Rapid Object Detection using a Boosted Cascade of Simple Features

K138573 Yuuki Nagahama Endo Lab

Out Line

- Introduction
- Face Detection
 - Haar like Features
 - AdaBoost
 - Attentional Cascade
- Summary

Introduction

- Rapid Object Detection using a Boosted Cascade of Simple Features
 - Paul Viola, Michael Jones
 - Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp.511-518, (2001).
- Introduced High-speed face detection technique.

Method of the Face Detection

- While moving a face Detection window.
- if there is a face in Detection window, it becomes the True.

Detection window

Problem of the Face Detection

- Problem : Too many search ranges.
- Example :
 - picture size 640×480
 - Detection window Size 64×64
 - Searching 240,609 windows
- In addition, It is necessary to change detection window size.

- Detection window Size 63×63,62×62,...

 It is necessary to reduce computational complexity.

Problem solution of the Face Detection

- Solution
 - Haar-like features
 - Feature using a brightness difference
 - AdaBoost (Machine learning)
 - Learning Classification functions.
 - Attentional Cascade
 - omitting a search.

Haar-like features

• A value of Haar-Like features is the value that pulled the sum of pixel of the white domain from the black domain.

Integral image

- It is necessary to calculate the sum of pixel in the range for Haar-like features.
- The sum of pixel is found with an integral image briefly.

1	2	3	4		1	3	6	10
3	4	6	7		4	10	19	30
2	4	6	8		6	16	31	50
4	3	2	1		10	23	40	60
• $4+6++1=41$					\cdot 60-10-10+1=41			

AdaBoost

how to choose Haar-like features assorter

- Use Ada Boost Machine learning algorithm
 - 1. classifying sample images in plural assorters.
 - 2. Choose the assorter which is high in a correct answer rate.
 - 3. Update the weight of the sample image.
 - Correct ... make light
 - Wrong ... make heavy
 - 4. Repeat 1~3

The Attentional Cascade

- Classify detection window with plural assorters.
 - if classified as face with the last assorter, it is face.
 - If not the image of the face, move to next detection window.
- Passing the image which is not a face efficiently.

The Attentional Cascade

Summary

- Face Detection has much computational complexity.
 - Necessary to reduce computational complexity.
- Three solutions
 - Haar-like features
 - Easily calculate in Integral image.
 - AdaBoost (Machine learning)
 - Choose an effective assorter by learning.
 - Attentional Cascade
 - Omitting a search.

Demo Movie

- OpenCV Face Detection: Visualized on Vimeo
- http://vimeo.com/12774628