = 0.034 (g) u6v6

T, l(6) = 0.014

(h) u7v7
T, l(7) = 0.011 (i ) u8v8

T, l(8) = 0.010
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(12.4-5a)

or, equivalently,

(12.4-5b)

recognizing the fact that the inner product  is a scalar. Equation 12.4-5 provides
the basis for sequential estimation; the kth estimate of f in a sequence of estimates is
equal to

(12.4-6)

One of the principal advantages of the sequential formulation is that problems of ill-
conditioning generally occur only for higher-order singular values. Thus, it is possi-
ble interactively to terminate the expansion before numerical problems occur.

Figure 12.4-2 shows an example of sequential SVD restoration for the underde-
termined model example of Figure 11.5-3 with a poorly conditioned Gaussian blur
matrix. A one-step pseudoinverse would have resulted in the final image estimate
that is totally overwhelmed by numerical errors. The sixth step, which is the best
subjective restoration, offers a considerable improvement over the blurred original,
but the lowest least-squares error occurs for three singular values.

The major limitation of the SVD image restoration method formulation in Eqs.
12.4-5 and 12.4-6 is computational. The eigenvectors  and  must first be deter-
mined for the matrix BBT and BTB. Then the vector computations of Eq 12.4-5 or
12.4-6 must be performed. Even if B is direct-product separable, permitting separa-
ble row and column SVD pseudoinversion, the computational task is staggering in
the general case.

The pseudoinverse computational algorithm described in the preceding section
can be adapted for SVD image restoration in the special case of space-invariant blur
(23). From the adjoint model of Eq. 12.3-16 given by

(12.4-7)

the circulant matrix C can be expanded in SVD form as

(12.4-8)

where X and Y are unitary matrices defined by
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FIGURE 12.4-2. SVD restoration for test image blurred with a Gaussian-shaped impulse
response. bR   = bC = 1.2, M = 8, N = 12, L = 5; noisy observation, Var = 10.0.

(a) 8 singular values PLSE = 2695.81% (b) 7 singular values PLSE = 148.93%

(c) 6 singular values PLSE = 6.88% (d) 5 singular values PLSE = 3.31%

(e) 4 singular values PLSE = 3.06% (f ) 3 singular values PLSE = 3.05%

(g) 2 singular values PLSE = 9.52% (h) 1 singular value PLSE = 9.52%
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(12.4-9a)

(12.4-9b)

Because C is circulant, CCT is also circulant. Therefore X and Y must be equivalent
to the Fourier transform matrix A or  because the Fourier matrix produces a
diagonalization of a circulant matrix. For purposes of standardization, let

. As a consequence, the eigenvectors , which are rows of X
and Y, are actually the complex exponential basis functions

(12.4-10)

of a Fourier transform for . Furthermore,

 (12.4-11)

where CCCC  is the Fourier domain circular area convolution matrix. Then, in correspon-
dence with Eq. 12.4-5

(12.4-12)

where  is the modified blurred image observation of Eqs. 12.3-19 and 12.3-20.
Equation 12.4-12 should be recognized as being a Fourier domain pseudoinverse
estimate. Sequential SVD restoration, analogous to the procedure of Eq. 12.4-6, can
be obtained by replacing the SVD pseudoinverse matrix  of Eq. 12.4-12 by the
operator

(12.4-13)
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Complete truncation of the high-frequency terms to avoid ill-conditioning effects
may not be necessary in all situations. As an alternative to truncation, the diagonal
zero elements can be replaced by  or perhaps by some sequence that
declines in value as a function of frequency. This concept is actually analogous to
the truncated inverse filtering technique defined by Eq. 12.2-11 for continuous
image fields. 

Figure 12.4-3 shows an example of SVD pseudoinverse image restoration for
one-dimensional Gaussian image blur with bR = 3.0. It should be noted that the res-
toration attempt with the standard pseudoinverse shown in Figure 12.3-6b was sub-
ject to severe ill-conditioning errors at a blur spread of bR = 2.0.

FIGURE 12.4-3. Sequential SVD pseudoinverse image restoration for horizontal Gaussian
blur, bR = 3.0, L = 23, J = 256.

(c) Restoration, T = 60

(b) Restoration, T = 58(a) Blurred observation

∆T T( )[ ] 1– 2⁄



STATISTICAL ESTIMATION SPATIAL IMAGE RESTORATION 355

12.5. STATISTICAL ESTIMATION SPATIAL IMAGE RESTORATION

A fundamental limitation of pseudoinverse restoration techniques is that observation
noise may lead to severe numerical instability and render the image estimate unus-
able. This problem can be alleviated in some instances by statistical restoration
techniques that incorporate some a priori statistical knowledge of the observation
noise (21).

12.5.1. Regression Spatial Image Restoration

Consider the vector-space model

(12.5-1)

for a blurred image plus additive noise in which B is a  blur matrix and the
noise is assumed to be zero mean with known covariance matrix Kn. The regression
method seeks to form an estimate

(12.5-2)

where W is a restoration matrix that minimizes the weighted error measure

(12.5-3)

Minimization of the restoration error can be accomplished by the classical method
of setting the partial derivative of  with respect to  to zero. In the underdeter-
mined case, for which , it can be shown (30) that the minimum norm estimate
regression operator is

(12.5-4)

where K is a matrix obtained from the spectral factorization

(12.5-5)

of the noise covariance matrix . For white noise, , and the regression
operator assumes the form of a rank P generalized inverse for an underdetermined
system as given by Eq. 12.3-8b.
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12.5.2. Wiener Estimation Spatial Image Restoration

With the regression technique of spatial image restoration, the noise field is modeled
as a sample of a two-dimensional random process with a known mean and covari-
ance function. Wiener estimation techniques assume, in addition, that the ideal
image is also a sample of a two-dimensional random process with known first and
second moments (21,22,31).

Wiener Estimation: General Case. Consider the general discrete model of Figure
12.5-1 in which a image vector f is subject to some unspecified type of point
and spatial degradation resulting in the vector of observations g. An estimate
of f is formed by the linear operation

(12.5-6)

where W is a  restoration matrix and b is a bias vector. The objective of
Wiener estimation is to choose W and b to minimize the mean-square restoration
error, which may be defined as

(12.5-7a)

or

(12.5-7b)

Equation 12.5-7a expresses the error in inner-product form as the sum of the squares
of the elements of the error vector , while Eq. 12.5-7b forms the covariance
matrix of the error, and then sums together its variance terms (diagonal elements) by
the trace operation. Minimization of Eq. 12.5-7 in either of its forms can
be accomplished by differentiation of  with respect to . An alternative approach,

FIGURE 12.5-1. Wiener estimation for spatial image restoration.
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which is of quite general utility, is to employ the orthogonality principle (32, p. 219)
to determine the values of W and b that minimize the mean-square error. In the con-
text of image restoration, the orthogonality principle specifies two necessary and
sufficient conditions for the minimization of the mean-square restoration error:

1. The expected value of the image estimate must equal the expected value of
the image

(12.5-8)

2. The restoration error must be orthogonal to the observation about its mean

(12.5-9)

From condition 1, one obtains

(12.5-10)

and from condition 2

(12.5-11)

Upon substitution for the bias vector b from Eq. 12.5-10 and simplification, Eq.
12.5-11 yields

(12.5-12)

where  is the  covariance matrix of the observation vector (assumed nons-
ingular) and  is the  cross-covariance matrix between the image and obser-
vation vectors. Thus, the optimal bias vector b and restoration matrix W may be
directly determined in terms of the first and second joint moments of the ideal image
and observation vectors. It should be noted that these solutions apply for nonlinear
and space-variant degradations. Subsequent sections describe applications of
Wiener estimation to specific restoration models.

Wiener Estimation: Image Blur with Additive Noise. For the discrete model for a
blurred image subjective to additive noise given by 

(12.5-13)
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the Wiener estimator is composed of a bias term

(12.5-14)

and a matrix operator

(12.5-15)

If the ideal image field is assumed uncorrelated,  where  represents
the image energy. Equation 12.5-15 then reduces to

(12.5-16)

For a white-noise process with energy , the Wiener filter matrix becomes

(12.5-17)

As the ratio of image energy to noise energy  approaches infinity, the
Wiener estimator of Eq. 12.5-17 becomes equivalent to the generalized inverse esti-
mator.

Figure 12.5-2 shows restoration examples for the model of Figure 11.5-3 for a
Gaussian-shaped blur function. Wiener restorations of large size images are given in
Figure 12.5-3 using a fast computational algorithm developed by Pratt and Davarian
(22). In the example of Figure 12.5-3a illustrating horizontal image motion blur, the
impulse response is of rectangular shape of length L = 11. The center pixels have
been restored and replaced within the context of the blurred image to show the
visual restoration improvement. The noise level and blur impulse response of the
electron microscope original image of Figure 12.5-3c were estimated directly from
the photographic transparency using techniques to be described in Section 12.7. The
parameters were then utilized to restore the center pixel region, which was then
replaced in the context of the blurred original.

12.6. CONSTRAINED IMAGE RESTORATION

The previously described image restoration techniques have treated images as arrays
of numbers. They have not considered that a restored natural image should be sub-
ject to physical constraints. A restored natural image should be spatially smooth and
strictly positive in amplitude.
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FIGURE 12.5-2. Wiener estimation for test image blurred with Gaussian-shaped impulse
response. M = 8, N = 12, L = 5.

bR = bC = 1.2, Var = 10.0, r = 0.75, SNR = 200.0

bR = bC = 50.0, Var = 10.0, r = 0.75, SNR = 200.0

bR = bC = 50.0, Var = 100.0, r = 0.75, SNR = 60.0

(a) PLSE = 4.91%

Blurred

(c) PLSE = 7.99%

(e) PLSE = 7.93%

(b) PLSE = 3.71%

Restored

(d ) PLSE = 4.20%

(f ) PLSE = 4.74%



360 POINT AND SPATIAL IMAGE RESTORATION TECHNIQUES

12.6.1. Smoothing Methods

Smoothing and regularization techniques (33–35) have been used in an attempt to
overcome the ill-conditioning problems associated with image restoration. Basi-
cally, these methods attempt to force smoothness on the solution of a least-squares
error problem.

Two formulations of these methods are considered (21). The first formulation
consists of finding the minimum of  subject to the equality constraint

(12.6-1)

where S is a smoothing matrix, M is an error-weighting matrix, and e denotes a
residual scalar estimation error. The error-weighting matrix is often chosen to be

FIGURE 12.5-3. Wiener image restoration.

(a) Observation (b) Restoration

(c) Observation (d ) Restoration
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equal to the inverse of the observation noise covariance matrix, . The
Lagrangian estimate satisfying Eq. 12.6-1 is (19)

(12.6-2)

In Eq. 12.6-2, the Lagrangian factor  is chosen so that Eq. 12.6-1 is satisfied; that
is, the compromise between residual error and smoothness of the estimator is
deemed satisfactory.

Now consider the second formulation, which involves solving an equality-con-
strained least-squares problem by minimizing the left-hand side of Eq. 12.6-1 such
that

(12.6-3)

where the scalar d represents a fixed degree of smoothing. In this case, the optimal
solution for an underdetermined nonsingular system is found to be

(12.6-4)

A comparison of Eqs. 12.6-2 and 12.6-4 reveals that the two inverse problems are
solved by the same expression, the only difference being the Lagrange multipliers,
which are inverses of one another. The smoothing estimates of Eq. 12.6-4 are
closely related to the regression and Wiener estimates derived previously. If ,

 and  where  is the observation noise covariance matrix, then the
smoothing and regression estimates become equivalent. Substitution of ,

 and  where  is the image covariance matrix results in
equivalence to the Wiener estimator. These equivalences account for the relative
smoothness of the estimates obtained with regression and Wiener restoration as
compared to pseudoinverse restoration. A problem that occurs with the smoothing
and regularizing techniques is that even though the variance of a solution can be
calculated, its bias can only be determined as a function of f.

12.6.2. Constrained Restoration Techniques

Equality and inequality constraints have been suggested (21) as a means of improving
restoration performance for ill-conditioned restoration models. Examples of con-
straints include the specification of individual pixel values, of ratios of the values of
some pixels, or the sum of part or all of the pixels, or amplitude limits of pixel values.

Quite often a priori information is available in the form of inequality constraints
involving pixel values. The physics of the image formation process requires that
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pixel values be non-negative quantities. Furthermore, an upper bound on these val-
ues is often known because images are digitized with a finite number of bits
assigned to each pixel. Amplitude constraints are also inherently introduced by the
need to “fit” a restored image to the dynamic range of a display. One approach is lin-
early to rescale the restored image to the display image. This procedure is usually
undesirable because only a few out-of-range pixels will cause the contrast of all
other pixels to be reduced. Also, the average luminance of a restored image is usu-
ally affected by rescaling. Another common display method involves clipping of all
pixel values exceeding the display limits. Although this procedure is subjectively
preferable to rescaling, bias errors may be introduced.

If a priori pixel amplitude limits are established for image restoration, it is best to
incorporate these limits directly in the restoration process rather than arbitrarily
invoke the limits on the restored image. Several techniques of inequality constrained
restoration have been proposed.

Consider the general case of constrained restoration in which the vector estimate
 is subject to the inequality constraint

(12.6-5)

where u and l are vectors containing upper and lower limits of the pixel estimate,
respectively. For least-squares restoration, the quadratic error must be minimized
subject to the constraint of Eq. 12.6-5. Under this framework, restoration reduces to
the solution of a quadratic programming problem (21). In the case of an absolute
error measure, the restoration task can be formulated as a linear programming prob-
lem (36,37). The a priori knowledge involving the inequality constraints may sub-
stantially reduce pixel uncertainty in the restored image; however, as in the case of
equality constraints, an unknown amount of bias may be introduced.

Figure 12.6-1 is an example of image restoration for the Gaussian blur model of
Chapter 11 by pseudoinverse restoration and with inequality constrained (21) in
which the scaled luminance of each pixel of the restored image has been limited to
the range of 0 to 255. The improvement obtained by the constraint is substantial.
Unfortunately, the quadratic programming solution employed in this example
requires a considerable amount of computation. A brute-force extension of the pro-
cedure does not appear feasible.

Several other methods have been proposed for constrained image restoration.
One simple approach, based on the concept of homomorphic filtering, is to take the
logarithm of each observation. Exponentiation of the corresponding estimates auto-
matically yields a strictly positive result. Burg (38), Edward and Fitelson (39), and
Frieden (6,40,41) have developed restoration methods providing a positivity con-
straint, which are based on a maximum entropy principle originally employed to
estimate a probability density from observation of its moments. Huang et al. (42)
have introduced a projection method of constrained image restoration in which the
set of equations  are iteratively solved by numerical means. At each stage of
the solution the intermediate estimates are amplitude clipped to conform to ampli-
tude limits.
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l f̂ u≤ ≤

g Bf=
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12.7. BLIND IMAGE RESTORATION

Most image restoration techniques are based on some a priori knowledge of the
image degradation; the point luminance and spatial impulse responses of the system
degradation are assumed known. In many applications, such information is simply
not available. The degradation may be difficult to measure or may be time varying
in an unpredictable manner. In such cases, information about the degradation must
be extracted from the observed image either explicitly or implicitly. This task is
called blind image restoration (5,19,43). Discussion here is limited  to blind image
restoration methods for blurred images subject to additive noise.

FIGURE 12.6-1. Comparison of unconstrained and inequality constrained image restoration
for a test image blurred with Gaussian-shaped impulse response. bR = bC = 1.2, M = 12, N = 8,
L = 5; noisy observation, Var = 10.0.

(a) Blurred observation

(b) Unconstrained restoration (c) Constrained restoration
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There are two major approaches to blind image restoration: direct measurement
and indirect estimation. With the former approach, the blur impulse response and
noise level are first estimated from an image to be restored, and then these parame-
ters are utilized in the restoration. Indirect estimation techniques employ temporal or
spatial averaging to either obtain a restoration or to determine key elements of a res-
toration algorithm.

12.7.1. Direct Measurement Methods

Direct measurement blind restoration of a blurred noisy image usually requires mea-
surement of the blur impulse response and noise power spectrum or covariance
function of the observed image. The blur impulse response is usually measured by
isolating the image of a suspected object within a picture. By definition, the blur
impulse response is the image of a point-source object. Therefore, a point source in
the observed scene yields a direct indication of the impulse response. The image of a
suspected sharp edge can also be utilized to derive the blur impulse response. Aver-
aging several parallel line scans normal to the edge will significantly reduce noise
effects. The noise covariance function of an observed image can be estimated by
measuring the image covariance over a region of relatively constant background
luminance. References 5, 44, and 45 provide further details on direct measurement
methods.

12.7.2. Indirect Estimation Methods

Temporal redundancy of scenes in real-time television systems can be exploited to
perform blind restoration indirectly. As an illustration, consider the ith observed
image frame

(12.7-1)

of a television system in which  is an ideal image and  is an additive
noise field independent of the ideal image. If the ideal image remains constant over
a sequence of M frames, then temporal summation of the observed images yields the
relation

(12.7-2)

The value of the noise term on the right will tend toward its ensemble average
 for M large. In the common case of zero-mean white Gaussian noise, the
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ensemble average is zero at all (x, y), and it is reasonable to form the estimate as

(12.7-3)

Figure 12.7-1 presents a computer-simulated example of temporal averaging of a
sequence of noisy images. In this example the original image is unchanged in the
sequence. Each image observed is subjected to a different additive random noise
pattern.

The concept of temporal averaging is also useful for image deblurring. Consider
an imaging system in which sequential frames contain a relatively stationary object
degraded by a different linear-shift invariant impulse response   over each

FIGURE 12.7-1 Temporal averaging of a sequence of eight noisy images. SNR = 10.0.

(a) Noise-free original (b) Noisy image 1

(c) Noisy image 2 (d ) Temporal average
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frame. This type of imaging would be encountered, for example, when photograph-
ing distant objects through a turbulent atmosphere if the object does not move
significantly between frames. By taking a short exposure at each frame, the atmo-
spheric turbulence is “frozen” in space at each frame interval. For this type of
object, the degraded image at the ith frame interval is given by

(12.7-4)

for i = 1, 2,..., M. The Fourier spectra of the degraded images are then

(12.7-5)

On taking the logarithm of the degraded image spectra

(12.7-6)

the spectra of the ideal image and the degradation transfer function are found to sep-
arate additively. It is now possible to apply any of the common methods of statistical
estimation of a signal in the presence of additive noise. If the degradation impulse
responses are uncorrelated between frames, it is worthwhile to form the sum

(12.7-7)

because for large M the latter summation approaches the constant value

(12.7-8)

The term  may be viewed as the average logarithm transfer function of
the atmospheric turbulence. An image estimate can be expressed as

(12.7-9)

An inverse Fourier transform then yields the spatial domain estimate. In any practi-
cal imaging system, Eq. 12.7-4 must be modified by the addition of a noise compo-
nent Ni(x, y). This noise component unfortunately invalidates the separation step of
Eq. 12.7-6, and therefore destroys the remainder of the derivation. One possible
ad hoc solution to this problem would be to perform noise smoothing or filtering on
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each observed image field and then utilize the resulting estimates as assumed noise-
less observations in Eq. 12.7-9. Alternatively, the blind restoration technique of
Stockham et al. (43) developed for nonstationary speech signals may be adapted to
the multiple-frame image restoration problem.
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13
GEOMETRICAL IMAGE MODIFICATION

One of the most common image processing operations is geometrical modification
in which an image is spatially translated, scaled, rotated, nonlinearly warped, or
viewed from a different perspective.

13.1. TRANSLATION, MINIFICATION, MAGNIFICATION, AND ROTATION

Image translation, scaling, and rotation can be analyzed from a unified standpoint.
Let  for  and  denote a discrete output image that is created
by geometrical modification of a discrete input image  for  and

. In this derivation, the input and output images may be different in size.
Geometrical image transformations are usually based on a Cartesian coordinate sys-
tem representation in which the origin  is the lower left corner of an image,
while for a discrete image, typically, the upper left corner unit dimension pixel at
indices (1, 1) serves as the address origin. The relationships between the Cartesian
coordinate representations and the discrete image arrays of the input and output
images are illustrated in Figure 13.1-1. The output image array indices are related to
their Cartesian coordinates by

(13.1-1a) 

(13.1-1b)
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Similarly, the input array relationship is given by

(13.1-2a) 

(13.1-2b)

13.1.1. Translation

Translation of  with respect to its Cartesian origin to produce 
involves the computation of the relative offset addresses of the two images. The
translation address relationships are

(13.1-3a) 

(13.1-3b)

where  and  are translation offset constants. There are two approaches to this
computation for discrete images: forward and reverse address computation. In the
forward approach,  and  are computed for each input pixel  and

FIGURE 13.1-1. Relationship between discrete image array and Cartesian coordinate repre-
sentation.
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substituted into Eq. 13.1-3 to obtain  and . Next, the output array addresses
 are computed by inverting Eq. 13.1-1. The composite computation reduces to

(13.1-4a)

(13.1-4b)

where the prime superscripts denote that  and  are not integers unless  and 
are integers. If  and  are rounded to their nearest integer values, data voids can
occur in the output image. The reverse computation approach involves calculation
of the input image addresses for integer output image addresses. The composite
address computation becomes

(13.1-5a)

(13.1-5b)

where again, the prime superscripts indicate that  and  are not necessarily inte-
gers. If they are not integers, it becomes necessary to interpolate pixel amplitudes of

 to generate a resampled pixel estimate , which is transferred to
. The geometrical resampling process is discussed in Section 13.5.

13.1.2. Scaling

Spatial size scaling of an image can be obtained by modifying the Cartesian coordi-
nates of the input image according to the relations

(13.1-6a)

(13.1-6b)

where  and  are positive-valued scaling constants, but not necessarily integer
valued. If  and  are each greater than unity, the address computation of Eq.
13.1-6 will lead to magnification. Conversely, if  and  are each less than unity,
minification results. The reverse address relations for the input image address are
found to be

(13.1-7a)

(13.1-7b)

xk yj

j k,( )

j′ p P J–( ) ty––=

k′ q tx+=

j′ k′ tx ty
j′ k′

p′ j P J–( ) ty+ +=

q′ k tx–=

p′ q′

F p q,( ) F̂ p q,( )
G j k,( )

xk sxuq=

yj syvp=

sx sy

sx sy

sx sy

p′ 1 sy⁄( ) j J 1

2
---–+( ) P 1

2
---+ +=

q′ 1 sx⁄( ) k 1

2
---–( ) 1

2
---+=



374 GEOMETRICAL IMAGE MODIFICATION

As with generalized translation, it is necessary to interpolate  to obtain
.

13.1.3. Rotation

Rotation of an input image about its Cartesian origin can be accomplished by the
address computation

(13.1-8a)

(13.1-8b)

where  is the counterclockwise angle of rotation with respect to the horizontal axis
of the input image. Again, interpolation is required to obtain . Rotation of an
input image about an arbitrary pivot point can be accomplished by translating the
origin of the image to the pivot point, performing the rotation, and then translating
back by the first translation offset. Equation 13.1-8 must be inverted and substitu-
tions made for the Cartesian coordinates in terms of the array indices in order to
obtain the reverse address indices . This task is straightforward but results in
a messy expression. A more elegant approach is to formulate the address computa-
tion as a vector-space manipulation.

13.1.4. Generalized Linear Geometrical Transformations

The vector-space representations for translation, scaling, and rotation are given
below. 

Translation:

(13.1-9)

Scaling:

(13.1-10)

Rotation:

(13.1-11)
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Now, consider a compound geometrical modification consisting of translation, fol-
lowed by scaling followed by rotation. The address computations for this compound
operation can be expressed as

(13.1-12a)

or upon consolidation

(13.1-12b)

Equation 13.1-12b is, of course, linear. It can be expressed as

(13.1-13a)

in one-to-one correspondence with Eq. 13.1-12b. Equation 13.1-13a can be rewrit-
ten in the more compact form

(13.1-13b)

As a consequence, the three address calculations can be obtained as a single linear
address computation. It should be noted, however, that the three address calculations
are not commutative. Performing rotation followed by minification followed by
translation results in a mathematical transformation different than Eq. 13.1-12. The
overall results can be made identical by proper choice of the individual transforma-
tion parameters.

To obtain the reverse address calculation, it is necessary to invert Eq. 13.1-13b to
solve for  in terms of . Because the matrix in Eq. 13.1-13b is not
square, it does not possess an inverse. Although it is possible to obtain  by a
pseudoinverse operation, it is convenient to augment the rectangular matrix as
follows:
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(13.1-14)

This three-dimensional vector representation of a two-dimensional vector is a
special case of a homogeneous coordinates representation (1–3).

The use of homogeneous coordinates enables a simple formulation of concate-
nated operators. For example, consider the rotation of an image by an angle  about
a pivot point  in the image. This can be accomplished by

(13.1-15)

which reduces to a single  transformation:

(13.1-16)

The reverse address computation for the special case of Eq. 13.1-16, or the more
general case of Eq. 13.1-13, can be obtained by inverting the  transformation
matrices by numerical methods. Another approach, which is more computationally
efficient, is to initially develop the homogeneous transformation matrix in reverse
order as

(13.1-17)

where for translation

(13.1-18a)

(13.1-18b)

(13.1-18c)

(13.1-18d)

(13.1-18e)

(13.1-18f)

xk

yj

1

c0 c1 c2

d0 d1 d2

0 0 1

uq

vp

1

=

θ
xc yc,( )

xk

yj

1

1 0 xc

0 1 yc

0 0 1

θcos θsin– 0

θsin θcos 0

0 0 1

1 0 xc–

0 1 yc–

0 0 1

uq

vp

1

=

3 3×

xk

yj

1

θcos θsin– xc θcos yc θsin xc+ +–

θsin θcos xc θsin yc– θcos yc+–

0 0 1

uq

vp

1

=

3 3×

uq

vp

1

a0 a1 a2

b0 b1 b2

0 0 1

xk

yj

1

=

a0 1=

a1 0=

a2 tx–=

b0 0=

b1 1=

b2 ty–=



TRANSLATION, MINIFICATION, MAGNIFICATION, AND ROTATION 377

and for scaling 

(13.1-19a)

(13.1-19b)

(13.1-19c)

(13.1-19d)

(13.1-19e)

(13.1-19f)

and for rotation 

(13.1-20a)

(13.1-20b)

(13.1-20c)

(13.1-20d)

(13.1-20e)

(13.1-20f)

Address computation for a rectangular destination array  from a rectan-
gular source array  of the same size results in two types of ambiguity: some
pixels of  will map outside of ; and some pixels of  will not be
mappable from  because they will lie outside its limits. As an example,
Figure 13.1-2 illustrates rotation of an image by 45° about its center. If the desire
of the mapping is to produce a complete destination array , it is necessary
to access a sufficiently large source image  to prevent mapping voids in

. This is accomplished in Figure 13.1-2d by embedding the original image
of Figure 13.1-2a in a zero background that is sufficiently large to encompass the
rotated original.

13.1.5. Affine Transformation

The geometrical operations of translation, size scaling, and rotation are special cases
of a geometrical operator called an affine transformation. It is defined by Eq.
13.1-13b, in which the constants ci and di are general weighting factors. The affine
transformation is not only useful as a generalization of translation, scaling, and rota-
tion. It provides a means of image shearing in which the rows or columns
are  successively uniformly translated with respect to one another. Figure 13.1-3
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illustrates image shearing of rows of an image. In this example, ,
, , and .

13.1.6. Separable Translation, Scaling, and Rotation

The address mapping computations for translation and scaling are separable in the
sense that the horizontal output image coordinate xk depends only on uq, and yj
depends only on vp. Consequently, it is possible to perform these operations
separably in two passes. In the first pass, a one-dimensional address translation is
performed independently on each row of an input image to produce an intermediate
array . In the second pass, columns of the intermediate array are processed
independently to produce the final result .

FIGURE 13.1-2. Image rotation by 45° on the washington_ir image about its center.

(a) Original, 500 × 500 (b) Rotated, 500 × 500

(c) Original, 708 × 708 (d) Rotated, 708 × 708

c0 d1 1.0= =
c1 0.1= d0 0.0= c2 d2 0.0= =

I p k,( )
G j k,( )
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Referring to Eq. 13.1-8, it is observed that the address computation for rotation is
of a form such that xk is a function of both uq and vp;  and similarly for yj. One might
then conclude that rotation cannot be achieved by separable row and column pro-
cessing, but Catmull and Smith (4) have demonstrated otherwise.  In the first pass of
the Catmull and Smith procedure, each row of  is mapped into the corre-
sponding row of the intermediate array  using the standard row address com-
putation of Eq. 13.1-8a. Thus

(13.1-21)

Then, each column of  is processed to obtain the corresponding column of
 using the address computation 

(13.1-22)

Substitution of Eq. 13.1-21 into Eq. 13.1-22 yields the proper composite y-axis
transformation of Eq. 13.1-8b. The “secret” of this separable rotation procedure is
the ability to invert Eq. 13.1-21 to obtain an analytic expression for uq in terms of xk.
In this case,

(13.1-23)

when substituted into Eq. 13.1-21, gives the intermediate column warping function
of Eq. 13.1-22.

FIGURE 13.1-3. Horizontal image shearing on the washington_ir image.

(a) Original (b) Sheared
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The Catmull and Smith two-pass algorithm can be expressed in vector-space
form as

(13.1-24)

The separable processing procedure must be used with caution. In the special case of
a rotation of 90°, all of the rows of  are mapped into a single column of

, and hence the second pass cannot be executed. This problem can be avoided
by processing the columns of  in the first pass. In general, the best overall
results are obtained by minimizing the amount of spatial pixel movement. For exam-
ple, if the rotation angle is + 80°, the original should be rotated by +90° by conven-
tional row–column swapping methods, and then that intermediate image should be
rotated by –10° using the separable method.

Figure 13.14 provides an example of separable rotation of an image by 45°.
Figure 13.l-4a is the original, Figure 13.1-4b shows the result of the first pass and
Figure 13.1-4c presents the final result.

FIGURE 13.1-4. Separable two-pass image rotation on the washington_ir image.
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Separable, two-pass rotation offers the advantage of simpler computation com-
pared to one-pass rotation, but there are some disadvantages to two-pass rotation.
Two-pass rotation causes loss of high spatial frequencies of an image  because
of the intermediate scaling step (5), as seen in Figure 13.1-4b. Also, there is the
potential of increased aliasing error (5,6), as discussed in Section 13.5.

Several authors (5,7,8) have proposed a three-pass rotation procedure in which
there is no scaling step and hence no loss of high-spatial-frequency content with
proper interpolation. The vector-space representation of this procedure is given by

(13.1-25)

This transformation is a series of image shearing operations without scaling. Figure
13.1-5 illustrates three-pass rotation for rotation by 45°.

FIGURE 13.1-5. Separable three-pass image rotation on the washington_ir image.
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13.2 SPATIAL WARPING

The address computation procedures described in the preceding section can be
extended to provide nonlinear spatial warping of an image. In the literature, this pro-
cess is often called rubber-sheet stretching (9,10). Let

(13.2-1a)

(13.2-1b)

denote the generalized forward address mapping functions from an input image to
an output image. The corresponding generalized reverse address mapping functions
are given by

(13.2-2a)

(13.2-2b)

For notational simplicity, the  and  subscripts have been dropped from
these and subsequent expressions. Consideration is given next to some examples
and applications of spatial warping.

13.2.1. Polynomial Warping

The reverse address computation procedure given by the linear mapping of Eq.
13.1-17 can be extended to higher dimensions. A second-order polynomial warp
address mapping can be expressed as

(13.2-3a)

(13.2-3b)

In vector notation,

 (13.2-3c)

For first-order address mapping, the weighting coefficients  can easily be related
to the physical mapping as described in Section 13.1.  There is no simple physical
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counterpart for second address mapping. Typically, second-order and higher-order
address mapping are performed to compensate for spatial distortion caused by a
physical imaging system. For example, Figure 13.2-1 illustrates the effects of imag-
ing a rectangular grid with an electronic camera that is subject to nonlinear pincush-
ion or barrel distortion. Figure 13.2-2 presents a generalization of the problem. An
ideal image  is subject to an unknown physical spatial distortion. The
observed image is measured over a rectangular array . The objective is to
perform a spatial correction warp to produce a corrected image array .
Assume that the address mapping from the ideal image space to the observation
space is given by

(13.2-4a)

(13.2-4b)

FIGURE 13.2-1. Geometric distortion.

FIGURE 13.2-2. Spatial warping concept.
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where  and  are physical mapping functions. If these mapping
functions are known, then Eq. 13.2-4 can, in principle, be inverted to obtain the
proper corrective spatial warp mapping. If the physical mapping functions are not
known, Eq. 13.2-3 can be considered as an estimate of the physical mapping func-
tions based on the weighting coefficients . These polynomial weighting coef-
ficients are normally chosen to minimize the mean-square error between a set of
observation coordinates  and the polynomial estimates  for a set

 of known data points  called control points. It is convenient to
arrange the observation space coordinates into the vectors

 (13.2-5a)

(13.2-5b)

Similarly, let the second-order polynomial coefficients be expressed in vector form as

(13.2-6a)

(13.2-6b)

The mean-square estimation error can be expressed in the compact form

(13.2-7)

where

(13.2-8)

From Appendix 1, it has been determined that the error will be minimum if

(13.2-9a)

(13.2-9b)

where A– is the generalized inverse of A. If the number of control points is chosen
greater than the number of polynomial coefficients, then

(13.2-10)
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provided that the control points are not linearly related. Following this procedure,
the polynomial coefficients  can easily be computed, and the address map-
ping of Eq. 13.2-1 can be obtained for all  pixels in the corrected image. Of
course, proper interpolation is necessary.

Equation 13.2-3 can be extended to provide a higher-order approximation to the
physical mapping of Eq. 13.2-3. However, practical problems arise in computing the
pseudoinverse accurately for higher-order polynomials. For most applications, sec-
ond-order polynomial computation suffices. Figure 13.2-3 presents an example of
second-order polynomial warping of an image. In this example, the mapping of con-
trol points is indicated by the graphics overlay.

FIGURE 13.2-3. Second-order polynomial spatial warping on the mandrill_mon image.

(a) Source control points (b) Destination control points

(c) Warped

ai bi,( )
j k,( )
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13.3. PERSPECTIVE TRANSFORMATION

Most two-dimensional images are views of three-dimensional scenes from the phys-
ical perspective of a camera imaging the scene. It is often desirable to modify an
observed image so as to simulate an alternative viewpoint. This can be accom-
plished by use of a perspective transformation.

Figure 13.3-1 shows a simple model of an imaging system that projects points of light
in three-dimensional object space to points of light in a two-dimensional image plane
through a lens focused for distant objects. Let  be the continuous domain coordi-
nate of an object point in the scene, and let  be the continuous domain-projected
coordinate in the image plane. The image plane is assumed to be at the center of the coor-
dinate system. The lens is located at a distance f  to the right of the image plane, where f  is
the focal length of the lens. By use of similar triangles, it is easy to establish that

(13.3-1a)

(13.3-1b)

Thus the projected point  is related nonlinearly to the object point .
This relationship can be simplified by utilization of homogeneous coordinates, as
introduced to the image processing community by Roberts (1).

Let

(13.3-2)

FIGURE 13.3-1. Basic imaging system model.
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be a vector containing the object point coordinates. The homogeneous vector  cor-
responding to v is

(13.3-3)

where s is a scaling constant. The Cartesian vector v can be generated from the
homogeneous vector  by dividing each of the first three components by the fourth.
The utility of this representation will soon become evident.

Consider the following perspective transformation matrix:

(13.3-4)

This is a modification of the Roberts (1) definition to account for a different labeling
of the axes and the use of column rather than row vectors. Forming the vector
product 

(13.3-5a)

yields

(13.3-5b)

The corresponding image plane coordinates are obtained by normalization of  to
obtain

(13.3-6)

ṽ
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It should be observed that the first two elements of w correspond to the imaging
relationships of Eq. 13.3-1.

It is possible to project a specific image point  back into three-dimensional
object space through an inverse perspective transformation

(13.3-7a)

where

(13.3-7b)

and

(13.3-7c)

In Eq. 13.3-7c,  is regarded as a free variable. Performing the inverse perspective
transformation yields the homogeneous vector

 (13.3-8)

The corresponding Cartesian coordinate vector is

(13.3-9)
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(13.3-10a)

(13.3-10b)

(13.3-10c)

Equation 13.3-10 illustrates the many-to-one nature of the perspective transforma-
tion. Choosing various values of the free variable  results in various solutions for

, all of which lie along a line from  in the image plane through the
lens center. Solving for the free variable  in Eq. 13.3-l0c and substituting into
Eqs. 13.3-10a and 13.3-10b gives

(13.3-11a)

(13.3-11b)

The meaning of this result is that because of the nature of the many-to-one perspec-
tive transformation, it is necessary to specify one of the object coordinates, say Z, in
order to determine the other two from the image plane coordinates . Practical
utilization of the perspective transformation is considered in the next section.

13.4. CAMERA IMAGING MODEL

The imaging model utilized in the preceding section to derive the perspective
transformation assumed, for notational simplicity, that the center of the image plane
was coincident with the center of the world reference coordinate system. In this
section, the imaging model is generalized to handle physical cameras used in
practical imaging geometries (11). This leads to two important results: a derivation
of the fundamental relationship between an object and image point; and a means of
changing a camera perspective by digital image processing.

Figure 13.4-1 shows an electronic camera in world coordinate space. This camera
is physically supported by a gimbal that permits panning about an angle  (horizon-
tal movement in this geometry) and tilting about an angle  (vertical movement).
The gimbal center is at the coordinate  in the world coordinate system.
The gimbal center and image plane center are offset by a vector with coordinates

. 
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If the camera were to be located at the center of the world coordinate origin, not
panned nor tilted with respect to the reference axes, and if the camera image plane
was not offset with respect to the gimbal, the homogeneous image model would be
as derived in Section 13.3; that is

(13.4-1)

where  is the homogeneous vector of the world coordinates of an object point, 
is the homogeneous vector of the image plane coordinates, and P is the perspective
transformation matrix defined by Eq. 13.3-4. The camera imaging model can easily
be derived by modifying Eq. 13.4-1 sequentially using a three-dimensional exten-
sion of translation and rotation concepts presented in Section 13.1.

The offset of the camera to location  can be accommodated by the
translation operation

(13.4-2)

where

(13.4-3)

FIGURE 13.4-1. Camera imaging model.
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Pan and tilt are modeled by a rotation transformation

(13.4-4)

where  and

(13.4-5)

and 

(13.4-6)

The composite rotation matrix then becomes

(13.4-7)

Finally, the camera-to-gimbal offset is modeled as

(13.4-8)
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Equation 13.4-8 is the final result giving the complete camera imaging model trans-
formation between an object and an image point. The explicit relationship between
an object point  and its image plane projection  can be obtained by
performing the matrix multiplications analytically and then forming the Cartesian
coordinates by dividing the first two components of  by the fourth. Upon perform-
ing these operations, one obtains

(13.4-10a)

(13.4-10b)

Equation 13.4-10 can be used to predict the spatial extent of the image of a physical
scene on an imaging sensor.

Another important application of the camera imaging model is to form an image
by postprocessing such that the image appears to have been taken by a camera at a
different physical perspective. Suppose that two images defined by  and  are
formed by taking two views of the same object with the same camera. The resulting
camera model relationships are then

(13.4-11a)

(13.4-11b)

Because the camera is identical for the two images, the matrices P and TC are
invariant in Eq. 13.4-11. It is now possible to perform an inverse computation of Eq.
13.4-11b to obtain

(13.4-12)

and by substitution into Eq. 13.4-11b, it is possible to relate the image plane coordi-
nates of the image of the second view to that obtained in the first view. Thus

(13.4-13)

As a consequence, an artificial image of the second view can be generated by per-
forming the matrix multiplications of Eq. 13.4-13 mathematically on the physical
image of the first view. Does this always work? No, there are limitations. First, if
some portion of a physical scene were not “seen” by the physical camera, perhaps it

X Y Z, ,( ) x y,( )

w̃

x
f X XG–( ) θcos Y YG–( ) θsin– X0–[ ]

X XG–( ) θsin φsin Y YG–( ) θcos φsin Z ZG–( ) φcos Z0 f+ +–––
---------------------------------------------------------------------------------------------------------------------------------------------------------------------=

y
f X XG–( ) θsin φcos Y YG–( ) θcos φcos Z ZG–( ) φsin Y0––+[ ]

X XG–( ) θsin φsin Y YG–( ) θcos φsin Z ZG–( ) φcos Z0 f+ +–––
-------------------------------------------------------------------------------------------------------------------------------------------------------------------=

w̃1 w̃2

w̃1 PTCR1TG1
ṽ=
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was occluded by structures within the scene, then no amount of processing will rec-
reate the missing data. Second, the processed image may suffer severe degradations
resulting from undersampling if the two camera aspects are radically different. Nev-
ertheless, this technique has valuable applications.

13.5. GEOMETRICAL IMAGE RESAMPLING

As noted in the preceding sections of this chapter, the reverse address computation
process usually results in an address result lying between known pixel values of an
input image. Thus it is necessary to estimate the unknown pixel amplitude from its
known neighbors. This process is related to the image reconstruction task, as
described in Chapter 4, in which a space-continuous display is generated from an
array of image samples. However, the geometrical resampling process is usually not
spatially regular. Furthermore, the process is discrete to discrete; only one output
pixel is produced for each input address.

In this section, consideration is given to the general geometrical resampling
process in which output pixels are estimated by interpolation of input pixels. The
special, but common case, of image magnification by an integer zooming factor is
also discussed. In this case, it is possible to perform pixel estimation by convolution.

13.5.1. Interpolation Methods

The simplest form of resampling interpolation is to choose the amplitude of an out-
put image pixel to be the amplitude of the input pixel nearest to the reverse address.
This process, called nearest-neighbor interpolation, can result in a spatial offset
error by as much as  pixel units. The resampling interpolation error can be
significantly reduced by utilizing all four nearest neighbors in the interpolation. A
common approach, called bilinear interpolation, is to interpolate linearly along each
row of an image and then interpolate that result linearly in the columnar direction.
Figure 13.5-1 illustrates the process. The estimated pixel is easily found to be

(13.5-1)

Although the horizontal and vertical interpolation operations are each linear, in gen-
eral, their sequential application results in a nonlinear surface fit between the four
neighboring pixels.

The expression for bilinear interpolation of Eq. 13.5-1 can be generalized for any
interpolation function  that is zero-valued outside the range of  sample
spacing. With this generalization, interpolation can be considered as the summing of
four weighted interpolation functions as given by

1 2⁄
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(13.5-2)

In the special case of linear interpolation, , where  is defined in
Eq. 4.3-2. Making this substitution, it is found that Eq. 13.5-2 is equivalent to the
bilinear interpolation expression of Eq. 13.5-1.

Typically, for reasons of computational complexity, resampling interpolation is
limited to a  pixel neighborhood. Figure 13.5-2 defines a generalized bicubic
interpolation neighborhood in which the pixel  is the nearest neighbor to the
pixel to be interpolated. The interpolated pixel may be expressed in the compact
form

(13.5-3)

where  denotes a bicubic interpolation function such as a cubic B-spline or
cubic interpolation function, as defined in Section 4.3-2.

13.5.2. Convolution Methods

When an image is to be magnified by an integer zoom factor, pixel estimation can be
implemented efficiently by convolution (12). As an example, consider image magni-
fication by a factor of 2:1. This operation can be accomplished in two stages. First,
the input image is transferred to an array in which rows and columns of zeros are
interleaved with the input image data as follows:

FIGURE 13.5-1. Bilinear interpolation.
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FIGURE 13.5-2. Bicubic interpolation.

FIGURE 13.5-3. Interpolation kernels for 2:1 magnification.
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FIGURE 13.5-4. Image interpolation on the mandrill_mon image for 2:1 magnification.

(a) Original

(c) Peg

(e) Bell

(b) Zero interleaved quadrant

(d ) Pyramid

(f ) Cubic B-spline
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input image zero-interleaved 

neighborhood neighborhood

Next, the zero-interleaved neighborhood image is convolved with one of the discrete
interpolation kernels listed in Figure 13.5-3. Figure 13.5-4 presents the magnifica-
tion results for several interpolation kernels. The inevitable visual trade-off between
the interpolation error (the jaggy line artifacts) and the loss of high spatial frequency
detail in the image is apparent from the examples.

This discrete convolution operation can easily be extended to higher-order magni-
fication factors. For N:1 magnification, the core kernel is a  peg array. For large
kernels it may be more computationally efficient in many cases, to perform the inter-
polation indirectly by Fourier domain filtering rather than by convolution (6).
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PART 5

IMAGE ANALYSIS

Image analysis is concerned with the extraction of measurements, data or informa-
tion from an image by automatic or semiautomatic methods. In the literature, this
field has been called image data extraction, scene analysis, image description, auto-
matic photo interpretation, image understanding, and a variety of other names. 

Image analysis is distinguished from other types of image processing, such as
coding, restoration, and enhancement, in that the ultimate product of an image anal-
ysis system is usually numerical output rather than a picture. Image analysis also
diverges from classical pattern recognition in that analysis systems, by definition,
are not limited to the classification of scene regions to a fixed number of categories,
but rather are designed to provide a description of complex scenes whose variety
may be enormously large and ill-defined in terms of a priori expectation.
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14
MORPHOLOGICAL IMAGE PROCESSING

Morphological image processing is a type of processing in which the spatial form or
structure of objects within an image are modified. Dilation, erosion, and skeleton-
ization are three fundamental morphological operations. With dilation, an object
grows uniformly in spatial extent, whereas with erosion an object shrinks uniformly.
Skeletonization results in a stick figure representation of an object.

The basic concepts of morphological image processing trace back to the research
on spatial set algebra by Minkowski (1) and the studies of Matheron (2) on topology.
Serra (3–5) developed much of the early foundation of the subject. Steinberg (6,7)
was a pioneer in applying morphological methods to medical and industrial vision
applications. This research work led to the development of the cytocomputer for
high-speed morphological image processing (8,9).

In the following sections, morphological techniques are first described for binary
images. Then these morphological concepts are extended to gray scale images.

14.1. BINARY IMAGE CONNECTIVITY

Binary image morphological operations are based on the geometrical relationship or
connectivity of pixels that are deemed to be of the same class (10,11). In the binary
image of Figure 14.1-1a, the ring of black pixels, by all reasonable definitions of
connectivity, divides the image into three segments: the white pixels exterior to the
ring, the white pixels interior to the ring, and the black pixels of the ring itself. The
pixels within each segment are said to be connected to one another. This concept of
connectivity is easily understood for Figure 14.1-1a, but ambiguity arises when con-
sidering Figure 14.1-1b. Do the black pixels still define a ring, or do they instead
form four disconnected lines? The answers to these questions depend on the defini-
tion of connectivity.

Digital Image Processing: PIKS Inside, Third Edition. William K. Pratt
Copyright © 2001 John Wiley & Sons, Inc.

ISBNs: 0-471-37407-5 (Hardback); 0-471-22132-5 (Electronic)
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Consider the following neighborhood pixel pattern:

in which a binary-valued pixel , where X = 0 (white) or X = 1 (black) is
surrounded by its eight nearest neighbors . An alternative nomencla-
ture is to label the neighbors by compass directions: north, northeast, and so on:

Pixel X is said to be four-connected to a neighbor if it is a logical 1 and if its east,
north, west, or south  neighbor is a logical 1. Pixel X is said to be
eight-connected if it is a logical 1 and if its north, northeast, etc. 
neighbor is a logical 1.

The connectivity relationship between a center pixel and its eight neighbors can
be quantified by the concept of a pixel bond, the sum of the bond weights between
the center pixel and each of its neighbors. Each four-connected neighbor has a bond
of two, and each eight-connected neighbor has a bond of one. In the following
example, the pixel bond is seven.

FIGURE 14.1-1. Connectivity.
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Under the definition of four-connectivity, Figure 14.1-1b has four disconnected
black line segments, but with the eight-connectivity definition, Figure 14.1-1b has a
ring of connected black pixels. Note, however, that under eight-connectivity, all
white pixels are connected together. Thus a paradox exists. If the black pixels are to
be eight-connected together in a ring, one would expect a division of the white pix-
els into pixels that are interior and exterior to the ring. To eliminate this dilemma,
eight-connectivity can be defined for the black pixels of the object, and four-connec-
tivity can be established for the white pixels of the background. Under this defini-
tion, a string of black pixels is said to be minimally connected if elimination of any
black pixel results in a loss of connectivity of the remaining black pixels. Figure
14.1-2 provides definitions of several other neighborhood connectivity relationships
between a center black pixel and its neighboring black and white pixels.

The preceding definitions concerning connectivity have been based on a discrete
image model in which a continuous image field is sampled over a rectangular array
of points. Golay (12) has utilized a hexagonal grid structure. With such a structure,
many of the connectivity problems associated with a rectangular grid are eliminated.
In a hexagonal grid, neighboring pixels are said to be six-connected if they are in the
same set and share a common edge boundary. Algorithms have been developed for
the linking of boundary points for many feature extraction tasks (13). However, two
major drawbacks have hindered wide acceptance of the hexagonal grid. First, most
image scanners are inherently limited to rectangular scanning. The second problem
is that the hexagonal grid is not well suited to many spatial processing operations,
such as convolution and Fourier transformation.

FIGURE 14.1-2. Pixel neighborhood connectivity definitions.
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14.2. BINARY IMAGE HIT OR MISS TRANSFORMATIONS

The two basic morphological operations, dilation and erosion, plus many variants
can be defined and implemented by hit-or-miss transformations (3). The concept is
quite simple. Conceptually, a small odd-sized mask, typically , is scanned over
a binary image. If the binary-valued pattern of the mask matches the state of the pix-
els under the mask (hit), an output pixel in spatial correspondence to the center pixel
of the mask is set to some desired binary state. For a pattern mismatch (miss), the
output pixel is set to the opposite binary state. For example, to perform simple
binary noise cleaning, if the isolated  pixel pattern

is encountered, the output pixel is set to zero; otherwise, the output pixel is set to the
state of the input center pixel. In more complicated morphological algorithms, a
large number of the  possible mask patterns may cause hits. 

It is often possible to establish simple neighborhood logical relationships that
define the conditions for a hit. In the isolated pixel removal example, the defining
equation for the output pixel  becomes

(14.2-1)

where  denotes the intersection operation (logical AND) and  denotes the union
operation (logical OR). For complicated algorithms, the logical equation method of
definition can be cumbersome. It is often simpler to regard the hit masks as a collec-
tion of binary patterns.

Hit-or-miss morphological algorithms are often implemented in digital image
processing hardware by a pixel stacker followed by a look-up table (LUT), as shown
in Figure 14.2-1 (14). Each pixel of the input image is a positive integer, represented
by a conventional binary code, whose most significant bit is a 1 (black) or a 0
(white). The pixel stacker extracts the bits of the center pixel X and its eight neigh-
bors and puts them in a neighborhood pixel stack. Pixel stacking can be performed
by convolution with the  pixel kernel

The binary number state of the neighborhood pixel stack becomes the numeric input
address of the LUT whose entry is Y For isolated pixel removal, integer entry 256,
corresponding to the neighborhood pixel stack state 100000000, contains Y = 0; all
other entries contain Y = X. 
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Several other  hit-or-miss operators are described in the following subsec-
tions.

14.2.1. Additive Operators

Additive hit-or-miss morphological operators cause the center pixel of a  pixel
window to be converted from a logical 0 state to a logical 1 state if the neighboring
pixels meet certain predetermined conditions. The basic operators are now defined.

Interior Fill. Create a black pixel if all four-connected neighbor pixels are black.

(14.2-2)

Diagonal Fill. Create a black pixel if creation eliminates the eight-connectivity of
the background.

(14.2-3a)

FIGURE 14.2-1. Look-up table flowchart for binary unconditional operations.
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where

(14.2-3b)

(14.2-3c)

(14.2-3d)

(14.2-3e)

In Eq. 14.2-3, the overbar denotes the logical complement of a variable.

Bridge. Create a black pixel if creation results in connectivity of previously uncon-
nected neighboring black pixels.

(14.2-4a)

where

(14.2-4b)

(14.2-4c)

(14.2-4d)

(14.2-4e)

(14.2-4f)

(14.2-4g)
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(14.2-4h)
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The following is one of 119 qualifying patterns

A pattern such as

does not qualify because the two black pixels will be connected when they are on
the middle row of a subsequent observation window if they are indeed unconnected.

Eight-Neighbor Dilate. Create a black pixel if at least one eight-connected neigh-
bor pixel is black.

(14.2-5)

This hit-or-miss definition of dilation is a special case of a generalized dilation
operator that is introduced in Section 14.4. The dilate operator can be applied recur-
sively. With each iteration, objects will grow by a single pixel width ring of exterior
pixels. Figure 14.2-2 shows dilation for one and for three iterations for a binary
image. In the example, the original pixels are recorded as black, the background pix-
els are white, and the added pixels are midgray.

Fatten. Create a black pixel if at least one eight-connected neighbor pixel is black,
provided that creation does not result in a bridge between previously unconnected
black pixels in a  neighborhood. 

The following is an example of an input pattern in which the center pixel would
be set black for the basic dilation operator, but not for the fatten operator.

There are 132 such qualifying patterns. This strategem will not prevent connection
of two objects separated by two rows or columns of white pixels. A solution to this
problem is considered in Section 14.3. Figure 14.2-3 provides an example of
fattening.
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14.2.2. Subtractive Operators

Subtractive hit-or-miss morphological operators cause the center pixel of a 
window to be converted from black to white if its neighboring pixels meet predeter-
mined conditions. The basic subtractive operators are defined below.

Isolated Pixel Remove. Erase a black pixel with eight white neighbors.

(14.2-6)

Spur Remove. Erase a black pixel with a single eight-connected neighbor.

FIGURE 14.2-2. Dilation of a binary image.

(a) Original

(b) One iteration (c) Three iterations
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The following is one of four qualifying patterns:

Interior Pixel Remove. Erase a black pixel if all four-connected neighbors are
black.

(14.2-7)

There are 16 qualifying patterns.

H-Break. Erase a black pixel that is H-connected. 
There are two qualifying patterns.

Eight-Neighbor Erode. Erase a black pixel if at least one eight-connected neighbor
pixel is white.

(14.2-8)

FIGURE 14.2-3. Fattening of a binary image.
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A generalized erosion operator is defined in Section 14.4. Recursive application
of the erosion operator will eventually erase all black pixels. Figure 14.2-4 shows
results for one and three iterations of the erode operator. The eroded pixels are midg-
ray. It should be noted that after three iterations, the ring is totally eroded.

14.2.3. Majority Black Operator

The following is the definition of the majority black operator: 

Majority Black. Create a black pixel if five or more pixels in a  window are
black; otherwise, set the output pixel to white. 

The majority black operator is useful for filling small holes in objects and closing
short gaps in strokes. An example of its application to edge detection is given in
Chapter 15.

FIGURE 14.2-4. Erosion of a binary image.

(a) Original

(b) One iteration (c) Three iterations
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14.3. BINARY IMAGE SHRINKING, THINNING, SKELETONIZING, AND
THICKENING

Shrinking, thinning, skeletonizing, and thickening are forms of conditional erosion
in which the erosion process is controlled to prevent total erasure and to ensure con-
nectivity.

14.3.1. Binary Image Shrinking

The following is a definition of shrinking: 

Shrink. Erase black pixels such that an object without holes erodes to a single pixel
at or near its center of mass, and an object with holes erodes to a connected ring
lying midway between each hole and its nearest outer boundary. 

A  pixel object will be shrunk to a single pixel at its center. A  pixel
object will be arbitrarily shrunk, by definition, to a single pixel at its lower right corner.

It is not possible to perform shrinking using single-stage pixel hit-or-miss
transforms of the type described in the previous section. The  window does not
provide enough information to prevent total erasure and to ensure connectivity. A

 hit-or-miss transform could provide sufficient information to perform proper
shrinking. But such an approach would result in excessive computational complex-
ity (i.e., 225 possible patterns to be examined!). References 15 and 16 describe two-
stage shrinking and thinning algorithms that perform a conditional marking of pixels
for erasure in a first stage, and then examine neighboring marked pixels in a second
stage to determine which ones can be unconditionally erased without total erasure or
loss of connectivity. The following algorithm developed by Pratt and Kabir (17) is a
pipeline processor version of the conditional marking scheme.

In the algorithm, two concatenated  hit-or-miss transformations are per-
formed to obtain indirect information about pixel patterns within a  window.
Figure 14.3-1 is a flowchart for the look-up table implementation of this algorithm.
In the first stage, the states of nine neighboring pixels are gathered together by a
pixel stacker, and a following look-up table generates a conditional mark M for pos-
sible erasures. Table 14.3-1 lists all patterns, as indicated by the letter S in the table
column, which will be conditionally marked for erasure. In the second stage of the
algorithm, the center pixel X and the conditional marks in a  neighborhood cen-
tered about X are examined to create an output pixel. The shrinking operation can be
expressed logically as

(14.3-1)

where  is an erasure inhibiting logical variable, as defined in Table
14.3-2. The first four patterns of the table prevent strokes of single pixel width from
being totally erased. The remaining patterns inhibit erasure that would break object
connectivity. There are a total of 157 inhibiting patterns. This two-stage process
must be performed iteratively until there are no further erasures. 
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As an example, the  square pixel object

results in the following intermediate array of conditional marks

The corner cluster pattern of Table 14.3-2 gives a hit only for the lower right corner
mark. The resulting output is

FIGURE 14.3-1. Look-up table flowchart for binary conditional mark operations.
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TABLE 14.3-1. Shrink, Thin, and Skeletonize Conditional Mark Patterns [M = 1 if hit]

Table Bond Pattern

0 0 1 1 0 0 0 0 0 0 0 0

S 1 0 1 0 0 1 0 0 1 0 0 1 0

0 0 0 0 0 0 1 0 0 0 0 1

0 0 0 0 1 0 0 0 0 0 0 0

S 2 0 1 1 0 1 0 1 1 0 0 1 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 1 0 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

S 3 0 1 1 0 1 0 0 1 0 1 1 0 1 1 0 0 1 0 0 1 0 0 1 1

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 1 0 0 1

0 1 0 0 1 0 0 0 0 0 0 0

TK 4 0 1 1 1 1 0 1 1 0 0 1 1

0 0 0 0 0 0 0 1 0 0 1 0

0 0 1 1 1 1 1 0 0 0 0 0

STK 4 0 1 1 0 1 0 1 1 0 0 1 0

0 0 1 0 0 0 1 0 0 1 1 1

1 1 0 0 1 0 0 1 1 0 0 1

ST 5 0 1 1 0 1 1 1 1 0 0 1 1

0 0 0 0 0 1 0 0 0 0 1 0

0 1 1 1 1 0 0 0 0 0 0 0

ST 5 0 1 1 1 1 0 1 1 0 0 1 1

0 0 0 0 0 0 1 1 0 0 1 1

1 1 0 0 1 1

ST 6 0 1 1 1 1 0

0 0 1 1 0 0

1 1 1 0 1 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1

STK 6 0 1 1 0 1 1 1 1 0 1 1 0 1 1 0 1 1 0 0 1 1 0 1 1

0 0 0 0 0 1 0 0 0 1 0 0 1 1 0 1 1 1 1 1 1 0 1 1

           (Continued)
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TABLE 14.3-1 (Continued)

Figure 14.3-2 shows an example of the shrinking of a binary image for four and 13
iterations of the algorithm. No further shrinking occurs for more than 13 iterations. At
this point, the shrinking operation has become idempotent (i. e., reapplication evokes
no further change. This shrinking algorithm does not shrink the symmetric original ring
object to a ring that is also symmetric because of some of the conditional mark patterns
of Table 14.3-2, which are necessary to ensure that objects of even dimension shrink to
a single pixel. For the same reason, the shrink ring is not minimally connected.

14.3.2. Binary Image Thinning

The following is a definition of thinning:

Thin. Erase black pixels such that an object without holes erodes to a minimally
connected stroke located equidistant from its nearest outer boundaries, and an object
with holes erodes to a minimally connected ring midway between each hole and its
nearest outer boundary.

Table Bond Pattern

1 1 1 1 1 1 1 0 0 0 0 1

STK 7 0 1 1 1 1 0 1 1 0 0 1 1

0 0 1 1 0 0 1 1 1 1 1 1

0 1 1 1 1 1 1 1 0 0 0 0

STK 8 0 1 1 1 1 1 1 1 0 1 1 1

0 1 1 0 0 0 1 1 0 1 1 1

1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 0 0 1

STK 9 0 1 1 0 1 1 1 1 1 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1

0 1 1 1 1 1 1 0 0 0 0 1 1 1 0 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 0 1

STK 10 0 1 1 1 1 1 1 1 0 1 1 1

1 1 1 1 0 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 0 0 1 1

K 11 1 1 1 1 1 1 1 1 1 1 1 1

0 1 1 1 1 0 1 1 1 1 1 1
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TABLE 14.3-2. Shrink and Thin Unconditional Mark Patterns 
[P(M, M0, M1, M2, M3, M4, M5, M6, M7) = 1 if hit] a

Pattern

Spur Single 4-connection
0 0 M M 0 0 0 0 0 0 0 0
0 M 0 0 M 0 0 M 0 0 M M

0 0 0 0 0 0 0 M 0 0 0 0

L Cluster (thin only)
0 0 M 0 M M M M 0 M 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 M M 0 M 0 0 M 0 M M 0 M M 0 0 M 0 0 M 0 0 M M
0 0 0 0 0 0 0 0 0 0 0 0 M 0 0 M M 0 0 M M 0 0 M

4-Connected offset
0 M M M M 0 0 M 0 0 0 M

M M 0 0 M M 0 M M 0 M M
0 0 0 0 0 0 0 0 M 0 M 0

Spur corner cluster
0 A M M B 0 0 0 M M 0 0
0 M B A M 0 A M 0 0 M B

M 0 0 0 0 M M B 0 0 A M

Corner cluster
M M D
M M D
D D D

Tee branch
D M 0 0 M D 0 0 D D 0 0 D M D 0 M 0 0 M 0 D M D

M M M M M M M M M M M M M M 0 M M 0 0 M M 0 M M
D 0 0 0 0 D 0 M D D M 0 0 M 0 D M D D M D 0 M 0

Vee branch
M D M M D C C B A A D M
D M D D M B D M D B M D

A B C M D A M D M C D M

Diagonal branch
D M 0 0 M D D 0 M M 0 D
0 M M M M 0 M M 0 0 M M
M 0 D D 0 M 0 M D D M 0

      A B C∪ ∪ 1=a
D 0 1∪= A B∪ 1.=
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The following is an example of the thinning of a  pixel object without holes

before after

A  object is thinned as follows:

before after

Table 14.3-1 lists the conditional mark patterns, as indicated by the letter T in the
table column, for thinning by the conditional mark algorithm of Figure 14.3-1. The
shrink and thin unconditional patterns are identical, as shown in Table 14.3-2. 

Figure 14.3-3 contains an example of the thinning of a binary image for four and
eight iterations. Figure 14.3-4 provides an example of the thinning of an image of a
printed circuit board in order to locate solder pads that have been deposited improp-
erly and that do not have holes for component leads. The pads with holes erode to a
minimally connected ring, while the pads without holes erode to a point.

Thinning can be applied to the background of an image containing several
objects as a means of separating the objects. Figure 14.3-5 provides an example of
the process. The original image appears in Figure 14.3-5a, and the background-
reversed image is Figure 14.3-5b. Figure 14.3-5c shows the effect of thinning the
background. The thinned strokes that separate the original objects are minimally

FIGURE 14.3-2. Shrinking of a binary image.

(a) Four iterations (b) Thirteen iterations
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connected, and therefore the background of the separating strokes is eight-connected
throughout the image. This is an example of the connectivity ambiguity discussed in
Section 14.1. To resolve this ambiguity, a diagonal fill operation can be applied to
the thinned strokes. The result, shown in Figure 14.3-5d, is called the exothin of the
original image. The name derives from the exoskeleton, discussed in the following
section.

14.3.3. Binary Image Skeletonizing

A skeleton or stick figure representation of an object can be used to describe its
structure. Thinned objects sometimes have the appearance of a skeleton, but they are
not always uniquely defined. For example, in Figure 14.3-3, both the rectangle and
ellipse thin to a horizontal line. 

FIGURE 14.3-3. Thinning of a binary image.

FIGURE 14.3-4. Thinning of a printed circuit board image.

(a) Four iterations (b) Eight iterations

(a) Original (b) Thinned
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Blum (18) has introduced a skeletonizing technique called medial axis transfor-
mation that produces a unique skeleton for a given object. An intuitive explanation
of the medial axis transformation is based on the prairie fire analogy (19–22). Con-
sider the circle and rectangle regions of Figure 14.3-6 to be composed of dry grass
on a bare dirt background. If a fire were to be started simultaneously on the perime-
ter of the grass, the fire would proceed to burn toward the center of the regions until
all the grass was consumed. In the case of the circle, the fire would burn to the cen-
ter point of the circle, which is the quench point of the circle. For the rectangle, the
fire would proceed from each side. As the fire moved simultaneously from left and
top, the fire lines would meet and quench the fire. The quench points or quench lines
of a figure are called its medial axis skeleton. More generally, the medial axis skele-
ton consists of the set of points that are equally distant from two closest points of an
object boundary. The minimal distance function is called the quench distance of
the object. From the medial axis skeleton of an object and its quench distance, it is

FIGURE 14.3-5. Exothinning of a binary image.

(a) Original (b) Background-reversed

(c) Thinned background (d ) Exothin



BINARY IMAGE SHRINKING, THINNING, SKELETONIZING, AND THICKENING 419

possible to reconstruct the object boundary. The object boundary is determined by
the union of a set of circular disks formed by circumscribing a circle whose radius is
the quench distance at each point of the medial axis skeleton.

A reasonably close approximation to the medial axis skeleton can be implemented
by a slight variation of the conditional marking implementation shown in Figure 14.3-
1. In this approach, an image is iteratively eroded using conditional and unconditional
mark patterns until no further erosion occurs. The conditional mark patterns for skele-
tonization are listed in Table 14.3-1 under the table indicator K. Table 14.3-3 lists the
unconditional mark patterns. At the conclusion of the last iteration, it is necessary to
perform a single iteration of bridging as defined by Eq. 14.2-4 to restore connectivity,
which will be lost whenever the following pattern is encountered:

Inhibiting the following mark pattern created by the bit pattern above:

will prevent elliptically shaped objects from being improperly skeletonized.

FIGURE 14.3-6. Medial axis transforms.

(a) Circle

(b) Rectangle

1 1 1 1 1

1 1 1 1 1

M M

M M
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TABLE 14.3-3. Skeletonize Unconditional Mark Patterns 
[P(M, M0, M1, M2, M3, M4, M5, M6, M7) = 1 if hit]a  

Pattern

Spur

0 0 0 0 0 0 0 0 M M 0 0

0 M 0 0 M 0 0 M 0 0 M 0

0 0 M M 0 0 0 0 0 0 0 0

Single 4-connection

0 0 0 0 0 0 0 0 0 0 M 0

0 M 0 0 M M M M 0 0 M 0

0 M 0 0 0 0 0 0 0 0 0 0

L corner

0 M 0 0 M 0 0 0 0 0 0 0

0 M M M M 0 0 M M M M 0

0 0 0 0 0 0 0 M 0 0 M 0

Corner cluster

D M M D D D M M D D D D

D M M M M D M M D D M M

D D D M M D D D D D M M

Tee branch

D M D D M D D D D D M D

M M M M M D M M M D M M

D 0 0 D M D D M D D M D

Vee branch

M D M M D C C B A A D M

D M D D M B D M D B M D

A B C M D A M D M C D M

Digonal branch

D M 0 0 M D D 0 M M 0 D

0 M M M M 0 M M 0 0 M M

M 0 D D 0 M 0 M D D M 0

A B C∪ ∪ 1 D 0 1.∪= =
a
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Figure 14.3-7 shows an example of the skeletonization of a binary image. The
eroded pixels are midgray. It should observed that skeletonizing gives different
results than thinning for many objects. Prewitt (23, p. 136) has coined the term
exoskeleton for the skeleton of the background of object in a scene. The exoskeleton
partitions each objects from neighboring object, as does the thinning of the back-
ground.

14.3.4. Binary Image Thickening

In Section 14.2.1, the fatten operator was introduced as a means of dilating objects
such that objects separated by a single pixel stroke would not be fused. But the fat-
ten operator does not prevent fusion of objects separated by a double width white
stroke. This problem can be solved by iteratively thinning the background of an
image and then performing a diagonal fill operation. This process, called thickening,
when taken to its idempotent limit, forms the exothin of the image, as discussed in
Section 14.3.2. Figure 14.3-8 provides an example of thickening. The exothin oper-
ation is repeated three times on the background reversed version of the original
image. Figure 14.3-8b shows the final result obtained by reversing the background
of the exothinned image.

FIGURE 14.3-7. Skeletonizing of a binary image.

(a) Four iterations

(b) Ten iterations
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14.4. BINARY IMAGE GENERALIZED DILATION AND EROSION

Dilation and erosion, as defined earlier in terms of hit-or-miss transformations, are
limited to object modification by a single ring of boundary pixels during each itera-
tion of the process. The operations can be generalized. 

Before proceeding further, it is necessary to introduce some fundamental con-
cepts of image set algebra that are the basis for defining the generalized dilation and
erosions operators. Consider a binary-valued source image function . A pixel
at coordinate  is a member of , as indicated by the symbol , if and only
if it is a logical 1. A binary-valued image  is a subset of a binary-valued
image , as indicated by , if for every spatial occurrence of a
logical 1 of ,  is a logical 1. The complement  of  is a
binary-valued image whose pixels are in the opposite logical state of those in .
Figure 14.4-1 shows an example of the complement process and other image set
algebraic operations on a pair of binary images. A reflected image  is an
image that has been flipped from left to right and from top to bottom. Figure 14.4-2
provides an example of image complementation. Translation of an image, as indi-
cated by the function

(14.4-1)

consists of spatially offsetting  with respect to itself by r rows and c columns,
where  and . Figure 14.4-2 presents an example of the transla-
tion of a binary image.

FIGURE 14.3-8. Thickening of a binary image.

(a) Original (b) Thickened

F j k,( )
j k,( ) F j k,( ) ∈

B j k,( )
A j k,( ) B j k,( ) A j k,( )⊆

A j k,( ) B j k,( ) F j k,( ) F j k,( )
F j k,( )

F̃ j k,( )

G j k,( ) Tr c, F j k,( ){ }=

F j k,( )
R– r R≤ ≤ C– c C≤ ≤



BINARY IMAGE GENERALIZED DILATION AND EROSION 423

14.4.1. Generalized Dilation

Generalized dilation is expressed symbolically as

(14.4-2)

where  for  is a binary-valued image and  for ,
where L is an odd integer, is a binary-valued array called a structuring element. For
notational simplicity,  and  are assumed to be square arrays. General-
ized dilation can be defined mathematically and implemented in several ways. The
Minkowski addition definition (1) is

(14.4-3)

FIGURE 14.4-1. Image set algebraic operations on binary arrays.

G j k,( ) F j k,( ) H j k,( )⊕=

F j k,( ) 1 j k, N≤ ≤ H j k,( ) 1 j k, L≤ ≤

F j k,( ) H j k,( )

G j k,( ) Tr c,∪∪ F j k,( ){ }=

    

r c,( ) H∈
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It states that  is formed by the union of all translates of  with respect to
itself in which the translation distance is the row and column index of pixels of

 that is a logical 1. Figure 14.4-3 illustrates the concept. Equation 14.4-3
results in an  output array  that is justified with the upper left corner of
the input array . The output array is of dimension M = N + L – 1, where L is
the size of the structuring element. In order to  register the input and output images
properly,  should be translated diagonally right by  pixels. Fig-
ure 14.4-3 shows the exclusive-OR difference between  and the translate of

. This operation identifies those pixels that have been added as a result of
generalized dilation.

An alternative definition of generalized dilation is based on the scanning and pro-
cessing of  by the structuring element . With this approach, generalized
dilation is formulated as (17)

(14.4-4)

With reference to Eq. 7.1-7, the spatial limits of the union combination are

(14.4-5a)

(14.4-5b)

Equation 14.4-4 provides an output array that is justified with the upper left corner
of the input array. In image processing systems, it is often convenient to center the
input and output images and to limit their size to the same overall dimension. This
can be accomplished easily by modifying Eq. 14.4-4 to the form

(14.4-6)

FIGURE 14.4-2. Reflection and translation of a binary array.
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n

∪
m
∪=
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MAX 1 k L– 1+,{ } n MIN N k,{ }≤ ≤
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where  and, from Eq. 7.1-10, the limits of the union combination are

(14.4-7a)

(14.4-7b)

FIGURE 14.4-3. Generalized dilation computed by Minkowski addition.

S L 1–( ) 2⁄=

MAX 1 j Q–,{ } m MIN N j Q+,{ }≤ ≤

MAX 1 k Q–,{ } n MIN N k Q+,{ }≤ ≤
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and where . Equation 14.4-6 applies for  and
 elsewhere. The Minkowski addition definition of generalized erosion

given in Eq. 14.4-2 can be modified to provide a centered result by taking the trans-
lations about the center of the structuring element. In the following discussion, only
the centered definitions of generalized dilation will be utilized. In the special case
for which L = 3, Eq. 14.4-6 can be expressed explicitly as

(14.4-8)

If  for , then , as computed by Eq. 14.4-8, gives the
same result as hit-or-miss dilation, as defined by Eq. 14.2-5.

It is interesting to compare Eqs. 14.4-6 and 14.4-8, which define generalized
dilation, and Eqs. 7.1-14 and 7.1-15, which define convolution. In the generalized
dilation equation, the union operations are analogous to the summation operations of
convolution, while the intersection operation is analogous to point-by-point
multiplication. As with convolution, dilation can be conceived as the scanning and
processing of  by  rotated by 180°.

14.4.2. Generalized Erosion

Generalized erosion is expressed symbolically as

(14.4-9)

where again  is an odd size  structuring element. Serra (3) has adopted,
as his definition for erosion, the dual relationship of Minkowski addition given by
Eq. 14.4-1, which was introduced by Hadwiger (24). By this formulation, general-
ized erosion is defined to be

(14.4-10)

The meaning of this relation is that erosion of  by  is the intersection of
all translates of  in which the translation distance is the row and column index
of pixels of  that are in the logical 1 state. Steinberg et al. (6,25) have adopted
the subtly different formulation

Q L 1–( ) 2⁄= S j k, N Q–≤ ≤
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H 2 3,( ) F j k 1–,( )∩[ ] H 2 2,( ) F j k,( )∩[ ] H 2 1,( ) F j k 1+,( )∩[ ]∪ ∪ ∪
H 1 3,( ) F j 1 k 1–,+( )∩[ ] H 1 2,( ) F j 1 k,+( )∩[ ] H 1 1,( ) F j 1 k 1+,+( )∩[ ]∪ ∪ ∪

H j k,( ) 1= 1 j k, 3≤ ≤ G j k,( )
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G j k,( ) F j k,( ) H j k,( )�–=

H j k,( ) L L×
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r c,( ) H∈

F j k,( ) H j k,( )
F j k,( )
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(14.4-11)

introduced by Matheron (2), in which the translates of are governed by the
reflection  of the structuring element rather than by  itself.

Using the Steinberg definition,  is a logical 1 if and only if the logical 1s
of  form a subset of the spatially corresponding pattern of the logical 1s of

 as  is scanned over . It should be noted that the logical zeros of
 do not have to match the logical zeros of . With the Serra definition,

the statements above hold when  is scanned and processed by the reflection of
the structuring element. Figure 14.4-4 presents a comparison of the erosion results
for the two definitions of erosion. Clearly, the results are inconsistent.

Pratt (26) has proposed a relation, which is the dual to the generalized dilation
expression of Eq. 14.4-6, as a definition of generalized erosion. By this formulation,
generalized erosion in centered form is

(14.4-12)

where , and the limits of the intersection combination are given by
Eq. 14.4-7. In the special case for which L = 3, Eq. 14.4-12 becomes

FIGURE 14.4-4. Comparison of erosion results for two definitions of generalized erosion.
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S L 1–( ) 2⁄=



428 MORPHOLOGICAL IMAGE PROCESSING

(14.4-13)

If  for , Eq. 14.4-13 gives the same result as hit-or-miss eight-
neighbor erosion as defined by Eq. 14.2-6. Pratt's definition is the same as the Serra
definition. However, Eq. 14.4-12 can easily be modified by substituting the reflec-
tion  for  to provide equivalency with the Steinberg definition.
Unfortunately, the literature utilizes both definitions, which can lead to confusion.
The definition adopted in this book is that of Hadwiger, Serra, and Pratt, because the

FIGURE 14.4-5. Generalized dilation and erosion for a 5 × 5 structuring element.
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defining relationships (Eq. 14.4-1 or 14.4-12) are duals to their counterparts for gen-
eralized dilation (Eq. 14.4-3 or 14.4-6).

Figure 14.4-5 shows examples of generalized dilation and erosion for a symmet-
ric  structuring element.

14.4.3. Properties of Generalized Dilation and Erosion

Consideration is now given to several mathematical properties of generalized
dilation and erosion. Proofs of these properties are found in Reference 25. For nota-
tional simplicity, in this subsection the spatial coordinates of a set are dropped, i.e.,
A( j, k) = A. Dilation is commutative:

(14.4-14a)

But in general, erosion is not commutative:

(14.4-14b)

Dilation and erosion are increasing operations in the sense that if , then

(14.4-15a)

(14.4-15b)

Dilation and erosion are opposite in effect; dilation of the background of an object
behaves like erosion of the object. This statement can be quantified by the duality
relationship

(14.4-16)

For the Steinberg definition of erosion, B on the right-hand side of Eq. 14.4-16
should be replaced by its reflection . Figure 14.4-6 contains an example of the
duality relationship.

The dilation and erosion of the intersection and union of sets obey the following
relations:

(14.4-17a)

(14.4-17b)

(14.4-17c)

(14.4-17d)

5 5×

A B⊕ B A⊕=

A B– B A�� –≠

A B⊆

A C⊕ B C⊕⊆

A C– B C� �–⊆

�A B– A B⊕=

B̃

A B∩∩∩∩[ ] C⊕ A C⊕[ ] B C⊕[ ]∩∩∩∩⊆⊆⊆⊆

��A B∩∩∩∩[ ] C– A C–[ ] B C–[ ]�∩∩∩∩=

A B∪[ ] C⊕ A C⊕[ ] B C⊕[ ]∪=

A B∪[ ] C– A C–[ ] B C–[ ]��� ∪⊇
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The dilation and erosion of a set by the intersection of two other sets satisfy these
containment relations:

(14.4-18a)

(14.4-18b)

On the other hand, dilation and erosion of a set by the union of a pair of sets are
governed by the equality relations 

(14.4-19a)

(14.4-19b)

The following chain rules hold for dilation and erosion.

(14.4-20a)

(14.4-20b)

14.4.4. Structuring Element Decomposition

Equation 14.4-20 is important because it indicates that if a  structuring element
can be expressed as

(14.4-21)

FIGURE 14.4-6. Duality relationship between dilation and erosion.
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where  is a small structuring element, it is possible to perform dilation and
erosion by operating on an image sequentially. In Eq. 14.4-21, if the small structur-
ing elements  are all  arrays, then   . Figure 14.4-7 gives
several examples of small structuring element decomposition. Sequential small
structuring element (SSE) dilation and erosion is analogous to small generating ker-
nel (SGK) convolution as given by Eq. 9.6-1. Not every large impulse response
array can be decomposed exactly into a sequence of SGK convolutions; similarly,
not every large structuring element can be decomposed into a sequence of SSE dila-
tions or erosions. Following is an example in which a  structuring element can-
not be decomposed into the sequential dilation of two  SSEs. Zhuang and
Haralick (27) have developed a computational search method to find a SEE decom-
position into  and  elements. 

FIGURE 14.4-7. Structuring element decomposition.
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For two-dimensional convolution it is possible to decompose any large impulse
response array into a set of sequential SGKs that are computed in parallel and

FIGURE 14.4-8. Small structuring element decomposition of a 5 × 5 pixel ring.

1 1 1 1 1

1 0 0 0 1

1 0 0 0 1

1 0 0 0 1
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summed together using the singular-value decomposition/small generating kernel
(SVD/SGK) algorithm, as illustrated by the flowchart of Figure 9.6-2. It is logical to
conjecture as to whether an analog to the SVD/SGK algorithm exists for dilation
and erosion. Equation 14.4-19 suggests that such an algorithm may exist. Figure
14.4-8 illustrates an SSE decomposition of the  ring example based on Eqs.
14.4-19a and 14.4-21. Unfortunately, no systematic method has yet been found to
decompose an arbitrarily large structuring element.

14.5. BINARY IMAGE CLOSE AND OPEN OPERATIONS

Dilation and erosion are often applied to an image in concatenation. Dilation fol-
lowed by erosion is called a close operation. It is expressed symbolically as

(14.5-1a)

where  is a  structuring element. In accordance with the Serra formula-
tion of erosion, the close operation is defined as

(14.5-1b)

where it should be noted that erosion is performed with the reflection of the structur-
ing element. Closing of an image with a compact structuring element without holes
(zeros), such as a square or circle, smooths contours of objects, eliminates small
holes in objects, and fuses short gaps between objects.

An open operation, expressed symbolically as

(14.5-2a)

consists of erosion followed by dilation. It is defined as

(14.5-2b)

where again, the erosion is with the reflection of the structuring element. Opening of
an image smooths contours of objects, eliminates small objects, and breaks narrow
strokes.

The close operation tends to increase the spatial extent of an object, while the
open operation decreases its spatial extent. In quantitative terms

(14.5-3a)

(14.5-3b)
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FIGURE 14.5-1. Close and open operations on a binary image.

(a) Original

blob

(b) Close

closing

(c) Overlay of original and close

overlay of blob & closing

(d) Open

opening

(e) Overlay of original and open

overlay of blob & opening
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It can be shown that the close and open operations are stable in the sense that (25)

(14.5-4a)

(14.5-4b)

Also, it can be easily shown that the open and close operations satisfy the following
duality relationship:

(14.5-5)

Figure 14.5-1 presents examples of the close and open operations on a binary image.

14.6. GRAY SCALE IMAGE MORPHOLOGICAL OPERATIONS

Morphological concepts can be extended to gray scale images, but the extension
often leads to theoretical issues and to implementation complexities. When applied
to a binary image, dilation and erosion operations cause an image to increase or
decrease in spatial extent, respectively. To generalize these concepts to a gray scale
image, it is assumed that the image contains visually distinct gray scale objects set
against a gray background. Also, it is assumed that the objects and background are
both relatively spatially smooth. Under these conditions, it is reasonable to ask:
Why not just threshold the image and perform binary image morphology? The rea-
son for not taking this approach is that the thresholding operation often introduces
significant error in segmenting objects from the background. This is especially true
when the gray scale image contains shading caused by nonuniform scene illumina-
tion.

14.6.1. Gray Scale Image Dilation and Erosion

Dilation or erosion of an image could, in principle, be accomplished by hit-or-miss
transformations in which the quantized gray scale patterns are examined in a 
window and an output pixel is generated for each pattern. This approach is, how-
ever, not computationally feasible. For example, if a look-up table implementation
were to be used, the table would require  entries for 256-level quantization of
each pixel! The common alternative is to use gray scale extremum operations over a

 pixel neighborhoods.
Consider a gray scale image  quantized to an arbitrary number of gray lev-

els. According to the extremum method of gray scale image dilation, the dilation
operation is defined as

(14.6-1)
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F j k,( ) H j k,( )• F j k,( )�H j k,( )=

3 3×

272

3 3×
F j k,( )

G j k,( ) MAX F j k,( ) F j k 1+,( ) F j 1 k 1+,–( ) … F j 1 k 1+,+( ), ,,,{ }=
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where  generates the largest-amplitude pixel of the nine pixels in
the neighborhood. If  is quantized to only two levels, Eq. 14.6-1 provides the
same result as that using binary image dilation as defined by Eq. 14.2-5.

FIGURE 14.6-1. One-dimensional gray scale image dilation on a printed circuit board
image.

(a) Original

printed circuit board

(b) Original profile

PCB profile

(c) One iteration

dilation profile 1 iteration

(d) Two iterations

dilation profile 2 iterations

(e) Three iterations

dilation profile 3 iterations
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1

… S
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By the extremum method, gray scale image erosion is defined as

(14.6-2)

where  generates the smallest-amplitude pixel of the nine pixels in
the  pixel neighborhood. If  is binary-valued, then Eq. 14.6-2 gives the
same result as hit-or-miss erosion as defined in Eq. 14.2-8.

In Chapter 10, when discussing the pseudomedian, it was shown that the MAX
and MIN operations can be computed sequentially. As a consequence, Eqs. 14.6-1
and 14.6-2 can be applied iteratively to an image. For example, three iterations gives
the same result as a single iteration using a  moving-window MAX or MIN
operator. By selectively excluding some of the terms  of Eq. 14.6-1 or
14.6-2 during each iteration, it is possible to synthesize large nonsquare gray scale
structuring elements in the same number as illustrated in Figure 14.4-7 for binary
structuring elements. However, no systematic decomposition procedure has yet been
developed. 

Figures 14.6-1 and 14.6-2 show the amplitude profile of a row of a gray scale
image of a printed circuit board (PCB) after several dilation and erosion iterations.
The row selected is indicated by the white horizontal line in Figure 14.6-la. In
Figure 14.6-2, two-dimensional gray scale dilation and erosion are performed on the
PCB image.

14.6.2. Gray Scale Image Close and Open Operators

The close and open operations introduced in Section 14.5 for binary images can
easily be extended to gray scale images. Gray scale closing is realized by first per-
forming gray scale dilation with a gray scale structuring element, then gray scale
erosion with the same structuring element. Similarly, gray scale opening is accom-
plished by gray scale erosion followed by gray scale dilation. Figure 14.6-3 gives
examples of gray scale image closing and opening.

Steinberg (28) has introduced the use of three-dimensional structuring elements
for gray scale image closing and opening operations. Although the concept is well
defined mathematically, it is simpler to describe in terms of a structural image
model. Consider a gray scale image to be modeled as an array of closely packed
square pegs, each of which is proportional in height to the amplitude of a corre-
sponding pixel. Then a three-dimensional structuring element, for example a sphere,
is placed over each peg. The bottom of the structuring element as it is translated
over the peg array forms another spatially discrete surface, which is the close array
of the original image. A spherical structuring element will touch pegs at peaks of the
original peg array, but will not touch pegs at the bottom of steep valleys. Conse-
quently, the close surface “fills in” dark spots in the original image. The opening of
a gray scale image can be conceptualized in a similar manner. An original image
is modeled as a peg array in which the height of each peg is inversely proportional to

G j k,( ) MIN F j k,( ) F j k 1+,( ) F j 1 k 1+,–( ) … F j 1 k 1+,+( ), ,,,{ }=

MIN S
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, ,{ }
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the amplitude of each corresponding pixel (i.e., the gray scale is subtractively
inverted). The translated structuring element then forms the open surface of the orig-
inal image. For a spherical structuring element, bright spots in the original image are
made darker.

14.6.3. Conditional Gray Scale Image Morphological Operators

There have been attempts to develop morphological operators for gray scale images
that are analogous to binary image shrinking, thinning, skeletonizing, and thicken-
ing. The stumbling block to these extensions is the lack of a definition for connec-
tivity of neighboring gray scale pixels. Serra (4) has proposed approaches based on
topographic mapping techniques. Another approach is to iteratively perform the
basic dilation and erosion operations on a gray scale image and then use a binary
thresholded version of the resultant image to determine connectivity at each
iteration.

FIGURE 14.6-2. One-dimensional gray scale image erosion on a printed circuit board
image.

(a) One iteration

erosion profile 1 iteration

(c) Three iterations(b) Two iterations

erosion profile 2 iterations erosion profile 3 iterations
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FIGURE 14.6-3. Two-dimensional gray scale image dilation, erosion, close, and open on a
printed circuit board image.

Printed Circuit Board

(a) Original

5x5 square dilation

(b) Dilation

5x5 square erosion

(c) Erosion

5x5 square closing

(d) Close

5x5 square opening

(e) Open
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15
EDGE DETECTION

Changes or discontinuities in an image amplitude attribute such as luminance or tri-
stimulus value are fundamentally important primitive characteristics of an image
because they often provide an indication of the physical extent of objects within the
image. Local discontinuities in image luminance from one level to another are called
luminance edges. Global luminance discontinuities, called luminance boundary seg-
ments, are considered in Section 17.4. In this chapter the definition of a luminance
edge is limited to image amplitude discontinuities between reasonably smooth
regions. Discontinuity detection between textured regions is considered in Section
17.5. This chapter also considers edge detection in color images, as well as the
detection of lines and spots within an image.

15.1. EDGE, LINE, AND SPOT MODELS

Figure 15.1-1a is a sketch of a continuous domain, one-dimensional ramp edge
modeled as a ramp increase in image amplitude from a low to a high level, or vice
versa. The edge is characterized by its height, slope angle, and horizontal coordinate
of the slope midpoint. An edge exists if the edge height is greater than a specified
value. An ideal edge detector should produce an edge indication localized to a single
pixel located at the midpoint of the slope. If the slope angle of Figure 15.1-1a is 90°,
the resultant edge is called a step edge, as shown in Figure 15.1-1b. In a digital
imaging system, step edges usually exist only for artificially generated images such
as test patterns and bilevel graphics data. Digital images, resulting from digitization
of  optical images of real scenes, generally do not possess step edges because the anti
aliasing low-pass filtering prior to digitization reduces the edge slope in the digital
image caused by any sudden luminance change in the scene. The one-dimensional

Digital Image Processing: PIKS Inside, Third Edition. William K. Pratt
Copyright © 2001 John Wiley & Sons, Inc.

ISBNs: 0-471-37407-5 (Hardback); 0-471-22132-5 (Electronic)
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profile of a line is shown in Figure 15.1-1c. In the limit, as the line width w
approaches zero, the resultant amplitude discontinuity is called a roof edge.

Continuous domain, two-dimensional models of edges and lines assume that the
amplitude discontinuity remains constant in a small neighborhood orthogonal to the
edge or line profile. Figure 15.1-2a is a sketch of a two-dimensional edge. In addi-
tion to the edge parameters of a one-dimensional edge, the orientation of the edge
slope with respect to a reference axis is also important. Figure 15.1-2b defines the
edge orientation nomenclature for edges of an octagonally shaped object whose
amplitude is higher than its background.

Figure 15.1-3 contains step and unit width ramp edge models in the discrete
domain. The vertical ramp edge model in the figure contains a single transition pixel
whose amplitude is at the midvalue of its neighbors. This edge model can be obtained
by performing a  pixel moving window average on  the vertical step edge

FIGURE 15.1-1. One-dimensional, continuous domain edge and line models.

2 2×
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model. The figure also contains two versions of a diagonal ramp edge. The single-
pixel transition model contains a single midvalue transition pixel between the
regions of high and low amplitude; the smoothed transition model is generated by a

 pixel moving window average of the diagonal step edge model. Figure 15.1-3
also presents models for a discrete step and ramp corner edge. The edge location for
discrete step edges is usually marked at the higher-amplitude side of an edge transi-
tion. For the single-pixel transition model and the smoothed transition vertical and
corner edge models, the proper edge location is at the transition pixel. The smoothed
transition diagonal ramp edge model has a pair of adjacent pixels in its transition
zone. The edge is usually marked at the higher-amplitude pixel of the pair. In Figure
15.1-3 the edge pixels are italicized.

Discrete two-dimensional single-pixel line models are presented in Figure 15.1-4
for step lines and unit width ramp lines. The single-pixel transition model has a mid-
value transition pixel inserted between the high value of the line plateau and the
low-value background. The smoothed transition model is obtained by performing a

 pixel moving window average on the step line model.

FIGURE 15.1-2. Two-dimensional, continuous domain edge model.

2 2×
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A spot, which can only be defined in two dimensions, consists of a plateau of
high amplitude against a lower amplitude background, or vice versa. Figure 15.1-5
presents single-pixel spot models in the discrete domain.

There are two generic approaches to the detection of edges, lines, and spots in a
luminance image: differential detection and model fitting. With the differential
detection approach, as illustrated in Figure 15.1-6, spatial processing is performed
on an original image  to produce a differential image  with accentu-
ated spatial amplitude changes. Next, a differential detection operation is executed
to determine the pixel locations of significant differentials. The second general
approach to edge, line, or spot detection involves fitting of a local region of pixel
values to a model of the edge, line, or spot, as represented in Figures 15.1-1 to
15.1-5. If the fit is sufficiently close, an edge, line, or spot is said to exist, and its
assigned parameters are those of the appropriate model. A binary indicator map

 is often generated to indicate the position of edges, lines, or spots within an

FIGURE 15.1-3. Two-dimensional, discrete domain edge models.

F j k,( ) G j k,( )

E j k,( )
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image. Typically, edge, line, and spot locations are specified by black pixels against
a white background.

There are two major classes of differential edge detection: first- and second-order
derivative. For the first-order class, some form of spatial first-order differentiation is
performed, and the resulting edge gradient is compared to a threshold value. An
edge is judged present if the gradient exceeds the threshold. For the second-order
derivative class of differential edge detection, an edge is judged present if there is a
significant spatial change in the polarity of the second derivative.

Sections 15.2 and 15.3 discuss the first- and second-order derivative forms of
edge detection, respectively. Edge fitting methods of edge detection are considered
in Section 15.4.

FIGURE 15.1-4. Two-dimensional, discrete domain line models.
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15.2. FIRST-ORDER DERIVATIVE EDGE DETECTION

There are two fundamental methods for generating first-order derivative edge gradi-
ents. One method involves generation of gradients in two orthogonal directions in an
image; the second utilizes a set of directional derivatives.

FIGURE 15.1-5. Two-dimensional, discrete domain single pixel spot models.
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15.2.1. Orthogonal Gradient Generation

An edge in a continuous domain edge segment  such as the one depicted in
Figure 15.1-2a can be detected by forming the continuous one-dimensional gradient

 along a line normal to the edge slope, which is at an angle  with respect to
the horizontal axis. If the gradient is sufficiently large (i.e., above some threshold
value), an edge is deemed present. The gradient along the line normal to the edge
slope can be computed in terms of the derivatives along orthogonal axes according
to the following (1, p. 106)

(15.2-1)

Figure 15.2-1 describes the generation of an edge gradient  in the discrete
domain in terms of a row gradient  and a column gradient . The
spatial gradient amplitude is given by

(15.2-2)

For computational efficiency, the gradient amplitude is sometimes approximated by
the magnitude combination

(15.2-3)

FIGURE 15.1-6. Differential edge, line, and spot detection.

FIGURE 15.2-1. Orthogonal gradient generation.
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The orientation of the spatial gradient with respect to the row axis is

(15.2-4)

The remaining issue for discrete domain orthogonal gradient generation is to choose
a good discrete approximation to the continuous differentials of Eq. 15.2-1.

The simplest method of discrete gradient generation is to form the running differ-
ence of pixels along rows and columns of the image. The row gradient is defined as

(15.2-5a)

and the column gradient is

(15.2-5b)

These definitions of row and column gradients, and subsequent extensions, are cho-
sen such that GR and GC are positive for an edge that increases in amplitude from
left to right and from bottom to top in an image.

As an example of the response of a pixel difference edge detector, the following
is the row gradient along the center row of the vertical step edge model of Figure
15.1-3:

In this sequence, h = b – a is the step edge height. The row gradient for the vertical
ramp edge model is

For ramp edges, the running difference edge detector cannot localize the edge to a
single pixel. Figure 15.2-2 provides examples of horizontal and vertical differencing
gradients of the monochrome peppers image. In this and subsequent gradient display
photographs, the gradient range has been scaled over the full contrast range of the
photograph. It is visually apparent from the photograph that the running difference
technique is highly susceptible to small fluctuations in image luminance and that the
object boundaries are not well delineated.
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Diagonal edge gradients can be obtained by forming running differences of diag-
onal pairs of pixels. This is the basis of the Roberts (2) cross-difference operator,
which is defined in magnitude form as

(15.2-6a)

and in square-root form as

(15.2-6b)

FIGURE 15.2-2. Horizontal and vertical differencing gradients of the peppers_mon
image.

(b) Horizontal magnitude (c) Vertical magnitude

(a) Original
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G2 j k,( )[ ]2

+[ ]
1 2⁄

=
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where

(15.2-6c)

(15.2-6d)

The edge orientation with respect to the row axis is

(15.2-7)

Figure 15.2-3 presents the edge gradients of the peppers image for the Roberts oper-
ators. Visually, the objects in the image appear to be slightly better distinguished
with the Roberts square-root gradient than with the magnitude gradient. In Section
15.5, a quantitative evaluation of edge detectors confirms the superiority of the
square-root combination technique.

The pixel difference method of gradient generation can be modified to localize
the edge center of the ramp edge model of Figure 15.1-3 by forming the pixel differ-
ence separated by a null value. The row and column gradients then become

(15.2-8a)

(15.2-8b)

The row gradient response for a vertical ramp edge model is then

FIGURE 15.2-3. Roberts gradients of the peppers_mon image.
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Although the ramp edge is properly localized, the separated pixel difference gradi-
ent generation method remains highly sensitive to small luminance fluctuations in
the image. This problem can be alleviated by using two-dimensional gradient forma-
tion operators that perform differentiation in one coordinate direction and spatial
averaging in the orthogonal direction simultaneously.

Prewitt (1, p. 108) has introduced a  pixel edge gradient operator described
by the pixel numbering convention of Figure 15.2-4. The Prewitt operator square
root edge gradient is defined as

(15.2-9a)

with

(15.2-9b)

(15.2-9c)

where K = 1. In this formulation, the row and column gradients are normalized to
provide unit-gain positive and  negative weighted averages about a separated edge
position. The Sobel operator edge detector (3, p. 271) differs from the Prewitt edge
detector in that the values of the north, south, east, and west pixels are doubled (i. e.,
K = 2). The motivation for this weighting is to give equal importance to each pixel
in terms of its contribution to the spatial gradient. Frei and Chen (4) have proposed
north, south, east, and west weightings by  so that the gradient is the same
for horizontal, vertical, and diagonal edges. The edge gradient  for these three
operators along a row through the single pixel transition vertical ramp edge model
of Figure 15.1-3 is

FIGURE 15.2-4. Numbering convention for 3 × 3 edge detection operators.
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Along a row through the single transition pixel diagonal ramp edge model, the gra-
dient is

In the Frei–Chen operator with , the edge gradient is the same at the edge
center for the single-pixel transition vertical and diagonal ramp edge models.
The Prewitt gradient for a diagonal edge is 0.94 times that of a vertical edge. The

FIGURE 15.2-5.  Prewitt, Sobel, and Frei–Chen gradients of the peppers_mon image.
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corresponding factor for a Sobel edge detector is 1.06. Consequently, the Prewitt
operator is more sensitive to horizontal and vertical edges than to diagonal edges;
the reverse is true for the Sobel operator. The gradients along a row through the
smoothed transition diagonal ramp edge model are different for vertical and diago-
nal edges for all three of the  edge detectors. None of them are able to localize
the edge to a single pixel.

Figure 15.2-5 shows examples of the Prewitt, Sobel, and Frei–Chen gradients of
the peppers image. The reason that these operators visually appear to better delin-
eate object edges than the Roberts operator is attributable to their larger size, which
provides averaging of small luminance fluctuations.

The row and column gradients for all the edge detectors mentioned previously in
this subsection involve a linear combination of pixels within a small neighborhood.
Consequently, the row and column gradients can be computed by the convolution
relationships

(15.2-10a)

(15.2-10b)

where  and  are  row and column impulse response arrays,
respectively, as defined in Figure 15.2-6. It should be noted that this specification of
the gradient impulse response arrays takes into account the 180° rotation of an
impulse response array inherent to the definition of convolution in Eq. 7.1-14.

A limitation common to the edge gradient generation operators previously
defined is their inability to detect accurately edges in high-noise environments. This
problem can be alleviated by properly extending the size of the neighborhood opera-
tors over which the differential gradients are computed. As an example, a Prewitt-
type  operator has a row gradient impulse response of the form

 (15.2-11)

An operator of this type is called a boxcar operator. Figure 15.2-7 presents the box-
car gradient of a  array.
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Abdou (5) has suggested a truncated pyramid operator that gives a linearly
decreasing weighting to pixels away from the center of an edge. The row gradient
impulse response array for a  truncated pyramid operator is given by

 (15.2-12)

FIGURE 15.2-6. Impulse response arrays for 3 × 3 orthogonal differential gradient edge
operators.
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FIGURE 15.2-7. Boxcar, truncated pyramid, Argyle, Macleod, and FDOG gradients of the

peppers_mon image.

(a) 7 × 7 boxcar (b) 9 × 9 truncated pyramid

(e) 11 × 11 FDOG, s = 2.0

(c) 11 × 11 Argyle, s = 2.0 (d) 11 × 11 Macleod, s = 2.0
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Argyle (6) and Macleod (7,8) have proposed large neighborhood Gaussian-shaped
weighting functions as a means of noise suppression. Let

(15.2-13)

denote a continuous domain Gaussian function with standard deviation s. Utilizing
this notation, the Argyle operator horizontal coordinate impulse response array can
be expressed as a sampled version of the continuous domain impulse response

for (15.2-14a)

for (15.2-14b)

where s and t are spread parameters. The vertical impulse response function can be
expressed similarly. The Macleod operator horizontal gradient impulse response
function is given by

(15.2-15)

The Argyle and Macleod operators, unlike the boxcar operator, give decreasing
importance to pixels far removed from the center of the neighborhood. Figure
15.2-7 provides examples of the Argyle and Macleod gradients.

Extended-size differential gradient operators can be considered to be compound
operators in which a smoothing operation is performed on a noisy image followed
by a differentiation operation. The compound gradient impulse response can be
written as

(15.2-16)

where  is one of the gradient impulse response operators of Figure 15.2-6
and  is a low-pass filter impulse response. For example, if  is the

 Prewitt row gradient operator and , for all , is a  uni-
form smoothing operator, the resultant  row gradient operator, after normaliza-
tion to unit positive and negative gain, becomes

(15.2-17)
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The decomposition of Eq. 15.2-16 applies in both directions. By applying the SVD/
SGK decomposition of Section 9.6, it is possible, for example, to decompose a 
boxcar operator into the sequential convolution of a  smoothing kernel and a

 differentiating kernel.
A well-known example of a compound gradient operator is the first derivative of

Gaussian (FDOG) operator, in which Gaussian-shaped smoothing is followed by
differentiation (9). The FDOG continuous domain horizontal impulse response is

(15.2-18a)

which upon differentiation yields

(15.2-18b)

Figure 15.2-7 presents an example of the FDOG gradient.
All of the differential edge enhancement operators presented previously in this

subsection have been derived heuristically. Canny (9) has taken an analytic
approach to the design of such operators. Canny's development is based on a one-
dimensional continuous domain model of a step edge of amplitude hE plus additive
white Gaussian noise with standard deviation . It is assumed that edge detection
is performed by convolving a one-dimensional continuous domain noisy edge signal

 with an antisymmetric impulse response function , which is of zero
amplitude outside the range . An edge is marked at the local maximum of
the convolved gradient . The Canny operator impulse response  is
chosen to satisfy the following three criteria.

1. Good detection. The amplitude signal-to-noise ratio (SNR) of the gradient is
maximized to obtain a low probability of failure to mark real edge points and a
low probability of falsely marking nonedge points. The SNR for the model is

(15.2-19a)

with

(15.2-19b)
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2. Good localization. Edge points marked by the operator should be as close to
the center of the edge as possible. The localization factor is defined as

(15.2-20a)

with

(15.2-20b)

where  is the derivative of .

3. Single response. There should be only a single response to a true edge. The
distance between peaks of the gradient when only noise is present, denoted as
xm, is set to some fraction k of the operator width factor W. Thus

(15.2-21)

Canny has combined these three criteria by maximizing the product  subject
to the constraint of Eq. 15.2-21. Because of the complexity of the formulation, no
analytic solution has been found, but a variational approach has been developed.
Figure 15.2-8 contains plots of the Canny impulse response functions in terms of xm. 

FIGURE 15.2-8. Comparison of Canny and first derivative of Gaussian impulse response
functions.
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As noted from the figure, for low values of xm, the Canny function resembles a box-
car function, while for xm large, the Canny function is closely approximated by a
FDOG impulse response function.

Discrete domain versions of the large operators defined in the continuous domain
can be obtained by sampling their continuous impulse response functions over some

 window. The window size should be chosen sufficiently large that truncation
of the impulse response function does not cause high-frequency artifacts. Demigny
and Kamie (10) have developed a discrete version of Canny’s criteria, which lead to
the computation of discrete domain edge detector impulse response arrays.

15.2.2. Edge Template Gradient Generation

With the orthogonal differential edge enhancement techniques discussed previously,
edge gradients are computed in two orthogonal directions, usually along rows and
columns, and then the edge direction is inferred by computing the vector sum of the
gradients. Another approach is to compute gradients in a large number of directions
by convolution of an image with a set of template gradient impulse response arrays.
The edge template gradient is defined as

(15.2-22a)

where

(15.2-22b)

is the gradient in the mth equispaced direction obtained by convolving an image
with a gradient impulse response array . The edge angle is determined by the
direction of the largest gradient.

Figure 15.2-9 defines eight gain-normalized compass gradient impulse response
arrays suggested by Prewitt (1, p. 111). The compass names indicate the slope direc-
tion of maximum response. Kirsch (11) has proposed a directional gradient defined
by

(15.2-23a)

where

(15.2-23b)

(15.2-23c)
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The subscripts of  are evaluated modulo 8. It is possible to compute the Kirsch
gradient by convolution as in Eq. 15.2-22b. Figure 15.2-9 specifies the gain-normal-
ized Kirsch operator impulse response arrays. This figure also defines two other sets
of gain-normalized impulse response arrays proposed by Robinson (12), called  the
Robinson three-level operator and the Robinson five-level operator, which are
derived from the Prewitt and Sobel operators, respectively. Figure 15.2-10 provides
a comparison of the edge gradients of the peppers image for the four  template
gradient operators.

FIGURE 15.2-9. Template gradient 3 × 3 impulse response arrays.

Ai

3 3×
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Nevatia and Babu (13) have developed an edge detection technique in which the
gain-normalized  masks defined in Figure 15.2-11 are utilized to detect edges
in 30° increments. Figure 15.2-12 shows the template gradients for the peppers
image. Larger template masks will provide both a finer quantization of the edge ori-
entation angle and a greater noise immunity, but the computational requirements
increase. Paplinski (14) has developed a design procedure for n-directional template
masks of arbitrary size.

15.2.3. Threshold Selection

After the edge gradient is formed for the differential edge detection methods, the
gradient is compared to a threshold to determine if an edge exists. The threshold
value determines the sensitivity of the edge detector.  For noise-free images, the

FIGURE 15.2-10. 3 × 3 template gradients of the peppers_mon image.

(a) Prewitt compass gradient (b) Kirsch

(c) Robinson three-level (d) Robinson five-level

5 5×
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FIGURE 15.2-11. Nevatia–Babu template gradient impulse response arrays.
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threshold can be chosen such that all amplitude discontinuities of a minimum con-
trast level are detected as edges, and all others are called nonedges. With noisy
images, threshold selection becomes a trade-off between missing valid edges and
creating noise-induced false edges.

Edge detection can be regarded as a hypothesis-testing problem to determine if
an image region contains an edge or contains no edge (15). Let P(edge) and P(no-
edge) denote the a priori probabilities of these events. Then the edge detection pro-
cess can be characterized by the probability of correct edge detection,

(15.2-24a)

and the probability of false detection,

(15.2-24b)

where t is the edge detection threshold and p(G|edge) and p(G|no-edge) are the con-
ditional probability densities of the edge gradient . Figure 15.2-13 is a sketch
of typical edge gradient conditional densities. The probability of edge misclassifica-
tion error can be expressed as

(15.2-25)

FIGURE 15.2-12.  Nevatia–Babu gradient of the peppers_mon image.

PD p G edge( ) Gd
t

∞∫=

PF p G no e– dge( ) Gd
t

∞
∫=

G j k,( )

PE 1 PD–( )P edge( ) PF( )P no e– dge( )+=
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This error will be minimum if the threshold is chosen such that an edge is deemed
present when

(15.2-26)

and the no-edge hypothesis is accepted otherwise. Equation 15.2-26 defines the
well-known maximum likelihood ratio test associated with the Bayes minimum
error decision rule of classical decision theory (16). Another common decision strat-
egy, called the Neyman–Pearson test, is to choose the threshold t to minimize  for
a fixed acceptable  (16). 

Application of a statistical decision rule to determine the threshold value requires
knowledge of the a priori edge probabilities and the conditional densities of the edge
gradient. The a priori probabilities can be estimated from images of the class under
analysis. Alternatively, the a priori probability ratio can be regarded as a sensitivity
control factor for the edge detector. The conditional densities can be determined, in
principle, for a statistical model of an ideal edge plus noise. Abdou (5) has derived
these densities for  and  edge detection operators for the case of a ramp
edge of width w = 1 and additive Gaussian noise. Henstock and Chelberg (17) have
used gamma densities as models of the conditional probability densities.

There are two difficulties associated with the statistical approach of determining
the optimum edge detector threshold: reliability of the stochastic edge model and
analytic difficulties in deriving the edge gradient conditional densities. Another
approach, developed by Abdou and Pratt (5,15), which is based on pattern recogni-
tion techniques, avoids the difficulties of the statistical method. The pattern recogni-
tion method involves creation of a large number of prototype noisy image regions,
some of which contain edges and some without edges. These prototypes are then
used as a training set to find the threshold that minimizes the classification
error. Details of the design procedure are found in Reference 5. Table 15.2-1

FIGURE 15.2-13. Typical edge gradient conditional probability densities.

p G edge( )
p G no e– dge( )
-------------------------------------

P no e– dge( )
P edge( )

-------------------------------≥

PF

PD

2 2× 3 3×
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FIGURE 15.2-14. Threshold sensitivity of the Sobel and first derivative of Gaussian edge

detectors for the peppers_mon image.

(a) Sobel, t = 0.06 (b) FDOG, t = 0.08

(c) Sobel, t = 0.08 (d) FDOG, t = 0.10

(e) Sobel, t = 0.10 (f ) FDOG, t = 0.12
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provides a tabulation of the optimum threshold for several  and  edge
detectors for an experimental design with an evaluation set of 250 prototypes not in
the training set (15). The table also lists the probability of correct and false edge
detection as defined by Eq. 15.2-24 for theoretically derived gradient conditional
densities. In the table, the threshold is normalized such that , where 
is the maximum amplitude of the gradient in the absence of noise. The power signal-
to-noise ratio is defined as , where h is the edge height and  is the
noise standard deviation. In most of the cases of Table 15.2-1, the optimum thresh-
old results in approximately equal error probabilities (i.e., ). This is the
same result that would be obtained by the Bayes design procedure when edges and
nonedges are equally probable. The tests associated with Table 15.2-1 were con-
ducted with relatively low signal-to-noise ratio images. Section 15.5 provides exam-
ples of such images. For high signal-to-noise ratio images, the optimum threshold is
much lower. As a rule of thumb, under the condition that , the edge
detection threshold can be scaled linearly with signal-to-noise ratio. Hence, for an
image with SNR = 100, the threshold is about 10% of the peak gradient value.

Figure 15.2-14 shows the effect of varying the first derivative edge detector
threshold for the  Sobel and the  FDOG edge detectors for the peppers
image, which is a relatively high signal-to-noise ratio image. For both edge detec-
tors, variation of the threshold provides a trade-off between delineation of strong
edges and definition of weak edges.

15.2.4. Morphological Post Processing

It is possible to improve edge delineation of first-derivative edge detectors by apply-
ing morphological operations on their edge maps. Figure 15.2-15 provides examples
for the  Sobel and  FDOG edge detectors. In the Sobel example, the
threshold is lowered slightly to improve the detection of weak edges. Then the mor-
phological majority black operation is performed on the edge map to eliminate
noise-induced edges. This is followed by the thinning operation to thin the edges to
minimally connected lines. In the FDOG example, the majority black noise smooth-
ing step is not necessary.

15.3. SECOND-ORDER DERIVATIVE EDGE DETECTION

Second-order derivative edge detection techniques employ some form of spatial sec-
ond-order differentiation to accentuate edges. An edge is marked if a significant spa-
tial change occurs in the second derivative. Two types of second-order derivative
methods are considered: Laplacian and directed second derivative.

15.3.1. Laplacian Generation

The edge Laplacian of an image function  in the continuous domain is
defined as

2 2× 3 3×

tN t GM⁄= GM

SNR h σn⁄( )2
= σn

PF 1 PD–=

PF 1 PD–=

3 3× 11 11×

3 3× 11 11×

F x y,( )
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FIGURE 15.2-15. Morphological thinning of edge maps for the peppers_mon image.

(a) Sobel, t = 0.07

(b) Sobel majority black 

(d ) FDOG, t = 0.11

(c) Sobel thinned 

(e) FDOG thinned
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(15.3-1a)

where, from Eq. 1.2-17, the Laplacian is

(15.3-1b)

The Laplacian  is zero if  is constant or changing linearly in ampli-
tude. If the rate of change of  is greater than linear,  exhibits a sign
change at the point of inflection of . The zero crossing of  indicates
the presence of an edge. The negative sign in the definition of Eq. 15.3-la is present
so that the zero crossing of  has a positive slope for an edge whose amplitude
increases from left to right or bottom to top in an image.

Torre and Poggio (18) have investigated the mathematical properties of the
Laplacian of an image function. They have found that if  meets certain
smoothness constraints, the zero crossings of  are closed curves.

In the discrete domain, the simplest approximation to the continuous Laplacian is
to compute the difference of slopes along each axis:

(15.3-2)

This four-neighbor Laplacian (1, p. 111) can be generated by the convolution opera-
tion

(15.3-3)

with

(15.3-4a)

or

(15.3-4b)

where the two arrays of Eq. 15.3-4a correspond to the second derivatives along
image rows and columns, respectively, as in the continuous Laplacian of Eq. 15.3-lb.
The four-neighbor Laplacian is often normalized to provide unit-gain averages of the
positive weighted and negative weighted pixels in the  pixel neighborhood. The
gain-normalized four-neighbor Laplacian impulse response is defined by
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(15.3-5)

Prewitt (1, p. 111) has suggested an eight-neighbor Laplacian defined by the gain-
normalized impulse response array 

(15.3-6)

This array is not separable into a sum of second derivatives, as in Eq. 15.3-4a. A
separable eight-neighbor Laplacian can be obtained by the construction

(15.3-7)

in which the difference of slopes is averaged over three rows and three columns. The
gain-normalized version of the separable eight-neighbor Laplacian is given by

(15.3-8)

It is instructive to examine the Laplacian response to the edge models of Figure
15.1-3. As an example, the separable eight-neighbor Laplacian corresponding to the
center row of the vertical step edge model is

where  is the edge height. The Laplacian response of the vertical ramp
edge model is

For the vertical edge ramp edge model, the edge lies at the zero crossing pixel
between the negative- and positive-value Laplacian responses. In the case of the step
edge, the zero crossing lies midway between the neighboring negative and positive
response pixels; the edge is correctly marked at the pixel to the right of the zero
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crossing. The Laplacian response for a single-transition-pixel diagonal ramp edge
model is

and the edge lies at the zero crossing at the center pixel. The Laplacian response for
the smoothed transition diagonal ramp edge model of Figure 15.1-3 is

In this example, the zero crossing does not occur at a pixel location. The edge
should be marked at the pixel to the right of the zero crossing. Figure 15.3-1 shows
the Laplacian response for the two ramp corner edge models of Figure 15.1-3. The
edge transition pixels are indicated by line segments in the figure. A zero crossing
exists at the edge corner for the smoothed transition edge model, but not for the sin-
gle-pixel transition model. The zero crossings adjacent to the edge corner do not
occur at pixel samples for either of the edge models. From these examples, it can be

FIGURE 15.3-1. Separable eight-neighbor Laplacian responses for ramp corner models; all
values should be scaled by h/8.
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concluded that zero crossings of the Laplacian do not always occur at pixel samples.
But for these edge models, marking an edge at a pixel with a positive response that
has a neighbor with a negative response identifies the edge correctly.

Figure 15.3-2 shows the Laplacian responses of the peppers image for the three
types of  Laplacians. In these photographs, negative values are depicted as
dimmer than midgray and positive values are brighter than midgray.

Marr and Hildrith (19) have proposed the Laplacian of Gaussian (LOG) edge
detection operator in which Gaussian-shaped smoothing is performed prior to appli-
cation of the Laplacian. The continuous domain LOG gradient is

(15.3-9a)

where

(15.3-9b)

FIGURE 15.3-2.  Laplacian responses of the peppers_mon image.

3 3×

G x y,( ) F x y,( ) �* HS x y,( ){ }∇2–=

G x y,( ) g x s,( )g y s,( )=

(a) Four-neighbor (b) Eight-neighbor

(c) Separable eight-neighbor (d ) 11 × 11 Laplacian of Gaussian
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is the impulse response of the Gaussian smoothing function as defined by Eq.
15.2-13. As a result of the linearity of the second derivative operation and of the lin-
earity of convolution, it is possible to express the LOG response as

(15.3-10a)

where

(15.3-10b)

Upon differentiation, one obtains

(15.3-11)

Figure 15.3-3 is a cross-sectional view of the LOG continuous domain impulse
response. In the literature it is often called the Mexican hat filter. It can be shown
(20,21) that the LOG impulse response can be expressed as

(15.3-12)

Consequently, the convolution operation can be computed separably along rows and
columns of an image. It is possible to approximate the LOG impulse response closely
by a difference of Gaussians (DOG) operator. The resultant impulse response is

(15.3-13)

FIGURE 15.3-3. Cross section of continuous domain Laplacian of Gaussian impulse
response.
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where . Marr and Hildrith (19) have found that the ratio  provides
a good approximation to the LOG.

A discrete domain version of the LOG operator can be obtained by sampling the
continuous domain impulse response function of Eq. 15.3-11 over a  window.
To avoid deleterious truncation effects, the size of the array should be set such that
W = 3c, or greater, where  is the width of the positive center lobe of the
LOG function (21). Figure 15.3-2d shows the LOG response of the peppers image
for a  operator.

15.3.2. Laplacian Zero-Crossing Detection

From the discrete domain Laplacian response examples of the preceding section, it
has been shown that zero crossings do not always lie at pixel sample points. In fact,
for real images subject to luminance fluctuations that contain ramp edges of varying
slope, zero-valued Laplacian response pixels are unlikely.

A simple approach to Laplacian zero-crossing detection in discrete domain
images is to form the maximum of all positive Laplacian responses and to form the
minimum of all negative-value responses in a  window, If the magnitude of the
difference between the maxima and the minima exceeds a threshold, an edge is
judged present.

FIGURE 15.3-4. Laplacian zero-crossing patterns.

s1 s2< s2 s1⁄ 1.6=

W W×

c 2 2 s=

11 11×

3 3×
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Huertas and Medioni (21) have developed a systematic method for classifying
 Laplacian response patterns in order to determine edge direction. Figure

15.3-4 illustrates a somewhat simpler algorithm. In the figure, plus signs denote pos-
itive-value Laplacian responses, and negative signs denote negative Laplacian
responses. The algorithm can be implemented efficiently using morphological
image processing techniques.

15.3.3. Directed Second-Order Derivative Generation

Laplacian edge detection techniques employ rotationally invariant second-order
differentiation to determine the existence of an edge. The direction of the edge can
be ascertained during the zero-crossing detection process. An alternative approach is
first to estimate the edge direction and then compute the one-dimensional second-
order derivative along the edge direction. A zero crossing of the second-order
derivative specifies an edge.

The directed second-order derivative of a continuous domain image 
along a line at an angle  with respect to the horizontal axis is given by

(15.3-14)

It should be noted that unlike the Laplacian, the directed second-order derivative is a
nonlinear operator. Convolving a smoothing function with  prior to differen-
tiation is not equivalent to convolving the directed second derivative of  with
the smoothing function.

A key factor in the utilization of the directed second-order derivative edge detec-
tion method is the ability to  determine its suspected edge direction accurately. One
approach is to employ some first-order derivative edge detection method to estimate
the edge direction, and then compute a discrete approximation to Eq. 15.3-14.
Another approach, proposed by Haralick (22), involves approximating  by a
two-dimensional polynomial, from which the directed second-order derivative can
be determined analytically.

 As an illustration of Haralick's approximation method, called facet modeling, let
the continuous image function  be approximated by a two-dimensional qua-
dratic polynomial

(15.3-15)

about a candidate edge point  in the discrete image , where the  are
weighting factors to be determined from the discrete image data. In this notation, the
indices  are treated as continuous variables in the row
(y-coordinate) and column (x-coordinate) directions of the discrete image, but the
discrete image is, of course, measurable only at integer values of r and c. From this
model, the estimated edge angle is
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(15.3-16)

In principle, any polynomial expansion can be used in the approximation. The
expansion of Eq. 15.3-15 was chosen because it can be expressed in terms of a set of
orthogonal polynomials. This greatly simplifies the computational task of determin-
ing the weighting factors. The quadratic expansion of Eq. 15.3-15 can be rewritten
as

(15.3-17)

where  denotes a set of discrete orthogonal polynomials and the  are
weighting coefficients. Haralick (22) has used the following set of  Chebyshev
orthogonal polynomials:

(15.3-18a)

(15.3-18b)

(15.3-18c)

(15.3-18d)

(15.3-18e)

(15.3-18f)

(15.3-18g)

(15.3-18h)

(15.3-18i)

defined over the (r, c) index set {-1, 0, 1}. To maintain notational consistency with
the gradient techniques discussed previously, r and c are indexed in accordance with
the (x, y) Cartesian coordinate system (i.e., r is incremented positively up rows and c
is incremented positively left to right across columns). The polynomial coefficients
kn of Eq. 15.3-15 are related to the Chebyshev weighting coefficients by
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(15.3-19a)

(15.3-19b)

(15.3-19c)

(15.3-19d)

(15.3-19e)

(15.3-19f)

(15.3-19g)

(15.3-19h)

(15.3-19i)

The optimum values of the set of weighting coefficients an that minimize the mean-
square error between the image data  and its approximation  are found
to be (22)

(15.3-20)

As a consequence of the linear structure of this equation, the weighting coefficients
 at each point in the image  can be computed by convolution of

the image with a set of impulse response arrays. Hence

(15.3-21a)

where

(15.3-21b)

Figure 15.3-5 contains the nine impulse response arrays corresponding to the 
Chebyshev polynomials. The arrays H2 and H3, which are used to determine the
edge angle, are seen from Figure 15.3-5 to be the Prewitt column and row operators,
respectively. The arrays H4 and H6 are second derivative operators along columns
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and rows, respectively, as noted in Eq. 15.3-7. Figure 15.3-6 shows the nine weight-
ing coefficient responses for the peppers image.

The second derivative along the line normal to the edge slope can be expressed
explicitly by performing second-order differentiation on Eq. 15.3-15. The result is

(15.3-22)

This second derivative need only be evaluated on a line in the suspected edge direc-
tion. With the substitutions  and , the directed second-order
derivative can be expressed as

(15.3-23)

The next step is to detect zero crossings of  in a unit pixel range 
of the suspected edge. This can be accomplished by computing the real root (if it
exists) within the range of the quadratic relation of Eq. 15.3-23.

FIGURE 15.3-5. Chebyshev polynomial 3 × 3 impulse response arrays.
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FIGURE 15.3-6. 3 × 3 Chebyshev polynomial responses for the peppers_mon image.

(a) Chebyshev 1 (b) Chebyshev 2

(c) Chebyshev 3 (d) Chebyshev 4

(e) Chebyshev 5 (f ) Chebyshev 6
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15.4. EDGE-FITTING EDGE DETECTION

Ideal edges may be viewed as one- or two-dimensional edges of the form sketched
in Figure 15.1-1. Actual image data can then be matched against, or fitted to, the
ideal edge models. If the fit is sufficiently accurate at a given image location, an
edge is assumed to exist with the same parameters as those of the ideal edge model.

In the one-dimensional edge-fitting case described in Figure 15.4-1, the image
signal f(x) is fitted to a step function

for (15.4-1a)

for (15.4-1b)

FIGURE 15.3-6 (Continued). 3 × 3 Chebyshev polynomial responses for the peppers_mon
image.

(g) Chebyshev 7

(h) Chebyshev 8 (i ) Chebyshev 9
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An edge is assumed present if the mean-square error

(15.4-2)

is below some threshold value. In the two-dimensional formulation, the ideal step 
edge is defined as

for (15.4-3a)

for (15.4-3b)

where  and  jointly specify the polar distance from the center of a circular test
region to the normal point of the edge. The edge-fitting error is

(15.4-4)

where the integration is over the circle in Figure 15.4-1.

FIGURE 15.4-1. One- and two-dimensional edge fitting.
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Hueckel (23) has developed a procedure for two-dimensional edge fitting in
which the pixels within the circle of Figure 15.4-1 are expanded in a set of two-
dimensional basis functions by a Fourier series in polar coordinates. Let 
represent the basis functions. Then, the weighting coefficients for the expansions of
the image and the ideal step edge become

(15.4-5a)

(15.4-5b)

In Hueckel's algorithm, the expansion is truncated to eight terms for computational
economy and to provide some noise smoothing. Minimization of the mean-square-
error difference of Eq. 15.4-4 is equivalent to minimization of  for all coef-
ficients. Hueckel has performed this minimization, invoking some simplifying
approximations and has formulated a set of nonlinear equations expressing the
estimated edge parameter set in terms of the expansion coefficients .

Nalwa and Binford (24) have proposed an edge-fitting scheme in which the edge
angle is first estimated by a sequential least-squares fit within a  region. Then,
the image data along the edge direction is fit to a hyperbolic tangent function

(15.4-6)

as shown in Figure 15.4-2.
Edge-fitting methods require substantially more computation than do derivative

edge detection methods. Their relative performance is considered in the following
section.

FIGURE 15.4-2. Hyperbolic tangent edge model.
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15.5. LUMINANCE EDGE DETECTOR PERFORMANCE

Relatively few comprehensive studies of edge detector performance have been
reported in the literature (15,25,26). A performance evaluation is difficult because
of the large number of methods proposed, problems in determining the optimum
parameters associated with each technique and the lack of definitive performance
criteria.

In developing performance criteria for an edge detector, it is wise to distinguish
between mandatory and auxiliary information to be obtained from the detector.
Obviously, it is essential to determine the pixel location of an edge. Other informa-
tion of interest includes the height and slope angle of the edge as well as its spatial
orientation. Another useful item is a confidence factor associated with the edge deci-
sion, for example, the closeness of fit between actual image data and an idealized
model. Unfortunately, few edge detectors provide this full gamut of information.

The next sections discuss several performance criteria. No attempt is made to
provide a comprehensive comparison of edge detectors.

15.5.1. Edge Detection Probability

The probability of correct edge detection PD and the probability of false edge detec-
tion PF, as specified by Eq. 15.2-24, are useful measures of edge detector perfor-
mance. The trade-off between PD and PF can be expressed parametrically in terms
of the detection threshold. Figure 15.5-1 presents analytically derived plots of PD
versus PF for several differential operators for vertical and diagonal edges and a sig-
nal-to-noise ratio of 1.0 and 10.0 (13). From these curves it is apparent that the
Sobel and Prewitt  operators are superior to the Roberts  operators. The
Prewitt operator is better than the Sobel operator for a vertical edge. But for a diago-
nal edge, the Sobel operator is superior. In the case of template-matching operators,
the Robinson three-level and five-level operators exhibit almost identical perfor-
mance, which is superior to the Kirsch and Prewitt compass gradient operators.
Finally, the Sobel and Prewitt differential operators perform slightly better than the
Robinson three- and Robinson five-level operators. It has not been possible to apply
this statistical approach to any of the larger operators because of analytic difficulties
in evaluating the detection probabilities.

15.5.2. Edge Detection Orientation

An important characteristic of an edge detector is its sensitivity to edge orientation.
Abdou and Pratt (15) have analytically determined the gradient response of 
template matching edge detectors and  and  orthogonal gradient edge
detectors for square-root and magnitude combinations of the orthogonal gradients.
Figure 15.5-2 shows plots of the edge gradient as a function of actual edge orienta-
tion for a unit-width ramp edge model. The figure clearly shows that magni-
tude combination of the orthogonal gradients is inferior to square-root combination.

3 3× 2 2×

3 3×
2 2× 3 3×
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Figure 15.5-3 is a plot of the detected edge angle as a function of the actual orienta-
tion of an edge. The Sobel operator provides the most linear response. Laplacian
edge detectors are rotationally symmetric operators, and hence are invariant to edge
orientation. The edge angle can be determined to within 45° increments during the

 pixel zero-crossing detection process.

15.5.3. Edge Detection Localization

Another important property of an edge detector is its ability to localize an edge.
Abdou and Pratt (15) have analyzed the edge localization capability of several first
derivative operators for unit width ramp edges. Figure 15.5-4 shows edge models in
which the sampled continuous ramp edge is displaced from the center of the
operator. Figure 15.5-5 shows plots of the gradient response as a function of edge

FIGURE 15.5-1. Probability of detection versus probability of false detection for 2 × 2 and
3 × 3 operators.

3 3×
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displacement distance for vertical and diagonal edges for  and  orthogo-
nal gradient and  template matching edge detectors. All of the detectors, with
the exception of the Kirsch operator, exhibit a desirable monotonically decreasing
response as a function of edge displacement. If the edge detection threshold is set
at one-half the edge height, or greater, an edge will be properly localized in a noise-
free environment for all the operators, with the exception of the Kirsch operator,
for which the threshold must be slightly higher. Figure 15.5-6 illustrates the gradi-
ent response of boxcar operators as a function of their size (5). A gradient response

FIGURE 15.5-2. Edge gradient response as a function of edge orientation for 2 × 2 and 3 × 3
first derivative operators.

FIGURE 15.5-3. Detected edge orientation as a function of actual edge orientation for 2 × 2
and 3 × 3 first derivative operators.

2 2× 3 3×
3 3×
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comparison of  orthogonal gradient operators is presented in Figure 15.5-7. For
such large operators, the detection threshold must be set relatively high to prevent
smeared edge markings. Setting a high threshold will, of course, cause low-ampli-
tude edges to be missed. 

Ramp edges of extended width can cause difficulties in edge localization. For
first-derivative edge detectors, edges are marked along the edge slope at all points
for which the slope exceeds some critical value. Raising the threshold results in the
missing of low-amplitude edges. Second derivative edge detection methods are
often able to eliminate smeared ramp edge markings. In the case of a unit width
ramp edge, a zero crossing will occur only at the midpoint of the edge slope.
Extended-width ramp edges will also exhibit a zero crossing at the ramp midpoint
provided that the size of the Laplacian operator exceeds the slope width. Figure
15.5-8 illustrates Laplacian of Gaussian (LOG) examples (21).

Berzins (27) has investigated the accuracy to which the LOG zero crossings
locate a step edge. Figure 15.5-9 shows the LOG zero crossing in the vicinity of a
corner step edge. A zero crossing occurs exactly at the corner point, but the zero-
crossing curve deviates from the step edge adjacent to the corner point. The maxi-
mum deviation is about 0.3s, where s is the standard deviation of the Gaussian
smoothing function.

FIGURE 15.5-4. Edge models for edge localization analysis.

(a) 2 × 2 model

(b) 3 × 3 model

7 7×
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FIGURE 15.5-5. Edge gradient response as a function of edge displacement distance for
2 × 2 and 3 × 3 first derivative operators.

FIGURE 15.5-6. Edge gradient response as a function of edge displacement distance for
variable-size boxcar operators.
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15.5.4. Edge Detector Figure of Merit

There are three major types of error associated with determination of an edge: (1)
missing valid edge points, (2)  failure to localize edge points, and (3) classification of

FIGURE 15.5-7 Edge gradient response as a function of edge displacement distance for
several 7 × 7 orthogonal gradient operators.

FIGURE 15.5-8. Laplacian of Gaussian response of continuous domain for high- and low-
slope ramp edges.
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noise fluctuations as edge points. Figure 15.5-10 illustrates a typical edge segment in a
discrete image, an ideal edge representation, and edge representations subject to var-
ious types of error.

A common strategy in signal detection problems is to establish some bound on
the probability of false detection resulting from noise and then attempt to maximize
the probability of true signal detection. Extending this concept to edge detection
simply involves setting the edge detection threshold at a level such that the probabil-
ity of false detection resulting from noise alone does not exceed some desired value.
The probability of true edge detection can  readily be evaluated by a coincidence
comparison of the edge maps of an ideal and an actual edge detector. The penalty for
nonlocalized edges is somewhat more difficult to access. Edge detectors that pro-
vide a smeared edge location should clearly be penalized; however, credit should be
given to edge detectors whose edge locations are localized but biased by a small
amount. Pratt (28) has introduced a figure of merit that balances these three types of
error. The figure of merit is defined by

(15.5-1)

where  and  and  represent the number of ideal and actual
edge map points, a is a scaling constant, and d is the separation distance of an
actual edge point normal to a line of ideal edge points. The rating factor is normal-
ized so that R = 1 for a perfectly detected edge. The scaling factor may be adjusted
to penalize edges that are localized but offset from the true position. Normalization
by the maximum of the actual and ideal number of edge points ensures a penalty for
smeared or fragmented edges. As an example of performance, if , the rating of

FIGURE 15.5-9. Locus of zero crossings in vicinity of a corner edge for a continuous Lapla-
cian of Gaussian edge detector.
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a vertical detected edge offset by one pixel becomes R = 0.90, and a two-pixel offset
gives a rating of R = 0.69. With , a smeared edge of three pixels width centered
about the true vertical edge yields a rating of R = 0.93, and a five-pixel-wide
smeared edge gives R = 0.84. A higher rating for a smeared edge than for an offset
edge is reasonable because it is possible to thin the smeared edge by morphological
postprocessing.

The figure-of-merit criterion described above has been applied to the assessment
of some of the edge detectors  discussed previously, using a test image consisting of
a  pixel array with a vertically oriented edge of variable contrast and slope
placed at its center. Independent Gaussian noise of standard deviation  has been
added to the edge image. The signal-to-noise ratio is defined as ,
where h is the edge height scaled over the range 0.0 to 1.0. Because the purpose of
the testing is to compare various edge detection methods, for fairness it is important
that each edge detector be tuned to its best capabilities. Consequently, each edge
detector has been permitted to train both on random noise fields without edges and

FIGURE 15.5-10. Indications of edge location.

a
1

9
--=

64 64×
σn

SNR h σn⁄( )2
=



LUMINANCE EDGE DETECTOR PERFORMANCE 493

the actual test images before evaluation. For each edge detector, the threshold
parameter has been set to achieve the maximum figure of merit subject to the maxi-
mum allowable false detection rate.

Figure 15.5-11 shows plots of the figure of merit for a vertical ramp edge as a
function of signal-to-noise ratio for several edge detectors (5). The figure of merit is
also plotted in Figure 15.5-12 as a function of edge width. The figure of merit curves
in the figures follow expected trends: low for wide and noisy edges; and high in the
opposite case. Some of the edge detection methods are universally superior to others
for all test images. As a check on the subjective validity of the edge location figure
of merit, Figures 15.5-13 and 15.5-14 present the edge maps obtained for several
high-and low-ranking edge detectors. These figures tend to corroborate the utility of
the figure of merit. A high figure of merit generally corresponds to a well-located
edge upon visual scrutiny, and vice versa.

FIGURE 15.5-11. Edge location figure of merit for a vertical ramp edge as a function of sig-
nal-to-noise ratio for h = 0.1 and w = 1.

(a) 3 × 3 edge detectors

(b) Larger size edge detectors
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15.5.5. Subjective Assessment

In many, if not most applications in which edge detection is performed to outline
objects in a real scene, the only performance measure of ultimate importance is
how  well edge detector markings match with the visual perception of object
boundaries. A human observer is usually able to discern object boundaries in a
scene quite accurately in a perceptual sense. However, most observers have diffi-
culty recording their observations by tracing object boundaries. Nevertheless, in
the evaluation of edge detectors, it is useful to assess them in terms of how well
they produce outline drawings of a real scene that are meaningful to a human
observer.

The peppers image of Figure 15.2-2 has been used for the subjective assessment
of edge detectors. The peppers in the image are visually distinguishable objects, but
shadows and nonuniform lighting create a challenge to edge detectors, which by
definition do not utilize higher-order perceptive intelligence. Figures 15.5-15 and
15.5-16 present edge maps of the peppers image for several edge detectors. The
parameters of the various edge detectors have been chosen to produce the best visual
delineation of objects.

Heath et al. (26) have performed extensive visual testing of several complex edge
detection algorithms, including the Canny and Nalwa–Binford methods, for a num-
ber of natural images. The judgment criterion was a numerical rating as to how well
the edge map generated by an edge detector allows for easy, quick, and accurate rec-
ognition of objects within a test image.

FIGURE 15.5-12. Edge location figure of merit for a vertical ramp edge as a function of
signal-to-noise ratio for h = 0.1 and SNR = 100.
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FIGURE 15.5-13. Edge location performance of Sobel edge detector as a function of signal-
to-noise ratio, h = 0.1, w = 1, a = 1/9.

SNR = 100
(b) Edge map, R = 100%

(d) Edge map, R = 85.1%

(a) Original

(c) Original
SNR = 10

SNR = 1
(e) Original (f ) Edge Map, R = 24.2%
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FIGURE 15.5-14. Edge location performance of several edge detectors for SNR = 10,

h = 0.1, w = 1,  a = 1/9.

(a) Original (b) East compass, R = 66.1%

(c) Roberts magnitude, R = 31.5% (d) Roberts square root, R = 37.0%

(e) Sobel, R = 85.1% (f ) Kirsch, R = 80.8%
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FIGURE 15.5-15. Edge maps of the peppers_mon image for several small edge detectors.

(a) 2 × 2 Roberts, t = 0.08 (b) 3 × 3 Prewitt, t = 0.08

(c) 3 × 3 Sobel, t = 0.09 (d ) 3 × 3 Robinson five-level

(e) 5 × 5 Nevatia−Babu, t = 0.05 (f ) 3 × 3 Laplacian
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FIGURE 15.5-16. Edge maps of the peppers_mon image for several large edge detectors.

(a) 7 × 7 boxcar, t = 0.10 (b) 9 × 9 truncated pyramid, t = 0.10

(c) 11 × 11 Argyle, t = 0.05 (d ) 11 × 11 Macleod, t = 0.10

(e) 11 × 11 derivative of Gaussian, t = 0.11 (f ) 11 × 11 Laplacian of Gaussian
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15.6. COLOR EDGE DETECTION

In Chapter 3 it was established that color images may be described quantitatively at
each pixel by a set of three tristimulus values T1, T2, T3, which are proportional to
the amount of red, green, and blue primary lights required to match the pixel color.
The luminance of the color is a weighted sum  of the tris-
timulus values, where the  are constants that depend on the spectral characteristics
of the primaries.

Several definitions of a color edge have been proposed (29). An edge in a color
image can be said to exist if and only if the luminance field contains an edge. This
definition ignores discontinuities in hue and saturation that occur in regions of con-
stant luminance. Another definition is to judge a color edge present if an edge exists
in any of its constituent tristimulus components. A third definition is based on form-
ing the sum

(15.6-1)

of the gradients  of the three tristimulus values or some linear or nonlinear
color components. A color edge exists if the gradient exceeds a threshold. Still
another definition is based on the vector sum gradient

(15.6-2)

With the tricomponent definitions of color edges, results are dependent on the
particular color coordinate system chosen for representation. Figure 15.6-1 is a color
photograph of the peppers image and monochrome photographs of its red, green,
and blue components. The YIQ and L*a*b* coordinates are shown in Figure 15.6-2.
Edge maps of the individual RGB components are shown in Figure 15.6-3 for Sobel
edge detection. This figure also shows the logical OR of the RGB edge maps plus
the edge maps of the gradient sum and the vector sum. The RGB gradient vector
sum edge map provides slightly better visual edge delineation than that provided by
the gradient sum edge map; the logical OR edge map tends to produce thick edges
and numerous isolated edge points. Sobel edge maps for the YIQ and the L*a*b*
color components are presented in Figures 15.6-4 and 15.6-5. The YIQ gradient vec-
tor sum edge map gives the best visual edge delineation, but it does not delineate
edges quite as well as the RGB vector sum edge map. Edge detection results for the
L*a*b* coordinate system are quite poor because the a* component is very noise
sensitive.

15.7 LINE AND SPOT DETECTION

A line in an image could be considered to be composed of parallel, closely spaced
edges. Similarly, a spot could be considered to be a closed contour of edges.  This

Y a1T1 a2T2 a3T3+ +=
ai
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method of line and spot detection involves the application of scene analysis tech-
niques to spatially relate the constituent edges of the lines and spots. The approach
taken in this chapter is to consider only small-scale models of lines and edges and to
apply the detection methodology developed previously for edges.

Figure 15.1-4 presents several discrete models of lines. For the unit-width line
models, line detection can be accomplished by threshold detecting a line gradient

(15.7-1)

FIGURE 15.6-1.  The peppers_gamma color image and its RGB color components. See

insert for a color representation of this figure.

(a) Monochrome representation (b) Red component

(c) Green component (d) Blue component
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FIGURE 15.6-2. YIQ and L*a*b* color components of the peppers_gamma image.

(a) Y component (b) L* component

(c) I component (d) a* component

(e) Q component (f ) b* component
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FIGURE 15.6-3. Sobel edge maps for edge detection using the RGB color components of

the peppers_gamma image.

(a) Red edge map (b) Logical OR of RGB edges

(c) Green edge map (d ) RGB sum edge map

(e) Blue edge map (f ) RGB vector sum edge map
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FIGURE 15.6-4. Sobel edge maps for edge detection using the YIQ color components of the

peppers_gamma image.

(a) Y edge map (b) Logical OR of YIQ edges

(c) I edge map (d) YIQ sum edge map

(e) Q edge map (f ) YIQ vector sum edge map
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FIGURE 15.6-5. Sobel edge maps for edge detection using the L*a*b* color components of

the peppers_gamma image.

(a) L* edge map (b) Logical OR of L*a*b* edges

(c) a* edge map (d) L*a*b* sum edge map 

(e) b* edge map (f ) L*a*b* vector sum edge map 
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where  is a  line detector impulse response array corresponding to a
specific line orientation. Figure 15.7-1 contains two sets of line detector impulse
response arrays, weighted and unweighted, which are analogous to the Prewitt and
Sobel template matching edge detector impulse response arrays. The detection of
ramp lines, as modeled in Figure 15.1-4, requires  pixel templates.

Unit-width step spots can be detected by thresholding a spot gradient

(15.7-2)

where  is an impulse response array chosen to accentuate the gradient of a
unit-width spot. One approach is to use one of the three types of  Laplacian
operators defined by Eq. 15.3-5, 15.3-6, or 15.3-8, which are discrete approxima-
tions to the sum of the row and column second derivatives of an image. The gradient
responses to these impulse response arrays for the unit-width spot model of Figure
15.1-6a are simply a replicas of each array centered at the spot, scaled by the spot
height h and zero elsewhere. It should be noted that the Laplacian gradient responses
are thresholded for spot detection, whereas the Laplacian responses are examined
for sign changes (zero crossings) for edge detection. The disadvantage to using
Laplacian operators for spot detection is that they evoke a gradient response for
edges, which can lead to false spot detection in a noisy environment. This problem
can be alleviated by the use of a  operator that approximates the continuous

FIGURE 15.7-1. Line detector 3 × 3 impulse response arrays.
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cross second derivative . Prewitt (1, p. 126) has suggested the following
discrete approximation:

 (15.7-3)

The advantage of this operator is that it evokes no response for horizontally or verti-
cally oriented edges, however, it does generate a response for diagonally oriented
edges. The detection of unit-width spots modeled by the ramp model of Figure
15.1-5 requires a  impulse response array. The cross second derivative operator
of Eq. 15.7-3 and the separable eight-connected Laplacian operator are deceptively
similar in appearance; often, they are mistakenly exchanged with one another in the
literature. It should be noted that the cross second derivative is identical to within a
scale factor with the ninth Chebyshev polynomial impulse response array of Figure
15.3-5.

Cook and Rosenfeld (30) and Zucker et al. (31) have suggested several algo-
rithms for detection of large spots. In one algorithm, an image is first smoothed with
a  low-pass filter impulse response array. Then the value of each point in the
averaged image is compared to the average value of its north, south, east, and west
neighbors spaced W pixels away. A spot is marked if the difference is sufficiently
large. A similar approach involves formation of the difference of the average pixel
amplitude in a  window and the average amplitude in a surrounding ring
region of width W. 

Chapter 19 considers the general problem of detecting objects within an image by
template matching. Such templates can be developed to detect large spots.
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16
IMAGE FEATURE EXTRACTION

An image feature is a distinguishing primitive characteristic or attribute of an image.
Some features are natural in the sense that such features are defined by the visual
appearance of an image, while other, artificial features result from specific manipu-
lations of an image. Natural features include the luminance of a region of pixels and
gray scale textural regions. Image amplitude histograms and spatial frequency spec-
tra are examples of artificial features.

Image features are of major importance in the isolation of regions of common
property within an image (image segmentation) and subsequent identification or
labeling of such regions (image classification). Image segmentation is discussed in
Chapter 16. References 1 to 4 provide information on image classification tech-
niques.

This chapter describes several types of image features that have been proposed
for image segmentation and classification. Before introducing them, however,
methods of evaluating their performance are discussed.

16.1. IMAGE FEATURE EVALUATION

There are two quantitative approaches to the evaluation of image features: prototype
performance and figure of merit. In the prototype performance approach for image
classification, a prototype image with regions (segments) that have been indepen-
dently categorized is classified by a classification procedure using various image
features to be evaluated. The classification error is then measured for each feature
set. The best set of features is, of course, that which results in the least classification
error. The prototype performance approach for image segmentation is similar in
nature. A prototype image with independently identified regions is segmented by a

Digital Image Processing: PIKS Inside, Third Edition. William K. Pratt
Copyright © 2001 John Wiley & Sons, Inc.
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segmentation procedure using a test set of features. Then, the detected segments are
compared to the known segments, and the segmentation error is evaluated. The
problems associated with the prototype performance methods of feature evaluation
are the integrity of the prototype data and the fact that the performance indication is
dependent not only on the quality of the features but also on the classification or seg-
mentation ability of the classifier or segmenter.

The figure-of-merit approach to feature evaluation involves the establishment of
some functional distance measurements between sets of image features such that a
large distance implies a low classification error, and vice versa. Faugeras and Pratt
(5) have utilized the Bhattacharyya distance (3) figure-of-merit for texture feature
evaluation. The method should be extensible for other features as well. The Bhatta-
charyya distance (B-distance for simplicity) is a scalar function of the probability
densities of features of a pair of classes defined as

(16.1-1)

where x denotes a vector containing individual image feature measurements with
conditional density . It can be shown (3) that the B-distance is related mono-
tonically to the Chernoff bound for the probability of classification error using a
Bayes classifier. The bound on the error probability is

(16.1-2)

where  represents the a priori class probability. For future reference, the Cher-
noff error bound is tabulated in Table 16.1-1 as a function of B-distance for equally
likely feature classes.

For Gaussian densities, the B-distance becomes

(16.1-3)

where ui and  represent the feature mean vector and the feature covariance matrix
of the classes, respectively. Calculation of the B-distance for other densities is gener-
ally difficult. Consequently, the B-distance figure of merit is applicable only for
Gaussian-distributed feature data, which fortunately is the common case. In prac-
tice, features to be evaluated by Eq. 16.1-3 are measured in regions whose class has
been determined independently. Sufficient feature measurements need be taken so
that the feature mean vector and covariance can be estimated accurately.

B S1 S2,( ) p x S1( )p x S2( )[ ]1 2⁄
xd∫ 

 
 

ln–=

p x Si( )

P P S1( )P S2( )[ ]1 2⁄
B S1 S2,( )–{ }exp≤

P Si( )

B S1 S2,( ) 1

8
--- u1 u2–( )T

ΣΣΣΣ1 ΣΣΣΣ2+

2
------------------ 

  1–
u1 u2–( ) 1

2
---

1

2
--- ΣΣΣΣ1 ΣΣΣΣ2+

ΣΣΣΣ1

1 2⁄ ΣΣΣΣ2

1 2⁄
----------------------------------

 
 
 
 
 

ln+=

ΣΣΣΣi



AMPLITUDE FEATURES 511

TABLE 16.1-1 Relationship of Bhattacharyya Distance 
and Chernoff Error Bound

16.2. AMPLITUDE FEATURES

The most basic of all image features is some measure of image amplitude in terms of
luminance, tristimulus value, spectral value, or other units. There are many degrees
of freedom in establishing image amplitude features. Image variables such as lumi-
nance or tristimulus values may be utilized directly, or alternatively, some linear,
nonlinear, or perhaps noninvertible transformation can be performed to generate
variables in a new amplitude space. Amplitude measurements may be made at spe-
cific image points, [e.g., the amplitude  at pixel coordinate , or over a
neighborhood centered at ]. For example, the average or mean image amplitude
in a  pixel neighborhood is given by

(16.2-1)

where W = 2w + 1. An advantage of a neighborhood, as opposed to a point measure-
ment, is a diminishing of noise effects because of the averaging process. A disadvan-
tage is that object edges falling within the neighborhood can lead to erroneous
measurements.

The median of pixels within a  neighborhood can be used as an alternative
amplitude feature to the mean measurement of Eq. 16.2-1, or as an additional
feature. The median is defined to be that pixel amplitude in the window for which
one-half of the pixels are equal or smaller in amplitude, and one-half are equal or
greater in amplitude. Another useful image amplitude feature is the neighborhood
standard deviation, which can be computed as

(16.2-2)
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In the literature, the standard deviation image feature is sometimes called the image
dispersion. Figure 16.2-1 shows an original image and the mean, median, and stan-
dard deviation of the image computed over a small neighborhood.

The mean and standard deviation of Eqs. 16.2-1 and 16.2-2 can be computed
indirectly in terms of the histogram of image pixels within a neighborhood. This
leads to a class of image amplitude histogram features. Referring to Section 5.7, the
first-order probability distribution of the amplitude of a quantized image may be
defined as

(16.2-3)

where  denotes the quantized amplitude level for . The first-order his-
togram estimate of P(b) is simply

FIGURE 16.2-1. Image amplitude features of the washington_ir image.

(a) Original (b) 7 × 7 pyramid mean

(c) 7 × 7 standard deviation (d ) 7 × 7 plus median
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(16.2-4)

where M represents the total number of pixels in a neighborhood window centered
about , and  is the number of pixels of amplitude  in the same window.

The shape of an image histogram provides many clues as to the character of the
image. For example, a narrowly distributed histogram indicates a low-contrast
image. A bimodal histogram often suggests that the image contains an object with a
narrow amplitude range against a background of differing amplitude. The following
measures have been formulated as quantitative shape descriptions of a first-order
histogram (6).

Mean:

(16.2-5)

Standard deviation:

(16.2-6)

Skewness:

(16.2-7)

Kurtosis:

(16.2-8)
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The factor of 3 inserted in the expression for the Kurtosis measure normalizes SK to
zero for a zero-mean, Gaussian-shaped histogram. Another useful histogram shape
measure is the histogram mode, which is the pixel amplitude corresponding to the
histogram peak (i.e., the most commonly occurring pixel amplitude in the window).
If the histogram peak is not unique, the pixel at the peak closest to the mean is usu-
ally chosen as the histogram shape descriptor.

Second-order histogram features are based on the definition of the joint proba-
bility distribution of pairs of pixels. Consider two pixels  and  that
are located at coordinates  and , respectively, and, as shown in Figure
16.2-2, are separated by r radial units at an angle  with respect to the horizontal
axis. The joint distribution of image amplitude values is then expressed as

(16.2-11)

where  and  represent quantized pixel amplitude values. As a result of the dis-
crete rectilinear representation of an image, the separation parameters  may
assume only certain discrete values. The histogram estimate of the second-order dis-
tribution is

(16.2-12)

where M is the total number of pixels in the measurement window and 
denotes the number of occurrences for which  and .

If the pixel pairs within an image are highly correlated, the entries in  will
be clustered along the diagonal of the array. Various measures, listed below, have
been proposed (6,7) as measures that specify the energy spread about the diagonal of

.

Autocorrelation:

(16.2-13)

FIGURE 16.2-2. Relationship of pixel pairs.
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Covariance:

(16.2-14a)

where

(16.2-14b)

(16.2-14c)

Inertia:

(16.2-15)

Absolute value:

(16.2-16)

Inverse difference:

(16.2-17)

Energy:

(16.2-18)

Entropy:

(16.2-19)

The utilization of second-order histogram measures for texture analysis is consid-
ered in Section 16.6.
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16.3. TRANSFORM COEFFICIENT FEATURES

The coefficients of a two-dimensional transform of a luminance image specify the
amplitude of the luminance patterns (two-dimensional basis functions) of a trans-
form such that the weighted sum of the luminance patterns is identical to the image.
By this characterization of a transform, the coefficients may be considered to indi-
cate the degree of correspondence of a particular luminance pattern with an image
field. If a basis pattern is of the same spatial form as a feature to be detected within
the image, image detection can be performed simply by monitoring the value of the
transform coefficient. The problem, in practice, is that objects to be detected within
an image are often of complex shape and luminance distribution, and hence do not
correspond closely to the more primitive luminance patterns of most image trans-
forms.

Lendaris and Stanley (8) have investigated the application of the continuous two-
dimensional Fourier transform of an image, obtained by a coherent optical proces-
sor, as a means of image feature extraction. The optical system produces an electric
field radiation pattern proportional to

(16.3-1)

where  are the image spatial frequencies. An optical sensor produces an out-
put

(16.3-2)

proportional to the intensity of the radiation pattern. It should be observed that
 and  are unique transform pairs, but  is not uniquely

related to . For example,  does not change if the origin of 
is shifted. In some applications, the translation invariance of  may be a
benefit. Angular integration of  over the spatial frequency plane produces
a spatial frequency feature that is invariant to translation and rotation. Representing

 in polar form, this feature is defined as

(16.3-3)

where  and . Invariance to changes in scale is an
attribute of the feature

(16.3-4)
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The Fourier domain intensity pattern  is normally examined in specific
regions to isolate image features. As an example, Figure 16.3-1 defines regions for
the following Fourier features:

Horizontal slit:

(16.3-5)

Vertical slit:

(16.3-6)

Ring:

(16.3-7)

Sector:

(16.3-8)

FIGURE 16.3-1. Fourier transform feature masks.
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For a discrete image array , the discrete Fourier transform

(16.3-9)

FIGURE 16.3-2. Discrete Fourier spectra of objects; log magnitude displays.

(a) Rectangle (b) Rectangle transform

(c) Ellipse (d) Ellipse transform

(e) Triangle (f ) Triangle transform
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for  can be examined directly for feature extraction purposes. Hor-
izontal slit, vertical slit, ring, and sector features can be defined analogous to
Eqs. 16.3-5 to 16.3-8. This concept can be extended to other unitary transforms,
such as the Hadamard and Haar transforms. Figure 16.3-2 presents discrete Fourier
transform log magnitude displays of several geometric shapes.

16.4. TEXTURE DEFINITION

Many portions of images of natural scenes are devoid of sharp edges over large
areas. In these areas, the scene can often be characterized as exhibiting a consistent
structure analogous to the texture of cloth. Image texture measurements can be used
to segment an image and classify its segments.

Several authors have attempted qualitatively to define texture. Pickett (9) states
that “texture is used to describe two dimensional arrays of variations.. . The ele-
ments and rules of spacing or arrangement may be arbitrarily manipulated, provided
a characteristic repetitiveness remains.” Hawkins (10) has provided a more detailed
description of texture: “The notion of texture appears to depend upon three ingredi-
ents: (1) some local 'order' is repeated over a region which is large in comparison to
the order's size, (2) the order consists in the nonrandom arrangement of elementary
parts and (3) the parts are roughly uniform entities having approximately the same
dimensions everywhere within the textured region.” Although these descriptions of
texture seem perceptually reasonably, they do not immediately lead to simple quan-
titative textural measures in the sense that the description of an edge discontinuity
leads to a quantitative description of an edge in terms of its location, slope angle,
and height.

Texture is often qualitatively described by its coarseness in the sense that a patch
of wool cloth is coarser than a patch of silk cloth under the same viewing conditions.
The coarseness index is related to the spatial repetition period of the local structure.
A large period implies a coarse texture; a small period implies a fine texture. This
perceptual coarseness index is clearly not sufficient as a quantitative texture mea-
sure, but can at least be used as a guide for the slope of texture measures; that is,
small numerical texture measures should imply fine texture, and large numerical
measures should indicate coarse texture. It should be recognized that texture is a
neighborhood property of an image point. Therefore, texture measures are inher-
ently dependent on the size of the observation neighborhood. Because texture is a
spatial property, measurements should be restricted to regions of relative uniformity.
Hence it is necessary to establish the boundary of a uniform textural region by some
form of image segmentation before attempting texture measurements.
Texture may be classified as being artificial or natural. Artificial textures consist of
arrangements of symbols, such as line segments, dots, and stars placed against a
neutral background. Several examples of artificial texture are presented in Figure
16.4-1 (9).  As the name implies, natural textures are images of natural scenes con-
taining semirepetitive arrangements of pixels. Examples include photographs
of brick walls, terrazzo tile, sand, and grass. Brodatz (11) has published an album of
photographs of naturally occurring textures. Figure 16.4-2 shows several natural
texture examples obtained by digitizing photographs from the Brodatz album.

u v, 0 … N 1–, ,=
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FIGURE 16.4-1. Artificial texture.
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16.5. VISUAL TEXTURE DISCRIMINATION

A discrete stochastic field is an array of numbers that are randomly distributed in
amplitude and governed by some joint probability density (12). When converted to
light intensities, such fields can be made to approximate natural textures surpris-
ingly well by control of the generating probability density. This technique is useful
for generating realistic appearing artificial scenes for applications such as airplane
flight simulators. Stochastic texture fields are also an extremely useful tool for
investigating human perception of texture as a guide to the development of texture
feature extraction methods.

In the early 1960s, Julesz (13) attempted to determine the parameters of stochas-
tic texture fields of perceptual importance. This study was extended later by Julesz
et al. (14–16). Further extensions of Julesz’s work have been made by Pollack (17),

FIGURE 16.4-2. Brodatz texture fields.

(a) Sand (b) Grass

(c) Wool (d) Raffia
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Purks and Richards (18), and Pratt et al. (19). These studies have provided valuable
insight into the mechanism of human visual perception and have led to some useful
quantitative texture measurement methods.

Figure 16.5-1 is a model for stochastic texture generation. In this model, an array
of independent, identically distributed random variables  passes through a
linear or nonlinear spatial operator  to produce a stochastic texture array

. By controlling the form of the generating probability density  and the
spatial operator, it is possible to create texture fields with specified statistical proper-
ties. Consider a continuous amplitude pixel  at some coordinate  in .
Let the set  denote neighboring pixels but not necessarily nearest geo-
metric neighbors, raster scanned in a conventional top-to-bottom, left-to-right fash-
ion. The conditional probability density of  conditioned on the state of its
neighbors is given by

(16.5-1)

The first-order density  employs no conditioning, the second-order density
 implies that J = 1, the third-order density implies that J = 2, and so on.

16.5.1. Julesz Texture Fields

In his pioneering texture discrimination experiments, Julesz utilized Markov process
state methods to create stochastic texture arrays independently along rows of the
array. The family of Julesz stochastic arrays are defined below.

1. Notation. Let  denote a row neighbor of pixel  and let
P(m), for m = 1, 2,..., M, denote a desired probability generating function.

2. First-order process. Set  for a desired probability function P(m).
The resulting pixel probability is

(16.5-2)

FIGURE 16.5-1. Stochastic texture field generation model.
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3. Second-order process. Set  for , and set
, where the modulus function 

 for integers p and q. This gives a first-order probability

(16.5-3a)

and a transition probability

(16.5-3b)

4. Third-order process. Set  for , and set
 for . Choose  to satisfy 

. The governing probabilities then become

(16.5-4a)

(16.5-4b)

(16.5-4c)

This process has the interesting property that pixel pairs along a row are
independent, and consequently, the process is spatially uncorrelated.

Figure 16.5-2 contains several examples of Julesz texture field discrimination
tests performed by Pratt et al. (19). In these tests, the textures were generated
according to the presentation format of Figure 16.5-3. In these and subsequent
visual texture discrimination tests, the perceptual differences are often small. Proper
discrimination testing should be performed using high-quality photographic trans-
parencies, prints, or electronic displays. The following moments were used as sim-
ple indicators of differences between generating distributions and densities of the
stochastic fields.
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The examples of Figure 16.5-2a and b indicate that texture field pairs differing in
their first- and second-order distributions can be discriminated. The example of
Figure 16.5-2c supports the conjecture, attributed to Julesz, that differences in third-
order, and presumably, higher-order distribution texture fields cannot be perceived
provided that their first-order and second- distributions are pairwise identical.

FIGURE 16.5-2. Field comparison of Julesz stochastic fields; .

(a) Different first order
sA = 0.289, sB = 0.204

(b) Different second order
sA = 0.289, sB = 0.289
aA = 0.250, aB = − 0.250

(c) Different third order
sA = 0.289, sB = 0.289
aA = 0.000, aB = 0.000
qA = 0.058, qB = − 0.058

ηA ηB 0.500= =
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16.5.2. Pratt, Faugeras, and Gagalowicz Texture Fields

Pratt et al. (19) have extended the work of Julesz et al. (13–16) in an attempt to study
the discriminability of spatially correlated stochastic texture fields. A class of Gaus-
sian fields was generated according to the conditional probability density

(16.5-6a)

where

(16.5-6b)

(16.5-6c)

The covariance matrix of Eq. 16.5-6a is of the parametric form

FIGURE 16.5-3. Presentation format for visual texture discrimination experiments.
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(16.5-7)

where  denote correlation lag terms. Figure 16.5-4 presents an example of
the row correlation functions used in the texture field comparison tests described
below.

Figures 16.5-5 and 16.5-6 contain examples of Gaussian texture field comparison
tests. In Figure 16.5-5, the first-order densities are set equal, but the second-order
nearest neighbor conditional densities differ according to the covariance function plot
of Figure 16.5-4a. Visual discrimination can be made in Figure 16.5-5, in which the
correlation parameter differs by 20%. Visual discrimination has been found to be
marginal when the correlation factor differs by less than 10% (19). The first- and
second-order densities of each field are fixed in Figure 16.5-6, and the third-order

FIGURE 16.5-4. Row correlation factors for stochastic field generation. Dashed line, field
A; solid line, field B.

(b) Constrained third-order density

(a) Constrained second-order density

KJ 1+

1 α β γ …

α

β σ 2–
KJ

γ

=

…

α β γ …, , ,
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conditional densities differ according to the plan of Figure 16.5-4b. Visual discrimi-
nation is possible. The test of Figure 16.5-6 seemingly provides a counterexample to
the Julesz conjecture. In this test,  and , but

. However, the general second-order density pairs
 and  are not necessarily equal for an arbitrary neighbor , and

therefore the conditions necessary to disprove Julesz’s conjecture are violated.
To test the Julesz conjecture for realistically appearing texture fields, it is neces-

sary to generate a pair of fields with identical first-order densities, identical
Markovian type second-order densities, and differing third-order densities for every

FIGURE 16.5-5. Field comparison of Gaussian stochastic fields with different second-order
nearest neighbor densities; .

FIGURE 16.5-6. Field comparison of Gaussian stochastic fields with different third-order
nearest neighbor densities;  .

(a) aA = 0.750, aB = 0.900 (b) aA = 0.500, aB = 0.600

ηA ηB 0.500 σA, σB 0.167= = = =

p
A
x0( ) p

B
x0( )=[ ] p

A
x0 x1,( ) p

B
x0 x1,( )=

p
A
x0 x1 x2, ,( ) p

B
x0 x1 x2, ,( )≠

p
A
x0 zj,( ) p

B
x0 zj,( ) zj

(a) bA = 0.563, bB = 0.600 (b) bA = 0.563, bB = 0.400

ηA ηB 0.500 σA, σB 0.167 αA, αB 0.750= = = = = =
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pair of similar observation points in both fields. An example of such a pair of fields
is presented in Figure 16.5-7 for a non-Gaussian generating process (19). In this
example, the texture appears identical in both fields, thus supporting the Julesz
conjecture.

Gagalowicz has succeeded in generating a pair of texture fields that disprove the
Julesz conjecture (20). However, the counterexample, shown in Figure 16.5-8, is not
very realistic in appearance. Thus, it seems likely that if a statistically based texture
measure can be developed, it need not utilize statistics greater than second-order.

FIGURE 16.5-7. Field comparison of correlated Julesz stochastic fields with identical first-
and second-order densities, but different third-order densities.

FIGURE 16.5-8. Gagalowicz counterexample.

hA = 0.500, hB = 0.500
sA = 0.167, sB = 0.167
aA = 0.850, aB = 0.850
qA = 0.040, qB = − 0.027
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Because a human viewer is sensitive to differences in the mean, variance, and
autocorrelation function of the texture pairs, it is reasonable to investigate the
sufficiency of these parameters in terms of texture representation. Figure 16.5-9 pre-
sents examples of the comparison of texture fields with identical means, variances,
and autocorrelation functions, but different nth-order probability densities. Visual
discrimination is readily accomplished between the fields. This leads to the conclu-
sion that these low-order moment measurements, by themselves, are not always suf-
ficient to distinguish texture fields.

16.6. TEXTURE FEATURES

As noted in Section 16.4, there is no commonly accepted quantitative definition of
visual texture. As a consequence, researchers seeking a quantitative texture measure
have been forced to search intuitively for texture features, and then attempt to evalu-
ate their performance by techniques such as those presented in Section 16.1. The
following subsections describe several texture features of historical and practical
important. References 20 to 22 provide surveys on image texture feature extraction.
Randen and Husoy (23) have performed a comprehensive study of many texture fea-
ture extraction methods.

FIGURE 16.5-9. Field comparison of correlated stochastic fields with identical means,
variances, and autocorrelation functions, but different nth-order probability densities gener-
ated by different processing of the same input field. Input array consists of uniform random
variables raised to the 256th power. Moments are computed.

hA = 0.413, hB = 0.412
sA = 0.078, sB = 0.078
aA = 0.915, aB = 0.917
qA = 1.512, qB = 0.006
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16.6.1. Fourier Spectra Methods

Several studies (8,24,25) have considered textural analysis based on the Fourier
spectrum of an image region, as discussed in Section 16.2. Because the degree of
texture coarseness is proportional to its spatial period, a region of coarse texture
should have its Fourier spectral energy concentrated at low spatial frequencies. Con-
versely, regions of fine texture should exhibit a concentration of spectral energy at
high spatial frequencies. Although this correspondence exists to some degree, diffi-
culties often arise because of spatial changes in the period and phase of texture pat-
tern repetitions. Experiments (10) have shown that there is considerable spectral
overlap of regions of distinctly different natural texture, such as urban, rural, and
woodland regions extracted from aerial photographs. On the other hand, Fourier
spectral analysis has proved successful (26,27) in the detection and classification of
coal miner’s black lung disease, which appears as diffuse textural deviations from
the norm.

16.6.2. Edge Detection Methods

Rosenfeld and Troy (28) have proposed a measure of the number of edges in a
neighborhood as a textural measure. As a first step in their process, an edge map
array  is produced by some edge detector such that  for a detected
edge and  otherwise. Usually, the detection threshold is set lower than
the normal setting for the isolation of boundary points. This texture measure is
defined as

(16.6-1)

where  is the dimension of the observation window. A variation of this
approach is to substitute the edge gradient  for the edge map array in
Eq. 16.6-1. A generalization of this concept is presented in Section 16.6.4.

16.6.3. Autocorrelation Methods

The autocorrelation function has been suggested as the basis of a texture measure
(28). Although it has been demonstrated in the preceding section that it is possible to
generate visually different stochastic fields with the same autocorrelation function,
this does not necessarily rule out the utility of an autocorrelation feature set for nat-
ural images. The autocorrelation function is defined as

(16.6-2)
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for computation over a  window with  pixel lags. Presumably, a
region of coarse texture will exhibit a higher correlation for a fixed shift  than
will a region of fine texture. Thus, texture coarseness should be proportional to the
spread of the autocorrelation function. Faugeras and Pratt (5) have proposed the fol-
lowing set of autocorrelation spread measures:

(16.6-3a)

where

(16.6-3b)

(16.6-3c)

In Eq. 16.6-3, computation is only over one-half of the autocorrelation function
because of its symmetry. Features of potential interest include the profile spreads
S(2, 0) and S(0, 2), the cross-relation S(1, 1), and the second-degree spread S(2, 2).

Figure 16.6-1 shows perspective views of the autocorrelation functions of the
four Brodatz texture examples (5). Bhattacharyya distance measurements of these
texture fields, performed by Faugeras and Pratt (5), are presented in Table 16.6-1.
These B-distance measurements indicate that the autocorrelation shape features are
marginally adequate for the set of four shape features, but unacceptable for fewer
features.  Tests by Faugeras and Pratt (5) verify that the B-distances are low for

FIGURE 16.6-1. Perspective views of autocorrelation functions of Brodatz texture fields.

W W× T– m n, T≤ ≤
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(a) Sand (b) Grass

(c) Wool (d ) Raffia
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TABLE 16.6-1. Bhattacharyya Distance of  Texture Feature Sets for Prototype  Texture
Fields: Autocorrelation Features

the stochastic field pairs of Figure 16.5-9, which have the same autocorrelation
functions but are visually distinct.

16.6.4. Decorrelation Methods

Stochastic texture fields generated by the model of Figure 16.5-1 can be described
quite compactly by specification of the spatial operator  and the stationary
first-order probability density p(W) of the independent, identically distributed gener-
ating process . This observation has led to a texture feature extraction proce-
dure, developed by Faugeras and Pratt (5), in which an attempt has been made to
invert the model and estimate its parameters. Figure 16.6-2 is a block diagram of
their decorrelation method of texture feature extraction. In the first step of the
method, the spatial autocorrelation function  is measured over a texture
field to be analyzed. The autocorrelation function is then used to develop a whiten-
ing filter, with an impulse response , using techniques described in Section
19.2. The whitening filter is a special type of decorrelation operator. It is used to
generate the whitened field

(16.6-4)

This whitened field, which is spatially uncorrelated, can be utilized as an estimate
of  the  independent  generating process  by forming its first-order histogram.

Field Pair Set 1a Set 2b Set 3c

Grass – sand 5.05 4.29 2.92

Grass – raffia 7.07 5.32 3.57

Grass – wool 2.37 0.21 0.04

Sand – raffia 1.49 0.58 0.35

Sand – wool 6.55 4.93 3.14

Raffia – wool 8.70 5.96 3.78

Average 5.21 3.55 2.30

 a1: S(2, 0), S(0, 2), S(1, 1), S(2,2).
 b2: S(1,1), S(2,2).
 c3: S(2,2).

O ·{ }

W j k,( )

AF m n,( )

HW j k,( )

Ŵ j k,( ) F j k,( ) �* HW j k,( )=

W j k,( )
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FIGURE 16.6-2. Decorrelation method of texture feature extraction.

FIGURE 16.6-3. Whitened Brodatz texture fields.

(a) Sand (b) Grass

(c) Wool (d ) Raffia
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If  were known exactly, then, in principle, it could be used to identify
 from the texture observation . But, the whitened field estimate 

can only be used to identify the autocorrelation function, which, of course, is already
known. As a consequence, the texture generation model cannot be inverted.
However, the shape of the histogram of  augmented by the shape of the
autocorrelation function have proved to be useful texture features.

Figure 16.6-3 shows the whitened texture fields of the Brodatz test images.
Figure 16.6-4 provides plots of their histograms. The whitened fields are observed
to be visually distinctive; their histograms are also different from one another.
Tables 16.6-2 and 16.6-3 list, respectively, the Bhattacharyya distance
measurements for histogram shape features alone, and histogram and
autocorrelation shape features. The B-distance is relatively low for some of the test
textures for histogram-only features. A combination of the autocorrelation shape
and histogram shape features provides good results, as noted in Table 16.6-3.

An obvious disadvantage of the decorrelation method of texture measurement, as
just described, is the large amount of computation involved in generating the
whitening operator. An alternative is to use an approximate decorrelation operator.
Two candidates, investigated by Faugeras and Pratt (5), are the Laplacian and Sobel
gradients. Figure 16.6-5 shows the resultant decorrelated fields for these operators.
The B-distance measurements using the Laplacian and Sobel gradients are presented
in Tables 16.6-2 and 16.6-3. These tests indicate that the whitening operator is
superior, on average, to the Laplacian operator. But the Sobel operator yields the
largest average and largest minimum B-distances.

FIGURE 16.6-4. First-order histograms of whitened Brodatz texture fields.

W j k,( )
O ·{ } F j k,( ) Ŵ j k,( )

Ŵ j k,( )
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16.6.5. Dependency Matrix Methods

Haralick et al. (7) have proposed a number of textural features based on the joint
amplitude histogram of pairs of pixels. If an image region contains fine texture, the
two-dimensional histogram of pixel pairs will tend to be uniform, and for coarse tex-
ture, the histogram values will be skewed toward the diagonal of the histogram.
Consider the pair of pixels  and  that are separated by r radial units at
an angle  with respect to the horizontal axis. Let  represent the
two-dimensional histogram measurement of an image over some  window
where each pixel is quantized over a range . The two-dimensional his-
togram can be considered as an estimate of the joint probability distribution

(16.6-5)

FIGURE 16.6-5. Laplacian and Sobel gradients of Brodatz texture fields.

(a) Laplacian, sand (b) Sobel, sand

(c) Laplacian, raffia (d ) Sobel, raffia
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For each member of the parameter set , the two-dimensional histogram
may be regarded as a  array of numbers relating the measured statistical
dependency of pixel pairs. Such arrays have been called a gray scale dependency
matrix or a co-occurrence matrix. Because a  histogram array must be
accumulated for each image point  and separation set  under
consideration, it is usually  computationally necessary to restrict the angular and
radial separation to a limited number of values. Figure 16.6-6 illustrates geometrical
relationships of histogram measurements made for four radial separation points and
angles of  radians under the assumption of angular symmetry.
To obtain statistical confidence in estimation of the joint probability distribution, the
histogram must contain a reasonably large average occupancy level. This can be
achieved either by restricting the number of amplitude quantization levels or by
utilizing a relatively large measurement window. The former approach results in a
loss of accuracy in the measurement of low-amplitude texture, while the latter
approach causes errors if the texture changes over the large window. A typical
compromise is to use 16 gray levels and a window of about 30 to 50 pixels on each
side. Perspective views of joint amplitude histograms of two texture fields are
presented in Figure 16.6-7.

For a given separation set , the histogram obtained for fine texture tends to
be more uniformly dispersed than the histogram for coarse texture. Texture coarse-
ness can be measured in terms of the relative spread of histogram occupancy cells
about the main diagonal of the histogram. Haralick et al. (7) have proposed a num-
ber of spread indicators for texture measurement. Several of these have been
presented in Section 16.2. As an example, the inertia function of Eq. 16.2-15 results
in a texture measure of the form

(16.6-6)

FIGURE 16.6-6. Geometry for measurement of gray scale dependency matrix.
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If the textural region of interest is suspected to be angularly invariant, it is reason-
able to average over the measurement angles of a particular measure to produce the
mean textural measure (20)

(16.6-7)

where the summation is over the angular measurements, and  represents the num-
ber of such measurements. Similarly, an angular-independent texture variance may
be defined as

(16.6-8)

FIGURE 16.6-7. Perspective views of gray scale dependency matrices for , .

(a) Grass (b) Dependency matrix, grass

(c) Ivy (d) Dependency matrix, ivy
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Another useful measurement is the angular independent spread defined by

(16.6-9)

16.6.6. Microstructure Methods

Examination of the whitened, Laplacian, and Sobel gradient texture fields of Figures
16.6-3 and 16.6-5 reveals that they appear to accentuate the microstructure of the
texture. This observation was the basis of a texture feature extraction scheme devel-
oped by Laws (29), and described in Figure 16.6-8. Laws proposed that the set of
nine  pixel impulse response arrays  shown in Figure 16.6-9, be con-
volved with a texture field to accentuate its microstructure. The ith microstructure
array is defined as

(16.6-10)

FIGURE 16.6-8. Laws microstructure texture feature extraction method.
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Then, the energy of these microstructure arrays is measured by forming their mov-
ing window standard deviation  according to Eq. 16.2-2, over a window that
contains a few cycles of the repetitive texture.

Figure 16.6-10 shows a mosaic of several Brodatz texture fields that have been
used to test the Laws feature extraction method. Note that some of the texture fields
appear twice in the mosaic. Figure 16.6-11 illustrates the texture arrays . In
classification tests of the Brodatz textures performed by Laws (29), the correct tex-
ture was identified in nearly 90% of the trials.

Many of the microstructure detection operators of Figure 16.6-9 have been
encountered previously in this book: the pyramid average, the Sobel horizontal and
vertical gradients, the weighted line horizontal and vertical gradients, and the cross
second derivative. The nine Laws operators form a basis set that can be generated
from all outer product combinations of the three vectors

 (16.6-11a)

 (16.6-11b)

FIGURE 16.6-9. Laws microstructure impulse response arrays.
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 (16.6-11c)

Alternatively, the  Chebyshev basis set proposed by Haralick (30) for edge
detection, as described in Section 16.3.3, can be used for texture measurement. The

first Chebyshev basis vector is . The other two are identical to

Eqs. 16.6-11b and 16.6-11c. The Laws procedure can be extended by using larger
size Chebyshev arrays or other types of basis arrays (31).

Ade (32) has suggested a microstructure texture feature extraction procedure sim-
ilar in nature to the Laws method, which is based on a principal components trans-
formation of a texture sample. In the development of this transformation, pixels
within a  neighborhood are regarded as being column stacked into a  vec-
tor, as shown in Figure 16.6-12a. Then a  covariance matrix K that specifies all
pairwise covariance relationships of pixels within the stacked vector is estimated
from a set of prototype texture fields. Next, a  transformation matrix T that
diagonalizes the covariance matrix K is computed, as described in Eq. 5.8-7. The
rows of T are eigenvectors of the principal components transformation. Each eigen

FIGURE 16.6-10. Mosaic of Brodatz texture fields.
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FIGURE 16.6-11. Laws microstructure texture features.

(a) Laws no. 1 (b) Laws no. 2

(c) Laws no. 3 (d ) Laws no. 4

(e) Laws no. 5 (f ) Laws no. 6
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vector is then cast into a  impulse response array by the destacking operation of
Eq. 5.3-4. The resulting nine eigenmatrices are then used in place of the Laws fixed
impulse response arrays, as shown in Figure 16.6-8. Ade (32,33) has computed
eigenmatrices for a Brodatz texture field and a cloth sample. Interestingly, these
eigenmatrices are similar in structure to the Laws arrays.

16.6.7. Gabor Filter Methods

The microstructure method of texture feature extraction is not easily scalable.
Microstructure arrays must be derived to match the inherent periodicity of each
texture to be characterized. Bovik et al. (34–36) have utilized Gabor filters (37) as
an efficient means of scaling the impulse response function arrays of Figure 16.6-8
to the texture periodicity. A two-dimensional Gabor filter is a complex field sinuso-
idal grating that is modulated by a two-dimensional Gaussian function in the spatial

FIGURE 16.6-11. (continued)  Laws microstructure texture features.

(g) Laws no. 7 (h) Laws no. 8

(i ) Laws no. 9

3 3×
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domain (35). Gabor filters have tunable orientation and radial frequency passbands
and tunable center frequencies. A special case of the Gabor filter is the daisy petal
filter, in which the filter lobes radiate from the origin of the spatial frequency
domain. The continuous domain impulse response function of the daisy petal Gabor
filter is given by (35)

 (16.6-12)

where F is a scaling factor and . The Gaussian component is

 (16.6-13)

FIGURE 16.6-12. Neighborhood covariance relationships.
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where  is the Gaussian spread factor and  is the aspect ratio between the x and y
axes. The rotation of coordinates is specified by

 (16.6-14)

where  is the orientation angle with respect to the x axis. The continuous domain
filter transfer function is given by (35)

 (16.6-15)

Figure 16.6-13 shows the relationship between the real and imaginary components
of the impulse response array and the magnitude of the transfer function (35).

Figure 16.6-13. Relationship between impulse response array and transfer function of a
Gabor filter.
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The impulse response array is composed of sine-wave gratings within the elliptical
region. The half energy profile of the transfer function is shown in gray.

In the comparative study of texture classification methods by Randen and Husoy
(23), The Gabor filter method, like many other methods, gave mixed results. It per-
formed well on some texture samples, but poorly on others.

16.6.8. Transform and Wavelet Methods

The Fourier spectra method of texture feature extraction can be generalized to other
unitary transforms. The concept is straightforward. A  texture sample is subdi-
vided into  pixel arrays, and a unitary transform is performed for each array
yielding a  feature vector. The window size needs to large enough to contain
several cycles of the texture periodicity.

Mallat (38) has used the discrete wavelet transform, based on Haar wavelets (see
Section 8.4.2) as a means of generating texture feature vectors. Improved results
have been obtained by Unser (39), who has used a complete Haar-based wavelet
transform for an  window. In their comparative study of texture classification,
Randen and Husoy (23) used several types of Daubechies transforms up to size 10
(see Section 8.4-4).

The transform and wavelet methods provide reasonably good classification for
many texture samples (23). However, the computational requirement is high for
large windows.

16.6.9. Singular-Value Decomposition Methods

Ashjari (40) has proposed a texture measurement method based on the singular-
value decomposition of a texture sample. In this method, a  texture sample is
treated as a  matrix X and the amplitude-ordered set of singular values s(n) for
n = 1, 2, . . ., N is computed, as described in Appendix A1.2. If the elements of X are
spatially unrelated to one another, the singular values tend to be uniformly distrib-
uted in amplitude. On the other hand, if the elements of X are highly structured, the
singular-value distribution tends to be skewed such that the lower-order singular val-
ues are much larger than the higher-order ones.

Figure 16.6-14 contains measurements of the singular-value distributions of the
four Brodatz textures performed by Ashjari (40). In this experiment, the 
pixel texture originals were first subjected to a statistical rescaling process to pro-
duce four normalized texture images whose first-order distributions were Gaussian
with identical moments. Next, these normalized texture images were subdivided into
196 nonoverlapping  pixel blocks, and an SVD transformation was taken of
each block. Figure 16.6-14 is a plot of the average value of each singular value. The
shape of the singular-value distributions can be quantified by the one-dimensional
shape descriptors defined in Section 16.2. Table 16.6-4 lists Bhattacharyya distance
measurements obtained by Ashjari (30) for the mean, standard deviation, skewness,
and kurtosis shape descriptors. For this experiment, the B-distances are relatively
high, and therefore good classification results should be expected.

N N×
M M×
M

2
1×

8 8×

N N×
N N×

512 512×

32 32×
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TABLE 16.6-4. Bhattacharyya Distance of SVD Texture     
Feature Sets for Prototype Texture Fields: SVD Features
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17
IMAGE SEGMENTATION

Segmentation of an image entails the division or separation of the image into
regions of similar attribute. The most basic attribute for segmentation is image lumi-
nance amplitude for a monochrome image and color components for a color image.
Image edges and texture are also useful attributes for segmentation.

The definition of segmentation adopted in this chapter is deliberately restrictive;
no contextual information is utilized in the segmentation. Furthermore, segmenta-
tion does not involve classifying each segment. The segmenter only subdivides an
image; it does not attempt to recognize the individual segments or their relationships
to one another.

There is no theory of image segmentation. As a consequence, no single standard
method of image segmentation has emerged. Rather, there are a collection of ad hoc
methods that have received some degree of popularity. Because the methods are ad
hoc, it would be useful to have some means of assessing their performance. Haralick
and Shapiro (1) have established the following qualitative guideline for a good
image segmentation: “Regions of an image segmentation should be uniform and
homogeneous with respect to some characteristic such as gray tone or texture.
Region interiors should be simple and without many small holes. Adjacent regions
of a segmentation should have significantly different values with respect to the char-
acteristic on which they are uniform. Boundaries of each segment should be simple,
not ragged, and must be spatially accurate.” Unfortunately, no quantitative image
segmentation performance metric has been developed.

Several generic methods of image segmentation are described in the following
sections. Because of their complexity, it is not feasible to describe all the details of
the various algorithms. Surveys of image segmentation methods are given in Refer-
ences 1 to 6.

Digital Image Processing: PIKS Inside, Third Edition. William K. Pratt
Copyright © 2001 John Wiley & Sons, Inc.

ISBNs: 0-471-37407-5 (Hardback); 0-471-22132-5 (Electronic)
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17.1. AMPLITUDE SEGMENTATION METHODS

This section considers several image segmentation methods based on the threshold-
ing of luminance or color components of an image. An amplitude projection
segmentation technique is also discussed.

17.1.1. Bilevel Luminance Thresholding

Many images can be characterized as containing some object of interest of reason-
ably uniform brightness placed against a background of differing brightness. Typical
examples include handwritten and typewritten text, microscope biomedical samples,
and airplanes on a runway. For such images, luminance is a distinguishing feature
that can be utilized to segment the object from its background. If an object of inter-
est is white against a black background, or vice versa, it is a trivial task to set a
midgray threshold to segment the object from the background. Practical problems
occur, however, when the observed image is subject to noise and when both the
object and background assume some broad range of gray scales. Another frequent
difficulty is that the background may be nonuniform.

Figure 17.1-1a shows a digitized typewritten text consisting of dark letters
against a lighter background. A gray scale histogram of the text is presented in Fig-
ure 17.1-1b. The expected bimodality of the histogram is masked by the relatively
large percentage of background pixels. Figure 17.1-1c to e are threshold displays in
which all pixels brighter than the threshold are mapped to unity display luminance
and all the remaining pixels below the threshold are mapped to the zero level of dis-
play luminance. The photographs illustrate a common problem associated with
image thresholding. If the threshold is set too low, portions of the letters are deleted
(the stem of the letter “p” is fragmented). Conversely, if the threshold is set too high,
object artifacts result (the loop of the letter “e” is filled in).

Several analytic approaches to the setting of a luminance threshold have been
proposed (7,8). One method is to set the gray scale threshold at a level such that the
cumulative gray scale count matches an a priori assumption of the gray scale proba-
bility distribution (9). For example, it may be known that black characters cover
25% of the area of a typewritten page. Thus, the threshold level on the image might
be set such that the quartile of pixels with the lowest luminance are judged to be
black. Another approach to luminance threshold selection is to set the threshold at
the minimum point of the histogram between its bimodal peaks (10). Determination
of the minimum is often difficult because of the jaggedness of the histogram. A
solution to this problem is to fit the histogram values between the peaks with some
analytic function and then obtain its minimum by differentiation. For example, let y
and x represent the histogram ordinate and abscissa, respectively. Then the quadratic
curve

(17.1-1)y ax
2
bx c+ +=
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FIGURE 17.1-1. Luminance thresholding segmentation of typewritten text.

(a) Gray scale text (b) Histogram

(c) High threshold, T = 0.67 (d ) Medium threshold, T = 0.50

(f ) Histogram, Laplacian mask(e) Low threshold, T = 0.10
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where a, b, and c are constants provides a simple histogram approximation in the
vicinity of the histogram valley. The minimum histogram valley occurs for

. Papamarkos and Gatos (11) have extended this concept for threshold
selection.

Weska et al. (12) have suggested the use of a Laplacian operator to aid in lumi-
nance threshold selection. As defined in Eq. 15.3-1, the Laplacian forms the spatial
second partial derivative of an image. Consider an image region in the vicinity of an
object in which the luminance increases from a low plateau level to a higher plateau
level in a smooth ramplike fashion. In the flat regions and along the ramp, the Lapla-
cian is zero. Large positive values of the Laplacian will occur in the transition region
from the low plateau to the ramp; large negative values will be produced in the tran-
sition from the ramp to the high plateau. A gray scale histogram formed of only
those pixels of the original image that lie at coordinates corresponding to very high
or low values of the Laplacian tends to be bimodal with a distinctive valley between
the peaks. Figure 17.1-1f shows the histogram of the text image of Figure 17.1-1a
after the Laplacian mask operation.

If the background of an image is nonuniform, it often is necessary to adapt the
luminance threshold to the mean luminance level (13,14). This can be accomplished
by subdividing the image into small blocks and determining the best threshold level
for each block by the methods discussed previously. Threshold levels for each pixel
may then be determined by interpolation between the block centers. Yankowitz and
Bruckstein (15) have proposed an adaptive thresholding method in which a thresh-
old surface is obtained by interpolating an image only at points where its gradient is
large.

17.1.2. Multilevel Luminance Thresholding

Effective segmentation can be achieved in some classes of images by a recursive
multilevel thresholding method suggested by Tomita et al. (16). In the first stage of
the process, the image is thresholded to separate brighter regions from darker
regions by locating a minimum between luminance modes of the histogram. Then
histograms are formed of each of the segmented parts. If these histograms are not
unimodal, the parts are thresholded again. The process continues until the histogram
of a part becomes unimodal. Figures 17.1-2 to 17.1-4 provide an example of this
form of amplitude segmentation in which the peppers image is segmented into four
gray scale segments.

17.1.3. Multilevel Color Component Thresholding

The multilevel luminance thresholding concept can be extended to the segmentation
of color and multispectral images. Ohlander et al. (17, 18) have developed a seg-
mentation scheme for natural color images based on multidimensional thresholding
of color images represented by their RGB color components, their luma/chroma YIQ
components, and by a set of nonstandard color components, loosely called intensity,

x b– 2a⁄=
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FIGURE 17.1-2. Multilevel luminance thresholding image segmentation of the peppers_
mon image; first-level segmentation.

(a) Original (b) Original histogram

(c) Segment 0 (d ) Segment 0 histogram

(e) Segment 1 (f ) Segment 1 histogram
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hue, and saturation. Figure 17.1-5 provides an example of the property histograms
of these nine color components for a scene. The histograms, have been measured
over those parts of the original scene that are relatively devoid of texture: the non-
busy parts of the scene. This important step of the segmentation process is necessary
to avoid false segmentation of homogeneous textured regions into many isolated
parts. If the property histograms are not all unimodal, an ad hoc procedure is
invoked to determine the best property and the best level for thresholding of that
property. The first candidate is image intensity. Other candidates are selected on a
priority basis, depending on contrast level and location of the histogram modes.
After a threshold level has been determined, the image is subdivided into its
segmented parts. The procedure is then repeated on each part until the resulting
property histograms become unimodal or the segmentation reaches a reasonable

FIGURE 17.1-3. Multilevel luminance thresholding image segmentation of the peppers_
mon image; second-level segmentation, 0 branch.

(a) Segment 00 (b) Segment 00 histogram

(c) Segment 01 (d ) Segment 01 histogram
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stage of separation under manual surveillance. Ohlander's segmentation technique
using multidimensional thresholding aided by texture discrimination has proved
quite effective in simulation tests. However, a large part of the segmentation control
has been performed by a human operator; human judgment, predicated on trial
threshold setting results, is required for guidance.

In Ohlander's segmentation method, the nine property values are obviously inter-
dependent. The YIQ and intensity components are linear combinations of RGB; the
hue and saturation measurements are nonlinear functions of RGB. This observation
raises several questions. What types of linear and nonlinear transformations of RGB
are best for segmentation? Ohta et al. (19) suggest an approximation to the spectral
Karhunen–Loeve transform. How many property values should be used? What is the
best form of property thresholding? Perhaps answers to these last two questions may

FIGURE 17.1-4. Multilevel luminance thresholding image segmentation of the peppers_
mon image; second-level segmentation, 1 branch.

(a) Segment 10 (b) Segment 10 histogram

(c) Segment 11 (d ) Segment 11 histogram
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be forthcoming from a study of clustering techniques in pattern recognition (20).
Property value histograms are really the marginal histograms of a joint histogram of
property values. Clustering methods can be utilized to specify multidimensional
decision boundaries for segmentation. This approach permits utilization of all the
property values for segmentation and inherently recognizes their respective cross
correlation. The following section discusses clustering methods of image
segmentation.

FIGURE 17.1-5. Typical property histograms for color image segmentation.
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17.1.4. Amplitude Projection

Image segments can sometimes be effectively isolated by forming the average
amplitude projections of an image along its rows and columns (21,22). The horizon-
tal (row) and vertical (column) projections are defined as

(17.1-2)

and

(17.1-3)

Figure 17.1-6 illustrates an application of gray scale projection segmentation of an
image. The rectangularly shaped segment can be further delimited by taking projec-
tions over oblique angles.

FIGURE 17.1-6. Gray scale projection image segmentation of a toy tank image.
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17.2. CLUSTERING SEGMENTATION METHODS

One of the earliest examples of image segmentation, by Haralick and Kelly (23)
using data clustering, was the subdivision of multispectral aerial images of agricul-
tural land into regions containing the same type of land cover. The clustering seg-
mentation concept is simple; however, it is usually computationally intensive.

Consider a vector  of measurements at each pixel coordinate
(j, k) in an image. The measurements could be point multispectral values, point color
components, and derived color components, as in the Ohlander approach described
previously, or they could be neighborhood feature measurements such as the moving
window mean, standard deviation, and mode, as discussed in Section 16.2. If the
measurement set is to be effective for image segmentation, data collected at various
pixels within a segment of common attribute should be similar. That is, the data
should be tightly clustered in an N-dimensional measurement space. If this condition
holds, the segmenter design task becomes one of subdividing the N-dimensional
measurement space into mutually exclusive compartments, each of which envelopes
typical data clusters for each image segment. Figure 17.2-1 illustrates the concept
for two features. In the segmentation process, if a measurement vector for a pixel
falls within a measurement space compartment, the pixel is assigned the segment
name or label of that compartment.

Coleman and Andrews (24) have developed a robust and relatively efficient
image segmentation clustering algorithm. Figure 17.2-2 is a flowchart that describes
a simplified version of the algorithm for segmentation of monochrome images. The
first stage of the algorithm involves feature computation. In one set of experiments,
Coleman and Andrews used 12 mode measurements in square windows of size 1, 3,
7, and 15 pixels. The next step in the algorithm is the clustering stage, in which the
optimum number of clusters is determined along with the feature space center of
each cluster. In the segmenter, a given feature vector is assigned to its closest cluster
center.

FIGURE 17.2-1. Data clustering for two feature measurements.
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The cluster computation algorithm begins by establishing two initial trial cluster
centers. All feature vectors of an image are assigned to their closest cluster center.
Next, the number of cluster centers is successively increased by one, and a cluster-
ing quality factor  is computed at each iteration until the maximum value of  is
determined. This establishes the optimum number of clusters. When the number of
clusters is incremented by one, the new cluster center becomes the feature vector
that is farthest from its closest cluster center. The  factor is defined as

(17.2-1)

where  and  are the within- and between-cluster scatter matrices, respectively,
and  denotes the trace of a matrix. The within-cluster scatter matrix is com-
puted as

(17.2-2)

where K is the number of clusters, Mk is the number of vector elements in the kth
cluster, xi is a vector element in the kth cluster,  is the mean of the kth cluster, and
Sk is the set of elements in the kth cluster. The between-cluster scatter matrix is
defined as

(17.2-3)

where  is the mean of all of the feature vectors as computed by

(17.2-4)

FIGURE 17.2-2. Simplified version of Coleman–Andrews clustering image segmentation
method.
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where M denotes the number of pixels to be clustered. Coleman and Andrews (24)
have obtained subjectively good results for their clustering algorithm in the segmen-
tation of monochrome and color images.

17.3. REGION SEGMENTATION METHODS

The amplitude and clustering methods described in the preceding sections are based
on point properties of an image. The logical extension, as first suggested by Muerle
and Allen (25), is to utilize spatial properties of an image for segmentation.

17.3.1. Region Growing

Region growing is one of the conceptually simplest approaches to image segmenta-
tion; neighboring pixels of similar amplitude are grouped together to form a
segmented region. However, in practice, constraints, some of which are reasonably
complex, must be placed on the growth pattern to achieve acceptable results.

Brice and Fenema (26) have developed a region-growing method based on a set
of simple growth rules. In the first stage of the process, pairs of quantized pixels are
combined together in groups called atomic regions if they are of the same amplitude
and are four-connected. Two heuristic rules are next invoked to dissolve weak
boundaries between atomic boundaries. Referring to Figure 17.3-1, let R1 and R2 be
two adjacent regions with perimeters P1 and P2, respectively, which have previously
been merged. After the initial stages of region growing, a region may contain previ-
ously merged subregions of different amplitude values. Also, let C denote the length
of the common boundary and let D represent the length of that portion of C for
which the amplitude difference Y across the boundary is smaller than a significance
factor . The regions R1 and R2 are then merged if

(17.3-1)

FIGURE 17.3-1. Region-growing geometry.
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where  is a constant typically set at . This heuristic prevents merger of
adjacent regions of the same approximate size, but permits smaller regions to be
absorbed into larger regions. The second rule merges weak common boundaries
remaining after application of the first rule. Adjacent regions are merged if

(17.3-2)

where  is a constant set at about . Application of only the second rule tends
to overmerge regions.

The Brice and Fenema region growing method provides reasonably accurate seg-
mentation of simple scenes with few objects and little texture (26, 27) but does not
perform well on more complex scenes. Yakimovsky (28) has attempted to improve
the region-growing concept by establishing merging constraints based on estimated
Bayesian probability densities of feature measurements of each region.

17.3.2. Split and Merge

Split and merge image segmentation techniques (29) are based on a quad tree data
representation whereby a square image segment is broken (split) into four quadrants
if the original image segment is nonuniform in attribute. If four neighboring squares
are found to be uniform, they are replaced (merge) by a single square composed of
the four adjacent squares.

In principle, the split and merge process could start at the full image level and ini-
tiate split operations. This approach tends to be computationally intensive. Con-
versely, beginning at the individual pixel level and making initial merges has the
drawback that region uniformity measures are limited at the single pixel level. Ini-
tializing the split and merge process at an intermediate level enables the use of more
powerful uniformity tests without excessive computation.

The simplest uniformity measure is to compute the difference between the largest
and smallest pixels of a segment. Fukada (30) has proposed the segment variance as
a uniformity measure. Chen and Pavlidis (31) suggest more complex statistical mea-
sures of uniformity. The basic split and merge process tends to produce rather
blocky segments because of the rule that square blocks are either split or merged.
Horowitz and Pavlidis (32) have proposed a modification of the basic process
whereby adjacent pairs of regions are merged if they are sufficiently uniform.

17.3.3. Watershed

Topographic and hydrology concepts have proved useful in the development of
region segmentation methods (33–36). In this context, a monochrome image is con-
sidered to be an altitude surface in which high-amplitude pixels correspond to ridge
points, and low-amplitude pixels correspond to valley points. If a drop of water were
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to fall on any point of the altitude surface, it would move to a lower altitude until it
reached a local altitude minimum. The accumulation of water in the vicinity of a
local minimum is called a catchment basin. All points that drain into a common
catchment basin are part of the same watershed. A valley is a region that is sur-
rounded by a ridge. A ridge is the loci of maximum gradient of the altitude surface.
There are two basic algorithmic approaches to the computation of the watershed of
an image: rainfall and flooding.

In the rainfall approach, local minima are found throughout the image. Each
local minima is given a unique tag. Adjacent local minima are combined with a
unique tag. Next, a conceptual water drop is placed at each untagged pixel. The drop
moves to its lower-amplitude neighbor until it reaches a tagged pixel, at which time
it assumes the tag value. Figure 17.3-2 illustrates a section of a digital image encom-
passing a watershed in which the local minimum pixel is black and the dashed line
indicates the path of a water drop to the local minimum.

In the flooding approach, conceptual single pixel holes are pierced at each local
minima, and the amplitude surface is lowered into a large body of water. The water
enters the holes and proceeds to fill each catchment basin. If a basin is about to over-
flow, a conceptual dam is built on its surrounding ridge line to a height equal to the
highest- altitude ridge point. Figure 17.3-3 shows a profile of the filling process of a
catchment basin (37). Figure 17.3-4 is an example of watershed segmentation pro-
vided by Moga and Gabbouj (38).

Figure 17.3-2. Rainfall watershed.
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Figure 17.3-3. Profile of catchment basis filling.

FIGURE 17.3-4. Watershed image segmentation of the peppers_mon image. Courtesy of
Alina N. Moga and M. Gabbouj, Tampere University of Technology, Finland.

DAM

CB1 CB2 CB3 CB4

(a) Original (b) Segmentation
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Simple watershed algorithms tend to produce results that are oversegmented
(39). Najman and Schmitt (37) have applied morphological methods in their water-
shed algorithm to reduce over segmentation. Wright and Acton (40) have performed
watershed segmentation on a pyramid of different spatial resolutions to avoid over-
segmentation.

17.4. BOUNDARY DETECTION

It is possible to segment an image into regions of common attribute by detecting the
boundary of each region for which there is a significant change in attribute across
the boundary. Boundary detection can be accomplished by means of edge detection
as described in Chapter 15. Figure 17.4-1 illustrates the segmentation of a projectile
from its background. In this example a  derivative of Gaussian edge detector

FIGURE 17.4-1. Boundary detection image segmentation of the projectile image.

(a) Original

(b) Edge map (c) Thinned edge map
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is used to generate the edge map of Figure 17.4-1b. Morphological thinning of this
edge map results in Figure 17.4-1c. The resulting boundary appears visually to be
correct when overlaid on the original image. If an image is noisy or if its region
attributes differ by only a small amount between regions, a detected boundary may
often be broken. Edge linking techniques can be employed to bridge short gaps in
such a region boundary.

17.4.1. Curve-Fitting Edge Linking

In some instances, edge map points of a broken segment boundary can be linked
together to form a closed contour by curve-fitting methods. If a priori information is
available as to the expected shape of a region in an image (e.g.,  a rectangle or a
circle), the fit may be made directly to that closed contour. For more complex-
shaped regions, as illustrated in Figure 17.4-2, it is usually necessary to break up the
supposed closed contour into chains with broken links. One such chain, shown in
Figure 17.4-2 starting at point A and ending at point B, contains a single broken link.
Classical curve-fitting methods (29) such as Bezier polynomial or spline fitting can
be used to fit the broken chain.

In their book, Duda and Hart (41) credit Forsen as being the developer of a sim-
ple piecewise linear curve-fitting procedure called the iterative endpoint fit. In the
first stage of the algorithm, illustrated in Figure 17.4-3, data endpoints A and B are
connected by a straight line. The point of greatest departure from the straight-line
(point C) is examined. If the separation of this point is too large, the point becomes
an anchor point for two straight-line segments (A to C and C to B). The procedure
then continues until the data points are well fitted by line segments. The principal
advantage of the algorithm is its simplicity; its disadvantage is error caused by
incorrect data points. Ramer (42) has used a technique similar to the iterated end-
point procedure to determine a polynomial approximation to an arbitrary-shaped
closed curve. Pavlidis and Horowitz (43) have developed related algorithms for
polygonal curve fitting. The curve-fitting approach is reasonably effective for sim-
ply structured objects. Difficulties occur when an image contains many overlapping
objects and its corresponding edge map contains branch structures.

FIGURE 17.4-2. Region boundary with missing links indicated by dashed lines.
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17.4.2. Heuristic Edge-Linking Methods

The edge segmentation technique developed by Roberts (44) is typical of the philos-
ophy of many heuristic edge-linking methods. In Roberts' method, edge gradients
are examined in  pixels blocks. The pixel whose magnitude gradient is largest
is declared a tentative edge point if its magnitude is greater than a threshold value.
Then north-, east-, south-, and west-oriented lines of length 5 are fitted to the gradi-
ent data about the tentative edge point. If the ratio of the best fit to the worst fit,
measured in terms of the fit correlation, is greater than a second threshold, the tenta-
tive edge point is declared valid, and it is assigned the direction of the best fit. Next,
straight lines are fitted between pairs of edge points if they are in adjacent 
blocks and if the line direction is within  degrees of the edge direction of either
edge point. Those points failing to meet the linking criteria are discarded. A typical
boundary at this stage, shown in Figure 17.4-4a, will contain gaps and multiply con-
nected edge points. Small triangles are eliminated by deleting the longest side; small

FIGURE 17.4-3. Iterative endpoint curve fitting.
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rectangles are replaced by their longest diagonal, as indicated in Figure 17.4-4b.
Short spur lines are also deleted. At this stage, short gaps are bridged by straight-line
connection. This form of edge linking can be used with a wide variety of edge detec-
tors. Nevatia (45) has used a similar method for edge linking of edges produced by a
Heuckel edge detector.

Robinson (46) has suggested a simple but effective edge-linking algorithm in
which edge points from an edge detector providing eight edge compass directions
are examined in  blocks as indicated in Figure 17.4-5. The edge point in the
center of the block is declared a valid edge if it possesses directional neighbors in
the proper orientation. Extensions to larger windows should be beneficial, but the
number of potential valid edge connections will grow rapidly with window size.

17.4.3. Hough Transform Edge Linking

The Hough transform (47–49) can be used as a means of edge linking. The Hough
transform involves the transformation of a line in Cartesian coordinate space to a

FIGURE 17.4-4. Roberts edge linking.
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point in polar coordinate space. With reference to Figure 17.4-6a, a straight line can
be described parametrically as

(17.4-1)

where  is the normal distance of the line from the origin and  is the angle of the
origin with respect to the x axis. The Hough transform of the line is simply a point at
coordinate  in the polar domain as shown in Figure 17.4-6b. A family of lines
passing through a common point, as shown in Figure 17.4-6c, maps into the con-
nected set of  points of Figure 17.4-6d. Now consider the three collinear points
of Figure 17.4-6e. The Hough transform of the family of curves passing through the
three points results in the set of three parametric curves in the  space of Figure
17.4-6f. These three curves cross at a single point  corresponding to the
dashed line passing through the collinear points.

Duda and Hart Version. Duda and Hart (48) have adapted the Hough transform
technique for line and curve detection in discrete binary images. Each nonzero data
point in the image domain is transformed to a curve in the  domain, which
is quantized into cells. If an element of a curve falls in a cell, that particular cell is

FIGURE 17.4-5. Edge linking rules.
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incremented by one count. After all data points are transformed, the   cells are
examined. Large cell counts correspond to colinear data points that may be fitted by
a straight line with the appropriate  parameters. Small counts in a cell generally
indicate isolated data points that can be deleted.

Figure 17.4-7a presents the geometry utilized for the development of an algo-
rithm for the Duda and Hart version of the Hough transform. Following the notation
adopted in Section 13.1, the origin of the image is established at the lower left
corner of the image. The discrete Cartesian coordinates of the image point ( j, k) are

FIGURE 17.4-6. Hough transform.
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(17.4-2a)

(17.4-2b)

Consider a line segment in a binary image , which contains a point at coordi-
nate (j, k) that is at an angle  with respect to the horizontal reference axis. When
the line segment is projected, it intersects a normal line of length  emanating from
the origin at an angle  with respect to the horizontal axis. The Hough array

 consists of cells of the quantized variables  and . It can be shown that

(17.4-3a)

(17.4-3b)

where

(17.4-3c)

For ease of interpretation, it is convenient to adopt the symmetrical limits of Figure
17.4-7b and to set M and N as odd integers so that the center cell of the Hough array
represents  and . The Duda and Hart (D & H) Hough transform algo-
rithm follows.

FIGURE 17.4-7. Geometry for Hough transform computation.
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1. Initialize the Hough array to zero. 

2. For each ( j, k) for which , compute

(17.4-4)

where

(17.4-5)

is incremented over the range  under the restriction that

(17.4-6)

where

(17.4-7)

3. Determine the m index of the quantized rho value.

(17.4-8)

where  denotes the nearest integer value of its argument.

4. Increment the Hough array.

(17.4-9)

It is important to observe the restriction of Eq. 17.4-6; not all  combinations are
legal for a given pixel coordinate (j, k).

Computation of the Hough array requires on the order of N evaluations of Eqs.
17.4-4 to 17.4-9 for each nonzero pixel of . The size of the Hough array is not
strictly dependent on the size of the image array. However, as the image size increases,
the Hough array size should also be increased accordingly to maintain computational
accuracy of rho and theta. In most applications, the Hough array size should be set at
least one quarter the image size to obtain reasonably accurate results.

Figure 17.4-8 presents several examples of the D & H version of the Hough
transform. In these examples,   and  . The Hough arrays
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FIGURE 17.4-8.  Duda and Hart version of the Hough transform.

(a) Three dots: upper left, center, lower right (b) Hough transform of dots

(c) Straight line (d) Hough transform of line

(e) Straight dashed line (f) Hough transform of dashed line
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have been flipped bottom to top for display purposes so that the positive rho and
positive theta quadrant is in the normal Cartesian first quadrant (i.e., the upper right
quadrant).

O 'Gorman and Clowes Version. O' Gorman and Clowes (50) have proposed a
modification of the Hough transformation for linking-edge points in an image. In
their procedure, the angle  for entry in  space is obtained from the gradient
direction of an edge. The corresponding  value is then computed from Eq. 17.4-4
for an edge coordinate (j, k). However, instead of incrementing the  cell by
unity, the cell is incremented by the edge gradient magnitude in order to give greater
importance to strong edges than weak edges.

The following is an algorithm for computation of the O' Gorman and Clowes
(O & C) version of the Hough transform. Figure 17.4-7a defines the edge angles ref-
erenced in the algorithm.

1. Initialize the Hough array to zero.

2. Given a gray scale image , generate a first-order derivative edge gradi-
ent array  and an edge gradient angle array  using one of the
edge detectors described in Section 15.2.1.

3. For each (j, k) for which , where T is the edge detector threshold
value, compute

(17.4-10)

where

for (17.4-11a)

for (17.4-11b)

with
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4. Determine the m and n indices of the quantized rho and theta values.

(17.4-14a)

(17.4-14b)

5. Increment the Hough array. 

(17.4-15)

Figure 17.4-9 gives an example of the O'Gorman and Clowes version of the
Hough transform. The original image is  pixels, and the Hough array is of
size  cells. The Hough array has been flipped bottom to top for display.

Hough Transform Edge Linking. The Hough transform can be used for edge link-
ing in the following manner. Each  cell whose magnitude is sufficiently large
defines a straight line that passes through the original image. If this line is overlaid
with the image edge map, it should cover the missing links of straight-line edge seg-
ments, and therefore, it can be used as a mask to fill-in the missing links using some
heuristic method, such as those described in the preceding section. Another
approach, described below, is to use the line mask as a spatial control function for
morphological image processing.

Figure 17.4-10 presents an example of Hough transform morphological edge
linking. Figure 17.4-10a is an original image of a noisy octagon, and Figure 17.4-
10b shows an edge map of the original image obtained by Sobel edge detection fol-
lowed by morphological thinning, as defined in Section 14.3. Although this form of
edge detection performs reasonably well, there are gaps in the contour of the object
caused by the image noise. Figure 17.4-10c shows the D & H version of the Hough
transform. The eight largest cells in the Hough array have been used to generate the
eight Hough lines shown as gray lines overlaid on the original image in Figure
17.4-10d. These Hough lines have been widened to a width of 3 pixels and used as a
region-of-interest (ROI) mask that controls the edge linking morphological process-
ing such that the processing is performed only on edge map pixels within the ROI.
Edge map pixels outside the ROI are left unchanged. The morphological processing
consists of three iterations of  pixel dilation, as shown in Figure 17.4-10e,
followed by five iterations of  pixel thinning. The linked edge map is presented
in Figure 17.4-10f.
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17.4.4. Snakes Boundary Detection

Snakes, developed by Kass et al. (51), is a method of molding a closed contour to
the boundary of an object in an image. The snake model is a controlled continuity
closed contour that deforms under the influence of internal forces, image forces, and
external constraint forces. The internal contour forces provide a piecewise smooth-
ness constraint. The image forces manipulate the contour toward image edges. The
external forces are the result of the initial positioning of the contour by some a priori
means.

FIGURE 17.4-9.  O’Gorman and Clowes version of the Hough transform of the building
image.

(a) Original

(b) Sobel edge gradient (c) Hough array
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FIGURE 17.4-10. Hough transform morphological edge linking.

(a) Original (b) Sobel edge map after thinning

(c) D & H Hough array (d ) Hough line overlays

(e) Edge map after ROI dilation (f ) Linked edge map
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Let  denote a parametric curve in the continuous domain
where s is the arc length of the curve. The continuous domain snake energy is
defined as (51)

(17.4-16)

where  denotes the internal energy of the contour due to bending or discontinui-
ties,  represents the image energy, and  is the constraint energy. In the discrete
domain, the snake energy is

(17.4-17)

where  for  represents the discrete contour. The location
of a snake corresponds to the local minima of the energy functional of Eq. 17.4-17.

Kass et al. (51) have derived a set of N differential equations whose solution min-
imizes the snake energy. Samadani (52) has investigated the stability of these snake
model solutions. The greedy algorithm (53,54) expresses the internal snake energy
in terms of its continuity energy  and curvature energy  as

(17.4-18)

where  and  control the elasticity and rigidity of the snake model. The
continuity energy is defined as

(17.4-19)

and the curvature energy is defined as

(17.4-19)

where d is the average curve length and  represents the eight neighbors of a
point  for .

The conventional snake model algorithms suffer from the inability to mold a con-
tour to severe object concavities. Another problem is the generation of false contours
due to the creation of unwanted contour loops. Ji and Yan (55) have developed a
loop-free snake model segmentation algorithm that overcomes these problems.
Figure 17.4-11 illustrates the performance of their algorithm. Figure 17.4-11a shows
the  initial  contour  around  the  pliers  object, Figure 17.4-11b is the segmentation
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using the greedy algorithm, and Figure 17.4-11c is the result with the loop-free
algorithm.

17.5. TEXTURE SEGMENTATION

It has long been recognized that texture should be a valuable feature for image seg-
mentation. Putting this proposition to practice, however, has been hindered by the
lack of reliable and computationally efficient means of texture measurement.

One approach to texture segmentation, fostered by Rosenfeld et al. (56–58), is to
compute some texture coarseness measure at all image pixels and then detect
changes in the coarseness of the texture measure. In effect, the original image is pre-
processed to convert texture to an amplitude scale for subsequent amplitude seg-
mentation. A major problem with this approach is that texture is measured over a
window area, and therefore, texture measurements in the vicinity of the boundary
between texture regions represent some average texture computation. As a result, it
becomes difficult to locate a texture boundary accurately.

FIGURE 17.4-11. Snakes image segmentation of the pliers image. Courtesy of Lilian Ji

and Hong Yan, University of Sydney, Australia.

(a) Original with initial contour

(b) Segmentation with greedy algorithm (c) Segmentation with loop-free algorithm
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Another approach to texture segmentation is to detect the transition between
regions of differing texture. The basic concept of texture edge detection is identical
to that of luminance edge detection; the dissimilarity between textured regions is
enhanced over all pixels in an image, and then the enhanced array is thresholded to
locate texture discontinuities. Thompson (59) has suggested a means of texture
enhancement analogous to the Roberts gradient presented in Section 15.2. Texture
measures are computed in each of four adjacent  pixel subregions scanned
over the image, and the sum of the cross-difference magnitudes is formed and
thresholded to locate significant texture changes. This method can be generalized to
include computation in adjacent windows arranged in  groups. Then, the result-
ing texture measures of each window can be combined in some linear or nonlinear
manner analogous to the  luminance edge detection methods of Section 15.2.

Zucker et al. (60) have proposed a histogram thresholding method of texture seg-
mentation based on a texture analysis technique developed by Tsuji and Tomita (61).
In this method a texture measure is computed at each pixel by forming the spot gra-
dient followed by a dominant neighbor suppression algorithm. Then a histogram is
formed over the resultant modified gradient data. If the histogram is multimodal,
thresholding of the gradient at the minimum between histogram modes should pro-
vide a segmentation of textured regions. The process is repeated on the separate
parts until segmentation is complete.

17.6. SEGMENT LABELING

The result of any successful image segmentation is the labeling of each pixel that
lies within a specific distinct segment. One means of labeling is to append to each
pixel of an image the label number or index of its segment. A more succinct method
is to specify the closed contour of each segment. If necessary, contour filling tech-
niques (29) can be used to label each pixel within a contour. The following describes
two common techniques of contour following.

The contour following approach to image segment representation is commonly
called bug following. In the binary image example of Figure 17.6-1, a conceptual
bug begins marching from the white background to the black pixel region indicated
by the closed contour. When the bug crosses into a black pixel, it makes a left turn

FIGURE 17.6-1. Contour following.
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and proceeds to the next pixel. If that pixel is black, the bug again turns left, and if
the pixel is white, the bug turns right. The procedure continues until the bug returns
to the starting point. This simple bug follower may miss spur pixels on a boundary.
Figure 17.6-2a shows the boundary trace for such an example. This problem can be
overcome by providing the bug with some memory and intelligence that permit the
bug to remember its past steps and backtrack if its present course is erroneous.

Figure 17.6-2b illustrates the boundary trace for a backtracking bug follower. In
this algorithm, if the bug makes a white-to-black pixel transition, it returns to its pre-
vious starting point and makes a right turn. The bug makes a right turn whenever it
makes a white-to-white transition. Because of the backtracking, this bug follower
takes about twice as many steps as does its simpler counterpart.

While the bug is following a contour, it can create a list of the pixel coordinates
of each boundary pixel. Alternatively, the coordinates of some reference pixel on the
boundary can be recorded, and the boundary can be described by a relative move-
ment code. One such simple code is the crack code (62), which is generated for each
side p of a pixel on the boundary such that C(p) = 0, 1, 2, 3 for movement to the
right, down, left, or up, respectively, as shown in Figure 17.6-3. The crack code for
the object of Figure 17.6-2 is as follows:

FIGURE 17.6-2. Comparison of bug follower algorithms.

FIGURE 17.6-3. Crack code definition.
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p: 1 2 3 4 5 6 7 8 9 10 11 12

C(p):    0 1 0 3 0 1 2 1 2 2 3 3

Upon completion of the boundary trace, the value of the index p is the perimeter of
the segment boundary. Section 18.2 describes a method for computing the enclosed
area of the segment boundary during the contour following.

Freeman (63, 64) has devised a method of boundary coding, called chain coding,
in which the path from the centers of connected boundary pixels are represented by
an eight-element code. Figure 17.6-4 defines the chain code and provides an exam-
ple of its use. Freeman has developed formulas for perimeter and area calculation
based on the chain code of a closed contour.

FIGURE 17.6-4. Chain coding contour coding.
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18
SHAPE ANALYSIS

Several qualitative and quantitative techniques have been developed for characteriz-
ing the shape of objects within an image. These techniques are useful for classifying
objects in a pattern recognition system and for symbolically describing objects in an
image understanding system. Some of the techniques apply only to binary-valued
images; others can be extended to gray level images.

18.1. TOPOLOGICAL ATTRIBUTES

Topological shape attributes are properties of a shape that are invariant under rub-
ber-sheet transformation (1–3). Such a transformation or mapping can be visualized
as the stretching of a rubber sheet containing the image of an object of a given shape
to produce some spatially distorted object. Mappings that require cutting of the rub-
ber sheet or connection of one part to another are not permissible. Metric distance is
clearly not a topological attribute because distance can be altered by rubber-sheet
stretching. Also, the concepts of perpendicularity and parallelism between lines are
not topological properties. Connectivity is a topological attribute. Figure 18.1-1a is
a binary-valued image containing two connected object components. Figure 18.1-1b
is a spatially stretched version of the same image. Clearly, there are no stretching
operations that can either increase or decrease the connectivity of the objects in the
stretched image. Connected components of an object may contain holes, as illus-
trated in Figure 18.1-1c. The number of holes is obviously unchanged by a topolog-
ical mapping.

Digital Image Processing: PIKS Inside, Third Edition. William K. Pratt
Copyright © 2001 John Wiley & Sons, Inc.

ISBNs: 0-471-37407-5 (Hardback); 0-471-22132-5 (Electronic)
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There is a fundamental relationship between the number of connected object
components C and the number of object holes H in an image called the Euler num-
ber, as defined by

 (18.1-1)

The Euler number is also a topological property because C and H are topological
attributes.

Irregularly shaped objects can be described by their topological constituents.
Consider the tubular-shaped object letter R of Figure 18.1-2a, and imagine a rubber
band stretched about the object. The region enclosed by the rubber band is called the
convex hull of the object. The set of points within the convex hull, which are not in
the object, form the convex deficiency of the object. There are two types of convex
deficiencies: regions totally enclosed by the object, called lakes; and regions lying
between the convex hull perimeter and the object, called bays. In some applications
it is simpler to describe an object indirectly in terms of its convex hull and convex
deficiency. For objects represented over rectilinear grids, the definition of the convex
hull must be modified slightly to remain meaningful. Objects such as discretized
circles and triangles clearly should be  judged as being convex even though their

FIGURE 18.1-1. Topological attributes.

FIGURE 18.1-2. Definitions of convex shape descriptors.

E C H–=
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boundaries are jagged. This apparent difficulty can be handled by considering a
rubber band to be stretched about the discretized object. A pixel lying totally within
the rubber band, but not in the object, is a member of the convex deficiency. Sklan-
sky et al. (4,5) have developed practical algorithms for computing the convex
attributes of discretized objects.

18.2. DISTANCE, PERIMETER, AND AREA MEASUREMENTS

Distance is a real-valued function  of two image points 
and  satisfying the following properties (6):

 (18.2-1a)

 (18.2-1b)

 (18.2-1c)

There are a number of distance functions that satisfy the defining properties. The
most common measures encountered in image analysis are the Euclidean distance,

 (18.2-2a)

the magnitude distance,

 (18.2-2b)

and the maximum value distance,

 (18.2-2c)

In discrete images, the coordinate differences  and  are integers,
but the Euclidean distance is usually not an integer.

Perimeter and area measurements are meaningful only for binary images. Con-
sider a discrete binary image containing one or more objects, where  if a
pixel is part of the object and  for all nonobject or background pixels.

The perimeter of each object is the count of the number of pixel sides traversed
around the boundary of the object starting at an arbitrary initial boundary pixel and
returning to the initial pixel. The area of each object within the image is simply the
count of the number of pixels in the object for which . As an example, for

d j1 k1,( ) j2 k2,( ),{ } j1 k1,( )
j2 k2,( )

d j1 k1,( ) j2 k2,( ),{ } 0≥

d j1 k1,( ) j2 k2,( ),{ } d j2 k2,( ) j1 k1,( ),{ }=

d j1 k1,( ) j2 k2,( ),{ } d j2 k2,( ) j3 k3,( ),{ }+ d j1 k1,( ) j3 k3,( ),{ }≥

dE j1 j2–( )2 k1 k2–( )2+
1 2⁄

=

dM j1 j2– k1 k2–+=

dX MAX j1 j2– k1 k2–,{ }=

j1 j2–( ) k1 k2–( )

F j k,( ) 1=
F j k,( ) 0=

F j k,( ) 1=
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a  pixel square, the object area is  and the object perimeter is .
An object formed of three diagonally connected pixels possesses  and

.
The enclosed area of an object is defined to be the total number of pixels for

which  or 1 within the outer perimeter boundary PE of the object. The
enclosed area can be computed during a boundary-following process while the
perimeter is being computed (7,8). Assume that the initial pixel in the boundary-
following process is the first black pixel encountered in a raster scan of the image.
Then, proceeding in a clockwise direction around the boundary, a crack code C(p),
as defined in Section 17.6, is generated for each side p of the object perimeter such
that C(p) = 0, 1, 2, 3 for directional angles 0, 90, 180, 270°, respectively. The
enclosed area is

(18.2-3a)

where PE is the perimeter of the enclosed object and

(18.2-3b)

with j(0) = 0. The delta terms are defined by

if (18.2-4a)

if  or 2 (18.2-4b)

if (18.2-4c)

if (18.2-4d)

if  or 3 (18.2-4e)

if (18.2-4f)

Table 18.2-1 gives an example of computation of the enclosed area of the following
four-pixel object:

2 2× AO 4= PO 8=
AO 3=

PO 12=

F j k,( ) 0=

AE j p 1–( ) ∆k p( )
p 1=
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TABLE 18.2-1. Example of Perimeter and Area Computation

18.2.1. Bit Quads

Gray (9) has devised a systematic method of computing the area and perimeter of
binary objects based on matching the logical state of regions of an image to binary
patterns. Let  represent the count of the number of matches between image
pixels and the pattern Q within the curly brackets. By this definition, the object area
is then

(18.2-5)

If the object is enclosed completely by a border of white pixels, its perimeter is
equal to

(18.2-6)

Now, consider the following set of  pixel patterns called bit quads defined in
Figure 18.2-1. The object area and object perimeter of an image can be expressed in
terms of the number of bit quad counts in the image as

p C(p)  j(p)  k(p) j(p) A(p)

1 0 0 1 0 0

2 3 –1 0 –1 0

3 0 0 1 –1 –1

4 1 1 0 0 –1

5 0 0 1 0 –1

6 3 –1 0 –1 –1

7 2 0 –1 –1 0

8 3 –1 0 –2 0

9 2 0 –1 –2 2

10 2 0 –1 –2 4

11 1 1 0 –1 4

12 1 1 0 0 4

∆ ∆

0 0 0 0 0

0 1 0 1 0

0 1 1 0 0

0 0 0 0 0

n Q{ }

AO n 1{ }=

PO 2n 0 1{ } 2n
0

1 
 
 

+=

2 2×
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(18.2-7a)

(18.2-7b)

These area and perimeter formulas may be in considerable error if they are utilized
to represent the area of a continuous object that has been coarsely discretized. More
accurate formulas for such applications have been derived by Duda (10):

(18.2-8a)

(18.2-8b)

FIGURE 18.2-1. Bit quad patterns.
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Bit quad counting provides a very simple means of determining the Euler number of
an image. Gray (9) has determined that under the definition of four-connectivity, the
Euler number can be computed as

(18.2-9a)

and for eight-connectivity

(18.2-9b)

It should be noted that although it is possible to compute the Euler number E of an
image by local neighborhood computation, neither the number of connected compo-
nents C nor the number of holes H, for which E = C – H, can be separately computed
by local neighborhood computation.

18.2.2. Geometric Attributes

With the establishment of distance, area, and perimeter measurements, various geo-
metric attributes of objects can be developed. In the following, it is assumed that the
number of holes with respect to the number of objects is small (i.e., E is approxi-
mately equal to C).

The circularity of an object is defined as

(18.2-10)

This attribute is also called the thinness ratio. A circle-shaped object has a circular-
ity of unity; oblong-shaped objects possess a circularity of less than 1. 

If an image contains many components but few holes, the Euler number can be
taken as an approximation of the number of components. Hence, the average area
and perimeter of connected components, for E > 0, may be expressed as (9) 

(18.2-11)

(18.2-12)

For images containing thin objects, such as typewritten or script characters, the
average object length and width can be approximated by

E 1

4
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(18.2-13)

(18.2-14)

These simple measures are useful for distinguishing gross characteristics of an
image. For example, does it contain a multitude of small pointlike objects, or fewer
bloblike objects of larger size; are the objects fat or thin? Figure 18.2-2 contains
images of playing card symbols. Table 18.2-2 lists the geometric attributes of these
objects.

FIGURE 18.2-2. Playing card symbol images.

LA

PA

2
------=

WA

2AA

PA

----------=

(a) Spade (b) Heart

(c) Diamond (d) Club
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TABLE 18.2-2 Geometric Attributes of Playing Card Symbols

18.3. SPATIAL MOMENTS

From probability theory, the (m, n)th moment of the joint probability density 
is defined as

(18.3-1)

The central moment is given by 

(18.3-2)

where  and  are the marginal means of . These classical relationships of
probability theory have been applied to shape analysis by Hu (11) and Alt (12). The
concept is quite simple. The joint probability density  of Eqs. 18.3-1 and
18.3-2 is replaced by the continuous image function . Object shape is charac-
terized by a few of the low-order moments. Abu-Mostafa and Psaltis (13,14) have
investigated the performance of spatial moments as features for shape analysis.

18.3.1. Discrete Image Spatial Moments

The spatial moment concept can be extended to discrete images by forming spatial
summations over a discrete image function . The literature (15–17) is nota-
tionally inconsistent on the discrete extension because of the differing relationships
defined between the continuous and discrete domains. Following the notation estab-
lished in Chapter 13, the (m, n)th spatial moment is defined as

(18.3-3)

Attribute Spade Heart Diamond Club

Outer perimeter 652 512 548 668

Enclosed area 8,421 8,681 8.562 8.820

Average area 8,421 8,681 8,562 8,820

Average perimeter 652 512 548 668

Average length 326 256 274 334

Average width 25.8 33.9 31.3 26.4

Circularity 0.25 0.42 0.36 0.25
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where, with reference to Figure 13.1-1, the scaled coordinates are

(18.3-4a)

(18.3-4b)

The origin of the coordinate system is the lower left corner of the image. This for-
mulation results in moments that are extremely scale dependent; the ratio of second-
order (m + n = 2) to zero-order (m = n = 0) moments can vary by several orders of
magnitude (18). The spatial moments can be restricted in range by spatially scaling
the image array over a unit range in each dimension. The (m, n)th scaled spatial
moment is then defined as

(18.3-5)

Clearly,

(18.3-6)

It is instructive to explicitly identify the lower-order spatial moments. The zero-
order moment

(18.3-7)

is the sum of the pixel values of an image. It is called the image surface. If  is
a binary image, its surface is equal to its area. The first-order row moment is

(18.3-8)

and the first-order column moment is

(18.3-9)

Table 18.3-1 lists the scaled spatial moments of several test images. These
images include unit-amplitude gray scale versions of the playing card symbols of
Figure 18.2-2, several rotated, minified and magnified versions of these symbols, as
shown in Figure 18.3-1, as well as an elliptically shaped gray scale object shown in
Figure 18.3-2. The ratios
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FIGURE 18.3-1 Rotated, magnified, and minified playing card symbol images. 

(a) Rotated spade (b) Rotated heart

(c) Rotated diamond (d) Rotated club

(e) Minified heart (f) Magnified heart
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(18.3-10a)

(18.3-10b)

of first- to zero-order spatial moments define the image centroid. The centroid,
called the center of gravity, is the balance point of the image function  such
that the mass of  left and right of  and above and below  is equal.

With the centroid established, it is possible to define the scaled spatial central
moments of a discrete image, in correspondence with Eq. 18.3-2, as

(18.3-11)

For future reference, the (m, n)th unscaled spatial central moment is defined as

FIGURE 18.3-2 Eliptically shaped object image.

xk
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(18.3-12)

where

(18.3-13a)

(18.3-13b)

It is easily shown that

(18.3-14)

The three second-order scaled central moments are the row moment of inertia,

(18.3-15)

the column moment of inertia,

(18.3-16)

and the row–column cross moment of inertia,

(18.3-17)

The central moments of order 3 can be computed directly from Eq. 18.3-11 for m +
n = 3, or indirectly according to the following relations:

(18.3-18a)

(18.3-18b)
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(18.3-18c)

(18.3-18d)

Table 18.3-2 presents the horizontal and vertical centers of gravity and the scaled
central spatial moments of the test images.

The three second-order moments of inertia defined by Eqs. 18.3-15, 18.3-16, and
18.3-17 can be used to create the moment of inertia covariance matrix,

(18.3-19)

Performing a singular-value decomposition of the covariance matrix results in the
diagonal matrix

(18.3-20)

where the columns of

(18.3-21)

are the eigenvectors of U and

 (18.3-22)

contains the eigenvalues of U. Expressions for the eigenvalues can be derived
explicitly. They are

(18.3-23a)

(18.3-23b)
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U 0 3,( ) M 0 3,( ) 3xk M 0 2,( ) 2 xk( )2M 0 1,( )+–=

U
U 2 0,( ) U 1 1,( )

U 1 1,( ) U 0 2,( )
=

E
T
UE ΛΛΛΛ=

E

e11 e12

e21 e22

=

ΛΛΛΛ
λ1 0

0 λ2

=

λ1
1

2
--- U 2 0,( ) U 0 2,( )+[ ] 1

2
--- U 2 0,( )2 U 0 2,( )2 2U 2 0,( )U 0 2,( ) 4U 1 1,( )2+–+[ ]

1 2⁄
+=

λ2
1

2
--- U 2 0,( ) U 0 2,( )+[ ] 1

2
--- U 2 0,( )2 U 0 2,( )2 2U 2 0,( )U 0 2,( ) 4U 1 1,( )2+–+[ ]

1 2⁄
–=



604

TA
B

L
E

 1
8.

3-
2

C
en

te
rs

 o
f 

G
ra

vi
ty

 a
nd

 S
ca

le
d 

Sp
at

ia
l C

en
tr

al
 M

om
en

ts
 o

f 
Te

st
 I

m
ag

es

Im
ag

e
H

or
iz

on
ta

l
C

O
G

V
er

tic
al

C
O

G
U

(2
,0

)
U

(1
,1

)
U

(0
,2

)
U

(3
,0

)
U

(2
,1

)
U

(1
,2

)
U

(0
,3

)

Sp
ad

e
0.

48
8

0.
52

1
16

.2
40

–0
.6

53
33

.2
61

0.
02

6
–0

.2
85

–0
.0

17
0.

36
3

R
ot

at
ed

 s
pa

de
0.

51
0

0.
48

3
16

.2
07

–0
.3

66
33

.2
15

–0
.0

13
0.

28
4

–0
.0

02
–0

.3
57

H
ea

rt
0.

49
7

0.
50

4
16

.3
80

0.
19

4
36

.5
06

–0
.0

12
0.

37
1

0.
02

7
–0

.8
31

R
ot

at
ed

 h
ea

rt
0.

49
6

0.
50

4
26

.2
37

–1
0.

00
9

26
.5

84
–0

.0
77

–0
.4

38
0.

41
1

0.
12

2

M
ag

ni
fi

ed
 h

ea
rt

0.
49

6
0.

50
5

26
2.

32
1

3.
03

7
58

9.
16

2
0.

38
3

11
.9

91
0.

88
6

–2
7.

28
4

M
in

if
ie

d 
he

ar
t

0.
49

8
0.

50
3

0.
98

4
0.

01
3

2.
16

5
0.

00
0

0.
01

1
0.

00
0

–0
.0

25

D
ia

m
on

d
0.

50
8

0.
54

9
13

.3
37

0.
32

4
42

.1
86

–0
.0

02
–0

.0
26

0.
00

5
0.

13
6

R
ot

at
ed

 d
ia

m
on

d
0.

50
2

0.
50

5
42

.1
98

–0
.8

53
13

.3
66

–0
.1

58
0.

00
9

0.
02

9
–0

.0
05

C
lu

b
0.

49
2

0.
51

2
21

.8
34

–0
.2

39
37

.9
79

0.
03

7
–0

.5
45

–0
.0

39
0.

95
0

R
ot

at
ed

 c
lu

b
0.

49
7

0.
48

0
29

.6
75

8.
11

6
30

.2
28

0.
26

8
–0

.5
05

–0
.5

57
0.

21
6

E
ll

ip
se

0.
49

6
0.

50
2

29
.2

36
17

.9
13

29
.2

36
0.

00
0

0.
00

0
0.

00
0

0.
00

0



SPATIAL MOMENTS 605

Let  and , and let the orientation angle 
be defined as

if (18.3-24a)

if (18.3-24b)

The orientation angle can be expressed explicitly as

(18.3-24c)

The eigenvalues  and  and the orientation angle  define an ellipse, as shown
in Figure 18.3-2, whose major axis is  and whose minor axis is . The major
axis of the ellipse is rotated by the angle  with respect to the horizontal axis. This
elliptically shaped object has the same moments of inertia along the horizontal and
vertical axes and the same moments of inertia along the principal axes as does an
actual object in an image. The ratio

(18.3-25)

of the minor-to-major axes is a useful shape feature.
Table 18.3-3 provides moment of inertia data for the test images. It should be

noted that the orientation angle can only be determined to within plus or minus 
radians.

TABLE 18.3-3 Moment of Intertia Data of Test Images

Image
Largest

Eigenvalue
Smallest

Eigenvalue
Orientation
(radians)

Eigenvalue
Ratio

Spade 33.286 16.215 –0.153 0.487

Rotated spade 33.223 16.200 –1.549 0.488

Heart 36.508 16.376 1.561 0.449

Rotated heart 36.421 16.400 –0.794 0.450

Magnified heart 589.190 262.290 1.562 0.445

Minified heart 2.165 0.984 1.560 0.454

Diamond 42.189 13.334 1.560 0.316

Rotated diamond 42.223 13.341 –0.030 0.316

Club 37.982 21.831 –1.556 0.575

Rotated club 38.073 21.831 0.802 0.573

Ellipse 47.149 11.324 0.785 0.240

λM MAX λ1 λ2,{ }= λN MIN λ1 λ2,{ }= θ
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arc
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Hu (11) has proposed a normalization of the unscaled central moments, defined
by Eq. 18.3-12, according to the relation

(18.3-26a)

where

(18.3-26b)

for m + n = 2, 3,...    These normalized central moments have been used by Hu to
develop a set of seven compound spatial moments that are invariant in the continu-
ous image domain to translation, rotation, and scale change. The Hu invariant
moments are defined below.

(18.3-27a)

(18.3-27b)

(18.3-27c)

(18.3-27d)

(18.3-27e)

(18.3-27f)

(18.3-27g)

Table 18.3-4 lists the moment invariants of the test images. As desired, these
moment invariants are in reasonably close agreement for the geometrically modified
versions of the same object, but differ between objects. The relatively small degree
of variability of the moment invariants for the same object is due to the spatial dis-
cretization of the objects.

V m n,( )
UU m n,( )

M 0 0,( )[ ]α
---------------------------=
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2

------------- 1+=

h1 V 2 0,( ) V 0 2,( )+=
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h3 V 3 0,( ) 3V 1 2,( )–[ ]2 V 0 3,( ) 3V 2 1,( )–[ ]2+=

h4 V 3 0,( ) V 1 2,( )+[ ]2 V 0 3,( ) V 2 1,( )–[ ]2+=

h5 V 3 0,( ) 3V 1 2,( )–[ ] V 3 0,( ) V 1 2,( )+[ ] V 3 0,( ) V 1 2,( )+[ ]2 3 V 0 3,( ) V 2 1,( )+[ ]2–[ ]=

3V 2 1,( ) V 0 3,( )–[ ] V 0 3,( ) V 2 1,( )+[ ] 3 V 3 0,( ) V 1 2,( )+[ ][ 2
+
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TABLE 18.3-4 Invariant Moments of Test Images

The terms of Eq. 18.3-27 contain differences of relatively large quantities, and
therefore, are sometimes subject to significant roundoff error. Liao and Pawlak (19)
have investigated the numerical accuracy of moment measures.

18.4. SHAPE ORIENTATION DESCRIPTORS

The spatial orientation of an object with respect to a horizontal reference axis is the
basis of a set of orientation descriptors developed at the Stanford Research Institute
(20). These descriptors, defined below, are described in Figure 18.4-1.

1. Image-oriented bounding box: the smallest rectangle oriented along the rows
of the image that encompasses the object

2. Image-oriented box height: dimension of box height for image-oriented box

  

Image

Spade 1.920 4.387 0.715 0.295 0.123 0.185 –14.159

Rotated spade 1.919 4.371 0.704 0.270 0.097 0.162 –11.102

Heart 1.867 5.052 1.435 8.052 27.340 5.702 –15.483

Rotated heart 1.866 5.004 1.434 8.010 27.126 5.650 –14.788

Magnified heart 1.873 5.710 1.473 8.600 30.575 6.162 0.559

Minified heart 1.863 4.887 1.443 8.019 27.241 5.583 0.658

Diamond 1.986 10.648 0.018 0.475 0.004 0.490 0.004

Rotated diamond 1.987 10.663 0.024 0.656 0.082 0.678 –0.020

Club 2.033 3.014 2.313 5.641 20.353 3.096 10.226

Rotated club 2.033 3.040 2.323 5.749 20.968 3.167 13.487

Ellipse 2.015 15.242 0.000 0.000 0.000 0.000 0.000

FIGURE 18.4-1. Shape orientation descriptors.

h1 10
1× h2 10

3× h3 10
3× h4 10

5× h5 10
9× h6 10

6× h7 10
1×
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3. Image-oriented box width: dimension of box width for image-oriented box

4. Image-oriented box area: area of image-oriented bounding box

5. Image oriented box ratio: ratio of box area to enclosed area of an object for
an image-oriented box

6. Object-oriented bounding box: the smallest rectangle oriented along the
major axis of the object that encompasses the object

7. Object-oriented box height: dimension of box height for object-oriented box

8. Object-oriented box width: dimension of box width for object-oriented box

9. Object-oriented box area: area of object-oriented bounding box

10. Object-oriented box ratio: ratio of box area to enclosed area of an object for
an object-oriented box

11. Minimum radius: the minimum distance between the centroid and a perimeter
pixel

12. Maximum radius: the maximum distance between the centroid and a perime-
ter pixel

13. Minimum radius angle: the angle of the minimum radius vector with respect
to the horizontal axis

14. Maximum radius angle: the angle of the maximum radius vector with respect
to the horizontal axis

15. Radius ratio: ratio of minimum radius angle to maximum radius angle

Table 18.4-1 lists the orientation descriptors of some of the playing card symbols.

TABLE 18.4-1 Shape Orientation Descriptors of the Playing Card Symbols

Descriptor Spade
Rotated 
Heart

Rotated 
Diamond

Rotated 
Club

Row-bounding box height 155 122 99 123

Row-bounding box width 95 125 175 121

Row-bounding box area 14,725 15,250 17,325 14,883

Row-bounding box ratio 1.75 1.76 2.02 1.69

Object-bounding box height 94 147 99 148

Object-bounding box width 154 93 175 112

Object-bounding box area 14,476 13,671 17,325 16,576

Object-bounding box ratio 1.72 1.57 2.02 1.88

Minimum radius 11.18 38.28 38.95 26.00

Maximum radius 92.05 84.17 88.02 82.22

Minimum radius angle –1.11 0.35 1.06 0.00

Maximum radius angle –1.54 –0.76 0.02 0.85
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18.5. FOURIER DESCRIPTORS

The perimeter of an arbitrary closed curve can be represented by its instantaneous
curvature at each perimeter point. Consider the continuous closed curve drawn on
the complex plane of Figure 18.5-1, in which a point on the perimeter is measured
by its polar position  as a function of arc length s. The complex function 
may be expressed in terms of its real part  and imaginary part  as

(18.5-1)

The tangent angle defined in Figure 18.5-1 is given by

(18.5-2)

and the curvature is the real function

(18.5-3)

The coordinate points x(s), y(s) can be obtained from the curvature function by the
reconstruction formulas

(18.5-4a)

(18.5-4b)

where x(0) and y(0) are the starting point coordinates.

FIGURE 18.5-1. Geometry for curvature definition.
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Because the curvature function is periodic over the perimeter length P, it can be
expanded in a Fourier series as

(18.5-5a)

 where the coefficients  are obtained from

(18.5-5b)

This result is the basis of an analysis technique developed by Cosgriff (21) and Brill
(22) in which the Fourier expansion of a shape is truncated to a few terms to produce
a set of Fourier descriptors. These Fourier descriptors are then utilized as a symbolic
representation of shape for subsequent recognition. 

If an object has sharp discontinuities (e.g., a rectangle), the curvature function is
undefined at these points. This analytic difficulty can be overcome by the utilization
of a cumulative shape function

(18.5-6)

proposed by Zahn and Roskies (23). This function is also periodic over P and can
therefore be expanded in a Fourier series for a shape description.

Bennett and MacDonald (24) have analyzed the discretization error associated
with the curvature function defined on discrete image arrays for a variety of connec-
tivity algorithms. The discrete definition of curvature is given by

(18.5-7a)

(18.5-7b)

(18.5-7c)

where  represents the jth step of arc position. Figure 18.5-2 contains results of the
Fourier expansion of the discrete curvature function.
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19
IMAGE DETECTION AND REGISTRATION

This chapter covers two related image analysis tasks: detection and registration.
Image detection is concerned with the determination of the presence or absence of
objects suspected of being in an image. Image registration involves the spatial align-
ment of a pair of views of a scene.

19.1. TEMPLATE MATCHING

One of the most fundamental means of object detection within an image field is by
template matching, in which a replica of an object of interest is compared to all
unknown objects in the image field (1–4). If the template match between an
unknown object and the template is sufficiently close, the unknown object is labeled
as the template object.

As a simple example of the template-matching process, consider the set of binary
black line figures against a white background as shown in Figure 19.1-1a. In this
example, the objective is to detect the presence and location of right triangles in the
image field. Figure 19.1-1b contains a simple template for localization of right trian-
gles that possesses unit value in the triangular region and zero elsewhere. The width
of the legs of the triangle template is chosen as a compromise between localization
accuracy and size invariance of the template. In operation, the template is sequen-
tially scanned over the image field and the common region between the template
and image field is compared for similarity.

A template match is rarely ever exact because of image noise, spatial and ampli-
tude quantization effects, and a priori uncertainty as to the exact shape and structure
of an object to be detected. Consequently, a common procedure is to produce a
difference measure  between the template and the image field at all points ofD m n,( )
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the image field where  and  denote the trial offset. An object
is deemed to be matched wherever the difference is smaller than some established
level . Normally, the threshold level is constant over the image field. The
usual difference measure is the mean-square difference or error as defined by

(19.1-1)

where  denotes the image field to be searched and  is the template. The
search, of course, is restricted to the overlap region between the translated template
and the image field. A template match is then said to exist at coordinate  if

(19.1-2)

Now, let Eq. 19.1-1 be expanded to yield

(19.1-3)

FIGURE 19.1-1. Template-matching example.
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where

(19.1-4a)

(19.1-4b)

(19.1-4c)

The term  represents a summation of the template energy. It is constant
valued and independent of the coordinate . The image energy over the window
area represented by the first term  generally varies rather slowly over the
image field. The second term should be recognized as the cross correlation

 between the image field and the template. At the coordinate location of a
template match, the cross correlation should become large to yield a small differ-
ence. However, the magnitude of the cross correlation is not always an adequate
measure of the template difference because the image energy term  is posi-
tion variant. For example, the cross correlation can become large, even under a con-
dition of template mismatch, if the image amplitude over the template region is high
about a particular coordinate . This difficulty can be avoided by comparison of
the normalized cross correlation

(19.1-5)

to a threshold level . A template match is said to exist if

(19.1-6)

The normalized cross correlation has a maximum value of unity that occurs if and
only if the image function under the template exactly matches the template.

One of the major limitations of template matching is that an enormous number of
templates must often be test matched against an image field to account for changes
in rotation and magnification of template objects. For this reason, template matching
is usually limited to smaller local features, which are more invariant to size and
shape variations of an object. Such features, for example, include edges joined in a
Y or T arrangement.
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19.2. MATCHED FILTERING OF CONTINUOUS IMAGES

Matched filtering, implemented by electrical circuits, is widely used in one-dimen-
sional signal detection applications such as radar and digital communication (5–7).
It is also possible to detect objects within images by a two-dimensional version of
the matched filter (8–12).

In the context of image processing, the matched filter is a spatial filter that pro-
vides an output measure of the spatial correlation between an input image and a ref-
erence image. This correlation measure may then be utilized, for example, to
determine the presence or absence of a given input image, or to assist in the spatial
registration of two images. This section considers matched filtering of deterministic
and stochastic images.

19.2.1. Matched Filtering of Deterministic Continuous Images

As an introduction to the concept of the matched filter, consider the problem of
detecting the presence or absence of a known continuous, deterministic signal or ref-
erence image  in an unknown or input image  corrupted by additive
stationary noise  independent of . Thus,  is composed of the
signal image plus noise,

(19.2-1a)

or noise alone,

(19.2-1b)

The unknown image is spatially filtered by a matched filter with impulse response
 and transfer function  to produce an output

(19.2-2)

The matched filter is designed so that the ratio of the signal image energy to the
noise field energy at some point  in the filter output plane is maximized.

The instantaneous signal image energy at point  of the filter output in the
absence of noise is given by

(19.2-3)
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with  and . By the convolution theorem,

(19.2-4)

where  is the Fourier transform of . The additive input noise com-
ponent  is assumed to be stationary, independent of the signal image, and
described by its noise power-spectral density . From Eq. 1.4-27, the total
noise power at the filter output is

(19.2-5)

Then, forming the signal-to-noise ratio, one obtains

(19.2-6)

This ratio is found to be maximized when the filter transfer function is of the form
(5,8)

(19.2-7)

If the input noise power-spectral density is white with a flat spectrum,
, the matched filter transfer function reduces to

(19.2-8)

and the corresponding filter impulse response becomes

(19.2-9)

In this case, the matched filter impulse response is an amplitude scaled version of
the complex conjugate of the signal image rotated by 180°.

For the case of white noise, the filter output can be written as

(19.2-10a)
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or

(19.2-10b)

If the matched filter offset  is chosen to be zero, the filter output

(19.2-11)

is then seen to be proportional to the mathematical correlation between the input
image and the complex conjugate of the signal image. Ordinarily, the parameters

 of the matched filter transfer function are set to be zero so that the origin of
the output plane becomes the point of no translational offset between  and

.
If the unknown image  consists of the signal image translated by dis-

tances  plus additive noise as defined by

(19.2-12)

the matched filter output for ,  will be

 (19.2-13)

A correlation peak will occur at ,  in the output plane, thus indicating
the translation of the input image relative to the reference image. Hence the matched
filter is translation invariant. It is, however, not invariant to rotation of the image to
be detected.

It is possible to implement the general matched filter of Eq. 19.2-7 as a two-stage
linear filter with transfer function

(19.2-14)

The first stage, called a whitening filter, has a transfer function chosen such that
noise  with a power spectrum  at its input results in unit energy
white noise at its output. Thus

(19.2-15)
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The transfer function of the whitening filter may be determined by a spectral factor-
ization of the input noise power-spectral density into the product (7)

(19.2-16)

such that the following conditions hold:

(19.2-17a)

(19.2-17b)

(19.2-17c)

The simplest type of factorization is the spatially noncausal factorization

(19.2-18)

where  represents an arbitrary phase angle. Causal factorization of the
input noise power-spectral density may be difficult if the spectrum does not factor
into separable products. For a given factorization, the whitening filter transfer func-
tion may be set to

(19.2-19)

The resultant input to the second-stage filter is , where 
represents unit energy white noise and

(19.2-20)

is a modified image signal with a spectrum

(19.2-21)

From Eq. 19.2-8, for the white noise condition, the optimum transfer function of the
second-stage filter is found to be
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(19.2-22)

Calculation of the product  shows that the optimum filter
expression of Eq. 19.2-7 can be obtained by the whitening filter implementation.

The basic limitation of the normal matched filter, as defined by Eq. 19.2-7, is that
the correlation output between an unknown image and an image signal to be
detected is primarily dependent on the energy of the images rather than their spatial
structure. For example, consider a signal image in the form of a bright hexagonally
shaped object against a black background. If the unknown image field contains a cir-
cular disk of the same brightness and area as the hexagonal object, the correlation
function resulting will be very similar to the correlation function produced by a per-
fect match. In general, the normal matched filter provides relatively poor discrimi-
nation between objects of different shape but of similar size or energy content. This
drawback of the normal matched filter is overcome somewhat with the derivative
matched filter (8), which makes use of the edge structure of an object to be detected.
The transfer function of the pth-order derivative matched filter is given by

(19.2-23)

where p is an integer. If p = 0, the normal matched filter

(19.2-24)

is obtained. With p = 1, the resulting filter

(19.2-25)

is called the Laplacian matched filter. Its impulse response function is

(19.2-26)

The pth-order derivative matched filter transfer function is

 (19.2-27)
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Hence the derivative matched filter may be implemented by cascaded operations
consisting of a generalized derivative operator whose function is to enhance the
edges of an image, followed by a normal matched filter.

19.2.2. Matched Filtering of Stochastic Continuous Images

In the preceding section, the ideal image  to be detected in the presence of
additive noise was assumed deterministic. If the state of  is not known
exactly, but only statistically, the matched filtering concept can be extended to the
detection of a stochastic image in the presence of noise (13). Even if  is
known deterministically, it is often useful to consider it as a random field with a
mean . Such a formulation provides a mechanism for incorpo-
rating a priori knowledge of the spatial correlation of an image in its detection. Con-
ventional matched filtering, as defined by Eq. 19.2-7, completely ignores the spatial
relationships between the pixels of an observed image.

For purposes of analysis, let the observed unknown field

 (19.2-28a)

or noise alone

(19.2-28b)

be composed of an ideal image , which is a sample of a two-dimensional sto-
chastic process with known moments, plus noise  independent of the image,
or be composed of noise alone. The unknown field is convolved with the matched
filter impulse response  to produce an output modeled as

(19.2-29)

The stochastic matched filter is designed so that it maximizes the ratio of the aver-
age squared signal energy without noise to the variance of the filter output. This is
simply a generalization of the conventional signal-to-noise ratio of Eq. 19.2-6. In the
absence of noise, the expected signal energy at some point  in the output field
is

(19.2-30)

By the convolution theorem and linearity of the expectation operator,
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The variance of the matched filter output, under the assumption of stationarity and
signal and noise independence, is

 (19.2-32)

where  and  are the image signal and noise power spectral
densities, respectively. The generalized signal-to-noise ratio of the two equations
above, which is of similar form to the specialized case of Eq. 19.2-6, is maximized
when

(19.2-33)

Note that when  is deterministic, Eq. 19.2-33 reduces to the matched filter
transfer function of Eq. 19.2-7.

The stochastic matched filter is often modified by replacement of the mean of the
ideal image to be detected by a replica of the image itself. In this case, for

,

 (19.2-34)

A special case of common interest occurs when the noise is white,
, and the ideal image is regarded as a first-order nonseparable

Markov process, as defined by Eq. 1.4-17, with power spectrum

 (19.2-35)

where  is the adjacent pixel correlation. For such processes, the resultant
modified matched filter transfer function becomes

 (19.2-36)

At high spatial frequencies and low noise levels, the modified matched filter defined
by Eq. 19.2-36 becomes equivalent to the Laplacian matched filter of Eq. 19.2-25.
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19.3. MATCHED FILTERING OF DISCRETE IMAGES

A matched filter for object detection can be defined for discrete as well as continu-
ous images. One approach is to perform discrete linear filtering using a discretized
version of the matched filter transfer function of Eq. 19.2-7 following the techniques
outlined in Section 9.4. Alternatively, the discrete matched filter can be developed
by a vector-space formulation (13,14). The latter approach, presented in this section,
is advantageous because it permits a concise analysis for nonstationary image and
noise arrays. Also, image boundary effects can be dealt with accurately. Consider an
observed image vector

 (19.3-1a)

or

 (19.3-1b)

composed of a deterministic image vector f plus a noise vector n, or noise alone.
The discrete matched filtering operation is implemented by forming the inner prod-
uct of  with a matched filter vector m to produce the scalar output

(19.3-2)

Vector m is chosen to maximize the signal-to-noise ratio. The signal power in the
absence of noise is simply

(19.3-3)

and the noise power is

 (19.3-4)

where  is the noise covariance matrix. Hence the signal-to-noise ratio is

(19.3-5)

The optimal choice of m can be determined by differentiating the signal-to-noise
ratio of Eq. 19.3-5 with respect to m and setting the result to zero. These operations
lead directly to the relation
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 (19.3-6)

where the term in brackets is a scalar, which may be normalized to unity. The
matched filter output

(19.3-7)

reduces to simple vector correlation for white noise. In the general case, the noise
covariance matrix may be spectrally factored into the matrix product

(19.3-8)

with , where E is a matrix composed of the eigenvectors of  and 
is a diagonal matrix of the corresponding eigenvalues (14). The resulting matched
filter output

(19.3-9)

can be regarded as vector correlation after the unknown vector  has been whit-
ened by premultiplication by .

Extensions of the previous derivation for the detection of stochastic image vec-
tors are straightforward. The signal energy of Eq. 19.3-3 becomes

(19.3-10)

where  is the mean vector of f and the variance of the matched filter output is

(19.3-11)

under the assumption of independence of f and n. The resulting signal-to-noise ratio
is maximized when

(19.3-12)

Vector correlation of m and  to form the matched filter output can be performed
directly using Eq. 19.3-2 or alternatively, according to Eq. 19.3-9, where
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, respectively (14). In the special but common case of white noise and a
separable, first-order Markovian covariance matrix, the whitening operations can be
performed using an efficient Fourier domain processing algorithm developed for
Wiener filtering (15).

19.4. IMAGE REGISTRATION

In many image processing applications, it is necessary to form a pixel-by-pixel com-
parison of two images of the same object field obtained from different sensors, or of
two images of an object field taken from the same sensor at different times. To form
this comparison, it is necessary to spatially register the images, and thereby, to cor-
rect for relative translation shifts, rotational differences, scale differences and even
perspective view differences. Often, it is possible to eliminate or minimize many of
these sources of misregistration by proper static calibration of an image sensor.
However, in many cases, a posteriori misregistration detection and subsequent cor-
rection must be performed. Chapter 13 considered the task of spatially warping an
image to compensate for physical spatial distortion mechanisms. This section
considers means of detecting the parameters of misregistration.

Consideration is given first to the common problem of detecting the translational
misregistration of two images. Techniques developed for the solution to this prob-
lem are then extended to other forms of misregistration.

19.4.1. Translational Misregistration Detection

The classical technique for registering a pair of images subject to unknown transla-
tional differences is to (1) form the normalized cross correlation function between
the image pair, (2) determine the translational offset coordinates of the correlation
function peak, and (3) translate one of the images with respect to the other by the
offset coordinates (16,17). This subsection considers the generation of the basic
cross correlation function and several of its derivatives as means of detecting the
translational differences between a pair of images.

Basic Correlation Function. Let  and  for  and ,
represent two discrete images to be registered.  is considered to be the
reference image, and

(19.4-1)

is a translated version of  where  are the offset coordinates of the
translation. The normalized cross correlation between the image pair is defined as
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(19.4-2)

for m = 1, 2, . . ., M and n = 1, 2, .. . , N, where M and N are odd integers. This formu-
lation, which is a generalization of the template matching cross correlation expres-
sion, as defined by Eq. 19.1-5, utilizes an upper left corner–justified definition for
all of the arrays. The dashed-line rectangle of Figure 19.4-1 specifies the bounds of
the correlation function region over which the upper left corner of  moves in
space with respect to . The bounds of the summations of Eq. 19.4-2 are

(19.4-3a)

(19.4-3b)

These bounds are indicated by the shaded region in Figure 19.4-1 for the trial offset
(a, b). This region is called the window region of the correlation function computa-
tion. The computation of Eq. 19.4-2 is often restricted to a constant-size window
area less than the overlap of the image pair in order to reduce the number of

FIGURE 19.4-1. Geometrical relationships between arrays for the cross correlation of an
image pair.
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calculations. This  constant-size window region, called a template region, is
defined by the summation bounds

(19.4-4a)

(19.4-4b)

The dotted lines in Figure 19.4-1 specify the maximum constant-size template
region, which lies at the center of . The sizes of the  correlation func-
tion array, the  search region, and the  template region are related by

(19.4-5a)

(19.4-5b)

For the special case in which the correlation window is of constant size, the cor-
relation function of Eq. 19.4-2 can be reformulated as a template search process. Let

 denote a  search area within  whose upper left corner is at the
offset coordinate . Let  denote a  template region extracted from

 whose upper left corner is at the offset coordinate . Figure 19.4-2
relates the template region to the search area. Clearly,  and . The normal-
ized cross correlation function can then be expressed as

(19.4-6)

for m = 1, 2, . . ., M and n = 1, 2, . . ., N where

(19.4-7a)

(19.4-7b)

The summation limits of Eq. 19.4-6 are

(19.4-8a)

(19.4-8b)
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Computation of the numerator of Eq. 19.4-6 is equivalent to raster scanning the
template  over the search area  such that the template always resides
within , and then forming the sum of the products of the template and the
search area under the template. The left-hand denominator term is the square root of
the sum of the terms  within the search area defined by the template posi-
tion. The right-hand denominator term is simply the square root of the sum of the
template terms  independent of . It should be recognized that the
numerator of Eq. 19.4-6 can be computed by convolution of  with an impulse
response function consisting of the template  spatially rotated by 180°. Simi-
larly, the left-hand term of the denominator can be implemented by convolving the
square of  with a  uniform impulse response function. For large tem-
plates, it may be more computationally efficient to perform the convolutions indi-
rectly by Fourier domain filtering.

Statistical Correlation Function. There are two problems associated with the basic
correlation function of Eq. 19.4-2. First, the correlation function may be rather
broad, making detection of its peak difficult. Second, image noise may mask the
peak correlation. Both problems can be alleviated by extending the correlation func-
tion definition to consider the statistical properties of the pair of image arrays.

The statistical correlation function (14) is defined as

(19.4-9)

FIGURE 19.4-2. Relationship of template region and search area.
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The arrays  are obtained by the convolution operation

(19.4-10)

where  is the spatial average of  over the correlation window. The
impulse response functions  are chosen to maximize the peak correlation
when the pair of images is in best register. The design problem can be solved by
recourse to the theory of matched filtering of discrete arrays developed in the pre-
ceding section. Accordingly, let  denote the vector of column-scanned elements of

 in the window area and let  represent the elements of  over
the window area for a given registration shift (m, n) in the search area. There are a
total of  vectors . The elements within  and  are usually
highly correlated spatially. Hence, following the techniques of stochastic method
filtering, the first processing step should be to whiten each vector by premultiplica-
tion with whitening filter matrices H1 and H2 according to the relations

(19.4-11a)

(19.4-11b)

where H1 and H2 are obtained by factorization of the image covariance matrices

(19.4-12a)

(19.4-12b)

The factorization matrices may be expressed as

(19.4-13a)

(19.4-13b)

where E1 and E2 contain eigenvectors of K1 and K2, respectively, and  and 
are diagonal matrices of the corresponding eigenvalues of the covariance matrices.

The statistical correlation function can then be obtained by the normalized inner-
product computation
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(19.4-14)

Computation of the statistical correlation function requires calculation of two sets of
eigenvectors and eigenvalues of the covariance matrices of the two images to be
registered. If the window area contains  pixels, the covariance matrices K1 and
K2 will each be  matrices. For example, if P = Q = 16, the covari-
ance matrices K1 and K2 are each of dimension . Computation of the
eigenvectors and eigenvalues of such large matrices is numerically difficult. How-
ever, in special cases, the computation can be simplified appreciably (14). For
example, if the images are modeled as separable Markov process sources and there
is no observation noise, the convolution operators of Eq. 19.5-9 reduce to the statis-
tical mask operator

 (19.4-15)

where  denotes the adjacent pixel correlation (18). If the images are spatially
uncorrelated, then  = 0, and the correlation operation is not required. At the other
extreme, if  = 1, then

(19.4-16)

This operator is an orthonormally scaled version of the cross second derivative spot
detection operator of Eq. 15.7-3. In general, when an image is highly spatially
correlated, the statistical correlation operators  produce outputs that are large in
magnitude only in regions of an image for which its amplitude changes significantly
in both coordinate directions simultaneously.

Figure 19.4-3 provides computer simulation results of the performance of the
statistical correlation measure for registration of the toy tank image of Figure
17.1-6b. In the simulation, the reference image  has been spatially offset hor-
izontally by three pixels and vertically by four pixels to produce the translated image

. The pair of images has then been correlated in a window area of 
pixels over a search area of  pixels. The curves in Figure 19.4-3 represent the
normalized statistical correlation measure taken through the peak of the correlation
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function. It should be noted that for  = 0, corresponding to the basic correlation
measure, it is relatively difficult to distinguish the peak of . For  or
greater,  peaks sharply at the correct point.

The correlation function methods of translation offset detection defined by Eqs.
19.4-2 and 19.4-9 are capable of estimating any translation offset to an accuracy of

½ pixel. It is possible to improve the accuracy of these methods to subpixel levels
by interpolation techniques (19). One approach (20) is to spatially interpolate the
correlation function and then search for the peak of the interpolated correlation
function. Another approach is to spatially interpolate each of the pair of images and
then correlate the higher-resolution pair.

A common criticism of the correlation function method of image registration is
the great amount of computation that must be performed if the template region and
the search areas are large. Several computational methods that attempt to overcome
this problem are presented next.

Two-State Methods. Rosenfeld and Vandenburg (21,22) have proposed two effi-
cient two-stage methods of translation offset detection. In one of the methods, called
coarse–fine matching, each of the pair of images is reduced in resolution by conven-
tional techniques (low-pass filtering followed by subsampling) to produce coarse

FIGURE 19.4-3. Statistical correlation misregistration detection.

ρ
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representations of the images. Then the coarse images are correlated and the result-
ing correlation peak is determined. The correlation peak provides a rough estimate
of the translation offset, which is then used to define a spatially restricted search
area for correlation at the fine resolution of the original image pair. The other
method, suggested by Vandenburg and Rosenfeld (22), is to use a subset of the pix-
els within the window area to compute the correlation function in the first stage of
the two-stage process. This can be accomplished by restricting the size of the win-
dow area or by performing subsampling of the images within the window area.
Goshtasby et al. (23) have proposed random rather than deterministic subsampling.
The second stage of the process is the same as that of the coarse–fine method; corre-
lation is performed over the full window at fine resolution. Two-stage methods can
provide a significant reduction in computation, but they can produce false results.

Sequential Search Method. With the correlation measure techniques, no decision
can be made until the correlation array is computed for all  elements. Further-
more, the amount of computation of the correlation array is the same for all degrees
of misregistration. These deficiencies of the standard correlation measures have led
to the search for efficient sequential search algorithms. 

An efficient sequential search method has been proposed by Barnea and Silver-
man (24). The basic form of this algorithm is deceptively simple. The absolute value
difference error

(19.4-17)

is accumulated for pixel values in a window area. If the error exceeds a predeter-
mined threshold value before all  pixels in the window area are examined, it is
assumed that the test has failed for the particular offset , and a new offset is
checked. If the error grows slowly, the number of pixels examined when the thresh-
old is finally exceeded is recorded as a rating of the test offset. Eventually, when all
test offsets have been examined, the offset with the largest rating is assumed to be
the proper misregistration offset.

Phase Correlation Method. Consider a pair of continuous domain images

(19.4-18)

that are translated by an offset with respect to one another. By the Fourier
transform shift property of Eq. 1.3-13a, the Fourier transforms of the images are
related by

(19.4-19)
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The exponential phase shift factor can be computed by the cross-power spectrum
(25) of the two images as given by

(19.4-20)

Taking the inverse Fourier transform of Eq. 19.4-20 yields the spatial offset

(19.4-21)

in the space domain.
The cross-power spectrum approach can be applied to discrete images by utiliz-

ing discrete Fourier transforms in place of the continuous Fourier transforms in Eq.
19.4-20. However, care must be taken to prevent wraparound error. Figure 19.4-4
presents an example of translational misregistration detection using the phase corre-
lation method. Figure 19.4-4a and b show translated portions of a scene embedded
in a zero background. The scene in Figure 19.4-4a was obtained by extracting the
first 480 rows and columns of the  washington_ir source image. The
scene in Figure 19.4-4b consists of the last 480 rows and columns of the source
image. Figure 19.4-4c and d are the logarithm magnitudes of the Fourier transforms
of the two images, and Figure 19.4-4e is inverse Fourier transform of the cross-
power spectrum of the pair of images. The bright pixel in the upper left corner of
Figure 19.4-4e, located at coordinate (20,20), is the correlation peak.

19.4.2. Scale and Rotation Misregistration Detection

The phase correlation method for translational misregistration detection has been
extended to scale and rotation misregistration detection (25,26). Consider a a pair of
images in which a second image is translated by an offset  and rotated by an
angle  with respect to the first image. Then

(19.4-22)

Taking Fourier transforms of both sides of Eq. 19.4-22, one obtains the relationship
(25)

(19.4-23)
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FIGURE 19.4-4. Translational misregistration detection on the washington_ir1 and

washington_ir2 images using the phase correlation method. See white pixel in upper left

corner of (e).

(a) Embedded image 1 (b) Embedded image 2

(e) Phase correlation spatial array

(c) Log magnitude of Fourier
transform of image 1

(d ) Log magnitude of Fourier
transform of image 1
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The rotation component can be isolated by taking the magnitudes  and
 of both sides of Eq. 19.4-19. By representing the frequency variables in

polar form,

(19.4-24)

the phase correlation method can be used to determine the rotation angle .
If a second image is a size-scaled version of a first image with scale factors (a, b),

then from the Fourier transform scaling property of Eq. 1.3-12,

(19.4-25)

By converting the frequency variables to a logarithmic scale, scaling can be con-
verted to a translational movement. Then

(19.4-26)

Now, the phase correlation method can be applied to determine the unknown scale
factors (a,b).

19.4.3. Generalized Misregistration Detection

The basic correlation concept for translational misregistration detection can be gen-
eralized, in principle, to accommodate rotation and size scaling. As an illustrative
example, consider an observed image  that is an exact replica of a reference
image  except that it is rotated by an unknown angle  measured in a clock-
wise direction about the common center of both images. Figure 19.4-5 illustrates the
geometry of the example. Now suppose that  is rotated by a trial angle 
measured in a counterclockwise direction and that it is resampled with appropriate
interpolation. Let  denote the trial rotated version of . This proce-
dure is then repeated for a set of angles  expected to span the unknown
angle  in the reverse direction. The normalized correlation function can then be
expressed as

(19.4-27)
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for r = 1, 2, . . ., R. Searching for the peak of R(r) leads to an estimate of the
unknown rotation angle . The procedure does, of course, require a significant
amount of computation because of the need to resample  for each trial rota-
tion angle .

The rotational misregistration example of Figure 19.4-5 is based on the simplify-
ing assumption that the center of rotation is known. If it is not, then to extend the
correlation function concept, it is necessary to translate  to a trial translation
coordinate , rotate that image by a trial angle , and translate that image to
the translation coordinate . This results in a trial image ,
which is used to compute one term of a three-dimensional correlation function

, the peak of which leads to an estimate of the unknown translation and
rotation. Clearly, this procedure is computationally intensive.

It is possible to apply the correlation concept to determine unknown row and col-
umn size scaling factors between a pair of images. The straightforward extension
requires the computation of a two-dimensional correlation function. If all five
misregistration parameters are unknown, then again, in principle, a five-dimensional
correlation function can be computed to determine an estimate of the unknown
parameters. This formidable computational task is further complicated by the fact
that, as noted in Section 13.1, the order of the geometric manipulations is important.

The complexity and computational load of the correlation function method of
misregistration detection for combined translation, rotation, and size scaling can be
reduced significantly by a procedure in which the misregistration of only a few cho-
sen common points between a pair of images is determined. This procedure, called
control point detection, can be applied to the general rubber-sheet warping problem.
A few pixels that represent unique points on objects within the pair of images are
identified, and their coordinates are recorded to be used in the spatial warping map-
ping process described in Eq. 13.2-3. The trick, of course, is to accurately identify
and measure the control points. It is desirable to locate object features that are rea-
sonably invariant to small-scale geometric transformations. One such set of features
are Hu's (27) seven invariant moments defined by Eqs. 18.3-27. Wong and Hall (28)

FIGURE 19.4-5 Rotational misregistration detection.
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have investigated the use of invariant moment features for matching optical and
radar images of the same scene. Goshtasby (29) has applied invariant moment fea-
tures for registering visible and infrared weather satellite images.

The control point detection procedure begins with the establishment of a small
feature template window, typically  pixels, in the reference image that is suffi-
ciently large to contain a single control point feature of interest. Next, a search win-
dow area is established such that it envelops all possible translates of the center of
the template window between the pair of images to be registered. It should be noted
that the control point feature may be rotated, minified or magnified to a limited
extent, as well as being translated. Then the seven Hu moment invariants  for i =
1, 2,..., 7 are computed in the reference image. Similarly, the seven moments

 are computed in the second image for each translate pair  within the
search area. Following this computation, the invariant moment correlation function
is formed as

(19.4-28)

Its peak is found to determine the coordinates of the control point feature in each
image of the image pair. The process is then repeated on other control point features
until the number of control points is sufficient to perform the rubber-sheet warping
of  onto the space of .
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PART 6

IMAGE PROCESSING SOFTWARE

Digital image processing applications typically are implemented by software calls to
an image processing library of functional operators. Many libraries are limited to
primitive functions such as lookup table manipulation, convolution, and histogram
generation. Sophisticated libraries perform more complex functions such as unsharp
masking, edge detection, and spatial moment shape analysis. The interface between
an application and a library is an application program interface (API) which defines
the semantics and syntax of an operation. 

Chapter 20 describes the architecture of a full featured image processing API
called the Programmer’s Imaging Kernel System (PIKS). PIKS is an international
standard developed under the auspices of the International Organization for Stan-
dardization (ISO) and the International Electrotechnical Commission (IEC). The
PIKS description in Chapter 20 serves two purposes. It explains the architecture and
elements of a well designed image processing API. It provides an introduction to
PIKS usage to implement the programming exercises in Chapter 21.

Digital Image Processing: PIKS Inside, Third Edition. William K. Pratt
Copyright © 2001 John Wiley & Sons, Inc.

ISBNs: 0-471-37407-5 (Hardback); 0-471-22132-5 (Electronic)
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PIKS contains a rich set of operators that perform manipulations of
multidimensional images or of data objects extracted from images in order to
enhance, restore, or assist in the extraction of information from images. This chapter
presents a functional overview of the PIKS standard and a more detailed definition
of a functional subset of the standard called PIKS Core.

20.1. PIKS FUNCTIONAL OVERVIEW

This section provides a brief functional overview of PIKS. References 1 to 6 provide
further information. The PIKS documentation utilizes British spelling conventions,
which differ from American spelling conventions for some words (e.g., colour
instead of color). For consistency with the PIKS standard, the British spelling con-
vention has been adopted for this chapter.

20.1.1. PIKS Imaging Model

Figure 20.1-1 describes the PIKS imaging model. The solid lines indicate data flow,
and the dashed lines indicate control flow. The PIKS application program interface
consists of four major parts:

1. Data objects

2. Operators, tools, and utilities

3. System mechanisms

4. Import and export 

Digital Image Processing: PIKS Inside, Third Edition. William K. Pratt
Copyright © 2001 John Wiley & Sons, Inc.

ISBNs: 0-471-37407-5 (Hardback); 0-471-22132-5 (Electronic)
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The PIKS data objects include both image and image-related, non-image data
objects. The operators, tools, and utilities are functional elements that are used to
process images or data objects extracted from images. The system mechanisms
manage and control the processing. PIKS receives information from the application
to invoke its system mechanisms, operators, tools, and utilities, and returns certain
status and error information to the application. The import and export facility
provides the means of accepting images and image-related data objects from an
application, and for returning processed images and image-related data objects to
the application. PIKS can transmit its internal data objects to an external facility
through the ISO/IEC standards Image Interchange Facility (IIF) or the Basic Image
Interchange Format (BIIF). Also, PIKS can receive data objects in its internal
format, which have been supplied by the IIF or the BIIF. References 7 to 9 provide
information and specifications of the IIF and BIIF. 

20.1.2. PIKS Data Objects

PIKS supports two types of data objects: image data objects and image-related, non-
image data objects.

FIGURE 20.1-1. PIKS imaging model.
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A PIKS image data object is a five-dimensional collection of pixels whose struc-
ture is:

x Horizontal space index, 

y Vertical space index, 

z Depth space index, 

t Temporal index, 

b Colour or spectral band index, 

Some of the image dimensions may be unpopulated. For example, as shown in Fig-
ure 20.1-2, for a colour image, . PIKS gives semantic meaning to certain
dimensional subsets of the five-dimensional image object. These are listed in Table
20.1-1.

PIKS utilizes the following pixel data types:

1. Boolean

2. Non-negative integer

3. Signed integer

4. Real arithmetic

5. Complex arithmetic

FIGURE 20.1-2. Geometrical representation of a PIKS colour image array.
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TABLE 20.1-1. PIKS Image Objects 

The precision and data storage format of pixel data is implementation dependent.

PIKS supports several image related, non-image data objects. These include:

1. Chain: an identifier of a sequence of operators

2. Composite identifier: an identifier of a structure of image arrays, lists, and
records

3. Histogram: a construction of the counts of pixels with some particular
amplitude value

4. Lookup table: a structure that contains pairs of entries in which the first
entry is an input value to be matched and the second is an output value

5. Matrix: a two-dimensional array of elements that is used in vector algebra
operations

6. Neighbourhood array: a multi-dimensional moving window associated with
each pixel of an image (e.g., a convolution impulse response function array)

7. Pixel record: a sequence of across-band pixel values

8. Region-of-interest: a general mechanism for pixel-by-pixel processing
selection

9. Static array: an identifier of the same dimension as an image to which it is
related (e.g., a Fourier filter transfer function)

10. Tuple: a collection of data values of the same elementary data type (e.g.,
image size 5-tuple).

11. Value bounds collection: a collection of pairs of elements in which the first
element is a pixel coordinate and the second element is an image measure-
ment (e.g., pixel amplitude)

12. Virtual register: an identifier of a storage location for numerical values
returned from operators in a chain

Semantic Description Image Indices

Monochrome
Volume   
Temporal 
Colour       
Spectral 
Volume–temporal
Volume–colour 
Volume–spectral   
Temporal–colour 
Temporal–spectral
Volume–temporal–colour   
Volume–temporal–spectral 
Generic

x, y, 0, 0, 0 
x, y, z, 0, 0 
x, y, 0, t, 0
x, y, 0, 0, b 
x, y, 0, 0, b 
x, y, z, t, 0 
x, y, z, 0, b 
x, y, z, 0, b
x, y, 0, t, b 
x, y, 0, t, b
x, y, z, t, b   
x, y, z, t, b
x, y, z, t, b
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20.1.3. PIKS Operators, Tools, Utilities, and Mechanisms

PIKS operators are elements that manipulate images or manipulate data objects
extracted from images in order to enhance or restore images, or to assist in the
extraction of information from images. Exhibit  20.1-1 is a list of PIKS operators
categorized by functionality.

PIKS tools are elements that create data objects to be used by PIKS operators.
Exhibit 20.1-2 presents a list of PIKS tools functionally classified. PIKS utilities are
elements that perform basic mechanical image manipulation tasks. A classification
of PIKS utilities is shown in Exhibit 20.1-3. This list contains several file access and
display utilities that are defined in a proposed amendment to PIKS. PIKS mecha-
nisms are elements that perform control and management tasks. Exhibit  20.1-4 pro-
vides a functional listing of PIKS mechanisms. In Exhibits 20.1-1 to 20.1-4, the
elements in PIKS Core are identified by an asterisk.

EXHIBIT 20.1-1. PIKS Operators Classification

Analysis: image-to-non-image operators that extract numerical information from
an image

*Accumulator
Difference measures

*Extrema
*Histogram, one-dimensional
Histogram, two-dimensional
Hough transform

*Line profile
*Moments
*Value bounds 

Classification: image-to-image operators that classify each pixel of a multispectral
image into one of a specified number of classes based on the ampli-
tudes of pixels across image bands

Classifier, Bayes 
Classifier, nearest neighbour 

Colour: image-to-image operators that convert a colour image from one colour
space to another

*Colour conversion, linear
*Colour conversion, nonlinear
*Colour conversion, subtractive

Colour lookup, interpolated
*Luminance generation
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Complex image: image-to-image operators that perform basic manipulations of
images in real and imaginary or magnitude and phase form

*Complex composition
*Complex conjugate
*Complex decomposition
*Complex magnitude 

Correlation: image-to-non-image operators that compute a correlation array of a
pair of images

Cross-correlation
Template match

Edge detection: image-to-image operators that detect the edge boundary of objects
within an image

Edge detection, orthogonal gradient
Edge detection, second derivative
Edge detection, template gradient 

Enhancement: image-to-image operators that improve the visual appearance of an
image or that convert an image to a form better suited for analysis by
a human or a machine

Adaptive histogram equalization 
False colour
Histogram modification 
Outlier removal
Pseudocolour
Unsharp mask
Wallis statistical differencing 

Ensemble: image-to-image operators that perform arithmetic, extremal, and logical
combinations of pixels

*Alpha blend, constant
Alpha blend, variable

*Dyadic, arithmetic
*Dyadic, complex
*Dyadic, logical 
*Dyadic, predicate
*Split image

Z merge
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Feature extraction: image-to-image operators that compute a set of image
features at each pixel of an image

 Label objects 
 Laws texture features
Window statistics

Filtering: image-to-image operators that perform neighbourhood combinations of
pixels directly or by Fourier transform domain processing

Convolve, five-dimensional 
*Convolve, two-dimensional

Filtering, homomorphic 
*Filtering, linear

Geometric: image-to-image and ROI-to-ROI operators that perform geometric
modifications

Cartesian to polar
*Flip, spin, transpose

Polar to cartesian
*Rescale
*Resize
*Rotate
*Subsample
*Translate

Warp, control point
*Warp, lookup table
*Warp, polynomial
*Zoom

Histogram shape: non-image to non-image operators that generate shape measure-
ments of a pixel amplitude histogram of an image

Histogram shape, one-dimensional
Histogram shape, two-dimensional

Morphological: image-to-image operators that perform morphological operations
on boolean and grey scale images

*Erosion or dilation, Boolean
*Erosion or dilation, grey
*Fill region

Hit or miss transformation
*Morphic processor
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Morphology
Neighbour count
Open and close

Pixel modification: image-to-image operators that modify an image by pixel draw-
ing or painting

Draw pixels
Paint pixels

Point: image-to-image operators that perform point manipulation on a pixel-by-
pixel basis

*Bit shift
* Complement

Error function scaling
*Gamma correction

Histogram scaling
Level slice

*Lookup   Lookup, interpolated
*Monadic, arithmetic
*Monadic, complex
*Monadic, logical

Noise combination
*Power law scaling

Rubber band scaling
*Threshold
*Unary, integer
*Unary, real
*Window-level 

Presentation: image-to-image operators that prepare an image for display

*Diffuse
*Dither

Shape: Image-to-non-image operators that label objects and perform measurements
of the shape of objects within an image

Perimeter code generator 
Shape metrics 
Spatial moments, invariant
Spatial moments, scaled
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Unitary transform: image-to-image operators that perform multi-dimensional for-
ward and inverse unitary transforms of an image

Transform, cosine
*Transform, Fourier

Transform, Hadamard
Transform, Hartley

3D Specific: image-to-image operators that perform manipulations of three-dimen-
sional image data

Sequence average
Sequence Karhunen-Loeve transform
Sequence running measures
3D slice 

EXHIBIT 20.1-2 PIKS Tools Classification

Image generation: Tools that create test images

Image, bar chart
*Image, constant

Image, Gaussian image
Image, grey scale image
Image, random number image

Impulse response function array generation: Tools that create impulse response
function neighbourhood array data objects

Impulse, boxcar 
*Impulse, derivative of Gaussian

Impulse, difference of Gaussians
*Impulse, elliptical
*Impulse, Gaussian
*Impulse, Laplacian of Gaussian

Impulse, pyramid
*Impulse, rectangular

Impulse, sinc function

Lookup table generation: Tools that create entries of a lookup table data object

* Array to LUT

Matrix generation: tools that create matrix data objects

*Colour conversion matrix
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Region-of-interest generation: tools that create region-of-interest data objects from
a mathematical description of the region-of-interest

*ROI, coordinate
*ROI, elliptical
*ROI, polygon
*ROI, rectangular

Static array generation: tools that create filter transfer function, power spectrum,
and windowing function static array data objects

*Filter, Butterworth
*Filter, Gaussian

Filter, inverse 
Filter, matched
Filter, Wiener
Filter, zonal
Markov process power spectrum
Windowing function

EXHIBIT 20.1-3. PIKS Utilities Classification

Display: utilities that perform image display functions

*Boolean display
*Close window
*Colour display
*Event display
*Monochrome display
*Open titled window
*Open window
*Pseudocolour display

Export From Piks: Utilities that export image and non-image data objects from
PIKS to an application or to the IIF or BIIF

*Export histogram
*Export image
*Export LUT
*Export matrix
*Export neighbourhood array
*Export ROI array
*Export static array
*Export tuple
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*Export value bounds
*Get colour pixel
*Get pixel
*Get pixel array
 Get pixel record
*Output image file

Output object

Import to PIKS: utilities that import image and non-image data objects to PIKS
from an application or from the IIF or the BIIF

*Import histogram
*Import image
*Import LUT
*Import matrix
*Import neighbourhood array
*Import ROI array
*Import static array
*Import tuple
*Import value bounds

Input object
*Input image file
*Input PhotoCD
*Put colour pixel
*Put pixel
*Put pixel array
 Put pixel record

Inquiry: utilities that return information to the application regarding PIKS data
objects, status and implementation

Inquire chain environment
Inquire chain status

*Inquire elements
*Inquire image

Inquire index assignment
*Inquire non-image object
*Inquire PIKS implementation
*Inquire PIKS status
*Inquire repository
*Inquire resampling

Internal: utilities that perform manipulation and conversion of PIKS internal image
and non-image data objects

*Constant predicate
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*Convert array to image
*Convert image data type
*Convert image to array
*Convert image to ROI
*Convert ROI to image
*Copy window
*Create tuple
*Equal predicate
*Extract pixel plane
*Insert pixel plane

EXHIBITS 20.1-4 PIKS Mechanisms Classification

Chaining: mechanisms that manage execution of PIKS elements inserted in chains

Chain abort
Chain begin
Chain delete
Chain end
Chain execute
Chain reload

Composite identifier management: mechanisms that perform manipulation of
image identifiers inserted in arrays, lists, and
records

Composite identifier array equal
Composite identifier array get
Composite identifier array put
Composite identifier list empty
Composite identifier list equal
Composite identifier list get
Composite identifier list insert
Composite identifier list remove
Composite identifier record equal
Composite identifier record get
Composite identifier record put

Control: mechanisms that control the basic operational functionality of PIKS

Abort asynchronous execution
*Close PIKS
*Close PIKS, emergency
*Open PIKS

Synchronize
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Error: mechanisms that provide means of reporting operational errors

*Error handler
*Error logger
*Error test

System management: mechanisms that allocate, deallocate, bind, and set attributes
of data objects and set global variables

Allocate chain
Allocate composite identifier array
Allocate composite identifier list
Allocate composite identifier record

*Allocate display image
*Allocate histogram
*Allocate image
*Allocate lookup table
*Allocate matrix
*Allocate neighbourhood array

Allocate pixel record
*Allocate ROI 
*Allocate static array
*Allocate tuple
*Allocate value bounds collection
 Allocate virtual register

Bind match point
*Bind ROI
*Deallocate data object
*Define sub image
*Return repository identifier
*Set globals
*Set image attributes

Set index assignment

Virtual register: mechanisms that manage the use of virtual registers

Vreg alter
Vreg clear
Vreg conditional
Vreg copy
Vreg create
Vreg delete
Vreg get
Vreg set
Vreg wait
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20.1.4. PIKS Operator Model

The PIKS operator model provides three possible transformations of PIKS data
objects by a PIKS operator:

1. Non-image to non-image

2. Image to non-image

3. Image to image

Figure 20.1-3 shows the PIKS operator model for the transformation of non-image
data objects to produce destination non-image data objects. An example of such a
transformation is the generation of shape features from an image histogram. The
operator model for the transformation of image data objects by an operator to pro-
duce non-image data objects is shown in Figure 20.1-4. An example of such a trans-
formation is the computation of the least-squares error between a pair of images. In
this operator model, processing is subject to two control mechanisms: region-of-
interest (ROI) source selection and source match point translation. These control
mechanisms are defined later. The dashed line in Figure 20.1-4 indicates the transfer
of control information. The dotted line indicates the binding of source ROI
objects to source image objects. Figure 20.1-5 shows the PIKS operator model for

FIGURE 20.1-3. PIKS operator model: non-image to non-image operators.

FIGURE 20.1-4. PIKS operator model: image to non-image operators.
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the transformation of image data objects by an operator to produce other image data
objects. An example of such an operator is the unsharp masking operator, which
enhances detail within an image. In this operator model, processing is subject to four
control mechanisms: source match point translation, destination match point transla-
tion, ROI source selection, and ROI destination selection. 

Index Assignment. Some PIKS image to non-image and image to image operators
have the capability of assigning operator indices to image indices. This capability
permits operators that are inherently Nth order, where , to be applied to five-
dimensional images in a flexible manner. For example, a two-dimensional Fourier
transform can be taken of each column slice of a volumetric image using index
assignment.

ROI Control. A region-of-interest (ROI) data object can be used to control which
pixels within a source image will be processed by an operator and to specify which
pixels processed by an operator will be recorded in a destination image. Conceptu-
ally, a ROI consists of an array of Boolean value pixels of up to five dimensions.
Figure 20.1-6 presents an example of a two-dimensional rectangular ROI. In this
example, if the pixels in the cross-hatched region are logically TRUE, the remaining
pixels are logically FALSE. Otherwise, if the cross-hatched pixels are set FALSE,
the others are TRUE.

FIGURE 20.1-5. PIKS operator model: image to image operators.
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The size of a ROI need not be the same as the size of an image to which it is asso-
ciated. When a ROI is to be associated with an image, a binding process occurs in
which a ROI control object is generated. If the ROI data object is larger in spatial
extent than the image to which it is to be bound, it is clipped to the image size to
form the ROI control object. In the opposite case, if the ROI data object is smaller
than the image, the ROI control object is set to the FALSE state in the non-overlap
region.

Figure 20.1-7 illustrates three cases of ROI functionality for point processing of a
monochrome image. In case 1, the destination ROI control object is logically TRUE
over the full image extent, and the source ROI control object is TRUE over a cross-
hatched rectangular region smaller than the full image. In this case, the destination
image consists of the existing destination image with an insert of processed source
pixels. For case 2, the source ROI is of full extent, and the destination ROI is of a
smaller cross-hatched rectangular extent. The resultant destination image consists of
processed pixels inserted into the existing destination image. Functionally, the result
is the same as for case 1. The third case shows the destination image when the
source and destination ROIs are overlapping rectangles smaller than the image
extent. In this case, the processed pixels are recorded only in the overlap area of the
source and destination ROIs.

The ROI concept applies to multiple destination images. Each destination image
has a separately bound ROI control object which independently controls recording
of pixels in the corresponding destination image. The ROI concept also applies to
neighbourhood as well as point operators. Each neighbourhood processing element,
such as an impulse response array, has a pre-defined key pixel. If the key pixel lies
within a source control ROI, the output pixel is formed by the neighbourhood opera-
tor even if any or all neighbourhood elements lie outside the ROI.

PIKS provides tools for generating ROI data objects from higher level specifica-
tions. Such supported specifications include:

FIGURE 20.1-6. Rectangular ROI bound to an image array.
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1. Coordinate list

2. Ellipse

3. Polygon

4. Rectangle

These tools, together with the ROI binding tool, provide the capability to conceptu-
ally generate five-dimensional ROI control objects from lower dimensional descrip-
tions by pixel plane extensions. For example, with the elliptical ROI generation tool,
it is possible to generate a circular disk ROI in a spatial pixel plane, and then cause
the disk to be replicated over the other pixel planes of a volumetric image to obtain a
cylinder-shaped ROI.

Match Point Control. Each PIKS image object has an associated match point coor-
dinate set (x, y, z, t, b) which some PIKS operators utilize to control multi-dimen-
sional translations of images prior to processing by an operator. The generic effect
of match point control for an operator that creates multiple destination images from

FIGURE 20.1-7. ROI operation.
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multiple source images is to translate each source image and each destination image,
other than the first source image, such that the match points of these images are
aligned with the match point of the first source image prior to processing. Process-
ing then occurs on the spatial intersection of all images. Figure 20.1-8 an example of
image subtraction subject to match point control. In the example, the difference
image is shown cross-hatched.

Other Features. PIKS provides a number of other features to control processing.
These include:

1. Processing of ROI objects in concert with image objects

2. Global setting of image and ROI resampling options

3. Global engagement of ROI control and ROI processing

4. Global engagement of index assignment

5. Global engagement of match point control

6. Global engagement of synchronous or asynchronous operation

7. Heterogeneous bands of dissimilar data types

8. Operator chaining

9. Virtual registers to store intermediate numerical results of an operator chain

10. Composite image management of image and non-image objects

The PIKS Functional Specification (2) provides rigorous specifications of these fea-
tures. PIKS also contains a data object repository of commonly used impulse
response arrays, dither arrays, and colour conversion matrices.

FIGURE 20.1-8. Match point translation for image subtraction.
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20.1.5. PIKS Application Interface

Figure 20.1-9 describes the PIKS application interface for data interchange for an
implementation-specific data pathway. PIKS supports a limited number of physical
data types that may exist within an application domain or within the PIKS domain.
Such data types represent both input and output parameters of PIKS elements and
image and non-image data that are interchanged between PIKS and the application.

PIKS provides notational differentiation between most of the elementary abstract
data types used entirely within the PIKS domain (PIKS internal), those that are used
to convey parameter data between PIKS and the application (PIKS parameter), and
those that are used to convey pixel data between PIKS and the application (external
physical image). Table 20.1-2 lists the codes for the PIKS abstract data types. The
abstract data types are defined in ISO/IEC 12087-1. PIKS internal and parameter
data types are of the same class if they refer to the same basic data type. For exam-
ple, RP and RD data types are of the same class, but RP and SD data types are of dif-
ferent classes. The external physical data types supported by PIKS for the import
and export of image data are also listed in Table 20.1-2. PIKS internal pixel data
types and external pixel data types are of the same class if they refer to the same
basic data type. For example, ND and NI data types are of the same class, but SI and
ND data types are of different classes. 

FIGURE 20.1-9. PIKS application interface.
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TABLE 20.1-2 PIKS Datatype Codes

20.1.6. PIKS Conformance Profiles

Because image processing requirements vary considerably across various applica-
tions, PIKS functionality has been subdivided into the following five nested sets of
functionality called conformance profiles:

1. PIKS Foundation: basic image processing functionality for monochrome and
colour images whose pixels are represented as Boolean values or as non-neg-
ative or signed integers.

2. PIKS Core: intermediate image processing functionality for monochrome and
colour images whose pixels are represented as Boolean values, non-negative
or signed integers, real arithmetic values, and complex arithmetic values.
PIKS Core is a superset of PIKS Foundation.

3. PIKS Technical: expanded image processing functionality for monochrome,
colour, volume, temporal, and spectral images for all pixel data types.

4. PIKS Scientific: complete set of image processing functionality for all image
structures and pixel data types. PIKS Scientific is a superset of PIKS Techni-
cal functionality.

5. PIKS Full: complete set of image processing functionality for all image struc-
tures and pixel data types plus the capability to chain together PIKS process-
ing elements and to operate asynchronously. PIKS Full is a superset of PIKS
Scientific functionality.

Each PIKS profile may include the capability to interface with the IIF, the BIIF, and
to include display and input/output functionality, as specified by PIKS Amendment 1.

Data Type PIKS Internal Code PIKS Parameter Code Physical Code

Boolean BD BP BI

Non-negative integer ND NP NI

Signed integer SD SP SI

Fixed-point integer — — TI

Real arithmetic RD RP RF

Complex arithmetic CD CP CF

Character string CS CS —

Data object identifier ID IP —

Enumerated NA EP —

Null NULL NULL —
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20.2. PIKS CORE OVERVIEW

The PIKS Core profile provides an intermediate level of functionality designed to
service the majority of image processing applications. It supports all pixel data
types, but only monochrome and colour images of the full five-dimensional PIKS
image data object. It supports the following processing features:

1. Nearest neighbour, bilinear, and cubic convolution global resampling image
interpolation

2. Nearest neighbour global resampling ROI interpolation

3. All ROIs

4. Data object repository

The following sections provide details of the data structures for PIKS Core non-
image and image data objects.

20.2.1. PIKS Core Non-image Data Objects

PIKS Core supports the non-image data objects listed below. The list contains the
PIKS Functional Specific object name code and the definition of each object.

HIST Histogram

LUT Look-up table

MATRIX Matrix

NBHOOD_ARRAY Neighbourhood array

ROI Region-of-interest

STATIC_ARRAY Static array

TUPLE Tuple

VALUE_BOUNDS Value bounds collection

The tuple object is defined first because it is used to define other non-image and
image data objects. Tuples are also widely used in PIKS to specify operator and tool
parameters (e.g., the size of a magnified image). Figure 20.2-1 contains the tree
structure of a tuple object. It consists of the tuple size, tuple data type, and a private
identifier to the tuple data values. The tuple size is an unsigned integer that specifies
the number of tuple data values. The tuple datatype option is a signed integer from 1
to 6 that specifies one of the six options. The identifier to the tuple data array is pri-
vate in the sense that it is not available to an application; only the tuple data object
itself has a public identifier.

A PIKS histogram data object is a one-dimensional array of unsigned integers that
stores the histogram of an image plus histogram object attributes. Figure 20.2-2
shows the tree structure of a histogram data object. The histogram array size is
an unsigned integer that specifies the number of histogram bins. The lower and upper
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amplitude values are real numbers that specify the pixel amplitude range of the his-
togram.

A PIKS look-up table data object, as shown in Figure 20.2-3, is a two-dimen-
sional array that stores the look-up table data plus a collection of look-up table
attributes. The two-dimensional array has the general form following:

A positive integer e is the input row index to the table. It is derived from a source
image by the relationship

(20.2-1)

The LUT output is a one-dimensional array

(20.2-2)

FIGURE 20.2-1. Tuple object tree structure.

FIGURE 20.2-2. Histogram object tree structure.
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lower amplitude value of histogram range, e.g. 0.1
Upper amplitude value

upper amplitude value of histogram range, e.g. 0.9
Histogram data array

private identifier

T 0 0,( ) … T b 0,( ) … T B 1 0,–( )
· · ·

T 0 e,( ) … T b e,( ) … T B 1 e,–( )
· · ·

T 0 E 1–,( ) … T b E 1–,( ) … T B 1 E 1–,–( )

e S x y z t b, , , ,( )=

a e( ) T 0 e,( ) … T b e,( ) … T B 1 e,–( )[ ]=
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There are two types of usage for PIKS Core: (1) the source and destination images
are of the same band dimension, or (2) the source image is monochrome and the des-
tination image is colour. In the former case,

(20.2-3)

In the latter case,

(20.2-4)

Figure 20.2-4 shows the tree structure of a matrix data object. The matrix is spec-
ified by its number of rows R and columns C and the data type of its constituent
terms. The matrix is addressed as follows:

(20.2-5)

In PIKS, matrices are used primarily for colour space conversion.

A PIKS Core neighbourhood array is a two-dimensional array and associated
attributes as shown in Figure 20.2-5. The array has J columns and K rows. As shown
below, it is indexed in the same manner as a two-dimensional image.

FIGURE 20.2-3. Look-up table object tree structure.

Lookup Table Object
             Table entries
                           number of table entries, e.g. 512
             Table bands
                           number of table bands, e.g. 3
             Table input data type option
                           choice of ND or SD
             Table output data type option
                       choice of BD, ND, SD, RD OR CD
              Lookup table data array
                        private identifier    

D x y 0 0 b, , , ,( ) T 0 S x y z t b, , , ,( ),( )=

D x y 0 0 b, , , ,( ) T b S x y z t 0, , , ,( ),( )=

M

M 1 1,( ) … M 1 c,( ) … M 1 C,( )

M r 1,( ) … M r c,( ) … M r C,( )

M R 1,( ) … M R c,( ) … M R C,( )

=

… … …

… … …
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(20.2-6)

In Eq. 20.2-6, the scale factor S is unity except for the signed integer data. For
signed integers, the scale factor can be used to realize fractional elements. The key
pixel  defines the origin of the neighbourhood array. It need not be with the
confines of the array. There are five types of neighbourhood arrays, specified by the
following structure codes:

GL Generic array

DL Dither array

IL Impulse response array

ML Mask array

SL Structuring element array

FIGURE 20.2-4. Matrix object tree structure.

FIGURE 20.2-5. Neighbourhood object tree structure.

Matrix Object
Column size

number of matrix columns, e.g. 4
Row size

number of matrix rows, e.g. 3
Matrix data type option

choice of ND, SD, RD or CD
Matrix data array

private identifier

Neighbourhood Array Object
Neighbourhood size

5-tuple public identifier specification of J, K, 1, 1, 1
Key pixel

5-tuple public identifier specification of jK, kK, 0, 0, 0
Scale factor

integer value
Semantic label option

choice of GL, DL, IL, ML, SL
Neighbourhood data array

private identifier

H j k,( ) 1

S
---

H 0 0,( ) … H j 0,( ) … H J 1 0,–( )

H 0 k,( ) … H j k,( ) … H J 1– k,( )

H 0 K 1–,( ) … H j K 1–,( ) … H J 1 K 1–,–( )

=

… … …

… … …

jK kK,( )
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Figure 20.2-6 shows the tree structure of a region-of-interest ROI data object.
Conceptually, a PIKS Core ROI data object is a two-dimensional array of Boolean
value pixels of width XR and height YR. The actual storage method is implementa-
tion dependent. The ROI can be constructed by one of the following representations:

AR ROI array

CR ROI coordinate list

ER ROI elliptical

GR ROI generic

RR ROI rectangular

The ROI can be defined to be TRUE or FALSE in its interior.

A PIKS Core static array is a two-dimensional array of width XS and height YS as
shown in Figure 20.2-7. Following is a list of the types of static arrays supported by
PIKS:

GS Generic static array

PS Power spectrum

TS Transfer function

WS Windowing function

FIGURE 20.2-6. Region-of-interest object tree structure.

FIGURE 20.2-7. Static array object tree structure.

Region-of-interest Object
ROI virtual array size

5-tuple public identifier specification of XR, YR, 1, 1, 1
ROI structure option

choice of AR, CR, ER, GR, PR, RR
Polarity option

choice of TRUE or FALSE
Conceptual ROI data array

private identifier

Static Array Object
Static array size

5-tuple public identifier specification of XS, YS, 1, 1, 1
Semantic label option

choice of GS, PS, TS, WS
Datatype option

choice of BD, ND, SD, RD or CD
Static array data array

private identifier
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A value bounds collection is a storage mechanism containing the pixel coordinate
and pixel values of all pixels whose amplitudes lie within a lower and an upper
bound. Figure 20.2-8 is the tree structure of the value bounds collection data object.

20.2.2. PIKS Core Image Data Object

A PIKS image object is a tree structure of image attributes, processing control
attributes, and private identifiers to an image data array of pixels and an associated
ROI. Figure 20.2-9 illustrates the tree structure of an image object. The image
attributes are created when an image object is allocated. When an image is allocated,
there will be no private identifier to the image array data. The private identifier is
established automatically when raw image data are imported to a PIKS image object
or when a destination image is created by an operator. The processing control
attributes are created when a ROI is bound to an image. It should be noted that for
PIKS Core, all bands must be of the same datatype and pixel precision. The pixel
precision specification must be in accord with the choices provided by a particular
PIKS implementation.

20.2.3. PIKS Core C Language Binding

The PIKS Functional Specification document (2) establishes the semantic usage of
PIKS. The PIKS C language binding document (10) defines the PIKS syntactical
usage for the C programming language. At present, there are no other language
bindings. Reader familiarity with the C programming language is assumed.

The PIKS C binding has adopted the Hungarian prototype naming convention, in
which the datatypes of all entities are specified by prefix codes. Table 20.2-1 lists
the datatype prefix codes. The entities in courier font are binding names. Table
20.2-2 gives the relationship between the PIKS Core C binding designators and the
PIKS Functional Specification datatypes and data objects. The general structure of
the C language binding element prototype is

FIGURE 20.2-8. Value bounds collection object tree structure.

Value Bounds Collection Object
Collection size

number of collection members
Lower amplitude bound

value of lower amplitude bound
Upper amplitude bound

value of upper amplitude bound
Pixel data type option

choice of NP, SP, RP
Value bounds collection data array

private identifier
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void IvElementName

or

I(prefix)ReturnName I(prefix)ElementName

As an example, the following is the element C binding prototype for two-dimen-
sional convolution of a source image into a destination image:

Idnimage InConvolve2D( /* OUT destination image identifier */

Idnimage nSourceImage, /* source image identifier    */

Idnimage nDestImage, /* destination image identifier */

Idnnbhood nImpulse, /* impulse response array identifier */

Ipint iOption /* convolution 2D option */

);

In this example, the first two components of the prototype are the identifiers to
the source and destination images. Next is the identifier to the impulse response
neighbourhood array. The last component is the integer option parameter for the
convolution boundary option. The following  #define convolution options are
provided in the piks.h header file:

FIGURE 20.2-9. Image object tree structure.

Image Object
Image attributes

Representation
Size

5-tuple public identifier specification of X, Y, Z, T, B
Band datatype

B-tuple public identifier specification of BD, ND, SD, RD or CD datatype
Image structure option

MON or COLR
Channel

Band precision
B-tuple public identifier specification of pixel precision per band

Colour
White point

specification of X0, Y0, Z0

Colour space option
29 choices, e.g. CIE L*a*b* or CMYK

Control
ROI

private identifier
ROI offset

5-tuple public identifier specification of xo, yo, zo, to, bo

Image data array
private identifier
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TABLE 20.2-1 PIKS Datatype Prefix Codes

ICONVOLVE_UPPER_LEFT 1 /* upper left corner justified */

ICONVOLVE_ENCLOSED 2 /* enclosed array */

ICONVOLVE_KEY_ZERO 3 /* key pixel,zero exterior */

ICONVOLVE_KEY_REFLECTED 4 /* key pixel,reflected exterior */

As an example, let nSrc and nDst be the identifier names assigned to a source
and destination images, respectively, and let nImpulse be the identifier of an
impulse response array. In an application program, the two-dimensional convolution
operator can be invoked as

InConvolve2D(nSrc, nDst, nImpulse, ICONVOLVE_ENCLOSED);

or by

nDst = InConvolve2D(nSrc, nDst, nImpulse, ICONVOLVE_EN CLOSED);

Prefix Definition

a Array

b Boolean

c Character

d Internal data type

e Enumerated data type 

f Function

i Integer

m External image data type

n Identifier

p Parameter type

r Real

s Structure

t Pointer

u Unsigned integer

v Void

z Zero terminated string

st Structure or union pointer

tba Pointer to Boolean array

tia Pointer to integer array

tf Pointer to function

tra Pointer to real array

tua Pointer to unsigned integer
array
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TABLE 20.2-2 PIKS Core C Binding Designators and Functional Specification
Datatypes and Data Objects

where ICONVOLVE_ENCLOSED is a boundary convolution option. The second for-
mulation is useful for nesting of operator calls.

The PIKS C binding provides a number of standardized convenience functions,
which are shortcuts for creating tuples, ROIs, and monochrome and colour images.

Reference 5 is a complete C programmer’s guide for the PIKS Foundation pro-
file. The compact disk contains a PDF file of a PIKS Core programmer’s reference
manual. This manual contains program snippets for each of the PIKS elements that
explain their use.

Binding
Functional

Specification Description

Imbool BI External Boolean datatype

Imuint NI External non-negative integer datatype

Imint SI External signed integer datatype

Imfixed TI External fixed point integer datatype

Imfloat RF External floating point datatype

Ipbool BP Parameter Boolean datatype

Ipuint NP Parameter non-negative integer 
datatype

Ipint SP Parameter signed integer datatype

Ipfloat RP Parameter real arithmetic datatype

Idnimage SRC, DST Image data object

Idnhist HIST Histogram data object

Idnlut LUT Lookup table data object

Idnmatrix MATRIX Matrix data object

Idnnbhood NBHOOD_ARRAY Neighbourhood array data object

Idnroi ROI Region-of-interest data object

idnstatic STATIC_ARRAY Static array data object

Idntuple TUPLE Tuple data object

Idnbounds VALUE_BOUNDS Value bounds collection data object

Idnrepository IP External repository identifier

Ipnerror IP External error file identifier

Ipsparameter_basic IP External tuple data array pointer union

Ipsparameter_numeric IP External matrix data array pointer
union

Ipsparameter_pixel IP External LUT, neighbourhood, pixel
data array pointer union

Ipspiks_pixel_types IP External image data array pointer
union
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21
PIKS IMAGE PROCESSING 
PROGRAMMING EXERCISES

Digital image processing is best learned by writing and executing software programs
that implement image processing algorithms. Toward this end, the compact disk
affixed to the back cover of this book provides executable versions of the PIKS Core
Application Program Interface C programming language library, which can be used
to implement exercises described in this chapter.

The compact disk contains the following items:

A Solaris operating system executable version of the PIKS Core API.

A Windows 2000 and Windows NT operating system executable version
of the PIKS Core API.

A Windows 2000 and Windows NT operating system executable version
of PIKSTool, a graphical user interface method of executing many of the
PIKS Core operators without program compilation.

A PDF file format version of the PIKS Core C Programmer’s Reference
Manual.

PDF file format and Word versions of the PIKSTool User’s Manual.

A PDF file format version of the image database directory.

A digital image database of most of the source images used in the book
plus many others widely used in the literature. The images are provided in
the PIKS file format. A utility program is provided for conversion from
the PIKS file format to the TIFF file format.

Digital Image Processing: PIKS Inside, Third Edition. William K. Pratt
Copyright © 2001 John Wiley & Sons, Inc.

ISBNs: 0-471-37407-5 (Hardback); 0-471-22132-5 (Electronic)
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Digital images of many of the book photographic figures. The images are
provided in the TIFF file format. A utility program is provided for con-
version from the TIFF file format to the PIKS file format.

C program source demonstration programs.

C program executable programs of the programming exercises.

To install the CD on a Windows computer, insert the CD into the CD drive and
follow the screen instructions. To install the CD on a Solaris computer, create a sub-
directory called PIKSrelease, and make that your current working directory by   exe-
cuting:

mkdir PIKSrelease
cd PIKSrelease

Insert the PIKS CD in the CD drive and type:

/cdrom/piks_core_1_6/install.sh

See the README text file in the PIKSrelease directory for further installation infor-
mation.

For further information about the PIKS software, please refer to the PixelSoft,

Inc. web site:

or send email to:

pixelsoft@pixelsoft.com

The following sections contain descriptions of programming exercises. All of
them can be implemented using the PIKS API. Some can be more easily imple-
mented using PIKSTool. It is, of course, possible to implement the exercises with
other APIs or tools that match the functionality of PIKS Core.

21.1 PROGRAM GENERATION EXERCISES

1.1 Develop a program that:

(a) Opens a program session.

(b) Reads file parameters of a source image stored in a file.

(c) Allocates unsigned integer, monochrome source and destination images.

(d) Reads an unsigned integer, 8-bit, monochrome source image from a file.

(e) Opens an image display window and displays the source image.

(f) Creates a destination image, which is the complement of the source
image.
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(g) Opens a second display window and displays the destination image.

(h) Closes the program session.

The executable example_complement_monochrome_ND performs this exer-
cise. The utility source program DisplayMonochromeND.c provides a PIKS
template for this exercise. Refer to the input_image_file manual page of the PIKS
Programmer’s Reference Manual for file reading information.

1.2 Develop a program that:

(a) Creates, in application space, an unsigned integer, 8-bit, 512 × 512 pixel
array of a source ramp image whose amplitude increases from left-to-
right from 0 to 255.

(b) Imports the source image for display.

(c) Creates a destination image by adding value 100 to each pixel

(d) Displays the destination image

What is the visual effect of the display in step (d)? The monadic_arithmetic operator
can be used for the pixel addition. The executable example_import_ramp per-
forms this exercise. See the monadic_arithmetic, and import_image manual pages.

21.2 IMAGE MANIPULATION EXERCISES

2.1 Develop a program that passes a monochrome image through the log part of
the monochrome vision model of Figure 2.4-4. Steps:

(a) Convert an unsigned integer, 8-bit, monochrome source image to floating
point datatype.

(b) Scale the source image over the range 1.0 to 100.0.

(c) Compute the source image logarithmic lightness function of Eq. 6.3-4.

(d) Scale the log source image for display.

The executable example_monochrome_vision performs this exercise. Refer
to the window-level manual page for image scaling. See the unary_real and
monadic_arithmetic manual pages for computation of the logarithmic lightness
function.

2.2 Develop a program that passes an unsigned integer, monochrome image
through a lookup table with a square root function. Steps:

(a) Read an unsigned integer, 8-bit, monochrome source image from a file.

(b) Display the source image.
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(c) Allocate a 256 level lookup table.

(d) Load the lookup table with a square root function.

(e) Pass the source image through the lookup table.

(f) Display the destination image.

The executable example_lookup_monochrome_ND performs this exercise.
See the allocate_lookup_table, import_lut, and lookup manual pages.

2.3 Develop a program that passes a signed integer, monochrome image through a
lookup table with a square root function. Steps:

(a) Read a signed integer, 16-bit, monochrome source image from a file.

(b) Linearly scale the source image over its maximum range and display 
it.

(c) Allocate a 32,768 level lookup table.

(d) Load the lookup table with a square root function over the source image
maximum range.

(e) Pass the source image through the lookup table.

(f) Linearly scale the destination image over its maximum range and display it.

The executable example_lookup_monochrome_SD performs this exercise.
See the extrema, window_level, allocate_lookup_table, import_lut, and lookup
manual pages.

21.3 COLOUR SPACE EXERCISES

3.1 Develop a program that converts a linear RGB unsigned integer, 8-bit, colour
image to the XYZ colour space and converts the XYZ colour image back to the
RGB colour space. Steps:

(a) Display the RGB source linear colour image.

(b) Display the R, G and B components as monochrome images.

(c) Convert the source image to unit range.

(d) Convert the RGB source image to XYZ colour space.

(e) Display the X, Y and Z components as monochrome images.

(f) Convert the XYZ destination image to RGB colour space.

(g) Display the RGB destination image.
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The executable example_colour_conversion_RGB_XYZ performs this
exercise. See the extract_pixel_plane, convert_image_datatype, monadic_ arithmetic,
and colour_conversion_linear manual pages.

3.2 Develop a program that converts a linear RGB colour image to the L*a*b*
colour space and converts the L*a*b* colour image back to the RGB colour
space. Steps:

(a) Display the RGB source linear colour image.

(b) Display the R, G and B components as monochrome images.

(c) Convert the source image to unit range.

(d) Convert the RGB source image to L*a*b* colour space.

(e) Display the L*, a* and b* components as monochrome images.

(f) Convert the L*a*b* destination image to RGB colour space.

(g) Display the RGB destination image.

The executable example_colour_conversion_RGB_Lab performs this exer-
cise. See the extract_pixel_plane, convert_image_datatype, monadic_ arithmetic, and
colour_conversion_linear manual pages.

3.3 Develop a program that converts a linear RGB colour image to a gamma     cor-
rected RGB colour image and converts the gamma colour image back to the
linear RGB colour space. Steps:

(a) Display the RGB source linear colour image.

(b) Display the R, G and B components as monochrome images.

(c) Convert the source image to unit range.

(d) Perform gamma correction on the linear RGB source image.

(e) Display the gamma corrected RGB destination image.

(f) Display the R, G and B gamma corrected components as monochrome
images.

(g) Convert the gamma corrected destination image to linear RGB colour
space.

(h) Display the linear RGB destination image.

The executable example_colour_gamma_correction performs this exer-
cise. See the extract_pixel_plane, convert_image_datatype, monadic_arithmetic,
and gamma_correction manual pages.

3.4 Develop a program that converts a gamma RGB colour image to the YCbCr
colour space and converts the YCbCr colour image back to the gamma RGB
colour space. Steps:
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(a) Display the RGB source gamma colour image.

(b) Display the R, G and B components as monochrome images.

(c) Convert the source image to unit range.

(d) Convert the RGB source image to YCbCr colour space.

(e) Display the Y, Cb and Cr components as monochrome images.

(f) Convert the YCbCr destination image to gamma RGB colour space.

(g) Display the gamma RGB destination image.

The executable example_colour_conversion_RGB_YCbCr performs this
exercise. See the extract_pixel_plane, convert_image_datatype, monadic_ arithmetic,
and colour_conversion_linear manual pages.

3.5 Develop a program that converts a gamma RGB colour image to the IHS
colour space and converts the IHS colour image back to the gamma RGB
colour space.  Steps:

(a) Display the RGB source gamma colour image.

(b) Display the R, G and B components as monochrome images.

(c) Convert the source image to unit range.

(d) Convert the RGB source image to IHS colour space.

(e) Display the I, H and S components as monochrome images.

(f) Convert the IHS destination image to gamma RGB colour space.

(g) Display the gamma RGB destination image.

The executable example_colour_conversion_RGB_IHS performs this exer-
cise. See the extract_pixel_plane, convert_image_datatype, monadic_ arithmetic, and
colour_conversion_linear manual pages.

21.4 REGION-OF-INTEREST EXERCISES

4.1 Develop a program that forms the complement of an unsigned integer, 8-bit,
512 × 512, monochrome, image under region-of-interest control.

Case 1: Full source and destination ROIs.

Case 2: Rectangular source ROI, upper left corner at (50, 100), lower
right corner at (300, 350) and full destination ROI.

Case 3: Full source ROI and rectangular destination ROI, upper left cor-
ner at (150, 200), lower right corner at (400, 450).

Case 4: Rectangular source ROI, upper left corner at (50, 100), lower
right corner at (300, 350) and rectangular destination ROI, upper left
corner at (150, 200), lower right corner at (400, 450).
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Steps:

(a) Display the source monochrome image.

(b) Create a constant destination image of value 150.

(c) Complement the source image into the destination image.

(d) Display the destination image.

(e) Create a constant destination image of value 150.

(f) Bind the source ROI to the source image.

(g) Complement the source image into the destination image.

(h) Display the destination image.

(i) Create a constant destination image of value 150.

(j) Bind the destination ROI to the destination image.

(k) Complement the source image into the destination image.

(l) Display the destination image.

(m) Create a constant destination image of value 150.

(n) Bind the source ROI to the source image and bind the destination ROI to
the destination image.

(o) Complement the source image into the destination image.

(p) Display the destination image.

The executable example_complement_monochrome_roi performs this
exercise. See the image_constant, generate_2d_roi_rectangular, bind_roi, and com-
plement manual pages.

21.5 IMAGE MEASUREMENT EXERCISES

5.1 Develop a program that computes the extrema of the RGB components of an
unsigned integer, 8-bit, colour image. Steps:

(a) Display the source colour image.

(b) Compute extrema of the colour image and print results for all bands.

The executable example_extrema_colour performs this exercise. See the
extrema manual page.

5.2 Develop a program that computes the mean and standard deviation of an
unsigned integer, 8-bit, monochrome image. Steps:
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(a) Display the source monochrome image.

(b) Compute moments of the monochrome image and print results.

The executable example_moments_monochrome performs this exercise. See
the moments manual page.

5.3 Develop a program that computes the first-order histogram of an unsigned
integer, 8-bit, monochrome image with 16 amplitude bins. Steps:

(a) Display the source monochrome image.

(b) Allocate the histogram.

(c) Compute the histogram of the source image.

(d) Export the histogram and print its contents.

The executable example_histogram_monochrome performs this exercise.
See the allocate_histogram, histogram_1d, and export_histogram manual pages.

21.6 QUANTIZATION EXERCISES

6.1 Develop a program that re-quantizes an unsigned integer, 8-bit, monochrome
image linearly to three bits per pixel and reconstructs it to eight bits per pixel.
Steps:

(a) Display the source image.

(b) Perform a right overflow shift by three bits on the source image.

(c) Perform a left overflow shift by three bits on the right bit-shifted source
image.

(d) Scale the reconstruction levels to 3-bit values.

(e) Display the destination image.

The executable example_linear_quantizer executes this example. See the
bit_shift, extrema, and window_level manual pages.

6.2 Develop a program that quantizes an unsigned integer, 8-bit, monochrome
image according to the cube root lightness function of Eq. 6.3-4 and recon-
structs it to eight bits per pixel. Steps:

(a) Display the source image.

(b) Scale the source image to unit range.

(c) Perform the cube root lightness transformation.

(d) Scale the lightness function image to 0 to 255.

(e) Perform a right overflow shift by three bits on the source image.

(f) Perform a left overflow shift by three bits on the right bit-shifted source
image.
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(g) Scale the reconstruction levels to 3-bit values.

(h) Scale the reconstruction image to the lightness function range.

(i) Perform the inverse lightness function.

(j) Scale the inverse lightness function to the display range.

(k) Display the destination image.

The executable example_lightness_quantizer executes this example. See
the monadic_arithmetic, unary_integer, window_level, and bit_shift manual pages.

21.7 CONVOLUTION EXERCISES

7.1 Develop a program that convolves a test image with a 3 × 3 uniform impulse
response array for three convolution boundary conditions. Steps:

(a) Create a 101 × 101 pixel, real datatype test image consisting of a 2 × 2
cluster of amplitude 1.0 pixels in the upper left corner and a single pixel
of amplitude 1.0 in the image center. Set all other pixels to 0.0.

(b) Create a 3 × 3 uniform impulse response array.

(c) Convolve the source image with the impulse response array for the       fol-
lowing three boundary conditions: enclosed array, zero exterior, reflected
exterior.

(d) Print a 5 × 5 pixel image array about the upper left corner and image cen-
ter for each boundary condition and explain the results.

The executable example_convolve_boundary executes this example. See the
allocate_neighbourhood_array, impulse_rectangular, image_constant, put_pixel,
get_pixel, and convolve_2d manual pages. 

7.2 Develop a program that convolves an unsigned integer, 8-bit, colour image
with a 5 × 5 uniform impulse response array acquired from the data object
repository. Steps:

(a) Display the source colour image.

(b) Allocate the impulse response array.

(c) Fetch the impulse response array from the data object repository.

(d) Convolve the source image with the impulse response array.

(e) Display the destination image.

The executable example_repository_convolve_colour executes this
example. See the allocate_neighbourhood_array, return_repository_id, and
convolve_2d manual pages.
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21.8 UNITARY TRANSFORM EXERCISES

8.1 Develop a program that generates the Fourier transform log magnitude ordered
display of Figure 8.2-4d  for the smpte_girl_luma image. Steps:

(a) Display the source monochrome image.

(b) Scale the source image to unit amplitude.

(c) Perform a two-dimensional Fourier transform on the unit amplitude
source image with the ordered display option.

(d) Scale the log magnitude according to Eq. 8.2-9 where a = 1.0 and
b = 100.0.

(e) Display the Fourier transformed image.

The executable example_fourier_transform_spectrum executes this
example. See the convert_image_datatype, monadic_arithmetic, image_constant,
complex_composition, transform_fourier, complex_magnitude, window_level, and
unary_real manual pages.

8.2 Develop a program that generates the Hartley transform log magnitude
ordered display of Figure 8.3-2c for the smpte_girl_luma image by
manipulation of the Fourier transform coefficients of the image. Steps:

(a) Display the source monochrome image.

(b) Scale the source image to unit amplitude.

(c) Perform a two-dimensional Fourier transform on the unit amplitude
source image with the dc term at the origin option.

(d) Extract the Hartley components from the Fourier components.

(e) Scale the log magnitude according to Eq. 8.2-9 where a = 1.0 and
b = 100.0.

(f) Display the Hartley transformed image.

The executable example_transform_hartley executes this example. See the
convert_image_datatype, monadic_arithmetic, image_constant, complex_composi-
tion, transform_fourier, complex_decomposition,   dyadic_arithmetic, complex_
magnitude, window_level, and unary_real manual pages.

21.9 LINEAR PROCESSING EXERCISES

9.1 Develop a program that performs fast Fourier transform convolution following
the steps of Section 9.3. Execute this program using an 11 × 11 uniform
impulse response array on an unsigned integer, 8-bit, 512 × 512 monochrome
image without zero padding. Steps:
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(a) Display the source monochrome image.

(b) Scale the source image to unit range.

(c) Perform a two-dimensional Fourier transform of the source image.

(d) Display the clipped magnitude of the source Fourier transform.

(e) Allocate an 11 × 11 impulse response array.

(f) Create an 11 × 11 uniform impulse response array.

(g) Convert the impulse response array to an image and embed it in a
512 × 512 zero background image.

(h) Perform a two-dimensional Fourier transform of the embedded impulse
image.

(i) Display the clipped magnitude of the embedded impulse Fourier trans-
form.

(j) Multiply the source and embedded impulse Fourier transforms.

(k) Perform a two-dimensional inverse Fourier transform of the product
image.

(l) Display the destination image.

(m) Printout the erroneous pixels along a mid image row.

The executable example_fourier_filtering executes this example. See the
monadic_arithmetic, image_constant, complex_composition, transform_fourier,
complex_magnitude, allocate_neighbourhood_array, impulse_rectangular,
convert_array_to_image, dyadic_complex, and complex_decomposition manual
pages.

21.10 IMAGE ENHANCEMENT EXERCISES

10.1 Develop a program that displays the Q component of a YIQ colour image over
its full dynamic range. Steps:

(a) Display the source monochrome RGB image.

(b) Scale the RGB image to unit range and convert it to the YIQ space.

(c) Extract the Q component image.

(d) Compute the amplitude extrema.

(e) Use the window_level conversion function to display the Q component.
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The executable example_Q_display executes this example. See the
monadic_arithmetic, colour_conversion_linear, extrema, extract_pixel_plane, and
window_level manual pages.

10.2 Develop a program to histogram equalize an unsigned integer, 8-bit, mono-
chrome image. Steps:

(a) Display the source monochrome image.

(b) Compute the image histogram.

(c) Compute the image cumulative histogram.

(d) Load the image cumulative histogram into a lookup table.

(e) Pass the image through the lookup table.

(f) Display the enhanced destination image.

The executable example_histogram_equalization executes this example.
See the allocate_histogram, histogram_1d, export_histogram, allocate_lookup_
table, export_lut, and lookup_table manual pages.

10.3 Develop a program to perform outlier noise cleaning of the unsigned integer,
8-bit, monochrome image peppers_replacement_noise following the
algorithm of Figure 10.3-9. Steps:

(a) Display the source monochrome image.

(b) Compute a 3 × 3 neighborhood average image.

(c) Display the neighbourhood image.

(d) Create a magnitude of the difference image between the source image and
the neighbourhood image.

(e) Create a Boolean mask image which is TRUE if the magnitude difference
image is greater than a specified error tolerance, e.g. 15%.

(f) Convert the mask image to a ROI and use it to generate the outlier destina-
tion image.

(g) Display the destination image.

The executable example_outlier executes this example. See the
return_repository_id, convolve_2d, dyadic_predicate, allocate_roi, convert_image_
to_roi, bind_roi, and convert_image_datatype manual pages.

10.4 Develop a program that performs linear edge crispening of an unsigned inte-
ger, 8-bit, colour image by convolution. Steps:

(a) Display the source colour image.

(b) Import the Mask 3 impulse response array defined by Eq.10.3-1c.
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(c) Convert the ND source image to SD datatype.

(d) Convolve the colour image with the impulse response array.

(e) Clip the convolved image over the dynamic range of the source image to
avoid amplitude undershoot and overshoot.

(f) Display the clipped destination image.

The executable example_edge_crispening executes this example. See the
allocate_neighbourhood_array, import_neighbourhood_array, convolve_2d, extrema,
and window_level manual pages.

10.5 Develop a program that performs 7 × 7 plus-shape median filtering of the
unsigned integer, 8-bit, monochrome image peppers_replacement
_noise. Steps:

(a) Display the source monochrome image.

(b) Create a 7 × 7 Boolean mask array.

(c) Perform median filtering.

(d) Display the destination image.

The executable example_filtering_median_plus7 executes this example.
See the allocate_neighbourhood_array, import_neighbourhood_array, and filtering
_median manual pages.

21.11 IMAGE RESTORATION MODELS EXERCISES

11.1 Develop a program that creates an unsigned integer, 8-bit, monochrome image
with zero mean, additive, uniform noise with a signal-to-noise ratio of 10.0.
The program should execute for arbitrary size source images. Steps:

(a) Display the source monochrome image.

(b) In application space, create a unit range noise image array using the C
math.h function rand.

(c) Import the noise image array.

(d) Display the noise image array.

(e) Scale the noise image array to produce a noise image array with zero
mean and a SNR of 10.0.

(f) Compute the mean and standard deviation of the noise image.

(g) Read an unsigned integer, 8-bit monochrome image source image file and
normalize it to unit range.

(h) Add the noise image to the source image and clip to unit range.

(i) Display the noisy source image.
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The executable example_additive_noise executes this example. See the
monadic_arithmetic, import_image, moments, window_level, and dyadic_arithmetic
manual pages.

11.2 Develop a program that creates an unsigned integer, 8-bit, monochrome image
with replacement impulse noise. The program should execute for arbitrary size
source images. Steps:

(a) Display the source monochrome image.

(b) In application space, create a unit range noise image array using the C
math.h function rand.

(c) Import the noise image array.

(d) Read a source image file and normalize to unit range.

(e) Replace each source image pixel with 0.0 if the noise pixel is less than
1.0%, and replace each source image pixel with 1.0 if the noise pixel is
greater than 99%. The replacement operation can be implemented by
image copying under ROI control.

(f) Display the noisy source image.

The executable example_replacement_noise executes this example. See the
monadic_arithmetic, import_image, dyadic_predicate, allocate_roi, bind_roi,
convert_image_datatype, and dyadic_arithmetic manual pages.

21.12 IMAGE RESTORATION EXERCISES

12.1 Develop a program that computes a 512 × 512 Wiener filter transfer function
for the blur impulse response array of Eq. 10.3-2c and white noise with a SNR
of 10.0. Steps:

(a) Fetch the impulse response array from the repository.

(b) Convert the impulse response array to an image and embed it in a
512 × 512 zero background array.

(c) Compute the two-dimensional Fourier transform of the embedded
impulse response array.

(d) Form the Wiener filter transfer function according to Eq. 12.2-23.

(e) Display the magnitude of the Wiener filter transfer function.

The executable example_wiener executes this example. See the
return_repository_id, transform_fourier, image_constant, complex_conjugate,
dyadic_arithmetic, and complex_magnitude manual pages.
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21.13 GEOMETRICAL IMAGE MODIFICATION EXERCISES

13.1 Develop a program that minifies an unsigned integer, 8-bit, monochrome
image by a factor of two and rotates the minified image by 45 degrees about its
center using bilinear interpolation. Display the geometrically modified image.
Steps:

(a) Display the source monochrome image.

(b) Set the global interpolation mode to bilinear.

(c) Set the first work image to zero.

(d) Minify the source image into the first work image.

(e) Set the second work image to zero.

(f) Translate the first work image into the center of the second work image.

(g) Set the destination image to zero.

(h) Rotate the second work image about its center into the destination image.

(i) Display the destination image.

The executable example_minify_rotate executes this example. See the
image_constant, resize, translate, rotate, and set_globals manual pages.

13.2 Develop a program that performs shearing of the rows of an unsigned integer,
8-bit, monochrome image using the warp_lut operator such that the last image
row is shifted 10% of the row width and all other rows are shifted proportion-
ally. Steps:

(a) Display the source monochrome image.

(b) Set the global interpolation mode to bilinear.

(c) Set the warp polynomial coefficients.

(d) Perform polynomial warping.

(e) Display the destination image.

The executable example_shear executes this example. See the set_globals,
image_constant, and warp_lut manual pages.

21.14 MORPHOLOGICAL IMAGE PROCESSING EXERCISES

14.1 Develop a program that reads the 64 × 64, Boolean test image
boolean_test and dilates it by one and two iterations with a 3 × 3 structur-
ing element. Steps:
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(a) Read the source image and zoom it by a factor of 8:1.

(b) Create a 3 × 3 structuring element array.

(c) Dilate the source image with one iteration.

(d) Display the zoomed destination image.

(e) Dilate the source image with two iterations.

(f) Display the zoomed destination image.

The executable example_boolean_dilation executes this example. See the
allocate_neighbourhood_array, import_neighbourhood_array, erosion_dilation_
boolean, zoom, and boolean_display manual pages.

14.2 Develop a program that reads the 64 × 64, Boolean test image boolean_
test and erodes it by one and two iterations with a 3 × 3 structuring element.
Steps:

(a) Read the source image and zoom it by a factor of 8:1.

(b) Create a 3 × 3 structuring element array.

(c) Erode the source image with one iteration.

(d) Display the zoomed destination image.

(e) Erode the source image with two iterations.

(f) Display the zoomed destination image.

The executable example_boolean_erosion executes this example. See the
allocate_neighbourhood_array, import_neighbourhood_array, erosion_dilation
_boolean, zoom, and boolean_display manual pages.

14.3 Develop a program that performs gray scale dilation on an unsigned integer,
8-bit, monochrome image with a 5 × 5 zero-value structuring element and a
5 × 5 TRUE state mask. Steps:

(a) Display the source image.

(b) Create a 5 × 5 Boolean mask.

(c) Perform grey scale dilation on the source image.

(d) Display the destination image.

The executable example_dilation_grey_ND executes this example. See the
allocate_neighbourhood_array, import_neighbourhood_array, and erosion_dilation
_ grey manual pages.

14.4 Develop a program that performs gray scale erosion on an unsigned integer,  8-
bit, monochrome image with a 5 × 5 zero-value structuring element and a    5 ×
5 TRUE state mask. Steps:
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(a) Display the source image.

(b) Create a 5 × 5 Boolean mask.

(c) Perform grey scale erosion on the source image.

(d) Display the destination image.

The executable example_erosion_gray_ND executes this example. See the
allocate_neighbourhood_array, import_neighbourhood_array, and erosion_dilation
_gray manual pages.

21.15 EDGE DETECTION EXERCISES

15.1 Develop a program that generates the Sobel edge gradient according to Figure
15.2-1 using a square root sum of squares gradient combination. Steps:

(a) Display the source image.

(b) Allocate the horizontal and vertical Sobel impulse response arrays.

(c) Fetch the horizontal and vertical Sobel impulse response arrays from the
repository.

(d) Convolve the source image with the horizontal Sobel.

(e) Display the Sobel horizontal gradient.

(f) Convolve the source image with the vertical Sobel.

(g) Display the Sobel vertical gradient.

(h) Form the square root sum of squares of the gradients.

(i) Display the Sobel gradient.

The executable example_sobel_gradient executes this example. See the
allocate_neighbourhood_array, return_repository_id, convolve_2d, unary_real, and
dyadic_arithmetic manual pages.

15.2 Develop a program that generates the Laplacian of Gaussian gradient for a
11 × 11 impulse response array and a standard deviation of 2.0. Steps:

(a) Display the source image.

(b) Allocate the Laplacian of Gaussian impulse response array.

(c) Generate the Laplacian of Gaussian impulse response array.

(d) Convolve the source image with the Laplacian of Gaussian impulse
response array.

(e) Display the Laplacian of Gaussian gradient.
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The executable example_LoG_gradient executes this example. See the
allocate_neighbourhood_array, impulse_laplacian_of_gaussian, and convolve_2d
manual pages.

21.16 IMAGE FEATURE EXTRACTION EXERCISES

16.1 Develop a program that generates the 7 × 7 moving window mean and stan-
dard deviation features of an unsigned integer, 8-bit, monochrome image.
Steps:

(a) Display the source image.

(b) Scale the source image to unit range.

(c) Create a 7 × 7 uniform impulse response array.

(d) Compute the moving window mean with the uniform impulse response
array.

(e) Display the moving window mean image.

(f) Compute the moving window standard deviation with the uniform
impulse response array.

(g) Display the moving window standard deviation image.

The executable example_amplitude_features executes this example. See
the allocate_neighbourhood_array, impulse_rectangular, convolve_2d, dyadic_
arithmetic, and unary_real manual pages.

16.2 Develop a program that computes the mean, standard deviation, skewness,
kurtosis, energy, and entropy first-order histogram features of an unsigned
integer, 8-bit, monochrome image. Steps:

(a) Display the source image.

(b) Compute the histogram of the source image.

(c) Export the histogram and compute the histogram features.

The executable example_histogram_features executes this example. See
the allocate_histogram, histogram_1d, and export_histogram manual pages.

16.3 Develop a program that computes the nine Laws texture features of an
unsigned integer, 8-bit, monochrome image. Use a 7 × 7 moving window to
compute the standard deviation. Steps:

(a) Display the source image.

(b) Allocate nine 3 × 3 impulse response arrays.
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(c) Fetch the nine Laws impulse response arrays from the repository.

(d) For each Laws array:

convolve the source image with the Laws array.

compute the moving window mean of the Laws convolution.

compute the moving window standard deviation of the Laws
convolution image.

display the Laws texture features.

The executable example_laws_features executes this example. See the
allocate_neighbourhood_array, impulse_rectangular, return_repository_id, con-
volve_2d, dyadic_arithmetic, and unary_real manual pages.

21.17 IMAGE SEGMENTATION EXERCISES

17.1 Develop a program that thresholds the monochrome image parts and dis-
plays the thresholded image. Determine the threshold value that provides the
best visual segmentation. Steps:

(a) Display the source image.

(b) Threshold the source image into a Boolean destination image.

(c) Display the destination image.

The executable example_threshold executes this example. See the threshold
and boolean_display manual pages.

17.2 Develop a program that locates and tags the watershed segmentation local
minima in the monochrome image segmentation_test. Steps:

(a) Display the source image.

(b) Generate a 3 × 3 Boolean mask.

(c) Erode the source image into a work image with the Boolean mask.

(d) Compute the local minima of the work image.

(e) Display the local minima image.

The executable example_watershed executes this example. See the
erosion_dilation_grey, and dyadic_predicate manual pages.

21.18 SHAPE ANALYSIS EXERCISES

18.1 Develop a program that computes the scaled second-order central moments of
the monochrome image ellipse. Steps:
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(a) Display the source image.

(b) Normalize the source image to unit range.

(c) Export the source image and perform the computation in application
space in double precision.

The executable example_spatial_moments executes this example. See the
monadic_arithmetic, and export_image manual pages.

21.19 IMAGE DETECTION AND REGISTRATION EXERCISES

19.1 Develop a program that performs normalized cross-correlation template
matching of the monochrome source image L_source and the monochrome
template image L_template using the convolution operator as a means of
correlation array computation. Steps:

(a) Display the source image.

(b) Display the template image.

(c) Rotate the template image 180 degrees and convert it to an impulse
response array.

(d) Convolve the source image with the impulse response array to form the
numerator of the cross-correlation array.

(e) Display the numerator image.

(f) Square the source image and compute its moving window average energy
by convolution with a rectangular impulse response array to form the
denominator of the cross-correlation array.

(g) Display the denominator image.

(h) Form the cross-correlation array image.

(i) Display the cross-correlation array image.

Note, it is necessary to properly scale the source and template images to obtain valid
results. The executable example_template executes this example. See the
allocate_neighbourhood_array, flip_spin_transpose, convert_image_to_array,
impulse_rectangular, convolve_2d, and monadic_arithmetic manual pages.
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APPENDIX 1

VECTOR-SPACE ALGEBRA CONCEPTS

This appendix contains reference material on vector-space algebra concepts used in
the book.

A1.1. VECTOR ALGEBRA

This section provides a summary of vector and matrix algebraic manipulation proce-
dures utilized in the book. References 1 to 5 may be consulted for formal derivations
and proofs of the statements of definition presented here.

Vector. An column vector f is a one-dimensional vertical arrangement,

(A1.1-1)

N 1×

f

f 1( )

f 2( )

f n( )

f N( )

=

…
…

Digital Image Processing: PIKS Inside, Third Edition. William K. Pratt
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of the elements f (n), where n = 1, 2,..., N. An  row vector h is a one-dimen-
sional horizontal arrangement

(A1.1-2)

of the elements h(n), where n = 1, 2,..., N. In this book, unless otherwise indicated,
all boldface lowercase letters denote column vectors. Row vectors are indicated by
the transpose relation

(A1.1-3)

Matrix. An  matrix F is a two-dimensional arrangement

(A1.1-4)

of the elements F(m, n) into rows and columns, where m = 1, 2,..., M and n = 1, 2,...,
N. The symbol 0 indicates a null matrix whose terms are all zeros. A diagonal matrix
is a square matrix, M = N, for which all off-diagonal terms are zero; that is,
F(m, n) = 0 if . An identity matrix denoted by I is a diagonal matrix whose
diagonal terms are unity. The identity symbol is often subscripted to indicate its
dimension:  is an  identity matrix. A submatrix  is a matrix partition of
a larger matrix F of the form

(A1.1-5)

Matrix Addition. The sum of two matrices is defined only for matrices
of the same size. The sum matrix C is an  matrix whose elements are

.

Matrix Multiplication. The product of two matrices is defined only when
the number of columns of A equals the number of rows of B. The  product
matrix C of the matrix A and the  matrix B is a matrix whose general element
is given by

1 N×

h h 1( ) h 2( ) … h n( ) … h N( )=

f
T

f 1( ) f 2( ) … f n( ) … f N( )=

M N×

F

F 1 1,( ) F 1 2,( ) … F 1 N,( )
F 2 1,( ) F 2 2,( ) … F 2 N,( )

F M 1,( ) F M 2,( ) … F M N,( )

= … … …

m n≠

IN N N× Fpq

F

F
1 1, F

1 2,
………… F

1 Q,

FP 1, FP 1,
………… FP Q,

= … … …

C A B+=
M N×

C m n,( ) A m n,( ) B m n,( )+=

C AB=
M N×

P N×
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(A1.1-6)

Matrix Inverse. The matrix inverse, denoted by A–1, of a square matrix A has the
property that  and . If such a matrix  exists, the matrix A is
said to be nonsingular; otherwise, A is singular. If a matrix possesses an inverse, the
inverse is unique. The matrix inverse of a matrix inverse is the original matrix. Thus

(A1.1-7)

If matrices A and B are nonsingular,

(A1.1-8)

If matrix A is nonsingular, and the scalar , then

(A1.1-9)

Inverse operators of singular square matrices and of nonsquare matrices are consid-
ered in Section A1.3. The inverse of the partitioned square matrix

(A1.1-10)

may be expressed as

(A1.1-11)

provided that  and  are nonsingular.

Matrix Transpose. The transpose of an matrix A is a  matrix denoted
by AT, whose rows are the columns of A and whose columns are the rows of A. For
any matrix A,

(A1.1-12)
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If A = AT, then A is said to be symmetric. The matrix products  and  are
symmetric. For any matrices A and B,

(A1.1-13)

If A is nonsingular, then  is nonsingular and

(A1.1-14)

Matrix Direct Product. The left direct product of a  matrix A and an 
matrix B is a  matrix defined by

(A1.1-15)

A right direct product can also be defined in a complementary manner. In this book,
only the left direct product will be employed. The direct products  and 
are not necessarily equal. The product, sum, transpose, and inverse relations are:

(A1.1-16)

(A1.1-17)

(A1.1-18)

(A1.1-19)

Matrix Trace. The trace of an  square matrix F is the sum of its diagonal ele-
ments denoted as

(A1.1-20)

If A and B are square matrices,

(A1.1-21)
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The trace of the direct product of two matrices equals

(A1.1-22)

Vector Norm. The Euclidean vector norm of the  vector f is a scalar defined as

(A1.1-23)

Matrix Norm. The Euclidean matrix norm of the  matrix F is a scalar defined
as

(A1.1-24)

Matrix Rank. An  matrix A is a rank R matrix if the largest nonsingular
square submatrix of A is an  matrix. The rank of a matrix is utilized in the
inversion of matrices. If matrices A and B are nonsingular, and C is an arbitrary
matrix, then

(A1.1-25)

The rank of the product of matrices A and B satisfies the relations

(A1.1-26a)

(A1.1-26b)

The rank of the sum of matrices A and B satisfies the relations

(A1.1-27)

Vector Inner Product. The inner product of the  vectors f and g is a scalar

(A1.1-28)

where

(A1.1-29)
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Vector Outer Product. The outer product of the  vector g and the  vec-
tor f is a matrix

(A1.1-30)

where .

Quadratic Form. The quadratic form of an  vector f is a scalar

(A1.1-31)

where A is an  matrix. Often, the matrix A is selected to be symmetric.

Vector Differentiation. For a symmetric matrix A, the derivative of the quadratic
form  with respect to x is

(A1.1-32)

A1.2. SINGULAR-VALUE MATRIX DECOMPOSITION

Any arbitrary  matrix F of rank R can be decomposed into the sum of a
weighted set of unit rank  matrices by a singular-value decomposition (SVD)
(6–8).

 According to the SVD matrix decomposition, there exist an  unitary
matrix U and an  unitary matrix V for which

(A1.2-1)

where

(A1.2-2)

M 1× N 1×

A gf
T=

A m n,( ) g m( )f n( )=

N 1×

k f
T
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N N×

x
T
Ax

x
T
Ax[ ]∂
x∂

--------------------- 2Ax=

M N×
M N×

M M×
N N×

U
T
FV ΛΛΛΛ1 2⁄=

ΛΛΛΛ1 2⁄
λ1 2⁄

1( ) … 0

···
λ1 2⁄

1( )
0 … 0

= … …
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is an  matrix with a general diagonal entry  called a singular value of
F. Because U and V are unitary matrices,  and . Consequently,

(A1.2-3)

The columns of the unitary matrix U are composed of the eigenvectors  of the
symmetric matrix FFT. The defining relation is

(A1.2-4)

where  are the nonzero eigenvalues of FFT.  Similarly, the columns of V are the
eigenvectors of the symmetric matrix  as defined by

(A1.2-5)

where the  are the corresponding nonzero eigenvalues of FTF. Consistency is
easily established between Eqs. A1.2-3 to A1.2-5. It is possible to express the matrix
decomposition of Eq. A1.2-3 in the series form

(A1.2-6)

The outer products  of the eigenvectors form a set of unit rank matrices each of
which is scaled by a corresponding singular value of F. The consistency of Eq.
A1.2-6 with the previously stated relations can be shown by its substitution into Eq.
A1.2-1, which yields

(A1.2-7)
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It should be observed that the vector product  is a column vector with unity in
its jth elements and zeros elsewhere. The row vector resulting from the product 
is of similar form. Hence, upon final expansion, the right-hand side of Eq. A1.2-7
reduces to a diagonal matrix containing the singular values of F.

The SVD matrix decomposition of Eq. A1.2-3 and the equivalent series represen-
tation of Eq. A1.2-6 apply for any arbitrary matrix. Thus the SVD expansion can be
applied directly to discrete images represented as matrices. Another application is
the decomposition of linear operators that perform superposition, convolution, or
general transformation of images in vector form.

A1.3. PSEUDOINVERSE OPERATORS

A common task in linear signal processing is to invert the transformation equation

(A1.3-1)

to obtain the value of the  input data vector f, or some estimate  of the data
vector, in terms of the  output vector p. If T is a square matrix, obviously

(A1.3-2)

provided that the matrix inverse exists. If T is not square, a   matrix pseudoin-
verse operator T+ may be used to determine a solution by the operation 

  = T+p (A1.3-3)

If a unique solution does indeed exist, the proper pseudoinverse operator will pro-
vide a perfect estimate in the sense that . That is, it will be possible to extract
the vector f from the observation p without error. If multiple solutions exist, a
pseudoinverse operator may be utilized to determine a minimum norm choice of
solution. Finally, if there are no exact solutions, a pseudoinverse operator can pro-
vide a best approximate solution. This subject is explored further in the following
sections. References 5, 6, and 9 provide background and proofs of many of the fol-
lowing statements regarding pseudoinverse operators.

The first type of pseudoinverse operator to be introduced is the generalized
inverse T –, which satisfies the following relations:

TT – = [TT–]T (A1.3-4a)

T –T = [T –T]T (A1.3-4b)

U
T
uj

vj
T
V

p Tf=

Q 1× f̂

P 1×

f̂ T[ ] 1–
p=

Q P×

f̂

f̂ f=
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TT – T = T (A1.3-4c)

T – TT – = T – (A1.3-4d)

The generalized inverse is unique. It may be expressed explicitly under certain cir-
cumstances. If , the system of equations of Eq. A1.3-1 is said to be overdeter-
mined; that is, there are more observations p than points f to be estimated. In this
case, if T is of rank Q, the generalized inverse may be expressed as

T – = [TTT]–1TT (A1.3-5)

At the other extreme, if , Eq. A1.3-1 is said to be underdetermined. In this
case, if T is of rank P, the generalized inverse is equal to

T – = TT[TTT] –1 (A1.3-6)

It can easily be shown that Eqs. A1.3-5 and A1.3-6 satisfy the defining relations of
Eq. A1.3-4. A special case of the generalized inverse operator of computational
interest occurs when T is direct product separable. Under this condition

 (A1.3-7)

where  and  are the generalized inverses of the row and column linear oper-
ators.

Another type of pseudoinverse operator is the least-squares inverse T$, which
satisfies the defining relations

TT$T = T (A1.3-8a)

TT$ = [TT$]T (A1.3-8b)

Finally, a conditional inverse T# is defined by the relation

TT#T = T (A1.3-9)

Examination of the defining relations for the three types of pseudoinverse operators
reveals that the generalized inverse is also a least-squares inverse, which in turn is
also a conditional inverse. Least-squares and conditional inverses exist for a given

P Q>

P Q<

T
–

TC
–

TR
–⊗⊗⊗⊗=

TR
–

TC
–
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linear operator T; however, they may not be unique. Furthermore, it is usually not
possible to explicitly express these operators in closed form.

The following is a list of useful relationships for the generalized inverse operator
of a  matrix T.

Generalized inverse of matrix transpose:

[TT] – = [T –]T (A1.3-10)

Generalized inverse of generalized inverse:

[T –] – = T (A1.3-11)

Rank:

rank{T –} = rank{T} (A1.3-12)

Generalized inverse of matrix product:

[TTT] – = [T] –[TT] – (A1.3-13)

Generalized inverse of orthogonal matrix product:

[ATB] – = BTT –AT (A1.3-14)

where A is a  orthogonal matrix and B is a  orthogonal matrix.

A1.4. SOLUTIONS TO LINEAR SYSTEMS

The general system of linear equations specified by

(A1.4-1)

where T is a  matrix may be considered to represent a system of P equations in
Q unknowns. Three possibilities exist:

1. The system of equations has a unique solution  for which .

2. The system of equations is satisfied by multiple solutions.

3. The system of equations does not possess an exact solution.

P Q×

P P× Q Q×

p Tf=

P Q×

f̂ Tf̂ p=
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If the system of equations possesses at least one solution, the system is called
consistent; otherwise, it is inconsistent. The lack of a solution to the set of equations
often occurs in physical systems in which the vector p represents a sequence of
physical measurements of observations that are assumed to be generated by some
nonobservable driving force represented by the vector f. The matrix T is formed by
mathematically modeling the physical system whose output is p. For image restora-
tion, f often denotes an ideal image vector, p is a blurred image vector and T models
the discrete superposition effect causing the blur. Because the modeling process is
subject to uncertainty, it is possible that the vector observations p may not corre-
spond to any possible driving function f. Thus, whenever Eq. A1.4-1 is stated, either
explicitly or implicitly, its validity should be tested.

Consideration is now given to the existence of solutions to the set of equations
. It is clear from the formation of the set of equations that a solution will

exist if and only if the vector p can be formed by a linear combination of the col-
umns of T. In this case, p is said to be in the column space of T. A more systematic
condition for the existence of a solution is given by (5):

A solution to  exists if and only if there is a conditional inverse T# of T
for which TT#p = p.

This condition simply states that the conditional inverse mapping T# from obser-
vation to image space, followed by the reverse mapping T from image to observa-
tion space, must yield the same observation vector p for a solution to exist. In the
case of an underdetermined set of equations , when T is of full row rank P, a
solution exists; in all other cases, including the overdetermined system, the exist-
ence of a solution must be tested.

A1.4.1. Solutions to Consistent Linear Systems

On establishment of the existence of a solution of the set of equations

(A1.4-2)

investigation should be directed toward the character of the solution. Is the solution
unique? Are there multiple solutions? What is the form of the solution? The latter
question is answered by the following fundamental theorem of linear equations (5).

If a solution to the set of equations  exists, it is of the general form

 = T#p + [I – T#T]v (A1.4-3)

where T# is the conditional inverse of T and v is an arbitrary  vector.
Because the generalized inverse T – and the least-squares inverse T$ are also con-

ditional inverses, the general solution may also be stated as

p Tf=

p Tf=

P Q<( )

p Tf=

p Tf=

f̂

Q 1×
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  = T$p + [I – T$T]v (A1.4-4a)

 = T –p + [I – T-T]v (A1.4-4b)

Clearly, the solution will be unique if T#T = I. In all such cases, T – T = I. By exam-
ination of the rank of T – T, it is found that (1):

If a solution to  exists, the solution is unique if and only if the rank of the
 matrix T is equal to Q.

As a result, it can be immediately deduced that if a solution exists to an underde-
termined set of equations, the solution is of multiple form. Furthermore, the only
solution that can exist for an overdetermined set of equations is a unique solution. If
Eq. A1.4-2 is satisfied exactly, the resulting pseudoinverse estimate

 = T+p = T+Tf (A1.4-5)

where T+ represents one of the pseudoinverses of T, may not necessarily be perfect
because the matrix product T+T may not equate to an identity matrix. The residual
estimation error between f and  is commonly expressed as the least-squares differ-
ence of the vectors written as

(A1.4-6a)

or equivalently,

(A1.4-6b)

Substitution of Eq. A1.4-5 into Eq. A1.4-6a yields

EE = fT[I – (T+T)T][I – (T+T)]f (A1.4-7)

The choice of T+ that minimizes the estimation error of Eq. A1.4-6 can be deter-
mined by setting the derivative of , with respect to f, to zero. From Eq. A1.1-32

 = 2[I – (T+T)T][I – (T+T)]f (A1.4-8)

Equation A1.4-8 is satisfied if T+ = T – is the generalized inverse of T. Under this
condition, the residual least-squares estimation error reduces to

f̂

f̂

p Tf=
P Q×

f̂

f̂

EE f f̂–[ ]T f f̂–[ ]=

EE tr f f̂–[ ] f f̂–[ ]T{ }=

EE

EE∂
f∂

--------- 0=
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 = fT[I – (T-T)]f (A1.4-9a)

or

 = tr{ffT[I – (T – T)]} (A1.4-9b)

The estimation error becomes zero, as expected, if T–T = I. This will occur, for
example, if T– is a rank Q generalized inverse as defined in Eq. A1.3-5. 

A1.4.2. Approximate Solution to Inconsistent Linear Systems

Inconsistency of the system of equations  means simply that the set of equa-
tions does not form an equality for any potential estimate . In such cases, the
system of equations can be reformulated as

(A1.4-10)

where  is an error vector dependent on f. Now, consideration turns toward the
determination of an estimate  that minimizes the least-squares modeling error
expressed in the equivalent forms

(A1.4-11a)

or

(A1.4-11b)

Let the matrix T+ denote the pseudoinverse that gives the estimate

 = T+p (A1.4-12)

Then, adding and subtracting the quantity TT+p inside the brackets of Eq. A1.4-11a
yields

EM = [(I – TT+)p + T(T+p – )]T [(I – TT+)p + T(T+p – )] (A1.4-13)

EE

EE

p Tf=
f f̂=

p Tf e f( )+=

e f( )
f̂

EM e f̂( )[ ]T e f̂( )[ ] p Tf̂–[ ]T p Tf̂–[ ]= =

EM tr e f̂( )[ ] e f̂( )[ ]T{ } tr p Tf̂–[ ] p Tf̂–[ ]T{ }= =

f̂

f̂ f̂
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Expansion then gives

EM = [(I – TT+)p]T[(I – TT+)p] + [T(T+p – )]T[T(T+p – )]

+ [(I – TT+)p]T[T(T+p – )] + [T(T+p – )]T[(I – TT+)p] (A1.4-14)

The two cross-product terms will be equal zero if TT+T = T and TT+ = [TT+]T. These
are the defining conditions for T+ to be a least-squares inverse of T, (i.e., T+ = T$).
Under these circumstances, the residual error becomes equal to the sum of two posi-
tive terms:

EM =  [(I – TT$)p]T[(I – TT$)p] + [T(T$p – )]T[T(T$p – )] (A1.4-15)

The second term of Eq. A1.4-15 goes to zero when  equals the least-squares
pseudoinverse estimate,   = T$p, and the residual error reduces to

EM = pT[I – TT$]p (A1.4-16)

If TT$ = I, the residual error goes to zero, as expected.
The least-squares pseudoinverse solution is not necessarily unique. If the pseudo-

inverse is further restricted such that T+TT+ = T and T+T = [T+T]T so that T+ is a
generalized inverse, (i.e. T+ = T–), it can be shown that the generalized inverse esti-
mate,   = T –p, is a minimum norm solution in the sense that

(A1.4-17)

for any least-squares estimate . That is, the sum of the squares of the elements of
the estimate is a minimum for all possible least-squares estimates. If T– is a rank-Q
generalized inverse, as defined in Eq. A1.3-5, TT – is not necessarily an identity
matrix, and the least-squares modeling error can be evaluated by Eq. A1.4-16. In the
case for which T– is a rank-P generalized inverse, as defined in Eq. A1.4-15,
TT – = I, and the least-squares modeling error is zero.
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APPENDIX 2

COLOR COORDINATE CONVERSION

There are two basic methods of specifying a color in a three primary color system:
by its three tristimulus values , and by its chromaticity  and its
luminance (Y). Given either one of these representations, it is possible to convert
from one primary system to another.

CASE 1. TRISTIMULUS TO TRISTIMULUS CONVERSION

Let  represent the tristimulus values in the original coordinate system and
 the tristimulus values in a new coordinate system. The conversion

between systems is given by

(A2-1)

(A2-2)

(A2-3)

where the  are the coordinate conversion constants.
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CASE 2. TRISTIMULUS TO LUMINANCE/CHROMINANCE CONVERSION

Let

(A2-4)

(A2-5)

and

(A2-6)

(A2-7)

represent the chromaticity coordinates in the original and new coordinate systems,
respectively. Then, from Eqs. A2-1 to A2-3,
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(A2-9)

where
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(A2-10f)

(A2-10g)

(A2-10h)

(A2-10i)

and  are conversion matrix elements from the  to the  
coordinate system. The luminance signal is related to the original tristimulus values
by

(A2-11)

where the  are conversion elements from the  to the (X, Y, Z) coordi-
nate systems in correspondence with Eq. A2-2.

CASE 3. LUMINANCE/CHROMINANCE TO LUMINANCE        
CHROMINANCE CONVERSION
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(A2-17a)

(A2-17b)

(A2-17c)

(A2-17d)

(A2-17e)

(A2-17f)

(A2-17g)

(A2-17h)

(A2-17i)

and the  are conversion matrix elements from the  to the 
coordinate system.

CASE 4. LUMINANCE/CHROMINANCE TO TRISTIMULUS 
CONVERSION

In the general situation in which the original chromaticity coordinates are not the
CIE x–y coordinates, the conversion is made in a two-stage process. From Eqs.
A2-1 to A2-3,
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where the  are the constants for a conversion from (X, Y, Z) tristimulus values to
  tristimulus values. The X and Z tristimulus values needed for substitu-

tion into Eqs. As-18 to A2-20 are related to the source chromaticity coordinates by
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(A2-21)

(A2-22)

where the  are constants for a transformation from  chromaticity coordi-
nates to (x, y) chromaticity coordinates.

X
α
1
t
1

α
2
t
2

α
3

+ +

α
7
t
1

α
8
t
2

α
9

+ +
-----------------------------------------=

Z
α
4

α
1

– α
7

–( )t
1

α
5

α
2

– α
8

–( )t
2

α
6

α
3

– α
9

–( )+ +

α
7
t
1

α
8
t
2

α
9

–+
---------------------------------------------------------------------------------------------------------------------------------Y=

αi j t
1
t
2

,( )



715

APPENDIX 3

IMAGE ERROR MEASURES

In the development of image enhancement, restoration, and coding techniques, it is
useful to have some measure of the difference between a pair of similar images. The
most common difference measure is the mean-square error. The mean-square error
measure is popular because it correlates reasonable with subjective visual quality
tests and it is mathematically tractable.

Consider a discrete F (j, k) for  j = 1, 2, ..., J and k = 1, 2, ... , K, which is regarded
as a reference image, and consider a second image  of the same spatial
dimensions as F (j, k) that is to be compared to the reference image. Under the
assumption that F (j, k) and  represent samples of a stochastic process, the
mean-square error between the image pair is defined as 

(A3-1)

where  is the expectation operator. The normalized mean-square error is

(A3-2)

Error measures analogous to Eqs. A3-1 and A3-2 have been developed for determin-
istic image arrays. The least-squares error for a pair of deterministic arrays is
defined as

(A3-3)
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and the normalized least-squares error is

(A3-4)

Another common form of error normalization is to divide Eq. A3-3 by the squared
peak value of F(j, k). This peak least-squares error measure is defined as

(A3-5)

In the literature, the least-squares error expressions of Eqs. A3-3 to A3-5 are some-
times called mean-square error measures even though they are computed from
deterministic arrays. Image error measures are often expressed in terms of a signal-
to-noise ratio (SNR) in decibel units, which is defined as

(A3-6)

A common criticism of mean-square error and least-squares error measures is
that they do not always correlate well with human subjective testing. In an attempt
to improve this situation, a logical extension of the measurements is to substitute
processed versions of the pair of images to be compared into the error expressions.
The processing is chosen to map the original images into some perceptual space in
which just noticeable differences are equally perceptible. One approach is to per-
form a transformation on each image according to a human visual system model
such as that presented in Chapter 2.
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Aberrations, 301
Absolute value, histogram, 515
Achromatic, 285
Ac term, 185
Adaptive histogram modification, 258
Ade’s texture features, 542
Affine transformation, 377
Aliasing

effects, 103
error, 103

Amplitude
features, 511
projections, 559
scaling, 245
segmentation methods, 552

API, see Application program interface
Application program interface, 643
Area measurement, 591, 592
Argyle operator, 458
Atomic regions, 562
Atmospheric turbulence model, 303
Autocorrelation

function, 16, 530
histogram, 514
of system output, 20
spread features, 531
texture features, 531
theorem, 13

Autocovariance function, 17
Average

area, 595
height, 596
length, 596
perimeter, 595

Banded matrix, 168
Barrel distortion, 383
Bartlett windowing function, 232
Basic image interchange format, 644 
Basis 

function, 188
matrix, 188

Bayes minimum error, 466
Bays, 590
B-distance, 510
Bell interpolation kernel, 396
Bessel function, 97, 232
Between class scatter matrix, 561
Bezier polynomial, 567
Bhattacharyya distance, 510
Bicubic interpolation, 395
BIIF, see Basic image interchange format
Bilevel luminance thresholding, 552
Bilinear interpolation, 114, 259, 393, 440
Bit quads, 593
Blackbody source, 45
Black component, 75
Blackman windowing function, 232
Blind image restoration, 363
Block

mode filtering, 228
Toeplitz, 129

Blur matrix, 175
Bond, pixel, 402
Boundary detection, 566
Boxcar operator, 455
Bridge, 406
Brightness, 25
Brodatz texture, 519
B-spline, 113
Bug follower

basic, 581
backtracking, 582

Bug following, 581
Butterworth filter

high-pass, 236
low-pass, 236

Camera imaging model, 389
Canny operator, 459
Cartesian coordinate system, 372
Catchment basin, 564
Cathode ray tube, 3, 47
CCD, see Charged coupled device
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CCIR, see Comite Consultatif International des
Radiocommunications

CCIR receiver primary color coordinate system,
66

Center of gravity, 601
Centered

superposition, 163
reflected boundary superposition, 165
zero boundary superposition, 166
zero padded superposition, 165

Central moments, normalized, 606
Central spatial moment

continuous, 597
discrete, 597

Centroid, 601
Charged coupled device, 322
Chain

code, 583
definition of, 648

Chebyshev
basis set, 542
polynomials, 478, 542

Chernoff bound, 510
Choroid, 27
Chroma, 80
Chromatic adaption, 32
Chromaticity

coordinates, 59
diagram, 59, 67, 70

CIE, see Commission Internationale de l’Eclairage
CIE spectral primary color coordinate system, 65
Circulant

convolution, 177
matrix, 178
superposition, 177

Circularity, 595
Clipping, contrast, 245
Close operation

binary image, 433
gray scale image, 437

Clustering, 560
Coarseness, texture, 519, 530
Coiflets, 207
Color blindness, 33
Color coordinate conversion, 711
Color coordinate systems

CCIR, 66
CIE, spectral, 65
EBU, 66
IHS, 84
Karhunen–Loeve, 84
L*a*b*, 71
L*u*v*, 72
NTSC, 66

Photo YCC, 83
retinal, 86
SMPTE, 67
UVW, 69
U*V*W*, 71
XYZ, 67
YCbCr, 82
YlQ, 80
YUV, 81

Color cube, 58
Color film model, 310
Color image

edge detection, 499
enhancement, 284

Colorimetry
concepts, 54
definition of, 54

Color matching
additive, 49
axioms, 53
subtractive, 52

Color spaces
colorimetric, 64
nonstandard, 85
subtractive, 75
video, 76

Color systems
additive, 49
subtractive, 49

Color vision
model, 39
verification of model, 55

Column
gradient, 449
moment, first-order, 598
moment of inertia, 602

Comite Consultatif International des 
Radiocommunications, 67

Commission Internationale de l’Eclairage, 47
Companding quantizer, 145
Compass gradient arrays, 508
Complement, 421
Conditional

density, 16
inverse, 701
mark, 411

Condition number, 343
Cones

description of, 27
distribution of, 28
sensitivity of, 27

Connected
components, 627
eight, 402
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four, 402
minimally, 403
six, 403

Connectivity
definitions, 401
of pixels, 402

Consistent system of equations, 339
Constrained image restoration, 358
Constrained least squares filter, 333
Contour

coding, 583
following, 581

Contrast
clipping, 245
definition of, 34
manipulation, 243
modification, 248
scaling, 245
sensitivity, 30
stretching, 247

Control points, 384
Control point detection, 636
Convex

deficiency, 590
hull, 590

Convolution
circulant, 177
discrete image, 161
finite area, 161
Fourier domain, 221
Hadamard domain, 221
integral, 8
operation, 9
sampled image, 170
symbol, 8

Co-occurrence matrix, 538
Cornea, 27
Correlation function

basic, 625
of image array, 127
normalized, 627
statistical, 628

Correlation matrix, 127
Cosine transform, 196
Covariance

function, 127
histogram, 515
matrix, 129
stationary, 129

Crack code, 582, 592
Cross

correlation, 615, 626
second derivative, 553, 663

CRT, see Cathode ray tube
Cubic B-spline 

definition of, 113
interpolation kernel, 396

Cubic convolution, 113
Cumulative probability distribution, 255
Curvature

definition of, 610
Fourier series of, 610

Curve fitting
iterative end point, 567
polynomial, 567

Cutoff frequency, 233, 236

Daisy petal filter, 545
Daub4, 206
Daubechies transform, 206
Dc term, 185
Decorrelation operator, 532
Dependency matrix, 537
Derivative of Gaussian edge gradient, 459
Derivative matched filter, 620
Detection

image, 613
probability of edge, 465

Diagonal fill, 405
Diagonalization of a matrix, 130
Dichromats, 33
Difference of Gaussians, 475
Differential operators, 9
Diffraction

definition of, 301
limited, 301

Dilation
eight-neighbor, 407
generalized, 423
gray scale image, 435
properties of, 429

Dirac delta function
continuous, 6
discrete, 162
sampling array, 92

Directed derivative edge detector, 477
Directional derivative, 10, 100
Direct product, matrix, 698
Dispersion feature, 512
Display

cathode ray tube, 47
liquid crystal, 47
point nonlinearity correction, 323
spatial correction, 324

Distance
Euclidean, 591
magnitude, 591
maximum value, 591
measures, 591
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Dither function, 327
DOG, see Difference of Gaussians
Duda and Hart Hough transform, 570
Dye layer gammas, 311

EBU, see European Broadcast Union
EBU receiver primary color coordinate systems,

66
Edge crispening

enhancement, 278
masks, 278

Edge detection
color image, 499
first-order derivative, 448
luminance image, 443
probability of, 485
second-order derivative, 469
subjective assessment, 494

Edge detector
edge fitting, 528
figure of merit, 490
first derivative, 496
localization, 486
orientation, 485
performance, 485
second derivative, 516
template, 506

Edge fitting, 482
Edge linking

curve fitting, 567
heuristic, 568
Hough transform, 569
iterative end point, 567

Edge models, 444, 445, 446
Edge probability

of correct detection, 465
of edge misclassification, 465
of false detection, 465

Eigenvalue, definition of, 701
Eigenvector

definition of, 701
transform, 207

Eight-connectivity, 402
Eight-neighbor

dilate, 407
erode, 409

Emulsion, film, 304
Energy, histogram, 513, 515
Enhancement, image, 243
Entropy, histogram, 513, 515
Equalization, histogram, 253
Ergodic process, 19
Erosion

eight-neighbor, 409

generalized, 426
gray scale image, 437
properties of, 429

Euclidean distance, 591
Euler number, 590, 595
European Broadcast Union, 87
Exoskeleton, 421
Exothin, 417
Expectation operator, 16
Exponential probability density, 16
Exposure, film, 305
Extended data vector, 218
Extraction weighting matrix, 346
Eye

cross-sectional view, 27
physiology, 26

Facet modeling, 477
False color, 284, 286
Fast Fourier transform

algorithm, 195
convolution, 221

Fatten, 407
Features

amplitude, 511
histogram, 512
texture, 529
transform coefficient, 516

Feature extraction, 509
Figure of merit

edge detector, 491
feature, 510

Film
color, 308
exposure, 305
gamma, 307
monochrome, 304
speed, 307

Filter
bandstop, 266
Butterworth, 236
design, 229
Gaussian, 235
high-pass, 234, 236
homomorphic, 267
inverse, 326
low-pass, 233, 235, 236
pre-sampling, 106
whitening, 532, 620
Wiener, 329
zonal, 231, 232

Finite area
convolution, 168
superposition, 162
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First derivative of Gaussian operator, 459
FDOG, see First derivative of Gaussian operator
First-level

Haar wavelets, 205
scaling signals, 205

Flooding, 564
Focal length, 386
Four-connectivity, 402
Fourier

descriptors, 609
spectra texture features, 530

Fourier transform
continuous

definition of, 10
properties of, 12

convolution, 221
discrete, definition of, 189
fast, 195, 224, 
feature masks, 517
filtering, 239
pairs, 11

Fovea, 28
Frei–Chen operator, 454

Gabor filter, 544
Gagalowicz counterexample, 528
Gain correction, 322
Gamma

correction, 77
film, 307
image, 77

Gaussian error function
definition of, 251
transformation, 250

Gaussian filter, 235
Gaussian probability density

continuous, 15
discrete, 133
discrete conditional, 525

Generalized
inverse, 340, 702
linear filtering, 214

Geometrical image
modification, 371
resampling, 393

Geometrical mean filter, 333
Geometric

attributes, 595
distortion, 383

Gibbs phenomenon, 171
Gradient

column, 449
continuous, 10
discrete, 449

row, 449
Grassman’s axioms, 53
Gray scale

contouring, 150
dependency matrix, 583

Greedy algorithm, 579

Haar
matrix, 203
transform, 203
wavelets, 205

Hadamard
matrix, 200
transform, 200

Hamming windowing function, 232
H&D curve, 307
Hanning windowing function, 232
Hartley transform, 200
H-break, 409
Hexagonal grid, 403
High-pass filter

Butterworth, 236
zonal, 234

Histogram
absolute value feature, 515
autocorrelation feature, 514
covariance feature 515
cumulative, 255
definition of, 646
energy feature, 513, 515
entropy feature, 513, 515
equalization, 253
features, 512
first-order, 134
hyperbolization, 258
inertia feature, 515
inverse difference feature, 515
kurtosis feature, 513
mean, 513
measurements, 134
modification, 253
one-dimensional features, 513
property, 558
second-order, spatial, 134
shape, 558
skewness feature, 513
standard deviation feature, 513
two-dimensional features, 514

Hit or miss transformations, 404
Hole, 589
Homogeneous coordinates, 376, 387
Homomorphic filtering, 267
Hotelling transform, 207
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Hough transform
basic, 569
Dude and Hart version, 570
edge linking, 576
O’Gorman and Clowes version, 575

Hu’s spatial moments, 606, 638
Hue, 25, 84
Hueckel edge detector, 484
Hurter and Driffield curve, 307
Hyperbolization, histogram, 258

Idempotent, 414
IEC, see International Electrotechnical Commission
IIF, see Image interchange facility
Ill-conditioned

integral, 328
matrix, 318

Illuminant
C, 66
D65, 66
E, 47, 66

Image
centroid, 601
classification, 509
continuous, definition of, 3
detection, 615
discrete, definition of, 130
enhancement, 243
error measures, 715
feature, 509
feature extraction, 509
reconstruction, 93
registration, 613, 625
restoration, 319
restoration models, 297, 312
sampling, 92
segmentation, 509, 551
statistical, definition of, 3
surface, 598

Image interchange facility, 644
Image representation

deterministic, 3
statistical, 3
vector space, 121

Impulse response
Bessel, 97
definition of, 8
function array, 162
sinc, 96

Inconsistent system of equations, 339
Index assignment, 657
Inertia

histogram feature, 515
moment of, 602
texture function, 538

Intensity, 84
Interimage effects, 310
Interior

fill, 405
pixel remove, 409

International Electrotechnical 
Commission, 643

International Organization for 
Standardization, 643

Interpolation
bilinear, 114
by convolution, 395
methods, 393
nearest-neighbor, 393
piecewise linear, 114

Interpolation function
bell, 111, 396
cubic B-spline, 111, 394
cubic convolution, 113
Gaussian, 111
sinc, 111
square, 111
triangle, 111

Interpolation kernels
bell, 396
cubic B-spline, 396
peg, 396
pyramid, 396

Intersection, 404
Invariant moments

control point warping, 638
definition of, 606
Hu’s, 606

Inverse
difference, histogram, 515
filter, 326
function transformation, 250

Iris, 28
ISO, see International Organization for 

Standardization
Isolated pixel remove, 408
Isoplanatic, 8
Iterative endpoint fit, 567

Joint probability density, 597
JPEG, 196
Julesz

conjecture, 524
texture fields, 522

Kaiser windowing function, 232
Karhunen–Loeve

color coordinates system, 84
transform, 186



INDEX 729

Kernel
small generating, 236
transform, 193

Key component, 75
Kirsch operator, 461
Kurtosis, histogram feature, 513

L*a*b* color coordinate system, 71
Labeling, segment, 581
Lagrange multiplier, 144, 386
Lagrangian

estimate, 361
factor, 361

Lakes, 590
Laplacian

continuous, 471
density, 16
discrete matched filter, 62

eight-neighbor, 472
four-neighbor, 470

edge detector, 516
generation, 469
matched filter, 620
of Gaussian edge detector, 474
operator, 10
zero crossing, 476

Lateral inhibition, 38
Laws’ texture features, 540
LCD, see Liquid crystal display
Least squares

error, 715
inverse, 701

Left-justified form, 163
Lens transfer function, 108, 303
Level slicing, 253
Light

definition of, 23
sources, 24

Lightness, 152
Line

definition of, 444
detection, 505
models, 447

Linear operator, 123
Linear systems

additive, 6
consistent, 703
continuous, 6
inconsistent, 703
solutions to, 702

Liquid crystal display, 47
Logarithmic

ratio of images, 291
transformation, 251

Log-normal probability density, 15
LOG, see Laplacian of Gaussian
Look up table, 404, 658
Low-pass filter

Butterworth, 23, 235, 236
Gaussian, 235
zonal, 233

Luma, 80
Lumen, 48
Luminance

boundary segments, 443
calculation of, 59
definition of, 60
edges, 445

Luminosity coefficients, 59
Luminous flux, 48
LUT, see Look up table
L*u*v* color coordinate system, 72

Mach band, 32
Macleod operator, 458
Majority black, 410
Markov process

autocovariance function, 18
covariance matrix, 131
spectrum, 18

Match point control, 659
Matched filter

continuous, 616
deterministic, 616
stochastic, 621
derivative, 620
discrete, deterministic, 623
discrete, stochastic, 623
Laplacian, 620, 622

Matrix
addition, 694
banded, 168
between class scatter, 561
co-occurrence, 537
correlation, 128
covariance, 128
definition of, 646, 694
diagonal, 138
direct product, 696
inverse, 695
Markov covariance, 130
multiplication, 694
norm, 697
orthogonal, 187
rank, 697
selection, 181
sparse, 214
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Matrix (continued)
trace, 696
transpose, 695
tridiagonal, 196
within class scatter, 561

Max quantizer, 145
MAX, 275
MAXIMIN, 274
Maximum

entropy, 362
likelihood ratio, 466

Maxwell triangle, 58
Mean

of continuous probability density, 16
feature, 511
histogram feature, 513
matrix, 123
square error, 715
vector, 127

Mean-square error, normalized, 715
Medial axis

skeleton, 418
transformation, 418

Median
definition of, 271, 511
feature, 511
filter, 271
filtering, 271

Metameric pair, 25
Mexican hat filter, 475
Microstructure, texture, 540
MIN, 275
MINIMAX, 274
Minkowski addition, 423
Misregistration detection

generalized, 635
scale and rotation, 633
translational, 625

Mode definition of, 514
Modulation transfer function, 34, 302
Moire patterns, 103
Moment of inertia, 602
Moments

first, 16
second, 16
spatial

continuous, 597
discrete, 597

Monochromat, 33
Morphological image processing, 401
Morphological operators

binary conditional, 411
binary unconditional, 405
gray scale, 435

MPEG, 196
Multispectral image enhancement, 289
MTF, see Modulation transfer function
Multilevel

color component thresholding, 554
luminance thresholding, 554

Munsell color system, 26

Nalwa–Binford edge detector, 484
National Television Systems Committee, 66
Nearest neighbor interpolation, 393
Neighbourhood array, 648
Nevatia–Babu masks, 464
Neyman–Pearson test, 466
Noise

cleaning
masks, 263
nonlinear, 269
techniques, 261

models, 337
Nonreversal process, 304
Norm

matrix, 697
minimum, 706
vector, 697

Normalized least squares error, 716
NTSC, see National Television Systems 

Committee
NTSC receiver primary color coordinate system,

66
Nyquist

criterion, 97
rate, 97

Object components, 590
O’Gorman and Clowes Hough transform, 575
One-to-one mapping, 6
Open operation

binary image, 433
gray scale image, 437

Operators
circulant

convolution, 180
superposition, 178

finite area
convolution, 163
superposition, 163

linear, 123
pseudoinverse, 700
sampled image
convolution, 175
superposition, 174

Optical systems
atmospheric model, 303
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human vision, 33
models, 300

Optical transfer function, 33, 302
Organs of vision, 23
Orientation

axis, 605
descriptors, 602

Orthogonality
condition, 329
principle, 357

Orthogonal
gradient generation, 449
matrix, 187

Orthonormality conditions, 186
OTF, see Optical transfer function
Outlier removal, 270
Overdetermined matrix, 701
Oversampled, 95

Parametric
estimation filters, 332
low-pass filter, 263

Parseval’s theorem, 13
PCB, see Printed circuit board
PCM, see Pulse code modulation
Peak least squares error, 716
Peg interpolation kernel, 396
Perimeter measurement, 591, 592
Perspective

matrix, 390
transformation, 386, 392

Phase
angle, 11
correlation, 632

Photo YCC color coordinate system, 83
PhotoCD, 83
Photographic process

color film model, 308
monochrome film model, 304

Photography
color, 308
monochrome, 304

Photopic vision, 28
Photometry, 45
PIKS, see Programmer’s imaging kernel system
PIKS

application interface, 661
conformance profiles, 662
data objects, 644
image objects, 646
imaging model, 643
mechanisms, 654
operator models, 656, 656
operators, 646

tools, 651
utilities, 652

PIKS Core
C language binding, 668
profile, 643, 662
overview, 663

Pincushion distortion, 383
Pinhole aperture, 301
Pixel

bond, 402
definition of, 121
stacker, 404

Planck’s law, 45
PLSE, see Peak least squares error
Point

image restoration, 319
spread function, 8

Power

law transformation, 249
spectral density

continuous, 18
discrete, 131

spectrum
continuous, 18
discrete, 131
filter, 333

Prairie fire analogy, 418
Pratt, Faugeras, and Gagalowicz texture fields, 

527
Prewitt

compass edge gradient, 461
orthogonal edge gradient, 453

Primary colors, 49
Principal components, 138, 292
Printed circuit board, 439
Prism, 25
Probability density

conditional, 16
exponential, 16
Gaussian, 15, 133, 525
joint, 15, 597
Laplacian, 16
log-normal, 15
models, image, 132
Rayleigh, l5
uniform, 16

Programmer’s imaging kernel system, 641
Projections, amplitude, 559
Property histograms, 556
Pseudocolor, 284, 285
Pseudoinverse

computational algorithms, 345
operators, 700
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Pseudoinverse (continued)
spatial image restoration, 335
transform domain, 348

Pseudomedian filter, 271
Pulse code modulation, 150
Pupil

entrance, 301
exit, 303

Pyramid interpolation kernel, 396

Quadratic form, 698
Quantization

color image, 153
companding, 145
decision level, 142
definition of, 141
Max, 145
monochrome image, 150
reconstruction level, 142
scalar, 141
uniform, 145

Quench point, 420

Radiant flux, 45
Rainfall, 564
Ramp edge, 443
Rank, matrix, 127
Ratio of images, 291
Rayleigh probability density, 15
Reciprocity failure, 305
Reconstruction

filter, 96
levels, 133, 142

Rectangular windowing function, 231
Reflectivity, 24
Region growing, 562
Region-of-interest, 576, 646, 657
Registration, image, 627
Regression image restoration, 355
Relative luminous efficiency, 4, 48
Resampling, image, 393
Restoration, image, 319
Retina, 27
Retinal cone color coordinate system, 86
Reverse function transformation, 248
Ridge, 564
Ringing

artifacts, 265
filter, 280

Roberts
edge gradient, 451
operators, 452

Robinson

3-level operator, 462
5-level operator, 462

Rods
description of, 27
sensitivity of, 27

ROI, see Region-of-interest
Roof edge, 444
Rotation

image, 374
image, separable, 378
three-dimensional, 437

Row
gradient, 449
moment, first-order, 598
moment of inertia, 602

Row-column cross moment of inertia, 602
Rubber band transformation, 251
Rubber-sheet

stretching, 382, 589
transformation, 589

Running difference edge gradient, 450

Sampled image
convolution, 175
superposition, 174

Saturation, 25, 84
Scaling

contrast, 245
image, 373
separable image, 378

Scatter matrices
between class, 561
within class, 561

Sclera, 27
Scotopic vision, 28
Search area, 630
Segment labelling, 581
Segmentation

amplitude, 552
boundary, 566
clustering, 560
image, 551
region growing, 562
texture, 580

Selection matrix, 180
Sensor point nonlinearity correction, 319
Separated running difference edge 

gradient, 452
Sequency, 201
Sequential search method, 632
SGK, see Small generating kernel
Shape

analysis, 589
Fourier descriptors, 609
geometric attributes, 595
orientation descriptors, 607
topological attributes, 589
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Shrinking, 411
Shearing, image 377
Sifting property, 6
Signal-to-noise ratio

continuous matched filter, 619
definition of, 718
discrete matched filter, 625
edge, 469
Wiener filter power, 330

Simultaneous contrast, 32
Sinc function, 96
Sine transform, 196
Singularity operators, 6
Singular value, 699
Singular value decomposition (SVD)

pseudoinverse, 335
texture features, 547

Singular value matrix decomposition, 698
Skeletonizing, 417
Skewness, histogram, 513
Small generating kernel

convolution, 236
definition of, 166

Smoothing
matrix, 360
methods, 360

SMPTE, see Society of Motion Picture and 
Television Engineers

SMPTE receiver primary color 
coordinate system, 67

Snakes boundary detection, 577
SNR, see Signal-to-noise ratio
Sobel operator, 453
Society of Motion Picture and 

Television Engineers, 67
Space invariant, 8
Sparse matrix, 214
Spatial

average, 5
frequency

continuous, 10
discrete, 189

moments
continuous, 597
discrete, 597

warping, 382
Spectral

energy distribution, 23
factorization, 355, 621

Speed, film, 331
Spline fitting, 567
Split and merge, 563
Spot

definition of, 446

detection, 506
models, 448

Spur remove, 408
Stacking

operation, 122
operators, 123

Standard deviation
image feature, 511
histogram, 513

Standard
illuminants, 69
observer, 47
primaries, 69

Static array, 646
Stationary

process, 17
strict-sense, 17
wide-sense, 17

Statistical differencing
basic method, 280
Wallis’ method, 282

Statistical
correlation function, 630
mask, 632

Step edge, 443
Stochastic

process, continuous, 15
texture field, 521

Stretching, contrast, 248
Structuring element

decomposition, 430
definition of, 423

Superposition
continuous, 8
discrete

centered forms, 163, 165, 166
circulant, 178
finite area, 163
left-justified form, 163
sampled image, 178
series formation, 163
vector space formulation, 167

integral, 8
Surface, image, 638
SVD, see Singular value decomposition (SVD)
SVD/SGK convolution, 238

Template
edge detector, 461
matching, 613
region, 627

Temporal summation, 364
Texture

artificial, 519
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Texture (continued)
coarseness, 519
definition of, 519
natural, 519
segmentation, 580
visual discrimination of, 521

Texture features
autocorrelation, 530
decorrelation, 532
dependency matrix, 537
edge density, 530
Fourier spectra, 530
Gabor filter, 544
microstructure, 540
singular value decomposition, 547
transform and wavelet, 547

Texture fields
Julesz, 568
Pratt, Faugeras, and Gagalowicz, 571

Thickening, 421
Thinning, 414
Thinness ratio, 595
Threshold selection, 463
Thresholding

bi-level, 552
Laplacian, 553
multilevel, 554

Time average, 5
Toeplitz matrix, 129
Topological attributes, 589
Trace, matrix, 696
Transfer function generation, 229
Transform

coefficient features, 516
domain

convolution, 220
processing, 213
superposition, 216

Translation
image, nonseparable, 372
image, separable, 378
three-dimensional, 391

Translational misregistration detection
basic correlation method, 625
phase correlation method, 632
sequential search method, 632
statistical correlation method, 628
two-state methods, 631

Transmissivity, 23
Transpose, matrix, 695
Trend, 205
Tristimulus values

calculation of, 57
definition of, 50

transformation, 61
Truncated pyramid operator, 456
Tuple, 646
Two-dimensional

basis function, 188
system, 5

Two’s complement, 147

Undercover removal, 75
Underdetermined

equations, 339
matrix, 701
model, 316

Uniform
chromaticity scale, 69
quantizer, 145

Union, 404
Unitary

matrix, 187
transform

definition of, 185
series formulation, 185
separable, 186
vector space formulation, 187

Unsharp masking, 278
UVW Uniform Chromaticity Scale color 

coordinate system, 69
U*V*W* color coordinate system, 71

Valley, 566
Variance

definition of, 17
function, 128
Gaussian density, 15
matrix, 128

Vector
algebra, 693
definition of, 693
differentiation, 698
inner product, 697
norm, 697
outer product, 698
space image representation, 121

Vision models
color, 39
logarithmic, 36
monochrome, 33
verification of, 55

Visual phenomena, 29

Wallis
operator, 282
statistical differencing, 282

Walsh function, 202
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Warping
polynomial, 382
spatial, 382

Watershed
definition of, 564
segmentation, 563

Wavelet
de-noising, 276
matrix, 204
transform, 206

Weber fraction, 30
Whitening

filter, 532, 618
matrix, 624, 629

White reference, 49
Wiener

estimation, 356, 404
filter, 329

Wien’s law, 46

Windowing functions, 231
Window-level transformation, 245
Window region, 626
Within class scatter matrix, 561
World coordinates, 390
Wraparound error, 223

XYZ color coordinate system, 67

YCbCr CCIR Rec. 601 
transmission color coordinate system, 82

YIQ NTSC transmission color coordinate system, 80
YUV EBU transmission color coordinate system, 81

Zero crossing, 471, 476
Zonal filter

high-pass, 234
low-pass, 233



(b) dolls_gamma

(a) dolls_linear�

Color photographs of the dolls_linear and the dolls_gamma color images. See pages
74 and 80 for discussion of these images.
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(a) Gray scale chart (b) Pseudocolor of chart

(c) Seismic (d) Pseudocolor of seismic

Figure 10.5-3.  Pseudocoloring of the gray_chart and seismic images.
See page 288 for discussion of this figure.



(a) Infrared band (b) Blue band

(c) R = infrared, G = 0, B = Blue (d) R = infrared, G = ½ [infrared + blue],
B = blue

Figure 10.5-4.   False coloring of multispectral images. See page 290 for discussion of this figure.



(a) Color representation (b) Red component

(c) Green component (d) Blue component

Figure 15.6-1.  The peppers_gamma color image and its RGB color components.
See page 502 for discussion of this figure.


