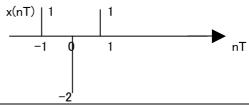
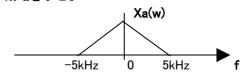
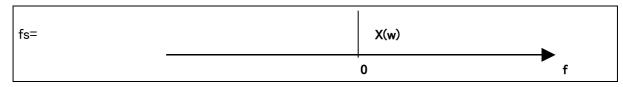

2004.7.30

(Each problem scored equally)


University of the Ryukyus Faculty of Engineering Dept. of Information Eng. Prof. M.R. Asharif

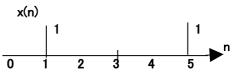
1- 次の図 1(a)のような回路がある。y1(nT)w のフーリエ変換 Y1(w)の概略を示せ。ただし、x(nT),のスペクトルを図 1(b)に示す。Y2(w) を求めよ。


2- 図に示す離散時間信号のフーリエ変換を求めよ、下記正しの回答(A),(B),(C)(D)選んでよ。



- A) $X(w) = 2e^{-jwT} [Cos(wT/2)]^2$
- B) $X(w)= 2 [Cos(wT)]^{2}$
- C) $X(w) = -4 [Sin (wT/2)]^2$
- D) X(w)= $-4e^{-jwT/2}$ [Sin (wT/2)]²

3一図の振幅スペクトルを持つ連続時間 x(t)を T=0.05 msec のサンプリング周期でサンプリング


した。離散時間の振幅スペクトルの概略を示せ。

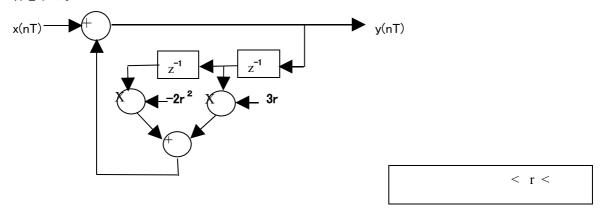
4 -×	ソハナーコネルナル・	(1.1.0)
4 - つぎの有限信号 x(n)の DFT	、X(k)を下記の形水のよ。	(N=6)

もし離散時間信号 x(n)は周期性を持つ(長さ N=6)実数信号とそのDFTは X(k)あれば、x1(n)=x(n-2)のDFTは X1(k)を求めよ。

X(k) =	X1(k) =

5- 4点 FFT のシグナルフロー図を描け。ただし、入力信吾のビット逆順の方法を使える。

6- N=256点として、DFTとFFTの乗算回数を比較して、bitreversal 入力で32所で、どの入力サンプルを入れるでしょうか。


 $\frac{\text{FFT}}{\text{DFT}} = \mathbf{x} \quad ()$

7- 次に示すx(nT)離散時間信吾を Z 変換せよ。

$$x(n) = \delta (nT - T) + u(nT) + n.u(nT)$$

X(z)=

8- 以下の図に示した、2次 IIR ディジタルフィルタです。システムが安定となるためのrに関する必要十分条件を示せ。

x (n)=

10- 次の差分方程式は、ある離散時間線形時不変システム(IIR デイジタルフィルター)の入出力関係を表している。 y(nT)=x(nT)+0.5y(nT-T)

Z変換を利用して、デイジタルフィルターのインパルス応答h(n)を求めよ。

h(n) =