System T
Menu Menutop : Agda による圏論入門 ゲーデルの自然数上の再帰理論です。 system T
直積
module system-t where open import Relation.Binary.PropositionalEquality record _×_ ( U : Set ) ( V : Set ) : Set where field π1 : U π2 : V <_,_> : {U V : Set} → U → V → U × V < u , v > = record {π1 = u ; π2 = v } open _×_ postulate U : Set postulate V : Set postulate v : V postulate u : U f : U → V f = λ u → v UV : Set UV = U × V uv : U × V uv = < u , v >今まで使ってきた record で直積を定義しているだけです。Proofs and Types の構文をそのまま実現できるのが素晴らしい。
lemma01 : π1 < u , v > ≡ u lemma01 = refl lemma02 : π2 < u , v > ≡ v lemma02 = refl lemma03 : (uv : U × V ) → < π1 uv , π2 uv > ≡ uv lemma03 uv = reflEquality を使って、pair の性質を refl で証明できます。
lemma04 : (λ x → f x ) u ≡ f u lemma04 = refl lemma05 : (λ x → f x ) ≡ f lemma05 = refl nn = λ (x : U ) → u n1 = λ ( x : U ) → f xこの辺りは普通の関数。
Bool と条件分岐
data Bool : Set where T : Bool F : Bool D : { U : Set } → U → U → Bool → U D u v T = u D u v F = vせっかく定義しましたが、あまり使いません。
自然数
data Int : Set where zero : Int S : Int → Int pred : Int → Int pred zero = zero pred (S t) = t
再帰演算子
R : { U : Set } → U → ( U → Int → U ) → Int → U R u v zero = u R u v ( S t ) = v (R u v t) t null : Int → Bool null zero = T null (S _) = F
Iterator
System F で使う It です。これと pair を使って R を作れます。
It : { T : Set } → T → (T → T) → Int → T It u v zero = u It u v ( S t ) = v (It u v t ) R' : { T : Set } → T → ( T → Int → T ) → Int → T R' u v t = π1 ( It ( < u , zero > ) (λ x → < v (π1 x) (π2 x) , S (π2 x) > ) t )
自然数の計算の例
sum : Int → Int → Int sum x y = R y ( λ z → λ w → S z ) x mul : Int → Int → Int mul x y = R zero ( λ z → λ w → sum y z ) x sum' : Int → Int → Int sum' x y = R' y ( λ z → λ w → S z ) x mul' : Int → Int → Int mul' x y = R' zero ( λ z → λ w → sum y z ) x fact : Int → Int fact n = R (S zero) (λ z → λ w → mul (S w) z ) n fact' : Int → Int fact' n = R' (S zero) (λ z → λ w → mul (S w) z ) n f3 = fact (S (S (S zero))) f3' = fact' (S (S (S zero))) lemma21 : f3 ≡ f3' lemma21 = refl
It と R の同等性
lemma07 : { U : Set } → ( u : U ) → ( v : U → Int → U ) →( t : Int ) → (π2 (It < u , zero > (λ x → < v (π1 x) (π2 x) , S (π2 x) >) t )) ≡ t lemma07 u v zero = refl lemma07 u v (S t) = cong ( λ x → S x ) ( lemma07 u v t ) lemma06 : { U : Set } → ( u : U ) → ( v : U → Int → U ) →( t : Int ) → ( (R u v t) ≡ (R' u v t )) lemma06 u v zero = refl lemma06 u v (S t) = trans ( cong ( λ x → v x t ) ( lemma06 u v t ) ) ( cong ( λ y → v (R' u v t) y ) (sym ( lemma07 u v t ) ) ) lemma08 : ( n m : Int ) → ( sum' n m ≡ sum n m ) lemma08 zero _ = refl lemma08 (S t) y = cong ( λ x → S x ) ( lemma08 t y ) lemma09 : ( n m : Int ) → ( mul' n m ≡ mul n m ) lemma09 zero _ = refl lemma09 (S t) y = cong ( λ x → sum y x) ( lemma09 t y ) lemma10 : ( n : Int ) → ( fact n ≡ fact n ) lemma10 zero = refl lemma10 (S t) = cong ( λ x → mul (S t) x ) ( lemma10 t ) lemma11 : ( n : Int ) → ( fact n ≡ fact' n ) lemma11 n = lemma06 (S zero) (λ z → λ w → mul (S w) z ) n lemma06' : { U : Set } → ( u : U ) → ( v : U → Int → U ) →( t : Int ) → ( (R u v t) ≡ (R' u v t )) lemma06' u v zero = refl lemma06' u v (S t) = let open ≡-Reasoning in begin R u v (S t) ≡⟨⟩ v (R u v t) t ≡⟨ cong (λ x → v x t ) ( lemma06' u v t ) ⟩ v (R' u v t) t ≡⟨ cong (λ x → v (R' u v t) x ) ( sym ( lemma07 u v t )) ⟩ v (R' u v t) (π2 (It < u , zero > (λ x → < v (π1 x) (π2 x) , S (π2 x) >) t)) ≡⟨⟩ R' u v (S t) ∎
積と和の性質
積の結合法則
sum1 : (x y : Int) → sum x (S y) ≡ S (sum x y ) sum1 zero y = refl sum1 (S x) y = cong (λ x → S x ) (sum1 x y ) sum-sym : (x y : Int) → sum x y ≡ sum y x sum-sym zero zero = refl sum-sym zero (S t) = cong (λ x → S x )( sum-sym zero t) sum-sym (S t) zero = cong (λ x → S x ) ( sum-sym t zero ) sum-sym (S t) (S t') = let open ≡-Reasoning in begin sum (S t) (S t') ≡⟨⟩ S (sum t (S t')) ≡⟨ cong ( λ x → S x ) ( sum1 t t') ⟩ S ( S (sum t t')) ≡⟨ cong ( λ x → S (S x ) ) ( sum-sym t t') ⟩ S ( S (sum t' t)) ≡⟨ sym ( cong ( λ x → S x ) ( sum1 t' t)) ⟩ S (sum t' (S t)) ≡⟨⟩ R (S t) ( λ z → λ w → S z ) (S t') ≡⟨⟩ sum (S t') (S t) ∎ sum-assoc : (x y z : Int) → sum x (sum y z ) ≡ sum (sum x y) z sum-assoc zero y z = refl sum-assoc (S x) y z = let open ≡-Reasoning in begin sum (S x) ( sum y z ) ≡⟨⟩ S ( sum x ( sum y z ) ) ≡⟨ cong (λ x → S x ) ( sum-assoc x y z) ⟩ S ( sum (sum x y) z ) ≡⟨⟩ sum (S ( sum x y)) z ≡⟨⟩ sum (sum (S x) y) z ∎ mul-distr1 : (x y : Int) → mul x (S y) ≡ sum x ( mul x y ) mul-distr1 zero y = refl mul-distr1 (S x) y = let open ≡-Reasoning in begin mul (S x) (S y) ≡⟨⟩ sum (S y) (mul x (S y)) ≡⟨⟩ S (sum y (mul x (S y) )) ≡⟨ cong (λ t → S ( sum y t )) (mul-distr1 x y ) ⟩ S (sum y (sum x (mul x y))) ≡⟨ cong (λ x → S x ) ( begin sum y (sum x (mul x y)) ≡⟨ sum-assoc y x (mul x y) ⟩ sum (sum y x) (mul x y) ≡⟨ cong (λ t → sum t (mul x y)) (sum-sym y x ) ⟩ sum (sum x y) (mul x y) ≡⟨ sym ( sum-assoc x y (mul x y)) ⟩ sum x (sum y (mul x y)) ∎ ) ⟩ S (sum x (sum y (mul x y) )) ≡⟨⟩ S (sum x (mul (S x) y ) ) ≡⟨⟩ sum (S x) (mul (S x) y) ∎ mul-sym0 : (x : Int) → mul zero x ≡ mul x zero mul-sym0 zero = refl mul-sym0 (S x) = mul-sym0 x mul-sym : (x y : Int) → mul x y ≡ mul y x mul-sym zero x = mul-sym0 x mul-sym (S x) y = let open ≡-Reasoning in begin mul (S x) y ≡⟨⟩ sum y (mul x y ) ≡⟨ cong ( λ x → sum y x ) (mul-sym x y ) ⟩ sum y (mul y x) ≡⟨ sym ( mul-distr1 y x ) ⟩ mul y (S x) ∎ mul-ditr : (y z w : Int) → sum (mul y z) ( mul w z ) ≡ mul (sum y w) z mul-ditr y zero w = let open ≡-Reasoning in begin sum (mul y zero) ( mul w zero ) ≡⟨ cong ( λ t → sum (mul y zero ) t ) (mul-sym w zero ) ⟩ sum (mul y zero ) ( mul zero w ) ≡⟨ cong ( λ t → sum t zero ) (mul-sym y zero ) ⟩ sum zero zero ≡⟨⟩ mul zero (sum y w) ≡⟨ mul-sym0 (sum y w) ⟩ mul (sum y w) zero ∎ mul-ditr y (S z) w = let open ≡-Reasoning in begin sum (mul y (S z)) ( mul w (S z) ) ≡⟨ cong ( λ t → sum t ( mul w (S z ))) (mul-distr1 y z) ⟩ sum ( sum y ( mul y z)) ( mul w (S z) ) ≡⟨ cong ( λ t → sum ( sum y ( mul y z)) t ) (mul-distr1 w z) ⟩ sum ( sum y ( mul y z)) ( sum w ( mul w z) ) ≡⟨ sym ( sum-assoc y (mul y z ) ( sum w ( mul w z) ) ) ⟩ sum y ( sum ( mul y z) ( sum w ( mul w z) )) ≡⟨ cong ( λ t → sum y t) (sum-sym ( mul y z) ( sum w ( mul w z) )) ⟩ sum y ( sum ( sum w ( mul w z) )( mul y z)) ≡⟨ sym ( cong ( λ t → sum y t) (sum-assoc w (mul w z) (mul y z )) ) ⟩ sum y ( sum w (sum ( mul w z) ( mul y z)) ) ≡⟨ cong ( λ t → sum y (sum w t) ) ( sum-sym (mul w z) (mul y z )) ⟩ sum y ( sum w (sum ( mul y z) ( mul w z)) ) ≡⟨ cong ( λ t → sum y (sum w t) ) ( mul-ditr y z w ) ⟩ sum y ( sum w (mul (sum y w) z) ) ≡⟨ sum-assoc y w (mul (sum y w) z) ⟩ sum (sum y w) ( mul (sum y w) z ) ≡⟨ sym ( mul-distr1 (sum y w) z ) ⟩ mul (sum y w) (S z) ∎ mul-assoc : (x y z : Int) → mul x (mul y z ) ≡ mul (mul x y) z mul-assoc zero y z = refl mul-assoc (S x) y z = let open ≡-Reasoning in begin mul (S x) (mul y z ) ≡⟨⟩ sum (mul y z) ( mul x ( mul y z ) ) ≡⟨ cong (λ t → sum (mul y z) t ) (mul-assoc x y z ) ⟩ sum (mul y z) ( mul ( mul x y) z ) ≡⟨ mul-ditr y z (mul x y) ⟩ mul (sum y (mul x y)) z ≡⟨⟩ mul (mul (S x) y) z ∎さらに進んだトピック