Digital Image Processing:

Figure 4.15 (a) Original image; (b) result of global histogram equalization; (c) result of local histogram equalization using a 7×7 neighborhood about each pixel. (From Fu, Gonzalez, and Lee [1987].)

Histogram Equalization

s = T(r)

(4.2-2)

which produce a level s for every pixel value r in the original image. It is assumed that the transformation function given in Eq. (4.2-2) satisfies the conditions:

 (a) T(r) is single-valued and monotonically increasing in the interval 0 ≤ r ≤ 1; and

(b)
$$0 \leq T(r) \leq 1$$
 for $0 \leq r \leq 1$.

Condition (a) preserves the order from black to white in the gray scale, whereas condition (b) guarantees a mapping that is consistent with the allowed range of pixel values. Figure 4.11 illustrates a transformation function satisfying these conditions.

The inverse transformation from s back to r is denoted

$$r = T^{-1}(s)$$
 $0 \le s \le 1$ (4.2-3)

where the assumption is that $T^{-1}(s)$ also satisfies conditions (a) and (b) with respect to the variable s.

Histogram Equalization

Gray-level transformation function $s_k = T(r_k)$ T(r)0 4

Figure 4.11 A gray-level transformation function.

Probability density function

$$p_{s}(s) = \left[p_{s}(r) \frac{dr}{ds}\right]_{r=\tau^{-1}(s)}$$

Transformation Function

$$s = T(r) = \int_{0}^{r} (-2w + 2)dw$$

= $-r^{2} + 2r$.

Inverse transformation function

$$r = T^{-1}(s) = 1 \pm \sqrt{1-s}.$$

$$p_{s}(s) = \left[p_{r}(r)\frac{dr}{ds}\right]_{r-r^{-1}\omega}$$

$$= \left[\left(-2r+2\right)\frac{dr}{ds}\right]_{r-1-\sqrt{1-s}}$$

$$= \left[\left(2\sqrt{1-s}\right)\frac{d}{ds}\left(1-\sqrt{1-s}\right)\right]$$

$$= 1 \qquad 0 \le s \le 1$$

13:23

Discrete form

Figure 4.13 (a) Original image and (b) its histogram; (c) image subjected to histogram equalization and (d) its histogram.

Histogram specification

$$s = T(r) = \int_{0}^{\infty} p_r(w) dw.$$

If the desired image were available, its levels could also be equalized by using the transformation function

$$w = G(z) = \int_0^z p_z(w) dw.$$

$$z = G^{-1}(s).$$
$$z = G^{-1}[T(r)]$$

Figure 4.14 Illustration of the histogram specification method: (a) original image; (b) image after histogram equalization; (c) image enhanced by histogram specification; (d) histograms.

Image Subtraction

Difference

 \bigcirc g(x,y) = f(x,y) - h(x,y)

Image

- Higher-order bit:
 visually relevant detail
- Lower-order bit: fine (imperceptible) detail
- Image subtraction + contrast stretching
 Enhance the difference

Figure 4.16 Images before and after local enhancement. (From Narendra and Fitch [1981].)

Figure 4.17 Enhancement by image subtraction: (a) mask image; (b) image (after injection of dye into the bloodstream) with mask subtracted out.

Image Averaging

- Original image f(x,y), noisy image g(x,y)
- Image averaging

Expected value of the average

 Standard deviation at any point in the average

$$g(x,y) = f(x,y) + \eta(x,y)$$

$$\bar{g}(x,y) = \frac{1}{K} \sum_{i=1}^{K} g_i(x,y)$$

$$E\{\bar{g}(x,y)\} = f(x,y)$$

$$\sigma_{\bar{g}(x,y)} = \frac{1}{\sqrt{K}} \sigma_{\eta(x,y)}$$

Image Averaging Cont'd

 As K increases, variability (noise) of each pixel value decreases

 As K increases, the average approaches the original

Images need to be registered (aligned)

Image Averaging

(a)

(c)

(c)

(f)

Figure 4.18 Example of noise reduction by averaging: (a) a typical noisy image; (b)-(f) results of averaging 2, 8, 16, 32, and 128 noisy images.

Local Statistic Filters

 Calculate a local statistics and then replace the center pixel value with the calculated statistics.

- Median filter
 - Useful in removing impulsive noise (salt-and-pepper noise) without smoothing the rest of the image.

a b c

FIGURE 3.37 (a) X-ray image of circuit board corrupted by salt-and-pepper noise. (b) Noise reduction with a 3×3 averaging mask. (c) Noise reduction with a 3×3 median filter. (Original image courtesy of Mr. Joseph E. Pascente, Lixi, Inc.)

Sharpening Filters

- To highlight fine detail or to enhance blurred detail.
 - smoothing ~ integration
 - sharpening ~ differentiation
- Categories of sharpening filters:
 - Derivative operators
 - Basic highpass spatial filtering
 - High-boost filtering

Basic Highpass Spatial Filtering

• Cross section of frequency domain filter:

• Cross section of spatial domain filter:

Basic Highpass Spatial Filtering

 The filter should have positive coefficients near the center and negative in the outer periphery:

Figure 4.21 Spatial lowpass filters of various sizes.

Spatial Filtering

Figure 4.22 (a) Original image; (b)–(f) results of spatial lowpass filtering with a mask of size $n \times n$, n = 3, 5, 7, 15, 25.

(e)

(f)

Figure 4.23 (a) Original image; (b) image corrupted by impulse noise; (c) result of 5×5 neighborhood averaging; (d) result of 5×5 median filtering. (Courtesy of Martin Connor, Texas Instruments, Inc., Lewisville, Tex.)

Basic Highpass Spatial Filtering

- The sum of the coefficients is 0, indicating that when the filter is passing over regions of almost stable gray levels, the output of the mask is 0 or very small.
- Some scaling and/or clipping is involved (to compensate for possible negative gray levels after filtering).

High-boost filter

- High-boost or high-frequency-emphasis filter
 - Sharpens the image but does not remove the lowfrequency components unlike high-pass filtering

High-boost filter

- High-boost or high-frequency-emphasis filter
 - High pass = Original Low pass
 - High boost = (A)(Original) Low pass
 = (A-1) (Original) +Original Lowpass
 = (A-1) (Original) + Highpass

High-boost filter

A high-pass filter

A high-boost filter

Derivative Filters

• First order derivative filters

$$\left|\nabla f\right| = \left[\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2\right]^{1/2}$$

4 / 0

$$\left|\nabla f\right| \approx \left|\frac{\partial f}{\partial x}\right| + \left|\frac{\partial f}{\partial y}\right|$$

Derivative Filters

a b c d e				
FIGURE 3.44				<u> </u>
A 3 \times 3 region of				
an image (the z's				'
are gray-level				<u> </u>
values) and masks				
the gradient at				-
point labeled z-				
All masks				
coefficients sum			_	1
to zero, as				
expected of a				
derivative			0	
operator.			_	
	I			
		_1		2
		-1		2
		0	0	
		0		,

		<i>z</i> ₁		2	Z ₂ Z ₃							
		1	ζ4	z	5		z_{ϵ}	5				
			Z7 Z1		8	. Z9		,				
	-1	1	0		0		-	-1				
	0	I	1	1			1	0				
-1	-1	2	-1			-1			0	1		
0	0	1	0		-2			0	2	2		
1	2		1			_	-1		0	1		

