
Spatial Filtering 

Signal and Image processing  
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Basics of Spatial Filtering 

Spatial filter consists of 

Neighborhood (small rectangle) 

Predefined operation 

Performed on the image pixels encompassed by the 

neighborhood 

New pixel is created 

coordinates equal to the coordinates of the center 

of the neighborhood 

value is the result of the operation 

Linear if operation is linear 
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Spatial Correlation and Convolution 

Correlation 
Moving a filter mask over the image and computing the sum of products 

at each location 

Is a function of displacement of the filter 

First value corresponds to 0 displacement of the filter. 

Correlating  a filter w with a discrete unit impulse function yields a copy 

of w, but rotated with 180 degree. 

Discrete unit impulse Function contains a single 1 with the rest being 

0s a 

Convolution  
Same as correlation, except that the filter is first rotated by 180 degree. 

 

 

 



Spatial Correlation and Convolution 



       Spatial Correlation and 

Convolution 



Correlation of a filter w(x,y) of size m×n with an 

image f(x,y) is given by 

 

 

Evaluated for all values so that all elements of w visit 

every pixel in f. 

Convolution of w(x,y) and f(x,y) is given by 
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       Spatial Correlation and 

Convolution 



         Vector Representation of Linear 

Filtering 

 

 

 

 

 

Generating spatial filter masks 
Specify mn mask coefficients  

Selection is based on filter function 
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Basics of Spatial Filtering 

Boundary Implementation 

No processing 

Padding 



Smoothing Spatial Filters 

Smoothing Filters are used for blurring and for noise reduction 
(noise typically has sharp transitions in intensity)  

Blurring is used for 

removal of small details prior to object extraction. 

bridging of small gaps in lines or curves. 

Smoothing Linear Filters (Averaging Filters) 

low pass filter 

replace the average value defined by the filter mask. 

have the undesirable effect of blur edges 



Smoothing Spatial Filters 

weighted average 

Pixels have different importance 

The pixel at the center is multiplied by a higher value 

The other pixels are inversely weighted as a function of 
distance 

The weight like this attempts to reduce the blurring effect in 
the smoothing process 

Sum of all weights is 16 (easy for computer implementation 
because it is a power of 2) 

Other values of weight could accomplish the same general 
objectives 

 



Smoothing Spatial Filters 

 

 

The general implementation for filtering an MxN image with 

weighted averaging filter size mxn is 
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Smoothing Spatial Filters 

Excessive blurring is generally 
used for eliminating small objects 
from an image 



Smoothing Spatial Filters 



Smoothing Spatial Filters 

• Filter 

 

 

• Input image: A 4x4, 4 bits/pixel 

 

 

• Preprocessing: Zero-padding 
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Smoothing Spatial Filters 

• Move mask across the 

zero-padded image 
 

 

 

• Compute weighted sum 

 

 

• Result: 

1

3

8

6

6

8

6

11

8

10

8

9

9

7

10

10

0 0 0 0

0 0 0 0

0

0

0

0

0

0

0

0

0

0

0

0

2.6

6.5

4.3

4.0

6.2

7.2

4.3

8.0

6.5

7.8

7.7

6.0

9.5

5.7

7.3

7.7

3

7

4

4

6

7

4

8

7

8

8

6

10

6

7

8

0

2

1

1

0

1

0 1 0

1
6

round 



Order-Statistics Filters 

nonlinear spatial filters 

 response is based on ordering (ranking) the pixels contained in 
the image area encompassed by the filter 

replacing of the center pixel with the value determined by the 
ranking result 

Median filter 

replaces the pixel value by the median value in the neighborhood 

The principal function is to force distinct gray level points to be more 
like their neighbors. 

excellent noise-reduction capabilities with less blurring than linear 
smoothing filters 

effective for impulse noise (salt-and-pepper noise) 



Median Filter 

 

 



Median Filter 

Isolated clusters that are dark or light and whose area is less 

than n2/2 (0.5 filter area) are eliminated by n x n median. 

Median represents the 50th percent. 

• Min: Set the pixel value to the minimum in the 

neighbourhood 

• Max: Set the pixel value to the maximum in the 

neighbourhood 

 max filter → R = max {zk | k = 1,2,…,9} 

 min filter → R = min {zk | k = 1,2,…,9} 

 



Median Filter 

Median filtering is much better suited than 

averaging for the removal of salt-and-pepper 

noise. 



Sharpening Filters 
The principal objective of sharpening is to highlight transition of intensity, highlight fine 

detail in an image, enhance detail that has been blurred 

Averaging is analogous to integration, sharpening could be accomplished by spatial 
differentiation 

Image differentiation enhances edges and other discontinuities 

First-order derivatives 

Zero in flat segments 

Nonzero at the onset of a gray-level step or ramp 

Nonzero along ramps 

 

 

Second-order derivatives 

Zero in flat areas 

Nonzero at the onset and end of step or ramp 

Zero along ramps of constant slop 
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     First- and second-order derivatives 



     First- and second-order 

derivatives 

First-order derivatives 

Produce thicker edges in an image (nonzero along the 

entire ramp) 

Stronger response to a gray-level step 

Edge extraction  
Second-order derivatives 

Stronger response to fine detail, more aggressive (thin lines, 
isolated points) 

Transition from positive back to negative Produce double 
response at step changes in gray level (shown as thin double 
line)  

Suit for image enhancing sharp changes 

 



     First- and second-order derivatives 



The Laplacian 

the partial derivative in the x direction is defined as 

follows: 

 

 

 

and in the y direction as follows 
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The Laplacian 

So, the Laplacian can be given as follows: 

 

 

 

 

We can easily build a filter based on this 
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The Laplacian 



The Laplacian 

Highlights intensity discontinuities in an image  

Deemphasizes regions with slowly varying gray levels   

Produces a new image that have grayish edge lines and other discontinuities, 

(all superimposed on dark, featureless background) 

The result of a Laplacian filtering is not an enhanced image 

We have to do more work in order to get our final image 

Add the Laplacian result from the original image to generate our final 

sharpened enhanced image 

 

 

 

C = -1 if negative center 

C = 1 if others 
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The Laplacian 



The Laplacian 

The entire enhancement can be combined 

into a single filtering operation 
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The Laplacian 

This gives us a new filter which does the 

whole job for us in one step 
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The Laplacian 

There are lots of slightly different versions of the Laplacian 

that can be used: 

 0 1 0 

1 -4 1 

0 1 0 

1 1 1 

1 -8 1 

1 1 1 

-1 -1 -1 

-1 9 -1 

-1 -1 -1 

Simple 

Laplacian 

Variant of 

Laplacian 



Unsharp Masking And High-Boost Filtering 

Unsharp masking 

Blur the original image  

Subtract a blurred version from the original (diff = mask) 

Add the mask to the origin 

 

 

 

 

K = 1, unsharp masking 

K>1, the process is referred to as High-boost filtering 

K<1 de-emphasize the contribution of the unsharp mask 
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Unsharp Masking And High-Boost Filtering 



Unsharp Masking And High-Boost Filtering 

One of the principal 

applications of boost 

filtering is when the 

input image is darker 

than desired. By varying 

the boost coefficient, it 

generally is possible to 

obtain an overall 

increase in average gray 

level of the image, thus 

helping to brighten the 

final result.  

K =4.5  



Unsharp Masking And High-Boost Filtering 



First Derivative - The Gradient 

First derivatives are implemented using the magnitude 

of the gradient 

For a function f(x, y) the gradient of f at coordinates (x, 

y) is given as the column vector 
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The magnitude (length) of this vector is given by: 

 

 

Is the value at (x,y) of the rate of change in the direction of 

the gradient vector. 

Components of the gradient vector itself are linear, the 

magnitude is not (square, root) 

The result is called the gradient image  
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First Derivative - The Gradient 



First Derivative - The Gradient 

For practical reasons this can be simplified by 
using absolute values instead of squares and 
square roots 

 

 

Preserve relative changes in gray levels 
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First Derivative - The Gradient 

There is some debate as to how best to calculate 

these gradients but we will use 

The simplest approximation to a first order derivative 

that satisfy the conditions stated are 
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First Derivative - The Gradient 

Robert cross-gradient operators 
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Sobel operators 

• The result of the Sobel operator at an image point which is in a region of 

constant image intensity is a zero vector 

• At a point on an edge is a vector which points across the edge, from darker 

to brighter values  
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Sobel operators 
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Sobel operators 

An image of a 

contact lens which 

is enhanced in 

order to make 

defects (at four 

and five o’clock in 
the image) more 

obvious 



Sobel operators 

Grayscale 

image of a 

 brick wall & a 

 bike rack  

Normalized sobel 

y-gradient image 

of bricks & bike 
rack  

Normalized sobel  

x-gradient image of 

 bricks & bike rack  

http://en.wikipedia.org/wiki/Image:Bikesgraygh.jpg
http://en.wikipedia.org/wiki/Image:Bikesgraygv.jpg
http://en.wikipedia.org/wiki/Image:Bikesgray.jpg


Combining Spatial Enhancement 

Methods 

Successful image 
enhancement is typically 
not achieved using a 
single operation 

Rather we combine a 
range of techniques in 
order to achieve a final 
result 

This example will focus on 
enhancing the bone scan 
to the right 

 



Combining Spatial Enhancement 

Methods 

Laplacian filter of 

bone scan (a) 

Sharpened version of 

bone scan achieved 

by subtracting (a) 

and (b) Sobel filter of bone 

scan (a) 

(a) 

(b) 

(c) 

(d) 



The product of (c) 

and (e) which will be 

used as a mask 

Sharpened image 

which is sum of (a) 

and (f) 

Result of applying a 

power-law trans. to 

(g) 

(e) 

(f) 

(g) 

(h) 

Image (d) smoothed with 

a 5*5 averaging filter 



Combining Spatial Enhancement 

Methods 




