Elienberg Moore Category の Comparison Functor
Menu MenuElienberg Moore Category の Comparison Functor
examples/comparison-em.agda Kleisli Category 同様に 任意の Resolution の解 U^K, F^K は、Elienberg Moore Category の E U^T, F^T と Comparison Functor K^T を通して関連します。
module comparison-em { c₁ c₂ ℓ : Level} { A : Category c₁ c₂ ℓ } { T : Functor A A } { η : NTrans A A identityFunctor T } { μ : NTrans A A (T ○ T) T } { M' : Monad A T η μ } {c₁' c₂' ℓ' : Level} ( B : Category c₁' c₂' ℓ' ) { U^K : Functor B A } { F^K : Functor A B } { η^K : NTrans A A identityFunctor ( U^K ○ F^K ) } { ε^K : NTrans B B ( F^K ○ U^K ) identityFunctor } { μ^K : NTrans A A (( U^K ○ F^K ) ○ ( U^K ○ F^K )) ( U^K ○ F^K ) } ( Adj^K : Adjunction A B U^K F^K η^K ε^K ) ( RK : MResolution A B T U^K F^K {η^K} {ε^K} {μ^K} Adj^K ) where open import adj-monad T^K = U^K ○ F^K μ^K' : NTrans A A (( U^K ○ F^K ) ○ ( U^K ○ F^K )) ( U^K ○ F^K ) μ^K' = UεF A B U^K F^K ε^K M : Monad A (U^K ○ F^K ) η^K μ^K' M = Adj2Monad A B {U^K} {F^K} {η^K} {ε^K} Adj^K open import em-category {c₁} {c₂} {ℓ} {A} { U^K ○ F^K } { η^K } { μ^K' } { M }module のパラメータとして道具立てをそろえて、T^K とμ^K' を作り、Adjunction から必要とされる Monad を再構成します。その Monad から Elienberg Moore Category を作ります。元の T とは、MResolution で T = U^K ○ F^K ということになっています。と仮定されているかな? MResolution には、μK' も用意されています。
Comparison Functor T^K の作成
Eilenberg Moore Category には Algebra や homomorphism などの制約がたくさんあります。それを構成していくことになります。T^K(b) = U^K(b) ですが、その φ b は U^K(ε^K b) です。
emkobj : Obj B -> EMObj emkobj b = record { a = FObj U^K b ; phi = FMap U^K (TMap ε^K b) ; isAlgebra = record { identity = identity1 b; eval = eval1 b } } where identity1 : (b : Obj B) -> A [ A [ (FMap U^K (TMap ε^K b)) o TMap η^K (FObj U^K b) ] ≈ id1 A (FObj U^K b) ] identity1 b = let open ≈-Reasoning (A) in begin (FMap U^K (TMap ε^K b)) o TMap η^K (FObj U^K b) ≈⟨ IsAdjunction.adjoint1 (isAdjunction Adj^K) ⟩ id1 A (FObj U^K b) ∎ eval1 : (b : Obj B) -> A [ A [ (FMap U^K (TMap ε^K b)) o TMap μ^K' (FObj U^K b) ] ≈ A [ (FMap U^K (TMap ε^K b)) o FMap T^K (FMap U^K (TMap ε^K b)) ] ] eval1 b = let open ≈-Reasoning (A) in begin (FMap U^K (TMap ε^K b)) o TMap μ^K' (FObj U^K b) ≈⟨⟩ (FMap U^K (TMap ε^K b)) o FMap U^K (TMap ε^K ( FObj F^K (FObj U^K b))) ≈⟨ sym (distr U^K) ⟩ FMap U^K (B [ TMap ε^K b o (TMap ε^K ( FObj F^K (FObj U^K b))) ] ) ≈⟨ fcong U^K (nat ε^K) ⟩ -- Horizontal composition FMap U^K (B [ TMap ε^K b o FMap F^K (FMap U^K (TMap ε^K b)) ] ) ≈⟨ distr U^K ⟩ (FMap U^K (TMap ε^K b)) o FMap U^K (FMap F^K (FMap U^K (TMap ε^K b))) ≈⟨⟩ (FMap U^K (TMap ε^K b)) o FMap T^K (FMap U^K (TMap ε^K b)) ∎自然変換の可換図の射に自然変換自体を入れるのを Horizontal composition 水平合成というようです。ε o ε が出てくると、それが使えるかどうかを考える感じです。
open EMObj emkmap : {a b : Obj B} (f : Hom B a b) -> EMHom (emkobj a) (emkobj b) emkmap {a} {b} f = record { EMap = FMap U^K f ; homomorphism = homomorphism1 a b f } where homomorphism1 : (a b : Obj B) (f : Hom B a b) -> A [ A [ (φ (emkobj b)) o FMap T^K (FMap U^K f) ] ≈ A [ (FMap U^K f) o (φ (emkobj a)) ] ] homomorphism1 a b f = let open ≈-Reasoning (A) in begin (φ (emkobj b)) o FMap T^K (FMap U^K f) ≈⟨⟩ FMap U^K (TMap ε^K b) o FMap U^K (FMap F^K (FMap U^K f)) ≈⟨ sym (distr U^K) ⟩ FMap U^K ( B [ TMap ε^K b o FMap F^K (FMap U^K f) ] ) ≈⟨ sym (fcong U^K (nat ε^K)) ⟩ FMap U^K ( B [ f o TMap ε^K a ] ) ≈⟨ distr U^K ⟩ (FMap U^K f) o FMap U^K (TMap ε^K a) ≈⟨⟩ (FMap U^K f) o ( φ (emkobj a)) ∎射には homorphism を付ける必要があります。T^K(f) = U^K(f) なので、T^^Kは、制約を除けば U^K と同じです。U^T は制約を引き剥がすFunctor でした。こちらでも水平合成が使われています。実際、Functor K^T の性質は U^K のものをそのまま使えます。
K^T : Functor B Eilenberg-MooreCategory K^T = record { FObj = emkobj ; FMap = emkmap ; isFunctor = record { ≈-cong = ≈-cong ; identity = identity ; distr = distr1 } } where identity : {a : Obj B} → emkmap (id1 B a) ≗ EM-id {emkobj a} identity {a} = let open ≈-Reasoning (A) in begin EMap (emkmap (id1 B a)) ≈⟨⟩ FMap U^K (id1 B a) ≈⟨ IsFunctor.identity (isFunctor U^K) ⟩ id1 A ( FObj U^K a ) ≈⟨⟩ EMap (EM-id {emkobj a}) ∎ ≈-cong : {a b : Obj B} -> {f g : Hom B a b} → B [ f ≈ g ] → emkmap f ≗ emkmap g ≈-cong {a} {b} {f} {g} f≈g = let open ≈-Reasoning (A) in begin EMap (emkmap f) ≈⟨ IsFunctor.≈-cong (isFunctor U^K) f≈g ⟩ EMap (emkmap g) ∎ distr1 : {a b c : Obj B} {f : Hom B a b} {g : Hom B b c} → ( (emkmap (B [ g o f ])) ≗ (emkmap g ∙ emkmap f) ) distr1 {a} {b} {c} {f} {g} = let open ≈-Reasoning (A) in begin EMap (emkmap (B [ g o f ] )) ≈⟨ distr U^K ⟩ EMap (emkmap g ∙ emkmap f) ∎直接代入しても問題ありません。
Lemma-EM20 : { a b : Obj B} { f : Hom B a b } -> A [ FMap U^T ( FMap K^T f) ≈ FMap U^K f ] Lemma-EM20 {a} {b} {f} = let open ≈-Reasoning (A) in begin FMap U^T ( FMap K^T f) ≈⟨⟩ FMap U^K f ∎ Lemma-EM22 : { a b : Obj A} { f : Hom A a b } -> A [ EMap ( FMap K^T ( FMap F^K f) ) ≈ EMap ( FMap F^T f ) ] Lemma-EM22 {a} {b} {f} = let open ≈-Reasoning (A) in begin EMap ( FMap K^T ( FMap F^K f) ) ≈⟨⟩ FMap U^K ( FMap F^K f) ≈⟨⟩ EMap ( FMap F^T f ) ∎定義から、
U^T ○ K^T = U^K K^T ○ K^K = F^Tが成立します。