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CHAPTER 5

Image Restoration




Degradation Model

Input Output relationship
glx, ¥) = Hlflx, v]] + nglx, ¥)

A ¥l

|

Figure 5.1 A model of the image degrodation procets.

An operator having the input —output relationship
HfAx — =y — B)| =glx — &y — B)
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Degradation Model 3

Degradation Model for Continuous Function

fix, ¥} = JJ(_I'-EI'J'.,I'?]-EI'.L = @, ¥y — B) de dB.
Since fle, 8) 15 independent of x and v, and from the homogeneity property,

gix, y) = ”Ilm BIH[8(x — o, y = B]] dix dB. (5.1-9)

Impulse response
The term

iz, o, v, B) = fqu-I.T — W,y ﬁﬂ
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Degradation Model

Discrete Formulation

A=
gix) = 2 fimh(x — m)
e H is the M = M matrix
4.0 = " 2.00) - - (1) hi-1)  hi-2)
(1) £.(1) h(1) k(0 h,(—1)
I = : E= : H= | L(2) kA1) b, (D)
M- 1) (M -1
- . 8 ). (M = 1) hAM —2) k(M - 3)
i) h(2) k(1)
h(1) (D) k(2)

k(2) k(1) h(D)
R(2Z) k(1) h(D)
h(2) h(1) k(0)
h(2) h(1)) Kk(0)
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+ h{—M + 1)7
- hi=M + 2)
- hi=-M+ 3)

- A (0)




Digitalization of Circulant And
Block-Circulant Matrices

Circulant Matrices:

= (1) RAM—1) h(M-2) - K{1)7
(1) h, (0} h{M - 1} --- :r,mi
H i {2) h1) h, () e h(3)
LA(M — 1) hiM —2) hiM - 3) h0)_

Scalar FUnctioiik) and a vector wik) as

A(k) = h(0) + AM — 1'I|._.:l|.|'_5- —.l, + k(M - Yexpl] ”:ii

B (])e '-:|'|, FI:'" — 1}k
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Digitalization of Circulant And
Block-Circulant Matrices
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The transformation matrix for diagonalizing block circulants is constructed as
follows. Let

2w ]
wuli, m) = exp jvim (5.2-12)
! )
and
2%
wy(k, n) = exp [; N knl. {5.2-13)

Based on this notation, we define a matrix W of size MN x MN and containing
M?* partitions of size N X N. The imth partition of W is

Wii. m) = weli, m)W, (5.2-14)
fori,m=0,1.2,.... M - 1. Then Wyis an N x N matrix with elements
Wk, n) = wylk, n) (5.2-13)

fork,n=0,12,... N-1.
The inverse matrix W' is also of size MN X MN with M? partitions of
size N X N. The imth partition of W', symbolized as W (i, m), is

W' (i, m) = ;’-‘w.-,'(i. myWs' (5.2-16)
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where wi' (i, m) is
2
Wy (i, m) = exp|—j o i (3.2-17)
fori,m=0,1,2,....M— 1. The matrix W' has elements
Wol(k, A) = % Wik, n) (5.2-18)

where

(5.2-19)

wi'lk, n) = mp[—{%kn

fork,n=0,1,2,...,N — 1. It can be verified by direct substitution of the
elements of W and W' that

WWi =W'w=1] (5.2-200)

where 1 is the MN x MN identity matrix.

From the resulis in Section 5.2.1. and if H 15 a block-circulant matrix, it
can be shown (Hunt [1973]) that

H = WDW ' (5.2-21)
or
D = W 'HW (5.2-22)

where D is a diagonal matrix whose elements D(k, k) are related to the discrete
Fourier transform of the extended function h,(x, ¥) discussed in Section 5.1.3.
Moreover, the transpose of H, denoted H', is

H = WD*"W-* (5.2-23)

where D* is the complex conjugate of D.




Algebraic Approach +
Unconstrained Restoration
=g — HI
Norm OF the Nose:
nl* = |lg - Hf|

InjF = m'm and |jg — HI| = (g — !Ih"lg — HI)
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Algebraic Approach

Constrained Restoration:
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JiH = |OIF + allg - HIF — InP)
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Inverse Filtering eecs
f=H'g
= (WDW- ") 'g

- WD~ 'W"'g.
Premultiplying both sides

“I-|i= u |w I_E

(i} L

Figure 5.2 Dlurring of a point source fo obtin Hiu, v).



Inverse Filtering oce

Removal of Blur Caused by Uniform Linear Motion:

Figure 5.3 Example of image restoration by inverse filtering: (a) original image f(x, y); (b)
degraded (blurred) image gix, v); (c) reswlt of restoration by considering a neighborhood
about the origin of the uv plane that does not include excessively small values of H{u, v); (d)

13:24 result of using a larger neighborhood in which this condition does not hold. (From McGlamery
[1967].)
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Inverse Filtering

exposure, it follows that

glx.¥) = L fix — xaltds ¥ — yoli)] ot (5.4-T)

where gix, ¥) is the blurred image.
From Eq. (3.1-9), the Fourier transform of Eq. (5.4-7) is

Gin, v} = _”- glx. Yyexp| — 2w + vy)] dx dy
£ (5.4-8)

= fj- {.r:ﬂ“ = xal), ¥ — yalf)] ll"f]ﬂF[ —PRafex + wy)] dx dy.

Reversing the order of integration allows Eq. (5.4-8) to be expressed in the
form

G, v = L[J‘f iz — xelith, ¥ — yolrd]exp] —iZwine + vy)] ox d}-} di.  (5.4-9)

The term inside the outer brackets is the Fourier transform of the displaced
function flx — xalr), ¥ — ¥el(r)]. Using Eq. (3.3-Tb) then yields the relation

G, v) = J-u- Fiw. viexp{ —f2w[wxaled + wwal)]} ot (5.4-10)

F
= Flu. v) [ expl— 2w + vyl dn
where the last step follows from the fact that Flu. v) is independent of r.
By defiming
L
MHiw, v) = j-ur.':q}{ — fRar [eexadE) += vwale)]} ofr (5.4-11)
Eq. {5.4-10) may be ¢xpressed in the familiar form
Gier, w) = M, v} Flu, v). {(5.4-12)
If the nature of the motion variables x{f} and y.(s} is known, the transfer
function H (u, v) can be obtained directly from Eq. (5.4-11). As an illustration,

suppose that the image in question undergoes uniform linear motion in the x
direction only, ai a rate given by x () = af'T. When ¢ = T, the image has
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Inverse Filtering

been displacced by a total distance a. With y.{r) = 0, Eq. (5.4-11) yields

Hu. vy = [ expl—2mu(o) a

T
— foexp[—forua:/'n dr (5.4-13)

sin{(mwra)ec ™=,
i

Obwviously, £ vanishes at valucs of u# given by ¥ = n/a. where n is an integer.
When f(x. y) is zero (or known) outside an interval 0 = x = [ the problem
presented by Eq. (5.4-13) can be avoided and the image completely recon-
structed from a knowledge of g(x. v) in this interval. Because y is time invariant,
suppressing this variable temporarily allows Eq. (5.4-7) to be written as

T
g(x) - !. fix — x (D)) dt

- f:f‘x - -"—'}dt 0= x= [.

Substituting = = x — a¢/7T in this expression and ignoring a scale factor yields

(5.4-14)

x(x) - I:—‘f(r) ar 0=x= L, (5.4-15)

Then, by differentiation with respect to x (using Liebnitz’s rule),

g'(x) = fix) — fix — a) O=x=L (5.4-16)

or
fix) = g'"(x) + f(x — a) O=2x=L. (5.4-17)
In the following development a convenient assumption is that . = Ka.

where K is an integer. Then the variable x may be expressed in the form
xX = 4+ ma (5.4-18)

where r takes on values in the interval [0, a] and m is the integral part of
(x/a). For example, if a = 2 and x = 3.5, then m = 1 (the intcgral part of
3.5/2), and = = 1.5. Clearly, =z + ma = 3.5, as required. Note also that, for
L. = Ka, the index m can assume any of the integer values 0, I, . . . , K — 1.
For instance, whenx = L. thenz = gandm = K — 1.
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Inverse Filtering

Substitution of Eq. (5.4-18) into Eq. (5.4-17) vields
flz + ma) = g'(z + ma) + flz= + (¢ — 1)al. (5.4-19)

Next, denoting ¢(=) as the portion of the scene that moves into the range 0 =
z =< a during exposurc gives

@(z) = f(z — a) 0=z <a. (5.4-20)
Equation (5.4-19) can be solved recursively in terms of &(z). Thus for m = 0,

f(z) = g'(z) + fiz — a) (5.4-21)

g (z) +~ &(=).

For m = 1, Eq. (5.4-19) becomcs
flz + a) = g'(z + a) + f(2). (53.4-22)
Substituting Eq. (5.4-21) into Eq. (5.4-22) yiclds
f(z + a) =g'(z + a) + g'(2) + &(=). (5.4-23)
In the next step, letting m = 2 rcsults in the expression
flz + 2a) = g'(z + 2a) + f(z + a) (5.4-29)
or, substituting Eq. (5.4-23) for f(z + a).
flz +2a) = g'(z + 2a) + g'(z + a) + g (z) v &(2). (5.4-25)
Continuing with this procedure finally yiclds

f(z + ma) = X g'(z + ka) + &(2). (5.4-26)

However, as x = z + ma, Eq. (5.4-26) may be expressed in the form
fix) = 5: g (x - ka) + &{x — ma) O0=x= L. (5.4-27)

Because g(x) is known, the problem is reduced to that of estimating ¢(x)-
One way to estimate this function directly from the blurred image is as

follows. First note that, as x varics from 0 to L, m ranges from 01w K — 1.

The argument of @ is (x — ma), which is always in the range 0 = x — ma <
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Inverse Filtering

From Egs. (5.4-28) and (5.4-29), wc have the final result:

»

- & A
S 5

1 > — . =
fMx) = A — " 2o 2 g x — ma + (K — pa] + > 2'(x — ja) (5.4-33)

for 0 = x = L. Reintroducing the suppressed variable y yields

1 S - y —
fix, y) = A — K > > 2 ma + (& — pa, yv)] + > g'ix — ja, ¥) (5.4-36)

for 0 = x, y = L. As before, f(x. ¥) is assumecd to be a square image. Inter-
changing x and v in the right-hand side of Eq. (5.4-36) would give the recon-
struction of an image that moves only in the y direction during exposurc. The
concepts presented can also be used to derive a deblurring expression that takes
into account simultancous uniformm motion in both directions.

Example: The image shown in Fig. 5.4{(a) was blurred by uniform hincar motion
in one direction during exposure, with the total distance traveled being ap-
proximately cqual to & the width of the photograph. Figure 5.4(b) shows the
deblurred result obtained by using Eq. (5.4-36) with x and y interchanged
because motion is in the v direction. The c¢rror in the approximation given by
this equation is not objectionable. -

ﬂj( Ifras

(a) (b

Cigure S.4 (o) Image blurred by wniform linear movion; {(b) image restored by wusing Eg.
{5.2-36). (Frowm Sondhi J1972].)




Least Mean Square (Wiener) Filter
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Let B, and R, be the correlation mairices of T and n. defined respectively by
the cquations

R, = E{f"} (5.5-1)
and
R, - Ejnn") (5.5-2)

where E{'} denotes the expected value operation, and f and m are as defined
in Section 5.1.3. The ith element of B, is given by E'-[lll"j',} which 15 the cor-
relation between the ith and the jth elements of . Similarly. the fjth element
of K. gives the correlation between the two corresponding elements in m. Since
the elements of f and m are real, E{ffi} = E{ff}. E{mn} = Efnm), and it
follows that B, and R, are real symmetric matrices. For most image functions
the correlation between pixels (that is, elements of f or m) does not extend
beyond a distance of 20 to 30 pixels in the image, so a typical correlation matrix
has a band of nonzero elements about the main diagonal and zeros in the right
upper and left lower cormer regions. Based on the assumption that the corre-
lation between any two pixels is a function of the distance berween the pixels
and not their position, R, and R, can be made (o approximate block-circulant
matrices and therefore can be diagonalized by the matrix W with the procedure
described in Section 5.2 2 (Andrews and Hunt [1977]). Using A and B 1o denote
mMAalTices gives

R, = WAW "' (5.5-3)

R,

WEW ' (5.5-4)

Just as the clements of the diagonal matrix I in the relaton H = WDW-!'
correspond to the Fourier transform of the block elemenis of H. the elemenis
of A and B are the transforms of the corrclation clements in R, and R.. re-
spectively. As indicated in Problem 3.4, the Founer transform of these cor-
relations is called the power spectrum (or specrral dewsiry) of f(x, ¥) and
n.(x, ¥), respectively and is denoted S:{u. v) and 5,{m, v) in the following
discussion,
Defining

Q'Q = R 'R, (5.5-5)
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Wiener Filter

and substituting this expression in Eq. (5.3-9) gives
= (H'H + R 'R) 'Hg (5.5-6)
Using Eqgs. (5.2-21), (5.2-23), {5.5-3). and (5.5-4) yields
I = (WDDW ' + yWA 'BW ') "WD*W 'g. (557

Multiplving both sides by W ' and performing some matrix manipulations
reduces Eq. {5.5-7) o

W T = (DD + yA 'B)'D*W g (5.5-8)

Keeping in mind the meaning of the clements of A und B, recognizing that the
matrices imside the parestheses are dagoeal, and making use of the conoepis
developed in Section 5.2.3, allows wriling the elements of Eq. (5.5-8) in the
form

H(x, v)
e Hiu, v)7 + yIS, 00, vNSu. vnlc‘" ¥ S$®)
- | 1 [ H{m, v)I' ] 4
I"(-. v) Tf—‘(u, v)F 4 7‘3.{-' VS, (e, ')l Gilu v)
foru, v =0,1,2, ... N — 1, wheee [#{u, )f' = H*{u. v)H (u, v) and it

is nssumed that A = N.

When ¥ = 1, the term mside the cuter brackets in Eq. (53.5-9) reduces to
he so-called Wiener filter. If yis vanable this expression is called the pavasrerric
Wiener filter. In the absence of noisc, S, {w. v) = ) and the Wicner filter reduces
to the ideal inverse filter discussed in Section 5.4. However, when y = 1, the
use of Eq. (5.5-9) mo loager yickds an optimal solution in the scnse defincd in
Section 5.3.2 because, as pointed oot in that section, y must be adjusted W
catisfy the constraint ig — HIY = {mif. It can be shown however, that the
solution obtaxined with » ~ 1 # optimal in the sense that it minimizes the

pantisy E{] flx. ¥) — Fix, ¥)F). Cleasly, this is a statistical ¢viserion that treats
?und £ as mandom variables.

When 5. (w, v) and S,(e, v) are unknown (3 problem often encountered ia

practice) approximating Eq. (5.5-9) by the relation

1 | H (2, I

= P I
Flu. v) Hiu. v [Fitn. v)? 3 K}G(-' v) (5.5-10)
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Wiener Filter

where K i 6 comstant, sometimes = osefol. A example of resulis obiamed
wilh (5% ) follows. The problem of selecting e optimal v bor imags mes-
toralieas &2 diseussed i somie demail n Sectson 5.46.

e: The frsa oolame in Fig. 5.5 shows three pectumes of a domano Gosr-
rupted by Enear moteon (6 —45° with respect o the horizangal) and noise
whoms varianoe at any poiryl m the image was proporisonal o the brighiness
of the poing. The three images werns pemcrdicd by varying the consinmt of
proportismalicy so that the ragos of maxisnum brighiness 1o noise amplitude
were 1, 10k, amd 1M, respectively, as showm om the belt im Fig. 5.5, The Fourier
spectea of e degraded images are shown im Fig. 5.5{b]

Samoe 1he effects of umiform limear moson can be expressed analyuically.
am egoation describing & {n, ) can be obtained withowt difficulty. as shoem in
Section 5.4.2. Figure 5.5(c) was obtaimsd by direct inverse filtering folloeing
ihe procedure described in Section 5.4.1. The resulis are dominaied by moise,
b ms ithe dhird image shows, the inverse filter succesefully removed the deg-
radarcion (Blury caesmsd by motiom. By comtrast., Fig. 5.5d) shoews the: resulis

i [ (S]] ol 1=1

Figurs 5.5 F;p_qrfl.:ll-;' o dmage rerroranos b dreens sanad Wamete [Tineras (ab dissroded ieased
gl (B M Fourer spectra; (o) s remceetad B iieeese lsring” (el ey mrnioerd v
Wirner filleninge: fef Foussier soveves of Dmager i ddp { Ereen Flavrir TIEEAT. b




Constrained Lest Squares 344

Reoration oo

'?’;'[I:'n . i ) 1
Py fix + 1) — 2f(x) + fix

A criterion besed on this expression, then, might be 10 manimize [T’V ove
x; that m,

; (5.2

Mnimize !:'_-'_' [fz + 1) — Bfx) + fix = 1|

Or, il Malrx notntion

minimiee f "CCN (5.6-3)

13:24
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Constrained Lest Squares

Reoration

where

iC = (5.68-4)

1 C - oy

|
|
|
-

i @ “eaneoChisg" i, and §is & vector whose clements are ihe samples of
fixl.

In the 2-1ID case we comsiler o derest eatonsson of B (30610, I This osese
the critemion = o

“Six, Afix, vi]
- ﬂ"l:r__l-l , Eflx, wh (3.6-%)
dar -y

where the derivative function is approcimsied by the expression

or . xr » " e
= i :"_I-': |2 =, vl i L. ¥k JFix 1. x|
+ A vk — Ao p 2+ 1) — Flx. » — 11]
= 8Flx. ¥h — e + 1.7] + iz = Ll.pb + fiz, v + 1] {58645
+ fiz, v — 1j]

Thee derivative Fumction given m Eq. (5.6-5) 8 1 Lapkstian operaior discussdd
im Section 3.3.7.
Equaticn [ 5.6-6) can be implemented direcily im a computer. However, the
game aperntion cam be carried out by comyohang fir, vi with the opersior
e | Lo
plx, ¥ = |—1 4 —1 {(5.&=Tj
n -1 L1

dx indicaed in Section 5.1.2, wraparound error in he disorade convoldution
process s avosded by extending Fir, v) amd pix, yl. Having alresdy comesdensd




Constrained Lest Squares
Reoration

e foomacicm of fix. ¥, we form p.dr. ¥] in the samse manmer:

| pix. ¥) 0w o= X amd B p = 2
pdx. vk = §
] 3 Foup A — 1 [=1 4 3 oml pomi & — 1

Ifix. yilisofsze.d = B weochoose M =4 + 3 — lamd W =28 4+ 3 — 1,
because pix, P i=s of sSze T = 5.
The coneTolutiom of the extendsd fancisons themn =

£ ] [ ]
i, y) = X F Lim, mlpds — m, y = n) (55K

which agrees wiath Eq. (5.1-23).

Fallowing an argument simmilar o the ome gven n Seclion 5.1.3 alloes
expression of the smeoothmess criterion in msrx orm. Fiorst, s consirocl =
Block cincslane matrix of the foamn

L =Y T T s i,
it L = Ca R =

Co= i £, L =8 . = i 5.6-9)
| ESPE sz Ca-a = L ==

whsgre ach swbmeimix O, s an & = & circulant comsoructed from the gh rose
al p.dx, wh: thae 5=,

oA, O el A 1d == w7 0]}
ol i I i, O AR S o
iC, = . 5= 100
P, M — 1h e i N — 23 - L, Oy
Sinee 1T dis block crculan. it 5 diapemelized by the mairix W defined in

Bection 5.2.2. In ather worids,

E = W W 5 S=11%0

13:24
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Constrained Lest Squares
Reoration

where E = 5 diagenal matrie whose clements are piven By

E(k, ip = Pl:.;"‘“’-"""'l iféi = k

[%.6-1F])

L1 il & == ik

= i Eg. {(5.2-30). Im thix case P, v) iz the Z2-¢ Fourier mransform of
pAr, ¥ As with Egs. (5.2-37) apd (5.2-59). the sssumpeiom is thart Eq.

(5612} has beem scaled by the facior A6

The comyodubion operation descriled abovs is ogquivalent (o implementing
Eq. (5.6-6), S0 lhbs soasdlbmness corilersaom of Eg. {5.6-5]) takex the same foorm as

Eq. [5.6-3):

ik [ T NCNT L5613

where f is ap M&-adEmencional vector amd 1C = of soe M8 = WA, By lecting
(F = C, and recalling that [|{HE" = ({0 = MO0, this crigerion may b

S essed as

i i [ HHEE (56140

which iz the same form wssed En Sectiom 53,2 In faom, if we require thar the
conscraim ||g HEF = = b sanisfied, the oprimal salution is given by Eqo

{5.3-49) =wwih £} = =

= (HH + wCCH "M g 054515
Usingg Exgs. (5.2-21), {5.2-23), and (5.6-11), allows Eq. {5.6-15) to be ex-

pressed asx

i = (WIFTVW-' 4+ PWESEW j~ "WIDYW g 05 e 1050

Mudibplying boitl sides by W " snd performang soome malris mamd paladions

relices B (5.6-160 o

WO = (DD} + pETE) DTW o g (5.6-17])

Eeepimg im mind thet the elemends inssde the paremtheses are diagonal amd
making we= of the concepis develnped im Secriem 5.2 5 allows sxpressang the

clememts of Egq- (2.6-17) in the form
¥ T

Elas, v) = |_ e | g, =) {5 -1

Fim. v}F & wlPim, w3Fl
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Constrained Lest Squares

Reoration

b ga, b o= K1, 1.2, . _ . & — 1, whers |y, v} = A™(e, vl v, ased we
have assugned thad M = N Mol that Bg. (306-15) resembles the paramselTic
Wiener fiMer derived bn Section 5.5, The priscipal difference between Eqs
(559 and (5.06-1H) s that the latter does ned reguine explicit knowledge of
statistical parameters other than an estimate of the noise mean asd variance.

The geoeral formulation gives in Eq. (5.3-9) roquires that 5 be adjosted
b satisfy the comstraint Ilg — HWIF = InfF. Thus the solwion given in Eqg.
(F 415} con be opilimal only when ¥ sacisfies this condition. An ierainee pro-
cedipre for estimating this paramsetes follows.

Define B residmal vector - as

¥ o= g — Hi 5. 600}
Swhstituting Eq. (5.0-15) for § vields
ro=g - H{H'H + »CC) 'Hg (36 21K)

Equation (56,270} mdhesres thar r it m fanction of v Im fact, it can b shown
(Humt [1973] ) that

Byl = rE (5.6-21}
- Er

s a monodonically increasisg fonetios of . What ae want o do is adjust y so
L]

irF = §nfF = =, L5 62

whese g 5 an pcoarscy Fector. Clearly, if [rF = nff® the cossiraant [g HITy
= " will b= sericily satisfied_ in view of Eq. (5.6-190.
Because ol w) is monotonic, finding & 3 bt satisfies Eqo (S 46-17) is mod
dibficult. Chne simaple approach is 1o
{1} mpecaPy an imitial valoe of 5=
Xy compute T and (el and
L3 stop if Eg. (5.6-22) is satisfied; ctherwise retumm io step 2 after ncreasing
» il BriF < nF — @ or decreasimp v il 5l == Inf + @
Cither procedures sach as a Mewaon—Baphson alporithen can be ased 1o impross
speed of convergence.

Ilmplementation of thess concepes requines some keowledge shout fmlF.
The wafimnes of oy, v =

ot = Effmir. #b — 7|3 [55-23)
= E[niix. ¥¥ — &
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Constrained Lest Squares

Renratinn

1
OF — DV — 1) = = wix ) 2400

T -
is= the mean value of o (x, ). If a sample sverage s used o approximare the
expected value of ni(x. v). Eq. (5.6-23) bocomes

o ' a2 e
o= M — 1N — '.2‘. }_.. misx. ¥) N (56215

The summation ferm simply indicates squarning and adding sll valuecs in the
amay gix. ¥).x =0, 1.2, ... M - l.and y - 0,1, 2, ....N — 1L Thas

manipulistion = simply the product o’ n, which, by definition., equals [nif. Thas
Eq. (5.6-25) reduaces to
. L N
TN —T1) ™ S&0
«r
InF - (M N = D)ol » 7 15.6-27)

The importance of thes equation s that ot sllows determination of a value for
the comstraint in terms of the noise mean and variance, quantities that, i not
koown, can often be approcamated Oor measured in practios.

The comstrained least squares restoration procedure can be summarized as
tollaws.

Step 1. Choose an imitsal valac of » and obdain ao estimare of o by using
Eq. (5.6-27). .

Stepr 2. Compute E(u. v) using Eq. (5.6-15). Obeain f by taking the inverse
Fourner transform of Flw, v).

Step 3. Form the residual vector r according to Eq. (5.6-19) and compuke

&y = dr¥F

Step 4. Incroemeent or decrement y.

(2) $iy) < jnf — a locrement y according o the algorithm given above
or other appropriate method (such as a Newton—-Raphson procedure ).

(b) &{y) > nf + a Decrement ¥ according to an approprate algorithm.

S2ep 5. Returm 10 step 2 and continue unless step 6 1= troe.

Step 6. Sly) = Inl’ = @, where a derermines the accuracy with whach the

comstrasnt is satished. Stop the estimation proccdure, with [ for the preseon
value of y being the restored mnage.
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Constrained Lest Squares
Reoration

Figure 5.6 (a) Original image,; (b) image blurred and corrupted by additive noise; (c) image
restored by inverse filtering; (d) image restored by the method of consirained least squares.

(From Huni [1973] )



Interactive Restoration: sos:

iz, ¥) = A sm{ugx + vep)
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Ib) (c)

Figure 5.7 Example of sinusoidal interference removal: (a) corrupied image; (b) Fourier
spectrum showing impuflses due to sinusoidal pattern; (¢} image restored by using a band-
reject filter with a radius of .



Interactive Restoration: sos:

ia) (]

Figure 5.8 (o) Picoure of the Marvian terrain taken by Martner 6; (b)) Fourier spectrum.
Naote the _ll_:-{'r.in.;:'fr .ir:l.'|_'r:|'.|_'.r.|'r:|r'|=-' i dhE irmREE atd he I.'|'.I.I'|'|E'.'ill:'-l.lr||:|l|!rl:|.! fll'-'u'i.u_-'-l: i fhe spectrnm
{Courtesy of NASA, Ja Propulsion Laborarory. |
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Interactive Restoration:

Figure 5.11 Processed image. (Courtesy of NASA, Jet Propulsion Laboraiory.)
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Restoration in the Spatial Domain | ese

Geometric Transformations:

(a) (b)

1d)

13:24 Figure 512 (a) Infrared image showing interference; (b) image restored using a noich filter

in the frequency domain; (c) image restored using a 9 % 9 convolution mask; (d) result of
applying the mask a second time. (From Meyer and Gonzalez [1983].)



Geometric Transformations:

(a) (b)

Figure 5.13 (a) Fourier spectrum of the image in Fig. 5.12(a); (b) Nouch filter superimposed
on the spectrum. (From Meyer and Gonzalez [1983].)
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Spatial Transformations:
£ = rix, y)

¥ = 5lx. ¥)

FLE, ¥l = & & Sy E DIy F o

and
Fla, W) = cur + Gy + oay + o
Then, from Egs. (5.9-1) and {3.5-2),
f o= £uk * GF + 0aIf * oy
and

Fuar T Gy T O3y T O
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{3.59-1)

{3.9:4)

{5.83)

[ 3.%4)




Spatial Transformations:

Ny
e S B

Figure 5.14 Corresponding tepoinis in iwo image segments
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Gray Level Interpolation: eose

Spanal transformation
el —
(x. v .y
. F !‘\
Nearest neighbor o (£, ©)
b —
fix, y) Gray-level assggnment gk, y)

Figure 5.15 Gray-level interpolation based on the nearest neighbor concept
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Gray Level Interpolation:
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Figure 5.16 (a) Distorted image; (b) . e :
and Green [1972].) image after geomeiric correction. (From O'Handley
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