University ImmersaDesk: of the Ryukyus Collaborative Virtual Environment

A Next Generation Internet (NGI) Testbed

The ImmersaDesk:

- 4' x 5' rear projecting screen
 near immersive
- 1024 x 768 x 96 Hz
- driven by SGI Onyx2
 - Two R12000 Processors
 - 250 MHz
 - Infinite Reality Graphics

University of the Ryukyus HOW does it work?

- PC-driven sensor gets position
- PC sends position to SGI (Silicon Graphics Incorporated high technology computer designed for.)
- SGI renders stereo image relative to position

CYBER TOUCH GLOVES

The Glove has six small vibro-tactile stimulators on the fingers and the palm.

Each stimulator can be individually programmed to vary the strength of touch sensation.

University

of the

Ryukyus

CYBERGRASP GLOVES

It has Haptic Feedback

CyberGrasp "Hand-Referenced Haptic Feedback

11/12/09

Two types of HMD for Augmented Reality:

SEE-THROUGH HMD

11/12/09

University

of the

Ryukyus

Zannalill

Technologies Enabling VR

- Virtual reality is a combination of several technologies that enable the realization of VR systems:
 - 1. advanced (fast) computers
 - 2. advance computer communication networks
 - ◆ 3. human-computer interfaces

Architecture of VR

the requirements of the computer :

- high processing power for real-time rendering of virtual environments to generate visual stimulus
- powerful graphical subsystem for real-time stereo display of rendered virtual environment
- Popular platforms include Silicon Graphics (SGI), SUN, ...

Distributed VR Systems

- Distributed VR system consists of several networked computers and one virtual environment
- Each computer tracks actions of one user and creates an illusion of user's presence in the shared virtual environment
- All users are present in the same virtual world although they may be physically at distant locations
- In this manner it is possible to perform multi-user simulations with interactions between users

VR Research

Modeling of material properties Human-machine interfaces

- Haptic interfaces
- Visualization techniques

Modeling of Material Properties

- Force propagation models
- Deformable models for tissue modeling
- Real-time deformations for simulations
- Volumetric elastic models

Human-Computer Interfaces

- Haptic interfaces are particularly difficult to realize
- Force feedback
- Tactile, smell, and taste sensors
 - Physiological and psychological effects of simulators (cyberpathology)

Haptic Interfaces

Haptic interfaces are devices that allow human-machine interaction through force and touch

Areas of application include:

- telemanipulation (for work in hazardous or challenging settings such as space and microsurgery)
- virtual environments (for human operator training, design prototyping, and data visualization)