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Digital Image 

Processing: 
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CONTINUOUS IMAGE 

MATHEMATICAL CHARACTERIZATION 

 There are two basic mathematical 

characterizations of interest: deterministic 

and statistical. 

 In deterministic image representation, a 

mathematical image function is defined and 

   point properties of the image are considered. 

 For a statistical image representation, the 

image is specified by average properties. 
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IMAGE REPRESENTATION 

 Let C(x, y, t, λ) represent the spatial energy distribution 

of an image source of radiant energy at spatial 

coordinates (x, y), at time t and wavelength λ. 

 The physical imaging system also imposes some 

restriction on the maximum intensity of an image, for 

example, film saturation and cathode ray tube (CRT) 

phosphor heating. Hence it is assumed that 

            0 < C(x, y, t, λ) ≤ A 
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CONTINUOUS IMAGE MATHEMATICAL 

CHARACTERIZATION 

 For mathematical simplicity, all images are assumed to be nonzero 

only over a rectangular region for which 

 

 

 The physical image is, of course, observable only over some finite 

time interval. Thus, let 

   –T ≤ t ≤ T 

 
 The intensity response of a standard human observer to an image 

light function is commonly measured in terms of the instantaneous 

luminance of the light field as defined by  

    

      

–Lx ≤ x ≤ Lx 

–Ly ≤ y ≤ Ly 
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CONTINUOUS IMAGE MATHEMATICAL 

CHARACTERIZATION Cont… 

where V(λ) represents the relative luminous efficiency function. 

 

For an arbitrary red–green–blue coordinate system, the 

instantaneous tristimulus values are 

 

 

where RS(λ), GS(λ), BS(λ) are spectral tristimulus values for the 

set of red, green and blue primaries. 
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TWO-DIMENSIONAL SYSTEMS 

 A two-dimensional system, in its most general form, is simply a mapping of 

some input set of two-dimensional functions 

  F1(x, y), F2(x, y),..., FN(x, y) to a set of output two-dimensional functions 

G1(x, y), G2(x, y),..., GM(x, y), Where (– ∞ < x, y < ∞) denotes the 

independent, continuous spatial variables of the functions. 

     This mapping may be represented by the operators Om{ · } for m = 

1, 2,..., M, which relate the input to output set of functions by the 

set of equations 

 

In specific cases, the mapping may be many-to-few, few-to-many, or one-

to-one.The one-to-one mapping is defined as G(x, y) = O{F(x, y)} 
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Singularity Operators 

 Singularity operators are widely employed in the analysis of two-

dimensional systems, especially systems that involve sampling of 

continuous functions. The two dimensional Dirac delta function is a 

singularity operator that possesses the following properties: 

 

 

 

 

 

 

  

In first eq. ε is an infinitesimally small limit of integration;  The second 

eq. is called the sifting property of the Dirac delta function. 
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Singularity Operators Cont… 

 The two-dimensional delta function can be decomposed into the 

product of two one-dimensional delta functions defined along 

orthonormal coordinates. Thus 

 δ(x, y) = δ(x)δ(y) 

 

 

The delta function also can be defined as a limit on a family of functions. 
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Additive Linear Operators 

 A two-dimensional system is said to be an additive linear system if 

the system obeys the law of additive superposition. In the special 

case of one-to-one mappings, the additive superposition property 

requires that 

 
   

     where a1 and a2 are constants that are possibly complex numbers. 

 

A system input function F(x, y) can be represented as a sum of 

amplitude weighted Dirac delta functions by the sifting integral, 

      

 

 

O{a1F1(x, y) + a2F2(x, y)} = a1O{F1(x, y)} + a2O{F2(x, y)} 

Where F(ξ, η) is the weighting factor of the impulse located at coordinates (ξ, η) 

in the x–y plane 
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Additive Linear Operators 

 If the output of a general linear one-to-one system is defined to be 

 

 

 

 

 

 

 

G(x, y) = O{F(x, y)} 
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Additive Linear Operators cont.. 

 In moving from Eq. 1.2-8a to Eq. 1.2-8b, the application order of the 

general linear operator and the integral operator have been reversed. 

Also, the linear operator has been applied only to the term in the 

integrand that is dependent on the spatial variables (x, y). The 

second term in the integrand of Eq. 1.2-8b, which is redefined as 

 

 

 

 

     is called the impulse response of the two-dimensional system. In 

optical systems, the impulse response is often called the point 

spread function of the system. Substitution of the impulse response 

function into Eq. 1.2-8b yields the additive superposition integral 

H(x, y; ξ,η) ≡ O{δ(x – ξ, y – η)} 
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Additive Linear Operators cont.. 

An additive linear two-dimensional system is called space invariant 

(isoplanatic) if its impulse response depends only on the factors x – ξ 

and y – η. 

For a space-invariant system 

 

and the superposition integral reduces to the special case called the 

convolution integral, given by 
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DIFFERENTIAL OPERATORS 

 Edge detection in images is commonly 

accomplished by performing a spatial 

differentiation of the image field followed 

by a thresholding operation to determine 

points of steep amplitude change.  

 Horizontal and vertical spatial derivatives 

are defined as 

13 
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DIFFERENTIAL OPERATORS  

…cont 

 Spatial second derivatives in the horizontal 

and vertical directions are defined as 

 

 

 The sum of these two spatial derivatives is 

called the Laplacian operator 

14 
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TWO-DIMENSIONAL FOURIER 

TRANSFORM 

 The two-dimensional Fourier transform of the image function 

F(x, y) is defined as 

 

 

 

 

 
where ωx and  ωy are spatial frequencies and i= 1
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TWO-DIMENSIONAL FOURIER 

TRANSFORM   cont… 

 In general, the Fourier coefficient                              

is a complex number that may be 

represented in real and imaginary form, 

 

 or in magnitude and phase-angle form, 

 

 where 

16 
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TWO-DIMENSIONAL FOURIER 

TRANSFORM   cont… 

 The input function F(x, y) can be 

recovered from its Fourier transform by 

the inversion formula 

 

 or in operator form 

 The functions    and            are called 

Fourier transform pairs. 

17 
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TWO-DIMENSIONAL FOURIER 

TRANSFORM  

SEPARABILITY 

 If the image function is spatially separable 

such that                   then 

18 
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TWO-DIMENSIONAL FOURIER 

TRANSFORM  

LINEARITY 

 The Fourier transform is a linear operator. 

Thus 

 

 

 where a and b are constants. 

19 
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TWO-DIMENSIONAL FOURIER 

TRANSFORM  

SCALING 

 A linear scaling of the spatial variables 

results in an inverse scaling of the spatial 

frequencies as given by 

 

 

 Hence, stretching of an axis in one 

domain results in a contraction of the 

corresponding axis in the other domain 

plus an amplitude change. 
20 



13:21 

TWO-DIMENSIONAL FOURIER 

TRANSFORM  

SHIFT 

 A positional shift in the input plane results 

in a phase shift in the output plane: 

 

 

 Alternatively, a frequency shift in the 

Fourier plane results in the equivalence 

21 
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TWO-DIMENSIONAL FOURIER 

TRANSFORM  

CONVOLUTION 

 The two-dimensional Fourier transform of 

two convolved functions is equal to the 

products of the transforms of the functions. 

Thus; 

 The inverse theorem states that 

 

22 
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TWO-DIMENSIONAL FOURIER 

TRANSFORM  

PARSEVAL‘S THEOREM 

 The energy in the spatial and Fourier 

transform domains is related by 
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TWO-DIMENSIONAL FOURIER 

TRANSFORM  

AUTOCORRELATION THEOREM 

 The Fourier transform of the spatial 

autocorrelation of a function is equal to the 

magnitude squared of its Fourier 

transform. Hence 
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TWO-DIMENSIONAL FOURIER 

TRANSFORM  

SPATIAL DIFFERENTIALS 

 The Fourier transform of the directional 

derivative of an image function is related to 

the Fourier transform by 

 

 

 the Fourier transform of the Laplacian of an 

image function is equal to 

25 
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TWO-DIMENSIONAL FOURIER 

TRANSFORM  EXAMPLE 

 Consider an image function            that is the 

input to an additive linear system with an 

impulse response 

 The output image function is given by the 

convolution integral 

 Taking the Fourier transform of both sides 

and reversing the order of integration on the 

right-hand side results in 
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TWO-DIMENSIONAL FOURIER 

TRANSFORM   EXAMPLE    cont… 

 The Fourier transform shift theorem, the inner 

integral is equal to the Fourier transform of   

multiplied by an exponential phase-shift 

factor. 

 Thus 

 Performing the indicated Fourier 

transformation gives 

 Then an inverse transformation provides the 

output image function 

27 
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IMAGE STOCHASTIC 

CHARACTERIZATION 

 The statistical characterization of images assumes general 
familiarity with probability theory, random variables and 
stochastic processes. For continuous images, the image 
function F(x, y, t) is assumed to be a member of a 
continuous three-dimensional stochastic process with 
space variables (x, y) and time variable (t). 

 

    The stochastic process F(x, y, t) can be described 
completely by knowledge of its joint probability density 

 

 

 

 

 for all sample points J, where (xj, yj, tj) represent 
space and time samples of image function Fj(xj, yj, tj). 

 


