Spatial Filtering

Signal and Image processing
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Basics of Spatial Filtering

€ Spatial filter consists of
€ Neighborhood (small rectangle)

€ Predefined operation

© Performed on the image pixels encompassed by the
neighborhood

€ New pixel is created

€ coordinates equal to the coordinates of the center
of the neighborhood

@ value is the result of the operation

@ Linear if operation is linear  steauLtHEAPOSTLE  pyff
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Basics of Spatial Filtering
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FIGURE 3.28 The mechanics of linear spatial filtering using a 3 X 3 filter mask. The form chosen to denote .
the coordinates of the filter mask coefficients simplifies writing expressions for linear filtering. m
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Basics of Spatial Filtering

g(x,y)=w=1L-Df(x—1L,y-D+w=10) f(x—1,y—1)+---
+w(0,0) f(x,y)+---+wO,Df(x,y+D+w(l]) f(x+1,y+1)

€ m x n mask

g(x,y) = ZZw(s ) f(x+s,y+1)

s=—at=

a=(m-1)/2
where,

b=(n—1)/2
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D
Spatial Correlation and Convolution

€ Correlation

€ Moving a filter mask over the image and computing the sum of products
at each location

€ Is a function of displacement of the filter
© First value corresponds to O displacement of the filter.

€ Correlating a filter w with a discrete unit impulse function yields a copy
of w, but rotated with 180 degree.

€ Discrete unit impulse Function contains a single 1 with the rest being
Os a

€ Convolution

€ Same as correlation, except that the filter is first rotated by 180 degree.
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Spatial Correlation and Convolution

Correlation Convolution
Vs Origin I — Origin I w rotated 180°
(a) OO0O100O00O0 12328 ODbOD1O0O00O0 82321 (i)
¥
(b) 000100O0OCO0 000O10O0O0O0 (i)
12328 82321
t Starting position alignment
ﬁ Zero padding —
|| | |
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t Position after one shift
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t Position after four shifts
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Full correlation result Full convolution result
(g) 000823210000 000123280000 (o)
Cropped correlation result Cropped convolution result
(h) 08232100 01232800 (p)

FIGURE 3.29 Illustration of 1-D correlation and convolution of a filter with a discrete unit impulse. Note that

correlation and convolution are functions of displacement.
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FIGURE 3.30
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filter with a 2-D
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Convolution

€ Correlation of a filter w(x,y) of size mXn with an
image f(x,y) is given by

w(x,y)* f(x,y)= Z Zw(s t)f(x+s,y+t)

s=—a t=

€ Evaluated for all values so that all elements of w visit
every pixel in f.

€ Convolution of w(x,y) and.f(x,y) is given by
wx, Y)*f(x,y)= ) Zw(s ) f(x—s,y—t)

s=—a (=
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Vector Representation of Linear
Filtering

R=wz +w,z, +..+w_ 72 =~ R=wz +W,7Z, +...+ W, 2,

mn 9
:ZWka T 2 :szk
k=1 k=1

—W'Z —w'z

€©Generating spatial filter masks
@©Specify mn mask coefficients
@Selection is based on filter function
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Basics of Spatial Filtering

€ Boundary Implementation

€ No processing
€ Padding
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Smoothing Spatial Filters

€ Smoothing Filters are used for blurring and for noise reduction
(noise typically has sharp transitions in intensity)

€ Blurring is used for
€ removal of small details prior to object extraction.
€ bridging of small gaps in lines or curves.

€ Smoothing Linear Filters (Averaging Filters)
€ low pass filter
€ replace the average value defined by the filter mask.
€ have the undesirable effect of blur edges

1 1 1 1 2 1

E=a
(=]
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D
Smoothing Spatial Filters

€ weighted average
€ Pixels have different importance
€ The pixel at the center is multiplied by a higher value

€ The other pixels are inversely weighted as a function of
distance

€ The weight like this attempts to reduce the blurring effect in
the smoothing process

€ Sum of all weights is 16 (easy for computer implementation
because it is a power of 2)

€ Other values of weight could accomplish the same general
objectives

ST. PAUL THE APOSTLE r.h
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D
Smoothing Spatial Filters

€ The general implementation for filtering an MxN image with
weighted averaging filter size mxn is

Zalzblw(s,t)f(x+s,y+t)
g(x,y)="="""—1—
> w(s,t)
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Smoothing Spatial Filters
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used for eliminating small objects
from an image

FIGURE 3.35 (a) Original image. of size 500 » 500 pixels. (b)~{f) Results of smoothing
with square averaging filter masks of sizes n = 3,5,9,15, and 35, respectively. The black
squares at the top are of sizes 3, 5,9, 15,25, 35,45, and 55 pixels, respectively: their bor-
ders are 25 pixels apart. The letters at the bottom range in size from 10 to 24 points, in
increments of 2 points; the large letter at the top is 60 points. The vertical bars are 5 pix-
els wide and 100 pixels high; their separation is 20 pixels. The diameter of the circles is
25 pixels, and their borders are 15 pixels apart; their gray levels range from 0% to 100%
black in increments of 20%. The background of the image is 10% black. The noisy rec-
tangles are of size 50 » 120 pixels.
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AN
Smoothing Spatial Filters

abc

FIGURE 3.34 (a) Image of size 528 X 485 pixels from the Hubble Space Telescope. (b) Image filtered with a
15 X 15 averaging mask. (c) Result of thresholding (b). (Original image courtesy of NASA.)
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D
Smoothing Spatial Filters

0(1(0
* Filter % 11211
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D
Smoothing Spatial Filters

« Move mask across the KD 0/0/0{0]0|0
zero-padded image 11 2/1 1 |8(6]6]0
6 0| 673 11/8 0
0/11]0
0/8[8|9(10|0
 Compute weighted sum 019]10/10/ 7] 0
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I
Order-Statistics Filters

€ nonlinear spatial filters

€ response is based on ordering (ranking) the pixels contained in
the image area encompassed by the filter

€ replacing of the center pixel with the value determined by the
ranking result

€ Median filter

€ replaces the pixel value by the median value in the neighborhood

€ The principal function is to force distinct gray level points to be more
like their neighbors.

€ excellent noise-reduction capabilities with less blurring than linear
smoothing filters

€ effective for impulse noise (salt-and-pepper noise)
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Median Filter

6 2 o * * *

3 97 4 * 4 *

19| 3 | 10 % % *
order (0, 2, 3, 3, 4, 6, 10, 19, 97) median filtered

Median : 4

drigiha/ /mageW/th nbisé 3x3 median filtered



D
Median Filter

€ lsolated clusters that are dark or light and whose area is less
than n?/2 (0.5 filter area) are eliminated by n x n median.

€ Median represents the 50t percent.

* Min: Set the pixel value to the minimum in the
neighbourhood

* Max: Set the pixel value to the maximum in the
neighbourhood

max filter - R=max{z, | k=1,2,...,9}
min filter - R=min {z, | k=1,2,...,9}
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Median Filter

abec

FIGURE 3.37 (a) X-ray image of circuit board corrupted by salt-and-pepper noise. (b) Noise reduction with a

3 X 3 averaging mask. (¢) Noise reduction with a 3 X 3 median filter. (Original image courtesy of Mr. Joseph
E. Pascente, Lixi. Inc.)

€ Median filtering is much better suited than

averaging for the removal of salt-and-pepper

noIseE. ST. PAUL THE APOSTLE m
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D
Sharpening Filters

€ The principal objective of sharpening is to highlight transition of intensity, highlight fine
detail in an image, enhance detail that has been blurred

€ Averaging is analogous to integration, sharpening could be accomplished by spatial
differentiation
€ Image differentiation enhances edges and other discontinuities
€ First-order derivatives
€ Zeroin flat segments
€ Nonzero at the onset of a gray-level step or ramp
€ Nonzero along ramps 8f
—=f(x+1)— f(x)
OX
€ Second-order derivatives
€ Zeroin flat areas
€ Nonzero at the onset and end of step or ramp
€ Zero along ramps of constant slop
2
2—£ =f(x+D)+ f(x-1)-21f(x)

X
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First- and second-order derivatives

ab
c

FIGURE 3.38
{a) A simple

image. (b) 1-ID
horizontal grav-
level profile along f
the center of the '
image and Y |
including the b
isolated noise \
point. 4
(c) Simplified Kx
profile (the points \ |
are joined by \\ I|
dashed lines to y || |
simplify \ ,I | f
interpretation). !
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derivatives

€ First-order derivatives

€ Produce thicker edges in an image (nonzero along the
entire ramp)

© Stronger response to a gray-level step
€ Edge extraction

¢ Second-order derivatives

¢ Stronger response to fine detail, more aggressive (thin lines,
1solated points)

¢ Transition from positive back to negative Produce double
response at step changes in gray level (shown as thin double
line)
¢ Suit for image enhancing sharp changes
ST. PAULTHE APOSTLE il
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First- and second-order derivatives
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FIGURE 3.36
Illustration of the
first and second
derivatives of a
1-D digital
function
representing a
section of a
horizontal
intensity profile
from an image. In
(a) and (c) data
points are joined
by dashed lines as
a visualization aid.
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I
The Laplacian

€ the partial derivative in the x direction is defined as
follows:

o0’ f
> =f(x+Ly)+ f(x—Ly) —-2f(x,y)
X

€ and in the y direction as follows

o f
P =f(x,y+D+f(x,y—1D-21(x,y)
y

ST. PAUL THE APOSTLE
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I
The Laplacian

€ So, the Laplacian can be given as follows:

Vif(xy)=[f(x+1,y)+ f(x—1,y)
+f(x,y+D+ f(x, y—1)]
—41(x,y)
€ We can easily build a filter based on this

o110
1| 4| 1
o110
ST. PAUL THE APOSTLE
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The Laplacian

0 | 0 1 1 1
i —4 1 1 -8 1
0 1 0 1 1 1
0 -1 0 -1 -1 -1

-1 4 -1 -1 8 -1
0 -1 0 -1 -1 -1

i
cd

FIGURE 3.39

(a) Filter mask
used Lo
implement the
digital Laplacian,
as defined in

Eq. (3.7-4).

(b) Mask used to
implement an
extension of this
equation that
includes the
diagonal
neighbors. (¢) and
(d) Two other
implementations
of the Laplacian.
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The Laplacian

€ Highlights intensity discontinuities in an image

) 4

Deemphasizes regions with slowly varying gray levels

€ Produces a new image that have grayish edge lines and other discontinuities,
(all superimposed on dark, featureless background)

€ The result of a Laplacian filtering is not an enhanced image

X 4

We have to do more work in order to get our final image

€ Add the Laplacian result from the original image to generate our final
sharpened enhanced image

g(x,y) = f(x, y)+c[V2 £ (x, y)]

€ C=-1if negative center
® C=1ifothers ST. PAUL THE APOSTLE rm
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The Laplacian

a
b ¢
d e

FIGURE 3.38

(a) Blurred image
of the North Pole
of the moon.

(b) Laplacian
without scaling.
(c) Laplacian with
scaling. (d) Image
sharpened using
the mask in Fig.
3.37(a). (e) Result
of using the mask
in Fig. 3.37(b).
(Original image
courtesy of
NASA.)
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D
The Laplacian

€ The entire enhancement can be combined
into a single filtering operation

g(x,y)=f(x,y)-V*f
=f(x,y)—[f(x+Ly)+ f(x—1y)
+f(x,y+ D)+ f(x,y—1)

—4f(x,y)]
=5f(x,y)— f(x+Ly)— f(x—1y)
— DX y ok (¥ )



I
The Laplacian

€ This gives us a new filter which does the
whole job for us in one step

-110
S | -1
-11 0

ST. PAUL THE APOSTLE
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The Laplacian

€ There are lots of slightly different versions of the Laplacian
that can be used:

0(1]0] 1011 _

T2l 1 |[S'mple T |Variant of
Laplacian Laplacian

01110 1011




Unsharp Masking And High-Boost Filtering

€ Unsharp masking

€ Blur the original image
€ Subtract a blurred version from the original (diff = mask)

¢ Add the mask to the origin
Zmask (X, ¥) = T(X,y)— £(x,y)
add a weighted portionof the mask back to the original

g(x,y)=f(x,y)+k*g_ (X, y)

€ K =1, unsharp masking
€ K>1, the process is referred to as High-boost filtering

€ K<1 de-emphasize the contribution of the unsharp mask
ST. PAULTHE APOSTLE  iglf"
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AN
Unsharp Masking And High-Boost Filtering

/Ol'iginal signal
FIGURE 3.39 1-D
o illustration of the
g’ .
mechanics of
ved < unsharp masking,
y Blurred signal (a) Original

- signal. (b) Blurred
signal with
original shown
dashed for refere-

o0 g

Unsharp mask nce. (c) Unsharp
mask. (d) Sharp-
ened signal,

S S\ obtained by
adding (c) to (a).
Sharpened signal

>1. PAUL THE APOSTLE m
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Unsharp Masking And High-Boost Filtering

€ One of the principal

applications of boost
filtering is when the
input image is darker
than desired. By varying
the boost coefficient, it
generally is possible to
obtain an overall
increase in average gray
level of the image, thus
helping to brighten the
final result.

¢ K=4.5

oo o

c

FIGURE 3.40

(a) Original
image.

(b) Result of
blurring with a
Gaussian filter.
(c) Unsharp
mask. (d) Result
of using unsharp
masking.

(e) Result of
using highboost
filtering.

APOSTLE
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AN
Unsharp Masking And High-Boost Filtering

ab
¢ d

FIGURE 3.43

{a) Same as

Fig. 3.41(c), but
darker.

{a) Laplacian of
(a) computed with
the mask in

Fig. 3.42(b) using
A =10

(c) Laplacian
enhanced image
using the mask in
Fig. 3 4’?[’1 ) with

A= 1.(d)Same
as (c), hul using
A=17

N
m T el

University for Information Science & Technology ‘___/_ \_-



First Derivative - The Gradient

€ First derivatives are implemented using the magnitude
of the gradient

€ For a function f(x, y) the gradient of f at coordinates (x,
y) is given as the column vector

_8_f_
& x OX

Vf =grad(f)= =
{gj a
| Oy |

ST. PAUL THE APOSTLE
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First Derivative - The Gradient

€ The magnitude (length) of this vector is given by:

M(x,y) =mag(Vf) =g +g’

€ Is the value at (x,y) of the rate of change in the direction of
the gradient vector.

€ Components of the gradient vector itself are linear, the
magnitude is not (square, root)

€ The result is called the gradient image

ST. PAUL THE APOSTLE
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First Derivative - The Gradient

€ For practical reasons this can be simplified by
using absolute values instead of squares and
square roots

M(x,y) =

g,|+|g,|

© Preserve relative changes in gray levels

ST. PAUL THE APOSTLE
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First Derivative - The Gradient

€ There is some debate as to how best to calculate
these gradients but we will use

€ The simplest approximation to a first order derivative
that satisfy the conditions stated are

Z, Z, Zy
Z, Zs Zg

Z; Zg Zg ST. PAUL THE APOSTLE
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First Derivative - The Gradient

€ Robert cross-gradient operators

g =(Z9—Z5) gy :(ZS_Z6)
i 1/2 “ %2 “
M(x,y) = _(Z9 _Z5)2 "‘(Zg _Z6)2]
Z, Zs Zg
M(X,y)= Z9—Z5‘+‘Z8—Z6‘
Z; Zg Zy
g gy
—1 0 0 —1
0 1 1 0

ST. PAUL THE APOSTLE
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Sobel operators

* The result of the Sobel operator at an image point which is in a region of
constant image intensity is a zero vector

* At apoint on an edge is a vector which points across the edge, from darker
to brighter values

of

g = & =(z, +2z4 +z,) — (2, + 22, +z,)
of

g, =—=(2;+225 +2,)— (2, + 22, +2,)

M(X,y)= ‘(27 + 275 Zf) 7 (2 27, + 23)‘

+‘(Z3 +27,+27y)—(z, +2z, + 27)‘
ST. PAUL THE APOSTLE
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Sobel operators

2 gy
—1 —2 —1 —1 0 1
O O O — 2 0 2
1 2 1 = 0 1
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Sobel operators

An image of a
contact lens which
is enhanced in
order to make

defects (at four
and five o’clock in
the image) more
obvious

ST PAUL THE APOSTLE r.n
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Sobel operators

Grayscale
image of a
brick wall & a
bike rack

| S ST

MED wnEs
VRARR .

I

Normalized sobel Normalized sobel

y-gradient image x-gradient image of
of bricks & bike bricks & bike rack
rack
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http://en.wikipedia.org/wiki/Image:Bikesgraygh.jpg
http://en.wikipedia.org/wiki/Image:Bikesgraygv.jpg
http://en.wikipedia.org/wiki/Image:Bikesgray.jpg
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Methods

€ Successful image
enhancement is typically
not achieved using a
single operation

€ Rather we combine a
range of techniques in
order to achieve a final
result

€ This example will focus on
enhancing the bone scan
to the right s e e I

/\
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Methods

Laplacian filter of
bone scan (a)

Sharpened version of
bone scan achieved (c)
by subtracting (a)

and (b) Sobel filter of bone

scan'(a) || ST.PAULTACA, Um*




Result of applying a (h)
power-law trans. to &

Sharpened image (g)
which is sum of (a)
and (f)

The product of (c) (0

and (e) which will be
used as a mask

Image (d) smoothed with
a 57> averaging filter ST. PAULTHE APOSTLE  fiff*
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Methods
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