
Temporal Logic Programming in
Tokio

Albert C. Esterline
Danny Kilis

University of Minnesota

DRAFT
©C copyright 1988

CHAPTER 1

Introduction

1.1 Theoretical Background

Draft Only — Do Not Distribute ©C copyright 1988 University of Minnesota

2

CHAPTER 2

Temporal Variables

2.1 Bindings of Temporal Variables: $t-lists

A temporal variable is bound to a Prolog structure similar to a list, which we
shall call a $t-list. The head of a $t-list is the value of the corresponding variable
for the current time. Its tail may again be a $t-list; thus the $t-list contains the
values of the variable for all future times, as far as these values are known. As
execution of a Tokio program proceeds from one time to the next, successive ele-
ments of the $t-list for a variable become the current value of the variable until,
perhaps, the last element of the $t-list is reached, and then this last element is
the value for the variable from that time on. Furthermore, as execution proceeds,
a $t-list may be extended into the future if the last part of a $t-list is uninstanti-
ated.

A $t-list is a structure with two arguments and with $t as its functor; the
second argument may be uninstantiated or may itself be a $t-list. For example,
suppose the following is associated with the temporal variable I:

$t(1, $t(2, _))(1)

This indicates that the current value of I is 1, the value of I for the next time is
2, and the value of I for later times is undetermined. This $t-list may be com-
pared with the Prolog (and hence Tokio) list

[1, 2](2.1)

Now recall that the primitive list functor in Prolog is ., which takes two argu-
ments; the second normally is either itself a list or the special atom []. Thus
(2.1) may be represented as

.(1, .(2, []))(2.2)

This looks very much like (1) with $t replaced by ., except the last part is []
instead of _.

In fact, it is quite easy in Prolog to create and to use lists with uninstanti-
ated last parts, that is, tails. Thus the list made with . as follows

.(1, .(2, _))(3.1)

is written in list notation as

[1, 2 | _](3.2)

Now consider the usual member predicate in Prolog:

member(E, [E|_]).

member(E, [_|T]) :- member(E,T).

Draft Only — Do Not Distribute ©C copyright 1988 University of Minnesota

3

And consider the query

?- member(3,[1,2]).

or, equivalently,

?- A = [1,2], member(3,A).

where the list is that shown in (2.1) and (2.2). This finds 3 ≠ 1, and so tries
member(3, [2]). It then finds 3 ≠ 2, and tries member(3, []). The latter fails,
so all goals depending on it, back to the original, fail. Next consider the query

?- A = [1, 2|_], member(3, A)

where the list is that shown in (3.1) and (3.2). This finds 3 ≠ 1, then 3 ≠ 2,
and then tries member(3, [_]). But then the first, non-recursive clause in the
definition of member succeeds: [_] is unified with [E|_], but E is unified with 3;
thus [_] is unified with [3|_]. The goals depending on this subgoal thus suc-
ceed, and we get, at the top level, A=[1,2,3 | _]. Thus this definition of
member, when given an instantiated first argument and a second argument that is
a list with uninstantiated tail, succeeds whether or not the first argument appears
in the list. If the first argument is not in the list, then it is added to the list as
the last element before the uninstantiated tail.

We have made this digression to give the reader a feel for how Tokio may
"differentiate" $t-lists to store future values for a variable. Now suppose variable
A is associated with $t-list (1), and B is uninstantiated. Then

A = B

or

B = A

instantiates B to 1 (the order of the operands makes no difference). That is, =
looks at only the head (or leftmost term) of a $t-list. Similarly, if C is bound to
the $t-list

$t(1, $t(3, _)),

then

A = C

succeeds, but neither A nor C changes. If D is bound to

$t(2,_)

then

D = A

fails. These results are corollaries of the meaning of = inherited from Prolog and
of the fact that = looks only at the head of $t-lists. Recall that generally a Prolog
predicate may have different arguments instantiated or uninstantiated in various
uses.

The Tokio function @ (read next) accesses the tail of a $t-list; thus @ used
with = allows one to refer to the value of a variable at the next time. For exam-
ple, if A is bound to (1) and if B is uninstantiated,

@A = B

or

Draft Only — Do Not Distribute ©C copyright 1988 University of Minnesota

4

B = @A

instantiates B to 2. If C is uninstantiated and D is bound to

$t(1, $t(2, $t(3, _))),

then

@C = @ @D

(the space between repeated @’s is required) binds C to the $t-list

$t(_, $t(3, _)).

If E is bound to

$t(1, _)

then

@E = E + 1

differentiates E so that it becomes

$t(1, $t(2, _)).

Finally, if A is as defined above, then

@A = A

fails since @A is 2, and A is 1, so there is no way @A and A can be made equal.

To give illuminating examples, we introduce the always operator, #. If P is
some goal, then #P is executed at each time, from the first to the last, of the
interval in which it occurs. write(A) is just as it is in Prolog, except that,
instead of writing what A is bound to, which may be a $t-list, it writes only the
current value of A. Suppose our Tokio program is simply,

test(A) :- @A = A+1, #write(A).

Suppose that after, this program is compiled, we issue the following query:

?- tokio I = 1, test(I).

The output will then read:

t0: 1

t1: 2

I = $t(1, $t(2, _9)

yes

where _9 is the internal name for some unbound variable. That is, the current (at
t0) value of A is 1, and the value of A at the next time (t1) is 1, and nothing is
determined for any time after that, so Tokio draws the interval to a close.

2.2 One-Time Unification vs. Unification Over All Time

The unification we have considered so far, by means of =, is a "one-time uni-
fication". The unification called "unification over all time" is achieved by unifica-
tion with the head of a clause. For example, let us suppose A is bound to (1),
and that foo is defined by

Draft Only — Do Not Distribute ©C copyright 1988 University of Minnesota

5

foo(X) :- write(X), Y = @X, tab(3), write(Y).

Then evaluating

tokio foo(A).

binds X to $t(1, $t(2, _)) and produces the following output

t0: 1 3

t1:

A = $t(1, $t(2,_9))

yes

As another example, suppose our program is

test(A) :- @A = A+1, #disp(A).

disp(X) :- write(’=>’), write(X).

If we use the query

?- tokio I = 1, test(I).

we get

t0: =>1

t1: =>2

I=$t(1, $t(2, _1))

yes

Note that X in disp must get bound to the same $t-list as A in test for all infor-
mation required to be available to disp.

Thus far, we have considered $t-lists whose last elements are uninstantiated
variables, _. We now consider cases where the last element is bound to a value.
Subsequent examples will make use of the length operator.

Recall that Tokio will discontinue the current interval as soon as everything
in that interval is satisfied. One explicit way to extend or to bound an interval is
by using the temporal predicate length. The goal length(n), where n is a posi-
tive integer, forces the current interval to be of length n, i.e., to extend from some
time ti to some time ti+n . For example,

test :- length(1), A = 1, @A = 2, @ @A = 3, #write(A).

output only 1 and 2.

test :- length(3), A = 1, @A = 2, @ @A = 3, #write(A).

will output 1, 2, and 3, for times t0, t1, and t2 respectively, and then will indi-
cate an uninstantiated variable for t3.

We begin with the degenerate case, where a temporal variable, say A, is
bound to a simple value, that is, a value other than a $t-list. (A simple value in
this sense could be a list or structure of any degree of complexity.) Then the value
of A for the present and all future times is the simple value to which it is bound.
For example, given the program

Draft Only — Do Not Distribute ©C copyright 1988 University of Minnesota

6

p(a).

t(A) :- length(3), p(A), #write(A).

evaluation of t(X) will produce

t0: a

t1: a

t2: a

t3: a

X = a

The next greater degree of complexity arises when a temporal variable A is
bound to a two-element $t-list, where both elements are instantiated. Then the
first element is the value of A for the current time, and the second element is the
value of A for all future time. For example, suppose we have the program

q(b).

rz(X) :- X=a, @q(X).

t(A) :- length(3), rz(A), #write(A).

then evaluating t(Y) produces:

t0: a

t1: b

t2: b

t3: b

Y = $t(a, b)

yes

Here the variable Y in the initial goal shares with A in the third clause; the unifi-
cation is unification over all time. Again, A in the third clause shares with X in
the second clause because of the goal rz(A) in the third clause; again the unifica-
tion involved a unification over all time. In the second clause, the X=a goal causes
the current value at X (and thus for A and of Y) to be a; and the @q(X) goal
causes the value for X (and thus for A and for Y) at the next time to be b. Since
q(b) is interpreted as asserting that q(b) is always true, it is reasonable that
@q(X) should cause X (and thus A and Y) to have the value b for all future time.
This is indeed the case X (and A and Y) is bound to $t(a, b). The a is for the
current time. At the next time point, the value for X is b, and, from the context
of this time point, it is as if we start with X bound to the simple value b. Thus
this case reduces to the previous case, but at the next point in time.

More generally, a $t-list is one of two forms:

1) $t(S0, $t(S1, ... $t(Sn, _) ...))

2) $t(S0, $t(S1, ... $t(Sn, v) ,,,))

Draft Only — Do Not Distribute ©C copyright 1988 University of Minnesota

7

Here Si, 0 ≤ i ≤ n, is either a variable or a simple (i.e., non-$t-list) value, and v
is a simple value. Suppose variable X is bound to 1) and the current time is t0.
Then, because the last member of the $t-list is _, the value of X is undetermined
after tn; that is, X is undifferentiated for ti, i > n. Next suppose X is bound to
2) and the current time again is t0. Then, because the last member of the $t-list
is v, a value, the value of X is v for all ti, i ≥ n.

Note that any of the Si, i ≤ n , in 1) or 2) may be an unbound variable.
For example, given the program

q(b). rz(X) :- @@X = a, @@@q(X).

t(A) :- length(4), rz(A), #write(A).

evaluation of t(Y) produces:

t0: _

t1: _

t2: a

t3: b

t4: b

Y = $t(_, $t(_, $t(a, b)))

yes

Sometimes Tokio must fill in gaps in a $t-list. For example, given

p(a).

q(b).

r(X) :- length(3), p(X), @@q(X).

evaluating r(Y) produces

t0: a

t1: a

t2: b

t3: b

Y = $t(a, $t(a, b))

yes

The second a in the $t-list to which Y is bound is the direct result of no unifica-
tion, but it must be present to record the fact the value of Y (which shares with X
of the third clause) is a at t1.

Finally, an attempt to output (using write) and undifferentiated element
results in that element being differentiated. For example, given

p(a).

q(X) :- X = b.

Draft Only — Do Not Distribute ©C copyright 1988 University of Minnesota

8

rq(A) :- length(3), p(A), @q(A).

evaluating rq(Y) produces

Y = $t(a, $(b, _))

Here the undifferentiated _ indicates that Y has no value for ti, i > 1. On the
other hand, if #write(A) is added to the rq clause giving

rq(A) :- length(3), p(A), @q(A), #write(A).

the result of evaluating rq(Y) is

t0: a

t1: b

t2: _

t3: _

Y = $t(a, $t(b, $t(_, $t(_,_))))

Here the final, undifferentiated _ indicates that Y has no value for ti, i > 3; the
unbound elements for t2 and t3 occur explicitly because write was evaluated at
t2 and t3.

2.3 Summary

Value of a Prolog variable Value of a Tokio
variable

Comment

a a Value a holds at all
ti, i ≥ 0.

[a,b|_] $t(a, $t(b,_)) Value a holds at t0,
value b holds at t1,
and there is no
value for ti, i > 1.

[a,b|c] i.e., .(a, .(b,c)) $t(a, $t(b,c)) Value a holds at t0,
value b holds at ti,
and value c holds at
all ti, i > 1.

[a,b], i.e., .(a, .(b, [])) Nothing There is no analog
of [].

Table 2.1: Analogy between Prolog (and Tokio) lists and Tokio $t-lists.

CHAPTER 3

Temporal Predicates and Operators

Draft Only — Do Not Distribute ©C copyright 1988 University of Minnesota

9

3.1 Some Useful Temporal Predicates and Operators

3.1.1 Always (#) and Sometimes (<>) We have already seen the always
operator, #. Recall that #P, where P is some Tokio predicate, requires P to succeed
at each time in the current interval. In declarative terms, #P states that P is (in
the current interval) always true. The dual of #P is <>P, read sometimes P. <>P is
true if P is true sometime in the future, i.e., at some ti, i > 0, in the current
interval. In procedural terms, <>P requires P to be a goal at each time in the
interval but the first until P succeeds. Note that success of P (i.e., success of P at
the current time) does not count to success of <>P. In declarative terms, P does
not imply <>P. However, for #P to succeed, P must succeed at each time in the
current interval, so #P implies P. Thus #P and <>P are not quite the duals they
are claimed to be. Note that, if there is no way P can succeed, then <>P will
cause the interval in which it occurs to be extended indefinitely unless that inter-
val is closed. Thus it is good practice to use the combination

length(n), <>P,

where n is some positive integer, rather than simply <>P. Generally, <>P is used
when we wish to extend the current interval far enough into the future for P to
succeed at sometime in the interval, but when we also do not know in advance
how far into the future that might be. Thus one use of <> could be in defining the
predicate

sometimes_equal(A,B) :- <>A = B.

This will succeed if A and B have the same value for some time in the current
interval. Note that it will not succeed if A and B have the same value only at a
time outside the current interval.

3.1.2 Next: @ (function) and @ (operator) We have already seen the next
function, @. Recall that @I accesses the tail of the $t-list to which I is bound; in
particular, if J is uninstantiated, then

J = @I

instantiates J at the current time to the value for I at the next time. Now, there
is also a next temporal operator, also symbolized by @. The goal @P succeeds if
the goal P succeeds at the next time. It is important to distinguish the function @
from the operator @, even though certain analogies between the two warrant
emphasis. As an example,

test :- I = 1, @(I = 2).

is the same as

test :- I = 1, @I = 2.

Note that

test :- length(2), I = 1, @I = 2, @ @I = 3, @ #write(I).

will output 2 and 3 as the values for I at t1 and t2, but will not output the value
for I at t0. Also note that

@ @I = 3

Draft Only — Do Not Distribute ©C copyright 1988 University of Minnesota

10

is the same as

(@ @I) = 3

We have considered the @ operator as delaying evaluation of a goal to the
next time point. Equivalently, we could view the @ operator as creating a subin-
terval of the current interval, where the subinterval begins at the next time. The
two views are equivalent because all goals in an interval are executed at the
beginning of the interval.

Note that a necessary condition for the goal @P to succeed in the current
interval is that the length of this interval be at least one, i.e., there must be a
time point after the current time — a next time — at which P can succeed. Simi-
larly, a necessary condition for @ @P to succeed is that the length of the interval
be at least two (from ti to ti+2), and, in general, a necessary condition for

@ @...@ P (n @’s)

to succeed is that the length of the interval be at least n.

3.1.3 Weak Next: next The operator next (weak next) is similar to @ except
that next P may succeed even when there is no next time in the current interval,
i.e., it is not a necessary condition for the success of next P that the length of the
interval be at least one. If the goal next P is evaluated and there is no next time
in the interval, then next P succeeds no matter what P may be. Now, an interval
consisting of only one point (the current time) has length zero. A suffix subinter-
val of an interval is any subinterval containing that interval’s last point. As a
Tokio execution in an interval proceeds, successively smaller suffix subintervals of
the original interval become the new current interval. When the last point in the
original interval is reached, the current subinterval has length zero. Thus we may
say that, when @P is evaluated at the last point in an interval, it must fail, and,
when next P is evaluated at the last point in an interval, it must succeed; all of
this independent is of what P may be.

3.1.4 Interval Termination: empty and notEmpty To clarify the semantics of
next and other operators, we discuss a zero-argument predicate empty that suc-
ceeds when evaluated at the last point in an interval (or equivalently, that suc-
ceeds when evaluated in an interval of length zero). Then, in declarative terms,
next P is true if and only if empty v @P is true (where v means or). Also,
length(n) is true if and only if

@ @...@ empty (n @’s)

is true. Thus we may always replace length(n) with empty preceded by n @s.
Now let notEmpty be true when and only when the current time is not the last
time point in the current interval. Then @P is true implies notEmpty is true.

Further discussion of empty and notEmpty requires some understanding of
how intervals are maintained by Tokio. If neither empty nor any predicate defin-
able in terms of empty, such as length, has been evaluated, then the current
interval lacks a fixed endpoint; in such a case, we say the current interval is open-
ended. Evaluation of a goal of the form @P in an open-ended interval requires
execution to advance at least as far as the next time, and, in general, evaluation
in an open-ended interval of P preceded by n @’s requires execution to advance at

Draft Only — Do Not Distribute ©C copyright 1988 University of Minnesota

11

least n+1 time points into the future. When all goals resulting from the use of @
have been evaluated, there is no need to extend the current open-ended interval,
so Tokio terminates the interval. (Tokio, however, ensures that the top-level inter-
val has length at least one.)

A closed interval is an interval with a fixed endpoint, and so with a fixed
length. An interval is closed because empty or some predicate (such as length)
definable in terms of empty has been evaluated. In a closed interval of length n, a
goal of the form P preceded by n+1 @’s fails because, at the last point in the
interval, and attempt is made to evaluate @P — but there is no next time in
which P may succeed.

Now, there are two cases in which the goal empty succeeds:

1) if the current interval is open-ended, or

2) if the current interval is closed and the current time is the last time in the
current interval.

There is one case in which the goal empty fails:

3)
if the current interval is closed and the current time is not the last time in the
current interval, i.e., there are times in the current interval after the current
time.

In case 1), evaluation of empty causes the current, open-ended interval to be
closed, with the current time as its last time; evaluation of @empty causes the
next time to be the last time; and, in general, evaluation of empty preceded by n
@’s causes the time n units after the present to be the last time of the current
interval.

In an opposite manner, the goal notEmpty succeeds in cases 1) and 2), and
fails in case 2). Note that either empty or notEmpty will succeed in case 1) — but
with different effects. Evaluation of notEmpty in case 1) causes the current,
open-ended interval to extend at least to the next time (while remaining open-
ended; evaluation of @notEmpty causes the current interval to extend at least two
time points into the future; and, in general, evaluation of notEmpty preceded by n
@s causes the current interval to extend at least n+1 time points into the future.

The meaning of empty and notEmpty may be explained in terms of the inter-
val variables maintained internally by Tokio. Suppose I is the interval variable for
the current interval. Then I may be thought of as bound to the last time in the
current interval if this interval is closed; if the current interval is open-ended,
then I is unbound. For example, if the current time is ti and the end of the cur-
rent interval is two time points hence, then we imagine I bound to ti+2. We may
now reformulate the conditions under which the goals empty and notEmpty suc-
ceed or fail. Let I be the interval variable for the current interval and let tsuni
be the current time. Then empty succeeds if

1’) I is unbound, or

2’) I = ti,

and fails if

3’) I > ti;

Draft Only — Do Not Distribute ©C copyright 1988 University of Minnesota

12

and notEmpty succeeds in cases 1’) and 3’) and fails in case 1’). Note that the
goal notEmpty is not the same as the goal not(empty) since the latter fails in
case 1’). In case 1’), evaluation of empty binds I to ti and evaluation of
notEmpty places the requirement in I that, if it becomes bound, it must be bound
to some tj > ti. Evaluating @empty at the current time ti causes empty to be
evaluated at ti+1, thus (still assuming case 1’)) binding I to ti+1. Similarly, eval-
uating @notEmpty at ti will force I to be unbound at ti+1.

Notice that the goal @true has the same effect as the goal notEmpty. This is
because evaluating @true causes true to be evaluated at the next time point. If I
is unbound, then evaluating @true results in execution reaching at least the next
point in time, where true is evaluated; but evaluating true imposes no further
requirements. If I > ti, then @true succeeds, again with no further conditions.
Finally, if I = ti, @true fails since there is no next time at which true could be
evaluated. It follows that the goal consisting of notEmpty preceded by n @’s has
the same effect on the goal consisting of true preceded by n-1 @’s. It should be
evident that in, for example, the complete goal

notEmpty, @notEmpty, @@Empty,

the goals notEmpty and @notEmpty are superfluous, and the composite goal

@....@empty, @....@empty,

where the number of @’s in the two subgoals are different, always fails.

3.2 Reduction Along the Current- and Future-Time Axes

The concept of a suffix subinterval and the next operator together allow us
to characterize the execution of a Tokio program as it advances from one time
point to the next. The term "reduction" is used in logic programming to describe
the replacement of goals by subgoals in an attempt to satisfy a query. In Tokio,
reduction is done in two directions: along the current-time axis and along the
future-time axis. Reduction along the current-time axis is identical to reduction in
Prolog. Reduction along the future-time axis occurs when a new subinterval is
generated, for example, when a goal of the form @P is evaluated. At any time
point, reduction along the future-time axis is done after reduction along the cur-
rent-time axis is complete. Thus Tokio must keep a list of goals to be evaluated at
the next time point; this list is called the ’next queue’.

In general, reduction of a Tokio goal will produce subgoals to evaluate at the
current time and subgoals to evaluate at the next time. The latter are put into
the next queue, and the former are evaluated as part of the reduction along the
current-time axis; thus all the former are evaluated before any of the latter. For
example, when @P is evaluated, the current-time subgoal notEmpty and the
future-time subgoal P are generated. If the current-time is the last time in an
interval, then notEmpty is false, and so @P fails, and thus backtracking along the
current-time axis is initiated; this backtracking is identical to the backtracking in
Prolog. If there is a next time, then notEmpty succeeds and, assuming the rest of
the reduction along the current-time axis succeeds, evaluation proceeds to the
next time point, where P and other goals previously put on the next queue are
evaluated. If P and these other goals succeed with respect to reduction along the
current-time axis at the next time, then, in general, a new next queue will have
been built, and the goals in this will be evaluated in the following time (two time
points after the original time point considered). If P contains no temporal opera-
tors, then there are no goals descended from @P when reduction along the current-
time axis occurs two time points after the original time. (This is not to say,

Draft Only — Do Not Distribute ©C copyright 1988 University of Minnesota

13

however, that there are no effects of @P at that point. Indeed, the effects of @P
may propagate indefinitely in the future because of variable bindings caused by
the evaluation of P.)

If, on the other hand, reduction along the current-time axis fails at the time
after the original time, then backtracking along the future-time axis is initiated.
This type of backtracking is not derived from Prolog, and will be discussed fur-
ther below. Two major points should emerge from this discussion of reduction in
Tokio. The first is that reduction as a whole is driven by reduction along the
future-time axis, not reduction along the current-time axis. The second major
point is that each step along the future-time axis may be viewed as evaluating the
goal formed by applying the next operator to the conjunction of the subgoals in
the next queue. This is because any commitment to the existence of a next time
is covered by generating the current-time subgoal notEmpty.

The current-time and future-time subgoals generated in evaluating a goal
containing a temporal operator are similar to the head and tail of a $t-list bound
to a temporal variable. The heads of the $t-lists of the program variables provide
the environment for the evaluation of the current-time subgoals and the tails of
the $t-lists of the program variables provide the environment for the evaluation of
future time-goals.

3.2.1 # and <> Revisited This discussion may be applied to the evaluation of
subgoals of the form #P and <>P. Thus #P succeeds if P succeeds and next #P suc-
ceeds. And <>P succeeds if @P succeeds or next <>P succeeds. Thus <>P posts two
subgoals, P and <>P, into the future, only one of which need succeed at the next
time. Also, <>P can extend an open-ended interval in search of a time when P suc-
ceeds; this is because it evaluates the goal @P before the goal next <>P, and @P
evaluated at the last point in an open-ended interval extends the interval by one
point. In contrast, #P evaluates one subgoal, P, at the current time, and posts
another subgoal, #P, into the future if there is a future. If there is a future, both
subgoals must succeed; obviously, the second subgoal ensures that P is evaluated
at all points of the current interval. If there is no future, then only the P subgoal
at the current time need succeed for the #P to succeed; this is because the second
subgoal from the point of view of the current time is next #P, and next Q, where
Q is any goal, always succeeds when there is no future. Thus #P cannot extend an
open-ended interval.

3.2.2 Interval Length: length and skip Next, length(n) is equivalent to

@ @...@ empty (n @’s)

This succeeds if

@...@ empty (n-1 @’s)

succeeds at the next time. There is no subgoal for the current time, or, rather, the
subgoal for the current time is simply true. Obviously,

@ @...@ empty (n @’s)

extends an open-ended interval to have a length of n and (because of the empty)
makes it closed; it also fails in a closed interval of length other than n, but suc-
ceeds (but without effect) in a closed interval of length n. A goal

Draft Only — Do Not Distribute ©C copyright 1988 University of Minnesota

14

length(1)

is equivalent to the zero-argument goal

skip.

3.3 Interval Diagrams: Graphical Representation of Goals and Vari-
able Values

We now present a unified graphical representation of the evaluation of Tokio
goals and the values of temporal variables. We draw a discrete time-line with the
points labeled t0, t1, ...:

t0 t1 t2 t3

Beneath this line, we include a line for each temporal variable on which we write
its value for each time. Thus, if the $t-lists for I and J are

$t(1, $t(2, $t(3, _)))

and

$t(4, $t(_, $t(3, $t(2, $t(1, _)))))

respectively, we draw

t0 t1 t2 t3 t4 t5

I 1 2 3 --

J 4 -- 3 2 1 --

We indicate an open-ended interval if length n as follows:

t0 t1 t2 tn−1 tn

. . .

. . .

Draft Only — Do Not Distribute ©C copyright 1988 University of Minnesota

15

A closed interval of length n is indicated by

t0 t1 t2 tn−1 tn

. . .

. . .

Subintervals are shown below the intervals containing them. Thus, if the original
goals include @P and length(3), then:

t0 t1 t2 t3

The goals to evaluate at time ti are shown directly below the ti label. An arrow
from these goals points down to their current-time subgoals, and another arrow
points to the right, to their future-time subgoals, which are the goals shown
directly below ti+1. Thus we have the following, where we assume the original
interval is closed and of length 3:

t0 t1 t2 t3

@P P

P

Draft Only — Do Not Distribute ©C copyright 1988 University of Minnesota

16

t0 t1 t2 t3

#P

P

#P

P

#P

P

#P

P

t0 t1 t2 t3

<>P
P;

<>P

P

P;
<>P

P

P;
<>P

P

Note that no current-time subgoal is shown at t0 in the case of @P. We could
have put true as such a goal, but we shall keep things simple. Likewise, no cur-
rent-time subgoal is shown at t0 for <>P. We could show @P as a current-time
subgoal at t0, but this is the same as having P as a goal at t1. We have shown
the future-time subgoals of <>P separated by the Prolog or operator ;

P;

<>P

to indicate that an attempt is made to satisfy P and only if this attempt fails is
an attempt made to satisfy the subgoal <>P. Also, at ti, i > 0, in the <>P case,
P is included both in the goals at ti and in the current-time subgoals at ti. In
general, a goal at ti that includes no temporal operators will also appear as a
current-time subgoal at ti. Finally, we have assumed that <>P, as of t3, has not
yet succeeded since we have shown <>P at ti, 0 ≤ i ≤ 3. If, for example, P suc-
ceeds at t2, then <>P succeeds, and we get the diagram

Draft Only — Do Not Distribute ©C copyright 1988 University of Minnesota

17

t0 t1 t2 t3

<>P
P;

<>P

P

P;
<>P

P <Succeed>

Succeed

Similarly, we have assumed that #P has not yet failed as of t3 since we have
shown #P as a goal at ti, 0 ≤ i ≤ 3. If P fails at t2, then #P fails, and we get
the diagram

t0 t1 t2 t3

#P

P

#P

P

#P

P <Fail>

Fail

We shall henceforth indicate whether evaluation of a query succeeds or fails by
writing "succeed" or "fail" to the right of its diagram. We shall also indicate for
certain critical current-time subgoals whether they succeed or fail by writing
"<succeed>" or "<fail>" next to them.

We may combine the representation of the values of temporal variables and
the representation of current-time and future-time subgoals in a diagram. For
example, suppose we have

test :- I = 2, J = 1, # @I = I+1, # @J = J+1, <> I = J.

We represent the evaluation of this with the following diagram:

Draft Only — Do Not Distribute ©C copyright 1988 University of Minnesota

18

Succeed

t0 t1 t2 t3

I = 2,
J = 1,

@I = I+1,
@J = J+1,
<>I = J.

@I = I+1,
@J = J+1,

(I = J;
<>I = J).

@I = I+1,
@J = J+1,
(I = J;

<>I = J).

I = 2,
J = 1,
@I = I+1,
@J = J+1.

@I = I+1,
@J = J+1,
I = J.

@I = I+1,
@J = J*2,
I = J.<Succeed>

I 2 3 4 --

J 1 2 4 --

We have used arrows from current-time subgoals to variable values when the sub-
goals affect values at times later than the present current-time. The current
interval in this example terminates at t2, when all the original subgoals have suc-
ceeded; we indicate this with a dashed line at t2 closing the interval. Note that
neither of the current-time subgoals @I = I+1 and @J = J+2 at t2 were evalu-
ated; this is because, as soon as I=J was found to be true at t2, all original goals
were known to be satisfied, and so evalustion could terminate.

3.4 More on Interval Lengths and Interval Diagrams

3.4.1 And: , (parallel), && (sequential -- chop), and & (neutral) The and
of Prolog, that is ,, is used in Tokio to indicate parallel conjunction of subgoals.
Thus, for example, if P is defined by the clause

P :- Q, R.

then evaluating P involves evaluating Q and R in parallel. Tokio also has a
sequential and, &&, read chop. Suppose, for example, P is defined by the clause

P :- Q && R.

Then the interval in which Q can be satisfied and the interval in which R can be
satisfied are both subintervals of the interval in which P can be satisfied:

Draft Only — Do Not Distribute ©C copyright 1988 University of Minnesota

19

Q R

P

t0 ti tn

Note that the last time point in the interval for Q is the first time point in
the interval for R. Also note that && has lower precedence than the parallel and
(,). Thus, the following will always fail:

A = 1, @A = A + 1 && A = 3.

We may represent this as

Fail

t0 t1

A = 1
@A = A+1

A = 3

A = 1
@A = A+1

A = 3

A 1
2
3 <Fail>

The two sequential subgoals here are

A = 1, @A = A + 1

followed by

A = 3

Notice that the interval for subgoal A=3 has length zero. In general, the only
intervals that cannot have length zero are the top-level interval and the first of
two subintervals resulting from a chop. This example fails because the first
sequential subgoal requires A to be 2 at t1, while the second sequential subgoal
requires A to be 3 at t1. Also note that, ignoring the effects of backtracking and
assuming no @ operation (as opposed to function) occur, the first of two subinter-
vals resulting from a chop has length zero.

The above example should be compared with the following, which succeeds:

A = 1, @A = A + 1 && length(1) && A = 3

Draft Only — Do Not Distribute ©C copyright 1988 University of Minnesota

20

t0 t1 t2

A = 1
@A = A+1

length(1) A = 3

A = 1
@A = A+1

length(1) A = 3

A 1 2 3

Since && is associative, we consider the subintervals generated by multiple occur-
rences of && as immediate subintervals of a single parent interval; in this case, the
parent interval is divided into three subintervals, the first two of length one, and
the third of length zero. This example succeeds because the second subinterval
adds a time point after the point (at the end of the first subinterval) when A is 2;
this added point is then the time when A = 3. The Tokio predicate skip is iden-
tical with length(1), so the above could be rewritten as

A = 1, @A = A + 1 && skip && A = 3

Instantiations of temporal variables are not carried over from one subinterval
to the next (except at the common time point terminating the one and initiating
the next). Consider, for example,

A = 1, @A = A + 1, @ @A = A + 2 && skip && A = 4, @A = A+1

t0 t1 t2

A = 1
@A = A+1

@ @A = A+2
skip A = 4

A = 1
@A = A+1

@ @A = A+2
skip

A = 4
@A = A+1

A 1
3 (lost)2
4

Here again the parent interval is divided into three subintervals, the first two of
length one and the third of length zero. In the first subinterval, A is bound to the
$t-list

$t(1, $t(2, $t(3, _))).

Draft Only — Do Not Distribute ©C copyright 1988 University of Minnesota

21

This records that at t0 A is 1, at t1 A is 2, at t2 A is 3, and A is undefined at ti, i
> 2. However, the only time points included in the first temporal interval are t0
and t1, so the only values of any significance are 1 at t0 and 2 at t1. In the third
subinterval, A is bound to

$t(4, $t(5, _))

Since this subinterval begins (and ends) at t2, the 4 is the value of A at t2. Since
A does not appear in the subgoal for the second subinterval, we have a consistent
sequence of values for A throughout the parent interval, from t0 to t2. The $t-list
records that A is 5 at t4. But t4 is past the third subinterval (and the entire par-
ent interval), so the fact that A is 5 at t4 is of no significance. Note that the @
function (as opposed to the @ operator) does not extend intervals.

In contrast, consider the following, where the @ is now the operator @, not
the function @:

A = 1, @(A = 2), @ @(A = 3) && skip && A = 4, @(A = 5)

t0 t1 t2 t3 t4

A = 1
@(A = 2)

@ @(A = 3)

A = 2
@(A = 3)

A = 3
skip

A = 4
@(A = 5)

A = 5

A = 1 A = 2 A = 3
skip

A = 4 A = 5

A 1 2 3 4 5

Here the parent interval is again divided into three subintervals, but now the first
is of length two, the second is of length one (as before), and the third is of length
one. The first subinterval must be of length two because the occurrence of the
subgoal @ @(A = 3) at t0 implies the occurrence in the same (sub)interval of A =
3 at t0+2 = t2. Two suffix subintervals of the first subinterval are distinguished:
one of length one from t1 to t2 corresponding to the subgoal @(A = 2) and the
other of length zero at t2 corresponding to the subgoal @ @(A = 3) in the subin-
terval or, equivalently, to the subgoal @(A = 3) in the suffix subinterval <t1 t2>.
In the part of the first subinterval not covered by a suffix subinterval, that is, at
t0, A is bound to

$t(1, _).

Since this subinterval begins at t0, this $t-list records that A is 1 at t0. In the
part of the suffix subinterval <t1 t2> of the first subinterval not covered by the
suffix subinterval <t2>, that is, at t1, A is bound to

$t(2, _).

Since this subinterval begins at t1, this $t-list records that A is 2 at t1. Finally,
in the suffix subinterval <t2> of the first subinterval, that is, at t2, A is bound to

Draft Only — Do Not Distribute ©C copyright 1988 University of Minnesota

22

$t(3, _).

Since this subinterval begins (and ends) at t3, this $t-list records that A is 3 at
t3. Similarly, the third subinterval must be of length two, and one suffix subin-
terval of this subinterval is distinguished. In the part of the third subinterval not
covered by the suffix subinterval (i.e., at t3), A is bound to $t(4, _), and in the
final suffix subinterval of the third subinterval A is bound to $t(5, _). Since A
does not occur in the second subinterval, <t2 t3>, we have a consistent sequence
of values for A throughout the parent interval <t1 t2 t3 t4>.

3.4.2 Discussion of Interval Lengths Often the length of an interval is not
obvious, but depends on the length of time required to satisfy subgoals formu-
lated with user-defined predicates. In such cases, one must take care that two dif-
ferent lengths are not specified for the same interval, which is an inconsistency.
For example, suppose that the predicate p is defined by the clause

p :- r, s.

Now suppose r and s are defined, respectively, by the clauses

r :- length(1).

s :- length(2). ...(*)

Then two different diagrams are specified:

t0 t1 t0 t1 t2

Both intervals are closed, but they have different lengths — there is no way they
may be viewed as one and the same interval, and so the goal p must fail. In con-
trast, suppose r and s are defined by

r :- @write(r).

s :- @ @write(s). ...(**)

Then the diagram for r shows an open-ended interval of length one

Draft Only — Do Not Distribute ©C copyright 1988 University of Minnesota

23

t0 t1

@write(r). write(r).

write(r).

and the diagram for s shows an open-ended interval of length two.

t0 t1 t2

@ @write(s). @write(s). write(s).

write(s).

Since both intervals are open-ended, they may be viewed as one and the same
interval. Specifically, since the interval for r is open-ended, it may be seen as the
first part of an (open-ended or closed — in this case, open-ended) interval of
length two. Thus, combining the diagrams for r and s, we get

t0 t1 t2

r @write(r), write(r),

write(s).*s* @ @write(s). @write(s).

write(r). write(s).

Succeed

Since Tokio terminates an interval when all subgoals are satisfied, the length of
the interval for p is two. Notice that we have not bothered to indicate the suffix
subintervals generated by the @ operators.

Draft Only — Do Not Distribute ©C copyright 1988 University of Minnesota

24

3.4.3 Interval Diagrams and User-Defined Predicates In the last exam-
ple, there are two subgoals, r and s, for the goal p. The subgoals r and s them-
selves have subgoals @write(r) and @ @write(s), respectively. When we drew
the diagram for p, we wrote subgoals as if r and s were replaced with their sub-
goals in the definition of p. In general, we shall draw diagrams so that each user-
defined predicate is eliminated in favor of the subgoals in its definition. In the last
diagram, we identified the immediate, user-defined subgoals of p with r and s
enclosed in *’s to the left of where these subgoals come into play; a dotted line
was used to separate the subgoals of r from those of s. We shall continue with
this convention. This convention runs into difficulties when a recursive predicate
appears as a subgoal. If a recursive predicate posts no subgoals into the future,
then we shall treat it as a primitive. If it does post subgoals into the future, we
shall treat it as we treated # and <>. Finally a disjunction of subgoals will be
indicated with the Prolog or, ;, as was done when we discussed <>.

Consider, for example, the predicate p1 defined by the clause

p1 :- q && r, s.

where r and s are defined by (**) and q is defined by

q :- write(q), length(1).

and r and s are defined as above. The diagram for this is

t0 t1 t2 t3

q write(q),

length(1).
empty (*q*)

r @write(r)

s @ @write(s)

write(q) empty(*q*) write(r) write(s)

write(s)

write(r)

@write(s)

We have parameterized empty to indicate that the interval for q is of length zero
at t1.

3.5 Other Temporal Predicates and Operators

3.5.1 Enforcing a Constraint Throughout an Interval: <-- With the
groundwork on intervals behind us, we may now describe the remaining basic
temporal operators of Tokio. Evaluation of

A <-- B

Draft Only — Do Not Distribute ©C copyright 1988 University of Minnesota

25

causes the value of A throughout the current interval to be the value of B at the
beginning of the interval. Thus for example, instead of

#(A = 1),

we may use

A <-- 1

Notice that

length(3), B = 1, @B = 2, A <-- B.

will cause B to be bound to $t(1, $t(2, _)) and A to $t(1, $t(1, $t(1,
_))), that is, A is 1 (the value of B at t0) throughout <t0 t1 t2>. In contrast,

length(3), B = 1, @B = 2, #(A = B).

will cause A to be 1 at t0, 2 at t1, and unbound at t2. Finally,

A <-- 1 && skip && length(1), A <-- 2.

will cause A to have the value 1 at t0 and t1, and 2 at t2 and t3, while

A <-- 1 && length(1), A <-- 2.

will fail since it tries to bind A to 1 and 2 at t1.

3.5.2 Evaluating a Goal Until, or Only At, the End of an Interval:
keep and fin Evaluation of the goal

keep(P) :-

causes P to be evaluated at every point but the last in the current interval:

P P

. . .
t0 tn−1 tn

keep(P) keep(P)

Evaluation of the goal

fin(P)

causes P to be evaluated at only the last point in the current interval.

Draft Only — Do Not Distribute ©C copyright 1988 University of Minnesota

26

P

. . .
t0 tn−1 tn

fin(P) fin(P) fin(P)

Thus

length(3), keep(A = 1), fin(A = 1).

has the same effect as

length(3), A <-- 1.

However, keep and fin are much more versatile than <-- since their arguments
are goals, not variables. Thus, for example, we may have

keep(write(a)), fin(write(b)).

In practice, the arguments of keep and fin usually involve user defined predicates
and produce more interesting results.

We may use keep to avoid introducing an interval whose sole goal is skip
since, for example, keep(A = 1) does not give A a value the last point in the cur-
rent interval, where it overlaps with the next interval. Thus,

length(2), keep(A = 1) && A = 2

is consistent, and gives A the value 1 for t0 and t1 and the value 2 for t2. We may
use fin to avoid && in this example:

length(2), keep(A = 1), fin(A = 2).

We may describe the meanings of keep and fin very succinctly in terms of
if ... then ... and the zero-argument predicates empty and notEmpty we
introduced earlier:

keep(P) :- #(if notEmpty then P).

fin(P) :- #(if empty then P).

Recall that empty is true only at the last time point of an interval and not
notEmpty is true at all points in the interval but the last. (We shall come to if
... then and if ... then ... else later. In fact, in Tokio, if ... then is
not a more primitive notion than keep or fin.)

3.5.3 Dependence of Interval Termination on a Goal: halt We may
introduce halt(P), where P is some goal, in a similar fashion:

halt(P) :- #(if P then empty else notEmpty).

Thus, if the current interval is open-ended, then halt(P) closes the current inter-
val when P becomes true.

Draft Only — Do Not Distribute ©C copyright 1988 University of Minnesota

27

. . .
t0 tn−1 tn

halt(P) halt(P) halt(P)

P <false> P <false> P <true>

(=> notEmpty) (=> notEmpty) (=> empty)

For example, the goal

halt(I = J).

causes the current, open-ended interval to be closed at the time ti when I and J
have the same value. If the current interval is already closed at some time tj,
then halt(I = J) succeeds if and only if I and J have the same value for the
first time at tj.

If I or J (or both) is unbound, then the goal I = J must succeed; in this
case, then, halt(I=J) means the same as

empty, I = J

From the above definition of halt, it follows that halt(true) means the same as
empty and halt(fail) means the same as notEmpty.

3.5.4 Repeated Assignment: gets We may define further temporal operators
in terms of <--, keep and fin. Thus gets is defined as

A gets B :- keep(@A = B).

For an interval of length n, if B has the values v0, ..., vi, ..., vn at times t0, ..., ti,
..., tn, we may diagram A gets B as

Draft Only — Do Not Distribute ©C copyright 1988 University of Minnesota

28

@A = B @A = B @A = B

. . .

. . .

. . .

. . .

t0 t1 tn−1 tn

(A gets B)

keep(@A = B)
keep(@A = B) keep(@A = B)

B v0 v1 vn−1 vn
A -- v0 vn−2 vn−1

Note that no value is hereby determined for A at the beginning of the interval, t0,
and @A = B is not evaluated at the end of the interval tn. The most salient fact is
that the value of A lags that of B by one time unit — gets has an obvious appli-
cation in modelling a device with unit delay.

3.5.5 Holding a Variable’s Value Constant: stable Again, stable is
defined as

stable(A) :- keep(@A = A).

or, equivalently, as

stable(A) :- A gets A.

Thus stable(A) forces A’s value to remain constant, at the value it has at t0,
throughout the interval. An obvious use of stable is to carry a value from the
beginning of one interval to the beginning of the next. For example, if p(A) deter-
mines the value of A only at the current time and q(A,B) uses the current value
of A to determine the value of B, then

length(2), p(A), stable(A) && q(A, B)

makes available to q at t2 the value of A determined by p at t0. Thus:

t0 t1 t2

A a a a

B -- -- b

where a is the value of A determined by p(A) and b is the value of B determined
by q(a,B). The reason stable can carry a value from the beginning of one inter-
val to the beginning of the next is that the last point in the first interval is

Draft Only — Do Not Distribute ©C copyright 1988 University of Minnesota

29

identical to the first point of the next, and stable carries a value from the first to
the last point of an interval. A common error in Tokio programming is to assume
that the value for a variable remains stable. In fact, however, future-time values
do not exist unless they are explicitly determined by means of temporal opera-
tors.

3.5.6 Temporal Assignment: <- Using stable, we may propagate the value
that a variable has at the beginning of an interval to all future points in that
interval. Frequently, however, as just discussed, we are really interested in setting
the value of a variable at the end of an interval in terms of the value of that vari-
able or other variables at the beginning of the interval. In that case, <- should be
used; it is defined as

B <- A :- C <-- A, fin(B = C),

or, equivalently, as

B <- A :- A =C, stable(C), fin(B = C).

In either definition, variable C is a dummy variable introduced for the sake of the
definition; the specification of Tokio does not require Tokio actually to introduce
this third variable. The clearest way to think of A <- B is as A <-- B, but with
the value of A determined only for the last time in the interval, not for the entire
interval. As with <--, the second argument may be a constant, variable, or arith-
metic expression. If it is a variable, its value at the beginning of the interval is
used; if it is an arithmetic expression, it is evaluated at the beginning of the
interval, and the resulting value is used. An interesting application of <- is to
model the interchange of values in two registers. Suppose registers A and B each
require one time unit to stabilize. Then

length(1), A <- B, B <- A

will cause A at t1 to have the value B had at t0 and B at t1 to have the value A
had at t0. Note that no intermediate variable is needed. The state of affairs
described is consistent since: although A (or B) has different values at different
times, it never has different values at the same time.

3.6 Summary

CHAPTER 4

Backtracking into the Past

Draft Only — Do Not Distribute ©C copyright 1988 University of Minnesota

30

4.1 Backtracking into the Past: Simple Cases

Recall that, in Tokio, reduction (the replacement of goals by subgoals in an
attempt to satisfy a query) is done in two directions: along the current-time axis,
and along the future-time axis. Thus there are two sorts of backtracking: back-
tracking along the current-time axis, and backtracking along the future-time axis.
We shall call the latter "backtracking into the past" since it moves backwards in
time looking for a fresh choice at an earlier time. Reduction and backtracking
along the current-time axis are identical to reduction and backtracking in Prolog.
We have already extensively discussed reduction along the future-time axis.
Backtracking into the past is easily understood in terms of reduction along the
future-time axis. The only difficulty occurs with the division of the interval into
subintervals by means of a && operator. When backtracking into the past returns
to a chop point, Tokio advances the chop point to the next time. Since the initial
division of an interval makes the first subdivision of minimal length (length one),
Tokio is thus able to generate all possible divisions of an interval into two subin-
tervals. To explain the advance of a chop point on backtracking into the past, we
shall introduce interval variables, which are internal variables marking the ends of
(sub)intervals. However, we begin discussing the simple cases of backtracking
into the past, those that do not encounter chop points.

When backtracking into the past returns to a time point ti, it checks the
subgoals that were executed when execution last was at ti. The first subgoal
that can be resatisfied, if there is one, is resatisfied, and execution then proceeds
in the normal, forward fashion. If there is no goal at ti that can be resatisfied,
the backtracking returns to ti−1. If backtracking into the past reaches t0 and
finds no resatisfiable subgoal there, then the entire query fails. We shall refer to a
resatisfiable subgoal as a "choice point". We may then describe backtracking into
the past as a movement back through time in an attempt to find a choice point.

When backtracking returns to some time ti, the search for a choice point at
ti proceeds as in Prolog. The catch is, however, that the subgoals at ti are in
general generated by evaluation of subgoals at ti−1 — the subgoals evaluated at
ti were put into the next queue at ti−1. As an example, suppose our database
contains

p(1).

p(2).

q(1).

q(2).

r(X,Y) :- length(3), @p(X), @ @q(Y), fin(X = Y),
#write((X,Y)).

If we now issue the query

tokio r(X,Y).

then, at t0, neither X nor Y has a value. At t1, the subgoal p(X) is evaluated. It
matches the p(1) fact in the database, and X unifies with 1. This is a case of uni-
fication across all time, and X is 1 from t1 on. At t2, q(Y) matches the q(1) fact,
again a unification across all time, and so Y is 1 from t2 on. Thus, at t3, fin(X =
Y) succeeds, and the entire query succeeds. The terminal output is:

Draft Only — Do Not Distribute ©C copyright 1988 University of Minnesota

31

t0: _100,_104

t1: 1,_108

t2: 1,1

t3: 1,1

3 clock and 0.133335 sec.

X = $t(_100,1)

Y = $t(_104,$t(_108,1))

The 1 in X’s $t-list represents the value of X for t1 and subsequent times, and the
1 in Y’s $t-list represents the value of Y for t2 and subsequent times. The diagram
for the calculation of this query is

t0 t1 t2 t3

@p(X),

@ @q(Y),

fin(X = Y),

#write((X,Y)).

@p(X),

@q(Y),

fin(X = Y),

#write((X,Y)).

q(X),

fin(X = Y),

#write((X,Y)).

fin(X = Y),

#write((X,Y)).

write((X,Y)). p(X),

write((X,Y)).

q(Y),

write((X,Y)).

write((X,Y)),

X = Y.

X -- 1 1 1

Y -- -- 1 1

Now suppose we force a failure by typing a ’;’ before the carriage return.
There is no choice point at t3, so the backtrack returns to t2. Here it finds an
alternative for q(Y), which matches the fact q(2). Thus Y’s value at t2 and sub-
sequent times becomes 2. Execution now proceeds in the normal, forward fashion.
The write at t2 is evaluated, then the write at t3, and finally the X = Y at t3
fails, forcing another backtrack. The output generated thus far since the forced
failure is:

b2: 1, 2

t3: 1, 2

Note that ´bi:´ is output when a transition from ti+1 to ti is made, while ´ti:´
is output when a transition from ti−1 to ti is made. Also notice that only the
current-time goals (below the arrows) need to be considered on backtracking into
the past and when execution returns forward; there is only one way these sub-
goals may be generated. (We shall find that this is no longer the case when we
consider backtracking that encounters a chop point). Backtracking through the

Draft Only — Do Not Distribute ©C copyright 1988 University of Minnesota

32

current-time goals at a particular time, which is backtracking along the current-
time axis, proceeds as if they formed the body of a Prolog clause. Note that their
order is determined partly by the order in which subgoals appear in the Tokio
clause and partly by the reordering done by Tokio.

After the failure of X = Y at t3 (where X is 1 and Y is 2), another backtrack
into the past is initiated. This finds the choice point at t2 exhausted (both q
facts in the database have been used), so it returns to t1. Here it finds an alterna-
tive for p(X), matching it with the fact p(2) in the database. Thus the value of X
is 2 from t1 on. Execution now proceeds forward. The write at t1 is evaluated,
then the q(Y) goal at t2 is encountered. Since this is encountered anew, it
presents the same two alternatives it did when first encountered. The first alter-
native is taken; that is, q(Y) is matched with the fact q(1), and so Y is 1 from t2
on. Next, the write goal at t2 is evaluated, then the write at t3, and finally the
X = Y goal at t3 fails. Thus the output generated since the last failure is:

b2:

b1: 2,_108

t2: 2,1

t3: 2,1

The failure of the X = Y subgoal at t3 initiates another backtrack. This
finds an alternative solution for q(Y) at t2: q(Y) is matched with q(2), so Y is 2
from t2 on. With execution now advancing forward, the write goal at t2 is evalu-
ated, then the write at t3, and X = Y at t3 succeeds, so the top-level query now
succeeds for a second time. The new output is

b2: 2,2

t3: 2,2

3 clock and 0.400002 sec.

X = $t(_100,2)

Y = $t(_104, $t(_108,2))

Note that the $t-lists for X and Y are as they were the last time the query suc-
ceeded except that, in place of 1, we now have 2. If we now force another failure
by typing ’;’, the backtrack thus initiated searches back through t3, t2, t1, and t0
for a choice point, but finds none, so the query now fails. The output thus pro-
duced is

b2:

b1:

--fail--

X = _0

Y = _1

The example just presented was chosen so that all choice points occur at t1

or later. This was done because of an anomaly in the bi lines and labels when

Draft Only — Do Not Distribute ©C copyright 1988 University of Minnesota

33

backtracking into the past reaches t0. For then the line recording the transition

from t2 to t1, which should be labeled b1, does not appear, and the line recording

the transition from t1 to t0 and any subsequent evaluations at t0, which should

be labeled b0, is labeled b1. To illustrate, we shall take the previous example and

replace length(3) with length(2), @p(X) with p(X), and @ @q(X) with @q(X).

This amounts to shifting the time line left one unit, and discarding the original

t0, where nothing takes place. The database now contains

p(1).

p(2).

q(1).

q(2).

r(X,Y) :- length(2), p(X), @q(Y), fin(X = Y),
#write((X,Y)).

The following is a transcription of a query evaluation that exactly parallels the

evaluation and re-evaluations discussed at length above:

| ?- tokio r(X, Y).

t0: 1,_91

t1: 1,1

t2: 1,1

2 clock and 0.100001 sec.

X = 1

Y = $t(_91, 1);

b1: 1, 2

t2: 1, 2

b1: 2, _91 <--

t1: 2, 1

t2: 2, 1

b1: 2, 2

t2: 2, 2

Draft Only — Do Not Distribute ©C copyright 1988 University of Minnesota

34

2 clock and 0.283334 sec.

X = 2

Y = $t(_91, 2);

b1:

-- fail --

X = _0

Y = _1

The arrow indicates the anomalous line. In place of this line, we should expect

the following two lines:

b1:

b0: 2, _91

Indeed, Tokio never outputs the labels ´b0:´. It does not like to admit that it
backtracks back to t0.

4.2 Backtracking into the Past: Cases Involving &&

Backtracking is more difficult to understand when a chop point is encoun-
tered. Associated with each interval is an interval variable, which is not visible to
the programmer. If an interval is closed, the interval variable for that interval
marks its last point. If an interval is open, its interval variable has no value. In
either case, the interval variable for an interval is stored at its last point - this is
where backtracking encounters it, and all backtracking can do is advance the
interval variable forward to the next time. Recall that a && divides a parent
interval into two subintervals. The first subinterval initially has length one, unless
an @ operator occurs in it; this is the smallest length allowed for the first of two
intervals generated by &&. We shall assume for now that no @ operator occurs in
the first interval. The last point of the first subinterval is the first point of the
second interval. We consider here only the simple case of two subintervals, that is,
one && operator. Thus, if the parent interval is < t0 ... tn >, then initially the
first subinterval is < t0 t1 > and the second subinterval is < t1 ... tn >. If back-
tracking returns to t1, then the interval variable for the last subinterval is
advanced to t2, which now becomes the chop point, and the two intervals are
now < t0 t1 t2 > and < t2 ... tn >. Each time backtracking encounters the chop
point, the chop point is advanced one unit, and so the first subinterval’s length
increases by one and the second subinterval’s length is decreased by one. If the
only choice backtracking ever finds is that afforded by the chop point, and the
query never succeeds, then eventually the first subinterval is < t0 ... tn > and the
second is ,< tn > — recall that the second subinterval, unlike the first, may have
length zero. If the query is not satisfied at this stage, then it fails, for there are no
other ways to divide the parent interval into two subintervals.

Draft Only — Do Not Distribute ©C copyright 1988 University of Minnesota

35

To introduce a succinct notation, we shall use I for the interval variable of
the first subinterval. If there are only two subintervals, then the interval variable
for the parent interval and that for the second subinterval always mark the same
point - hence neither is of much interest in a discussion of backtracking. When I
marks ti, and so is stored at ti, we shall assume that its value is ti.

To take an example, suppose the database contains

p(a).

q(b).

r(A) :- p(A) && @q(A).

Suppose we then issue the query

tokio length(5), r(A), #write(A).

Then the chop point is at t1, the first subinterval is < t0 t1 >, and the second
subinterval is < t1 ... t5 >. The p(A) goal in the first subinterval matches the
p(a) fact in the database (a case of unification across all time), so A is a during
< t0 t1 >. The @q(A) goal in the second subinterval becomes the goal of q(A)
for its suffix subinterval < t2 t3 t4 t5 >. This matches the q(b) fact in the data-
base, so A is b during < t2 t3 t4 t5 >. It is obvious what Tokio will output in this
case. We diagram this situation as follows:

I = t1

t0 t1 t2 t3 t4 t5

p(A) @q(A) q(A)

p(A) q(A)

A a a b b b b

We have written the interval variable for the first subinterval and its value over
the point where it is stored. The $t-list for A will be

$t(a, $t(a, b))

The first a is for t0, the second for t1, and the b is the value of A for t2, t3, t4
and t5.

Suppose that we now type ’;’ to force a failure. Since there are no goals or
chop points at t4 or t3, backtracking returns to t2 in search of a choice point. But
there is no choice point at t2 since there is only one clause for q in the database.
Thus backtracking returns to the chop point t1, where it finds I and advances it
to t2. After advancing I and while still at t1, execution evaluates the write goal
(not shown above) as it resumes its normal forward progress. The first subinter-
val, during which A is a, is now < t0 t1 t2 >, and the second, during which A,

Draft Only — Do Not Distribute ©C copyright 1988 University of Minnesota

36

except for its initial point, is b, is < t2 t3 t4 t5 >. The output produced by
Tokio, from the time the failure is forced until the query succeeds with the second
solution, is:

b4 :

b3 :

b2 :

b1 : a

t2 : a

t3 : b

t4 : b

t5 : b

The diagram for the second solution is

I = t2

t0 t1 t2 t3 t4 t5

p(A) @q(A) q(A)

p(A) q(A)

A a a a b b b

Note that it is not the case that the locations of the subgoals are unaffected by
backtracking. This is because advancing the chop point forces the goals in the sec-
ond subinterval to be generated one time unit later. Also (what is not illustrated
here), the subgoals at t0 may be the sources for subgoals at one additional later
time unit when I is advanced.

If we force a failure at the top level a second time, I is advanced to t3, and
we get

Draft Only — Do Not Distribute ©C copyright 1988 University of Minnesota

37

I = t3

t0 t1 t2 t3 t4 t5

p(A) @q(A) q(A)

p(A) q(A)

A a a a a b b

A third forced failure advances I to t4:

I = t4

t0 t1 t2 t3 t4 t5

p(A) @q(A) q(A)

p(A) q(A)

A a a a a a b

If we force a failure a fourth time, Tokio backtracks to t4, where it finds I and
advances it to t5. It then evaluates the write at t4, then the write at t5, which
now outputs an a. It then evaluates the @q(A) goal at t5, which fails since there
is no next time. So Tokio initiates backtracking again. I, now at t5, cannot be
advanced, so backtracking goes back through t4, t3, and so on, searching for a
choice point. The only goal it encounters is p(A) at t0, but the single p clause in
the database has already been used, so the query now fails. The output produced
by Tokio beginning with the last forced failure is:

b4 : a

t5 : a

b4 :

b3 :

b2 :

b1 :

-- fail --

Draft Only — Do Not Distribute ©C copyright 1988 University of Minnesota

38

The account just given must be modified slightly when @ operators occur in
the first subinterval. Suppose a goal P contains no && operator. Then we define
the "futurity" of P as follows:

1) If P contains no occurences of the @ operation, then the futurity of P is 0.

2) If P is of the form Q, R or Q; R, then the futurity of P is the maximum of the
futurities of Q and R.

3) If P is of the form @Q, where Q is a (possibly conjunctive or disjunctive) goal
with futurity n, then the futurity of P is n+1.

Thus, for example, both the following goals have futurity 2:

@@p(A)

@(q(B), @p(A))

Intuitively, the futurity of a goal is the number of future time units it demands in
the current interval. (The notion of futurity can be extended to goals containing
&&’s; each && requires at least one future time unit.) Now suppose the (possibly
conjunctive or disjunctive) subgoal constituting the first subinterval has futurity n
≥ 1. Then the length of the first subinterval is initially n, not 1 (unless n = 1),
as we have thus far assumed. As before, however, backtracking increases, and
never decreases, the length of the first interval.

We may generalize this discussion of chop and backtracking by considering
clauses that involve more than one &&. If there are n && operators, none of which
are within parenthesized expressions, then the parent interval is divided into n+1
subintervals. As before, all subintervals but the last have minimum length of one,
and the last may have length zero. We are now concerned with the interval vari-
ables of all subintervals but the last. So, to distinguish the interval variables of
various subintervals, we let Ii denote the interval variable of the ith subinterval.
We shall first present an example in which there are three chop points, and then
we shall generalize to the n-chop-points case. So suppose the database contains

p(a).

q(b).

s(c).

r(A) :- p(A) && @q(A) && @s(A).

If we issue the query

tokio length(5), r(A), #write(A).

then we get the situation

Draft Only — Do Not Distribute ©C copyright 1988 University of Minnesota

39

I1 = t1 I2 = t2

t0 t1 t2 t3 t4 t5

p(A) @q(A) q(A),

@s(A) s(A)

p(A) q(A) s(A)

A a a b c c c

Here again we write an interval variable above the time point it marks. If we now
force a failure at the top level by typing a ’;’, backtracking will search into the
past and find the first choice point at t2, where it advances I2 to t3. After the
next forced failure, backtracking will advance I2 to t4:

I1 = t1 I2 = t2

t0 t1 t2 t3 t4 t5

p(A) @s(A) s(A)

p(A) s(A)

@q(A) q(A)

q(A)

A a a b b b c

Another forced failure will cause Tokio to advance I2 to t5. Then, however, the
@s(A) subgoal fails, so Tokio must backtrack into the past and find another
choice point. It thus goes back to t1 and advances I1 to t2. As execution proceeds
forward, I2 is set at the minimal distance from t2, that is, at t3:

Draft Only — Do Not Distribute ©C copyright 1988 University of Minnesota

40

I1 = t2 I2 = t3

t0 t1 t2 t3 t4 t5

p(A)

p(A)

@q(A) q(A)

@s(A) s(A)

q(A) s(A)

A a a a b c c

Subsequent forced failures now advance I2 to t4, and then to t5, where @s(A)
again fails, so I1 is advanced to t3 with I2 at t4. There are no more solutions
after this. The following table summarizes the solutions.

Intervals values of A

I1 I2 I3 t0 t1 t2 t3 t4 t5

<t0t1> <t1t2> <t2t3t4t5> a a b c c c
<t0t1> <t1t2t3> <t3t4t5> a a b b c c
<t0t1> <t1t2t3> <t4t5> a a b b b c

<t0t1t2> <t2t3> <t3t4t5> a a a b c c
<t0t1t2> <t2t3t4> <t4t5> a a a b b c

<t0t1t2t3> <t3t4> <t4t5> a a a a b c

If backtracking returns to some chop point ti marked by an interval variable
Ij and there exists at ti some choice other than advancing Ij, Tokio will take the
other choice. For example, suppose the database contains

q(b).

q(c).

r(A) :- (keep(A = a) && q(A)), keep(write(A)),
fin(write(A)).

Note that there are two clauses for q, thus there are two solutions for the goal
q(A). We are interested in the behaviour of the goal

keep(A = a) && q(A)

in the clause defining r. The other two subgoals are included in this clause only
so we may see the values for A. We must use keep and fin since the goal keep(A
= a) would be evaluated after a simple write(A), which would thus not show
A’s value properly at each time. When we issue the query

tokio length(5), r(A).

Draft Only — Do Not Distribute ©C copyright 1988 University of Minnesota

41

the following situation ensues (we ignore in the diagram goals involving write):

I = t1

t0 t1 t2 t3 t4 t5

keep(A=a)

A = a

q(A)

q(A)

A a b b b b b

After forcing a failure at the top level, backtracking finds the first choice point at
t1. There are two choices here: resatisfy q(A) by matching the fact q(b) or
advancing I. Since advancing the interval variable is always the last choice taken,
q(A) is resatisfied at t1, and then the value of A from t1 to t5 become c, not b.
If we force another failure, backtracking returns to t1. Since the alternatives for
q(A) have been exhausted, advancing I to t2 is the only alternative. Proceeding
forward, Tokio now satisfies q(A) anew, so A is b from t2 on, and is a before t2.
Another backtrack would resatisfy q(A) at t2 (changing b’s to c’s); a subsequent
backtrack would advance I to t3 and satisfy q(A) anew (giving A the value b
from t3 on); etc. The following table summarizes the sequence of solutions.

Intervals values of A

first second t0 t1 t2 t3 t4 t5

<t0t1> <t1t2t3t4t5> a b b b b b
<t0t1> <t1t2t3t4t5> a c c c c c

<t0t1t2> <t2t3t4t5> a a b b b b
<t0t1t2> <t2t3t4t5> a a c c c c

<t0t1t2t3> <t3t4t5> a a a b b b
<t0t1t2t3> <t3t4t5> a a a c c c

<t0t1t2t3t4> <t4t5> a a a a b b
<t0t1t2t3t4> <t4t5> a a a a c c

<t0t1t2t3t4t5> <t5> a a a a a b
<t0t1t2t3t4t5> <t5> a a a a a c

It is possible simultaneously to chop up the same parent interval in two dif-
ferent ways. This may happen any time we have a goal of the form

...,(P1 && P2), ..., (Q1 && Q2), ...

Draft Only — Do Not Distribute ©C copyright 1988 University of Minnesota

42

and backtracking resets the interval variable for P1 or Q1. Hence the two &&’s
chop the parent interval independently. Let us denote the interval variable for P1
by I1 and the interval variable for Q1 by I2. Initially both I1 and I2 mark t1, so
both &&’s chop up the parent interval in the same way. Suppose backtracking
returns to t1 and there are no alternatives at t1 other than those presented by I1

and I2. (For simplicity we assume that the only choice points anywhere result
from I1 and I2.) Since the composite goal (Q1 && Q2) appears after (in the
clause - we are concerned at this point with backtracking along the
current time axis) the composite goal (P1 && P2), I2 will be advanced
to t2. Note that now the two &&’s chop up the parent interval in two differ-
ent ways. Subsequent backtracks into the past will encounter I2 before I1, and I2

will be advanced until it reaches the last point in the parent interval (assuming
the parent interval is closed). Another failure will then cause Tokio to backtrack
back to t1. At this point, the only choice now is to advance I1. As Tokio proceeds
forward, I2 is set anew to mark t1. Subsequent backtracks into the past now
encounter I1 before I2, so I1 is now advanced, while I2 sits at t1. Eventually,
after a sufficient number of failures, I1 will reach the end of the parent interval.
Another failure would cause the entire goal shown above to fail.

This sort of situation is complex enough to warrant an example. So suppose
the database contains

test :- length(5),

N = 3, (N gets N + 1 && stable(N)),

M = 0, (M gets M + 1 && stable(M)),

fin(M = N),

#write((N,M)).

if we issue the query,

tokio test.

at first both I1 and I2 mark t1. Thus N is incremented from 3 at t0 to 4 at t1
and then remain constant, and M is incremented from 0 at t0 to 1 at t1 and then
remains constant. Consequently, at t5 N is 4 and M is 1, so fin(M = N) fails:

I1 = t1

I2 = t1

t0 t1 t2 t3 t4 t5

N gets N+1

N gets N+1

fin(M = N) <fail>

Fail

N 3 4 4 4 4 4

M 0 1 1 1 1 1

Draft Only — Do Not Distribute ©C copyright 1988 University of Minnesota

43

We have simplified the lists of goals shown in the diagram. Also the subintervals
due to the first && are drawn with a — line, while those due to the second && are
drawn with a --- line. The failure of fin(M = N) at t5 initiates backtracking into
the past, which finds no choice points until t1. Neither stable goal can be resat-
isfied, so the interval variable due to the second &&, that is, I2, is advanced to t2.
Thus the M gets M + 1 subgoal must be evaluated at t2, resulting in M having
the value 2 at t2. The stable(M) subgoal now does not appear until t2, marked
now by I2. Thus,

I1 = t1 I2 = t2

t0 t1 t2 t3 t4 t5

N gets N+1

M gets M+1

stable(N)

stable(M)

fin(M = N) <fail>

Fail

N 3 4 4 4 4 4

M 0 1 2 2 2 2

The failure of fin(M = N) at t5 again initiates another backtrack, which advances
I2 to t3. Thus M is incremented to 3 before it is held stable. At t5, M is now 3, so
fin(M = N) again fails. The resulting backtrack advances I2 to t4, and thus
fin(M = N) finally succeeds:

I1 = t1 I2 = t4

t0 t1 t2 t3 t4 t5

N gets N+1

M gets M+1

stable(N)

stable(M)

fin(M = N) <succeed>

Succeed

N 3 4 4 4 4 4

M 0 1 2 3 4 4

Notice that there are two invariants at t5:

N = 3 + I1

M = 0 + I2

If backtracking never advances I1 beyond t1, then N = 3+1 = 4 at t5. Thus M =
N = 4 at t5 when M = I2 = 4, that is, when I2 = 4. Thus we know in advance
that fin(M = N) will fail three times before it succeeds. We may describe the

Draft Only — Do Not Distribute ©C copyright 1988 University of Minnesota

44

entire evaluation succintly by showing only the termination of intervals after sub-
sequent backtracks, and by writing the invariants at t5 beneath t5:

backtrack backtrack backtrack

I1 = 1

I2 = 1

I2 = 2 I2 = 3 I2 = 4

to t1 to t2 to t3

t0 t1 t2 t3 t4 t5

fin(M = N)

N = 3+I1

M = 0+I2

In the example just presented, only I2 (and not I1) was advanced by back-
tracking. We now modify the example so that both I2 and I1 must be advanced
before a solution is found. The database will now contain:

test :- length(5),

N = 0, (N gets N + 1 && stable(N)),

M = 3, (M gets M + 1 && stable(M)),

fin(M = N),

#write((N,M)).

Comparing this with the previous example, we see that, for this example, the
invariant at t5 is

N = 0 + I1

M = 3 + I2

and the successive states of affairs that result when backtracking advances I2 are,
in our succint notation:

Draft Only — Do Not Distribute ©C copyright 1988 University of Minnesota

45

backtrack backtrack backtrack backtrack

I1 = t1

I2 = t1

I2 = t2 I2 = t3 I2 = t4 I2 = t5

t0 t1 t0 t2 t0 t3 t0 t4

t0 t1 t2 t3 t4 t5

fin(M = N)

N = 0+I1

M = 3+I2

If backtracking never advances I1 beyond t1, then N = 1. With 1 ≤ I2
≤ 5 and M

= 3 + I2 at t5, there is no solution to M = N at t5. Thus to find a solution, I1

must be advanced.

Consider the state of affairs when I1 = t1, and I2 = t5. (This is the last
state of affairs covered in the succint diagram above.) The diagram for this is:

I1 = t1 I2 = t5

t0 t1 t2 t3 t4 t5

N gets N+1

M gets M+1

stable(N)

stable(M)

fin(M = N) <fail>

Fail

N 0 1 1 1 1 1

M 3 4 5 6 7 8

The failure at t5 causes evaluation to backtrack back through t4, t3, and t2, until
it finds a choice point at t1. When backtracking into the past previously reached
t1, backtracking along the current-time axis resatisfied the second && subgoal,
with the result that I2 was advanced to t2. When backtracking into the past
reaches t1 this time, it again backtracks along the current-time axis. It now finds
the alternatives for the second && subgoal (governing I2) exhausted. Thus Tokio
backtracks further along the current-time axis at t1. The next choice it encoun-
ters (and indeed, the only choice remaining at t1) is the alternative for the first
&& subgoal (governing I1). Thus I1 is advanced to t2. Proceeding forward, Tokio
evaluates the second && goal anew, and so I2 is placed at t1.

Draft Only — Do Not Distribute ©C copyright 1988 University of Minnesota

46

I2 = t1 I1 = t2

t0 t1 t2 t3 t4 t5

N gets N+1

M gets M+1 stable(M)

stable(N)
fin(M = N) <fail>

Fail

N 0 1 2 2 2 2

M 3 4 4 4 4 4

Failure of fin(M = N) at t5 initiates a backtrack that advances I1 to t3, and
I1 now advances on success or failure as I2 did before. With I2 fixed at 1, we see
from our invariant that, at t5, M = 3 + 1 = 4 and 1 ≤ N ≤ 5. There is thus a
solution for M = N at t5, namely, when I1 = 4. Thus, fin(M = N) and the entire
top-level goal succeed after two failures as evaluation proceeds from the state of
affairs depicted above. The sequence of backtracks advancing I2 are succintly
portrayed as

I1 = t1

I2 = t1

I1 = t2 I1 = t3 I1 = t4

t0 t1 t2 t3 t4 t5

fin(M = N)

N = 0+I1

M = 3+I2

The chops we have just considered may be referred to as parallel chops: they
chop up the same interval, possibly in different ways. The chops we considered
earlier were sequential chops: they chop up a single interval into a sequence of
subintervals. As there may be two or more sequential chops in a single parent
interval, so there may be two or more parallel chops in a parent interval. Any
one of a set of parallel intervals may be treated like any other interval. In partic-
ular, there may be sequential chops within a parallel interval. Similarly, there
may be parallel chops within a sequential interval.

4.3 Summary

CHAPTER 5

Conditionals and Iteration

Draft Only — Do Not Distribute ©C copyright 1988 University of Minnesota

47

5.1 Conditionals

Tokio defines its own conditional statement, which has the form:

if G1 then G2 else G3

The else part is optional. Here G1, G2, and G3 are any Tokio goals. There is no
need to enclose any of G1, G2, or G3 within parentheses since they are evaluated
before the conditional itself.

As an example, consider the clause

test :- length(5), Flg = 0,
#(Flg gets 1 - Flg,

if Flg = 0
then write (0)
else write (1)

).

The following diagram illustrates how this is evaluated:

t0 t1 t2 t3 t4 t5

if Flg = 0

then write(0)

else write(1)

if Flg = 0

then write(0)

else write(1)

if Flg = 0

then write(0)

else write(1)

if Flg = 0

then write(0)

else write(1)

if Flg = 0

then write(0)

else write(1)

if Flg = 0

then write(0)

else write(1)

write(0) write(1) write(0) write(1) write(0) write(1)

Flg 0 1 0 1 0 1

Thus, the value of Flg is output at each time point. If the else part were omit-
ted, the value of Flg would be output only when it is 1. That is, given a condi-
tional

if G1 then G2

if G1 fails, then the entire conditional succeeds (although the then part is
skipped).

Any of the constituent goals of a conditional may be composite (involve more
than one predicate). For example, in the clause above, the conditional could be
(if the predicates foo1 and foo2 are also defined):

(if Flg = 0
then foo1(X), write(0)
else foo2(X), write(1)),

write(X)

Draft Only — Do Not Distribute ©C copyright 1988 University of Minnesota

48

Notice that the parentheses around the conditional are required so that the
write(X) does not become incorporated into the else part. Now, suppose Flg is
0 so the then part is selected. Then the goal becomes

foo1(X), write(0)

If the subgoal foo1(X) fails, then the entire conditional fails; if it succeeds, then
write(0) is evaluated and succeeds, and so the entire conditional succeeds. The
situation is similar if Flg is 1 and the else part is taken. Put succintly, once the
goal following if has been evaluated, the success or failure of the conditional
rides on the success or failure of either the then goal or the else goal, whichever
is selected.

Although the parentheses are not required around the constituent goals in a
conditional, their presence sometimes improves readability. Tokio also allows
curly braces, { ... }, to be used like parentheses.

For example, the last example could be written as

(if { Flg = 0 }
then { foo1(X), write(0) }
else { foo2(X), write(1) }),

write(X)

Our convention shall be to enclose only composite goals within curly braces and
not to use parentheses for this purpose, although they may be used to enclose an
entire conditional. (Note that curly braces may be used anywhere to enclose a —
usually composite — goal.)

5.1.1 Nested Conditionals Conditionals may be nested in any fashion. For
example, the then goal may itself be a conditional:

if G1
then if G2

then G3
else G4

else G5

Note that parentheses or braces are not needed, although this example is clearer
if written as

if G1
then { if G2

then G3
else G4 }

else G5

The dangling else problem is resolved by associating an else with the nearest
if. Thus

if G1
then
if G2
then G3
else G4

Draft Only — Do Not Distribute ©C copyright 1988 University of Minnesota

49

is parsed as

if G1
then { if G2

then G3
else G4 }

Also, in the following, braces (or, alternatively, parentheses) are required if the
conditionalis to be parsed as shown:

if G1
then { if G2

then G3 }
else G4

Probably the most useful way to nest conditionals is within the else goals.
This produces a multiple-branch structure, as in the following:

if G1 then
G2

else if G3 then
G4

•
•
•

else if Gn−1 then
Gn

else
Gn+1

This conditional has
n

2
+ 1 branches (one of them being the else at the end).

5.1.2 Conditionals and Backtracking The behavior of conditionals in the
context of backtracking is straightward. Recall that once it is determined
whether the then or the else is taken, the success or failure of the conditional as
a whole rides on the success or failure of the then goal or the else goal. If back-
tracking returns to the conditional, an attempt is made to resatisfy the goal
selected. If this fails, then the entire conditional fails to be resatisfied. Note that
no attempt is made to resatisfy the if goal.

To take an example, consider

q(3).
q(2).
q(1).
t(X) :- length(3), g(X), #write(X),

if X = 1 then
{ write(a), write(b) }

else if X = 2 then
{ keep(write(c)), fin(write(c)) && write(d) }

else
{ write(e), @ @ write(f), #write(foo) }.

Draft Only — Do Not Distribute ©C copyright 1988 University of Minnesota

50

In the branch taken if X = 2, we have written

keep(write(c)), fin(write(c))

instead of simply

write(c)

so that, when backtracking advances the chop point, write is still evaluated at
the point where backtracking encountered the chop point. If only write(c) were
used, the chop point would be advanced beyond this point and no write would
be evaluated at this point.

When the clause t is evaluated, subgoal q(X) matches the fact q(3) in the
database, so the third branch is taken. This causes write(e) to be evaluated at
t0, write(f) to be evaluated at t2, and write(foo) to be evaluated at all points
in the interval, namely, at t0, t1, t2, and t3. In addition, in parallel with the
conditional, write(X) is evaluated at all points in the interval. The output, then,
is:

t0: 3 e foo

t1: 3 foo

t2: 3 f foo

t3: 3 foo

X = 3

If we then force a failure at the top level, backtracking is initiated and Tokio tries
to resatisfy the branch taken, namely,

write(e), @ @ write(f), #write(foo)

Since the only predicate involved is write, there is no way this may be resatisfied,
so the entire conditional fails, and backtracking returns to the subgoals before the
conditional.

The only resatisfiable goal backtracking finds is q(X). This is now matched
with the fact q(2) in the database, and evaluation resumes in the usual forward
direction. The conditional is encountered, and since X is 2, Tokio now selects the
second branch, namely,

keep(write(c)), fin(write(c)) && write(d)

As always, the first subinterval is given length one initially, so c is output at t0
and t1, and d is also output at t1. The output to this point, from the time back-
tracking was initiated, is thus (recall that the value of X is output at all times):

b2:

b1: 2 c

t1: 2 c d

t2: 2

t3: 2

X = 2

Draft Only — Do Not Distribute ©C copyright 1988 University of Minnesota

51

Note that the time labeled "b1:" is actually t0.

If backtracking is initiated again, tokio attempts to resatisfy the same
branch. It does so by advancing the chop point from t1 to t2. To do this, it
must go back to t1, and then proceed forward anew. The new output is:

b2:

b1: c

t2: 2 c d

t3: 2

X = 2

(Note that only the write(c), and not the write(X), was evaluated at t1.)
Another backtrack will advance the chop point from t2 to t3:

b2: c

t3: 2 c d

X = 2

5.1.3 Composite if Goals As mentioned before, any of the goals in a condi-
tional (the if goal, the then goal, or the else goal) may be composite; in fact,
any of them may be arbitrarily complex. So far, we have seen examples of com-
posite then and else goals. We turn now to cases in which the if goal is com-
posite. We first consider composite if goals involving no temporal operators, and
then we look at cases in which temporal operators are involved.

The first thing to note is that a variable, say X, appearing in the if goal is
the same variable as an X appearing in the then or else goal. For example, sup-
pose predicate t is defined by

t :- if q(X)
then write(X)
else write(’q(X) failed’).

Then, if q(X) succeeds with X bound to 1, since the X in the else goal is the
same X as the X in the then goal, the value 1 will be output.

When a composite if goal involves no temporal operator, it is evaluated like
a composite Prolog goal with the exception of one feature to be mentioned
shortly. In particular, backtracking along the current time axis within the if goal
proceeds as in Prolog. As an example, suppose the database contains

q(3).

q(2).

q(1).

Draft Only — Do Not Distribute ©C copyright 1988 University of Minnesota

52

p(1).

p(2).

t :- if q(X), p(X)
then write(yes)
else write(no).

When the t goal is evaluated, the subgoal q(X) in the if goal will succeed with X
bound to 3. Then the p(X) subgoal fails, backtracking returns to q(X), which is
resatisfied with X bound to 2, and then a new evaluation of p(X) succeeds. Thus,
the then goal is selected, and yes to output at t0.

Now suppose the if goal in the above definition of t is changed to

q(X), p(Y), X = Y

We would expect that first of all the q(X) subgoal would succeed with X bound to
3, then the p(Y) subgoal would succeed with Y bound to 1, and then X = Y sub-
goal would fail, thus initiating backtracking. What in fact happens is that, after
q(X) succeeds, Tokio looks for a fact p(3) in the database (and fails). That is,
Tokio incorporates the X = Y constraints directly into the variables of the other
subgoals. This is the feature alluded to above in which a Tokio if goal involving
no temporal operator differs from a Prolog goal.

When the if goal contains temporal operators, its success or failure at the
first part of the interval (which we shall assume to be t0) alone determines
whether the then goal or the else goal is selected, but, if the if goal fails at
some ti, i > 0, then the entire conditional fails. There is no backtracking into
the past within the if goal, although, as we have seen, there may be backtracking
along the current time-axis. Thus, when the if goal involves temporal operators
and succeeds at t0 (so the then goal is selected), evaluation of the if goal at
times ti, i > 0, monitors the state of affairs as time progresses; if things do not
transpire as stated in the if goal, the then goal is abandoned.

As an example, suppose the database contains

q(2).

q(1).

p(1).

p(3).

t1 :- if @q(X), #write(X)
then #write(yes)
else #write(no).

When t1 is evaluated, the only subgoal derived from the if goal that is evaluated
at t0 is write(X). This succeeds, and so the then goal is selected. Thus, at t0, a
value such as _78 (indicating an unbound variable) is output for X, and this is fol-
lowed by a yes output by the then goal. At t1, the subgoal q(X), derived from
the if goal, is evaluated and succeeds, with X bound to 2. Thus, 2 is output by
the write(X) derived from the if goal, and the then goal is permitted to pro-
ceed, and so outputs another yes.

Now suppose there are no q facts in the database, so the @q(X) in the if
goal fails. Since this has no effect until t1, the situation remains unchanged at t0;

Draft Only — Do Not Distribute ©C copyright 1988 University of Minnesota

53

in particular, the then goal is still selected. At t1, q(X) fails, so the write(X) is
not evaluated, and the then goal is abandoned, so write(yes) is not evaluated.
Finally, the entire conditional fails with no attempt at resatisfying q(X).

Next, suppose we have the same database, but with the definition of t2
replaced with

t2 :- if length(1), (q(X) && p(X)), #write(X)
then #write(yes)
else #write(no).

When t2 is evaluated, q(X) will succeed at t0 with X bound to 2. Thus
write(X) outputs 2, the then goal is selected, and write(yes) outputs yes. The
chop point occurs at t1. Here X is still 2, but the attempt to satisfy p(X) at t1
fails. Thus the entire conditional fails, and in particular, the then goal is aban-
doned. Note that no attempt is made to backtrack into the past to resatisfy q(X)
at t0. If, on the other hand, the if goal were

length(2), (g(X) && @p(X)), #write(X)

then the if goal would succeed at t1, resulting in 2 (for X) and yes being output.
At t2, X would initially be unbound, so p(X) would succeed with X bound to 1.

5.2 Iteration Across Time

5.2.1 Recursion with Temporal Operators Sometimes it is natural to com-
bine recursion with temporal operators to drive evaluation of Tokio predicates
through time. We content ourselves with a simple example. Let

loop(I) :- I < 4,
@I = I + 1

&& loop(I).
loop(I).

t :- I = 0, loop(I), #write(I).

Note that the subgoals in the first loop clause are associated as

(I < 4, @I = I + 1) && loop(I)

When t is evaluated, I at t0 gets the value 0. The remaining subgoals, loop(I)
and #write(I), and evaluated in parallel, so, at each time ti, i ≥ 0, the value
loop gives to I is output by write. When loop is evaluated at t0, I is 0, so I <

4 succeeds, and

@I = I + 1

causes I to have the value 1 at t1. The && causes the recursive loop(I) subgoal
to be evaluated at t1. At t1, then, I is 1, so I < 4 succeeds, I at t2 gets the
value 2, and loop(I) is evaluated at t2. At t2, I at t3 gets 3, and, at t3, I at t4
gets the value 4. At t4, I < 4 fails, so the first loop clause fails; hence the recur-
sive subgoal loop(I) in the loop clause as evaluated at t3 (so the recursive sub-
goal is evaluated at t4 because of the &&) is satisfied by the second loop clause in
the database. Since this clause has no subgoals, nothing more is done, and the
evaluation of t succeeds. The resulting output is :

Draft Only — Do Not Distribute ©C copyright 1988 University of Minnesota

54

t0 : 0

t1 : 1

t2 : 2

t3 : 3

t4 : 4

Now suppose we force the last subgoal in the evaluation just traced to fail by
typing a ";". The last subgoal was satisfied by the second loop clause in the
database. Since this clause has no subgoals, the loop subgoal after the && in the
last call to the first loop clause fails. Backtracking first encounters the &&, so we
backtrack one time unit into the past, from t5 to t4, and advance the chop point
from t4 to t5. The value of I at t4 remains 4. Tokio reports this backtracking
into the past by outputting

b4 : 4

That is, we backtrack back to t4 (to advance the chop point), and as execution
proceeds forward, the write resulting from #write(1) is the last thing evaluated
before we move from t4 to t5. At t5, we must now satisfy the loop(1) subgoal
after &&. This is first attempted by trying the first loop clause. The first subgoal
in this is I < 4. But now I has no value at t5. So when an attempt is made to
evaluate I < 4, the system reports that an argument in an arithmetic expression is
not a number, and bombs.

This problem is important because, when we define a predicate, we put no
constraint on the contexts in which it may be used. In particular, any predicate
we define must make a reasonable response when encountered by backtracking.
One reasonable way for the loop predicate to behave in backtracking might be to
extend the value of I at t4 to t5, and then carry on with the sequence as usual
for subsequent times. However, given the way loop is defined, this is not natural
and cannot be achieved in a straightforward fashion. A more reasonable way for
loop to behave in backtracking is to throw away the last time and have the recur-
sion terminate one time point earlier, at t3 in our example. The intuition behind
loop is that it gives I the value i at time ti until i equals 4. If a value is propa-
gated back to a loop subgoal, loop in effect is asked to supply another solution,
which we might take to mean the next less committal solution. We are claiming
that the next less committal solution is that which is identical to the original
solution except that it does not determine I at the last time point where the orig-
inal solution determined it. What this alternative solution should not do, we
claim, is move any chop points, The && is included in loop so that loop may
drive time forward one point per recursion cycle. If chop points could be moved
forward in time, loop would no longer drive time in the same simple, uniform
manner.

The way to fix the chop point so that they are always one time unit apart is
to include a length(1) subgoal before the && in the first loop clause. Recall that
skip is the same as length(1). So our modified definition of loop is

loop(I):- I < 4,
@I = I + 1, skip

&& loop(I),
loop(I).

Draft Only — Do Not Distribute ©C copyright 1988 University of Minnesota

55

Suppose we again define t by

t :- length(5), I = 0, loop(I), #write(I).

Then evaluating t gives, as before, the output

t0: 0

t1: 1

t2: 2

t3: 3

t4: 4

t5: _10

where _10 is some unbound variable. If we type ’;’ to force a backtrack, then the
loop subgoal after the && in the last call to loop fails. Since the chop point can-
not be moved (because of the skip) and none of the previous subgoals can be
resatisfied, this call to loop fails. This means that the loop subgoal after the &&
in the previous call to loop fails. But now this subgoal may be satisfied by the
second loop clause, which now terminates the recursion. Note that we have tra-
versed backwards over one &&, moving from t5 to t4, and over a second &&, mov-
ing from t4 to t3. Resatisfying the last (in the backward direction) loop subgoal
we have just considered does not require backtracking over a further &&. Thus we
backtrack to t4, then to t3, where a loop subgoal is resatisfied by the nonrecur-
sive clause and write(I) is executed again, outputting 3, and time proceeds for-
ward again, but now with no values for I, since the loop subgoal in t finished at
t3:

b4:

b3: 3

t4: _9

t5: _10

If we force another backtrack, we go back to t2 and resatisfy with the nonre-
cursive loop clause:

b4:

b3:

b2: 2

t3: _8

t4: _9

t5: _10

Another forced backtrack take us back to t1:

b4:

b3:

b2:

Draft Only — Do Not Distribute ©C copyright 1988 University of Minnesota

56

b1: 1

t2: _7

t3: _8

t4: _9

t5: _10

Another takes us to t0:

b4:

b3:

b2:

b1: 0

t1: _6

t2: _7

t3: _8

t4: _9

t5: _10

(The ’0’ should actually be next to a ’b0:’, not a ’b1:’; recall that Tokio does not
admit that it backtracks to t0). At this point, we have backtracked back in time
to the first call to loop and the recursive loop subgoal after the && in this call is
satisfied by the nonrecursive (the second) loop clause. If we force another failure,
there is no other way for the recursive loop subgoal to succeed, and so the entire
query fails.

b4:

b3:

b2:

b1:

-- fail --

5.2.2 while The general scheme illustrated by loop, where time is driven for-
ward by recursion after a && and is halted when a condition is nolonger satisfied,
could be encoded as follows:

loop(Cond, Body):- if Cond
then Body && loop(Cond, Body).

In fact, Tokio has a while operator that does much the same as the more general
loop. A goal of the form

while C do B

Draft Only — Do Not Distribute ©C copyright 1988 University of Minnesota

57

is parsed as

while (C do B)

In fact, do itself is an infix operator, so the parse tree is

BC

do

while

While is defined as

(while Cond do Body):- if Cond
then Body && while Cond do Body
else empty.

This differs from the definition we give of the general loop in that it combines an
else clause: when Cond fails, this definition requires that empty succeed. Empty
will succeed if the current time is at the end of an interval. If the interval is
closed, empty is already true; if it is open-ended, empty may be made true. So
while must finish at the end of an intervaland will close off the interval if it is
open-ended.

5.2.3 while and Backtracking Unfortunately, empty is not properly imple-
mented in the current version of Tokio. A subgoal empty always succeeds and,
when backtracking encounters a subgoal empty, it goes into an infinite loop,
advances from one time to the next. Consequently, backtracking goes into the
same infinite loop when it encounters a while. Thus while should be avoided.
Nevertheless, we shall include a few additional remarks, hoping that the bugs will
soon be repaired.

5.2.4 Nested while’s and if’s while has a precedance similar to that of if,
so parentheses are rarely needed within the condition or the body goals. Still,
curly brackets ({...}) surrounding these goals may improve readability. As with
the goals in a conditional, the condition and the body goals may be arbitrarily
complex and may include temporal operators. While structures may be nested in
the obvious way. Thus,

while C1 do while C2 do B

is parsed as

while C1 do (while C2 do B)

Draft Only — Do Not Distribute ©C copyright 1988 University of Minnesota

58

Whiles and conditionals may be nested together without much fear of violating
syntax. Thus,

while C1 do if C2 then T else E

is parsed as

while C1
(if C2

then T
else E

)

and

if C1 then while C2 do B1 else while C3 do B2

is parsed as

if C1
then (while C2

do B1
)

else (while C3
do B2

)

5.3 Summary

CHAPTER 6

Static Variables

In Prolog, assert is used to record a result reached in evaluating a clause so
that it is available when other clauses are later evaluated. On the other hand,
retract is used so that an axiom (fact or rule) available when one clause is eval-
uated is no longer in force when other clauses are later evaluated. The combina-
tion of retract and assert may be used to modify the contents of the database,
that is, the set of axioms, in midcourse. In general, assert and retract are used
for their side effects. However, assert and retract do not have their usual util-
ity in Tokio. This is because Tokio is compiled, that is, the contents of the data-
base when a Tokio program is executed is the output of the Tokio compiler. If
something was not in the file given as input to the Tokio compiler, then it is
unknown to the compiled Tokio program. Likewise, retracting something at run-
time does not do away with its image in the compiled code, and so has no effect

Draft Only — Do Not Distribute ©C copyright 1988 University of Minnesota

59

on run-time behavior.

Regarding the ability to make use of side effects, however, Tokio more than
compensates for the loss of assert and retract by allowing global and static
variables. These may often be thought of in analogy with literals asserted into
the database and modified by combinations of retract and assert. However, it
is not so much the global and static variables themselves that are of interest as it
is their values. Because of this and because such variables serve as persistent
stores for values, they are similar to variables in imperative languages such as
Pascal and FORTRAN.

6.1 Assigning and Referencing Values

We describe static variables here. The present implementation does not dis-
tinguish global variables from static ones. A static variable retains its value until
explicitly changed; it thus behaves like storage. The operator * creates a static
variable. The := operator is used to assign a value (to the right of :=) to a static
variable (to the left); thus for example, *s := 1 assigns the value 1 to the static
variable *s. Efficiency is improved if static variables are declared. If s1, s2, and
s3 are static variables, then they are declared as such with the fact (usually put
at the top of the program static([s1, s2, s3])).

A static variable may not be used as an argument in a subgoal. More
exactly, suppose, for example, we have a clause with head foo(s) and suppose
the subgoal foo(s) occurs somewhere in the body of another clause. Then, when
foo(*s) is evaluated, s is bound to *s, and not to the value of *s. Thus, in place
of

write(*s)

one must use something like

S = *s, write(S)

Note that = is used to bind a logical (i.e. normal) variable to the value of a static
variable. It has no effect on the value of the static variable. In particular, if *s
has no value, evaluation of *s = 1 leaves *s with no value.

Consider the following program:

t:- in && out.

in:- *s := 1.

out:- S = *s, write(S).

When t is evaluated, in is evaluated at t0, and so *s is assigned the value 1 at
t0. Then out is evaluated at t1, so S is bound to the value of *s, namely, 1, and 1
is output at t1. If out were defined rather as

out:- write(*s).

then, at t1, *s, not 1, would be output. Suppose the definition of out were
replaced by

out:- S = *s, incr(S, S1), write(S1).

Suppose incr is defined by

incr(In, Out) :- Out = In + 1.

Draft Only — Do Not Distribute ©C copyright 1988 University of Minnesota

60

Then, at t1, S, is bound to 1 (the value of *s), evaluation of incr(S, S1) results
in S1 being bound to 2, and 2 is output. If out were defined rather as

out:- incr(*s, S1), write(S1).

then, at t1, the system would attempt to evaluate *s + 1, resulting in an error
because *s (as opposed to its value) is not numerical.

Even though a static variable may not be used as an argument in a predi-
cate, it may be an argument in an arithmetic expression (as long, of course, as it
has a numerical value). Consider, for example, the following program:

t :- *s := 0, loop(5), #{ S = (s= *s), write(S)}.

loop(Limit) :- *s < Limit,
@(*s := *s + 1)
&& loop(Limit).

loop(_).

Tokio is able to evaluate the arithmetical expressions *s < Limit and *s + 1.
Note in particular the assignment

*s := *s + 1

Thus, as in imperative language, a static variable may be updated to a value that
is a function of its current value. Note how the value of *s is identified in the
output produced by t. The goal S = (s= *s) binds S to two elements: the atom
s= and the value of *s. Suppose the value of *s is 3. Then the subgoal write(S)
will output s=3. The loop predicate here is like the loop predicates we considered
earlier: the first clause consists of a condition (*s < Limit), a body (@(*s := *s
+ 1)), and a recursive call to itself after the chop. (The chop and recursive call
combination drives the loop forward in time.) The second loop clause allows a
call to loop to succeed when the condition in the first clause becomes false. Here
the predicate t initializes the static variable *s to 0 at t0, calls loop with Limit
bound to 5, and outputs the value of *s for all times. The body of loop incre-
ments *s in the next time so that each recursive call of loop sees a value for *s
one larger than that seen by the current call. The result is that *s has the value i
for time ti, 0 ≤ i ≤ 5 = Limit.

6.2 Instantaneous vs. Temporal Assignment: := and <=

A static variable as updated by the instantaneous assignment operator, :=,
acts as an individual latch that can be read immediately by any predicate. There
is also a temporal assignment operator, <=. The effect of, say,

*s <= 1

appears at the end of the current interval. Thus a static variable as updated by
the temporal assignment operator acts as a common bus memory; the memory
unit is considered a remote device. The same static variable may be assigned val-
ues by using := at one time and using <= at another.

Before we present our simple example of the use of the temporal assignment
operator, we must describe what happens when a static variable without a value
is referenced. Suppose *s has no value and the subgoal S = *s is evaluated. Then
Tokio will print the message

Draft Only — Do Not Distribute ©C copyright 1988 University of Minnesota

61

Reference not assigned value -- s1

For example, suppose t is defined as

t :- (true && *s1 := 1), #(S = *s1, write(S)).

Evaluation of t will result in the output

t0:

Reference not assigned value -- s1

_188

t1:1

The _188 output at t0 represents the unbound variable S in write(S). The refer-
ence to *s1 that produced the message at t0 is the reference in S = *s1.

Now, as an example of the use of the temporal assignment operator, consider

t :- length(3), { length(2), *s1 <= 1 && true }, #{ S = *s1,
write(S)}.

When t is evaluated, the main interval of length three is chopped into an initial
interval of length two followed by an interval of length one. The *s1 <= 1 sub-
goal is evaluated in the first interval, at t0, but the assignment does not take
effect until the end of this interval, at the end of t1. Thus the value 1 cannot be
accessed as the value of *s1 until t2. Thus, when t is evaluated, the following
output results:

t0:

Reference not assigned value -- s1

t1:

Reference not assigned value -- s1

t2: 1

Temporal assignment allows one to delay the change in the value of a static
variable when the future value is already known. Thus the current value may be
retrieved throughout the remainder of the present interval. In the next interval,
the new value is retrieved when the static variable is accessed. Consider, for
example, the following program:

t :- length(4), #{ S = (s1= *s1, s2= *s2, s3= *s3), write(S)},
{ (length(1), *s1 := 1)

&& (length(2), *s1 <= 2, @(*s2 := *s1 + 1, @(*s3 := *s1 + 2)))
&& length(1)

}.

When t is evaluated, the following subgoals are evaluated at the indicated time
points:

t0: *s1 := 1

t1: *s1 <= 2

Draft Only — Do Not Distribute ©C copyright 1988 University of Minnesota

62

t2: *s2 := *s1 + 1

t3: *s3 := *s1 + 2

t4: -- nothing --

Note that the present interval <t0 t1 t2 t3 t4> is divided into subintervals <t0
t1>, <t1 t2 t3>, and <t3 t4>. Thus, because of *s1 := 1, *s1 has the value 1
at the end of t0. Because of *s1 <= 1 and the fact that t1 is a point in the inter-
val ending at t3, *s1’s value does not change to 2 until the end of t3. Thus the
subgoals evaluated at t2 and t3 access the value 1 for *s1. Thus *s2 is assigned 2
at the end of t2 and *s3 is assigned 3 at t3.

The instantaneous assignment operator := causes assignement at the end of
the time point at which it is evaluated, after evaluation of any = subgoals at that
point. The output, therefore, lags one time point behind the effects of instanta-
neous assignments. Thus the output when the t predicate defined above is evalu-
ated is (where unassigned-variable messages have been suppressed and _1, for
example, indicates an unbound variable):

t0: s1 = _1, s2 = _2, s3 = _3

t1: s1 = 1, s2 = _4, s3 = _5

t2: s1 = 1, s2 = _6, s3 = _7

t3: s1 = 1, s2 = 2, s3 = _8

t4: s1 = 2, s2 = 2, s3 = 3

A static variable may be assigned more than one value at one time point. In
that case, the last value assigned is the value the variable has after that point.
For example, the sequence

*s := 1, *s := 2

will result in *s having the value 2 at the end of the current time point, and

*s <= 1, *s <= 2

will result in *s having the value 2 at the end of the current interval. If,

*s <= 1, *s := 2

is evaluated at the last point in an interval, then *s will have the value 1 at the
end of the point and the interval. This is because a temporal assignment always
takes effect after an instantaeous assignment evaluated at the same time.

6.3 Relation between Static and Logical Variables

If a normal variable is assigned to a static variable, and the normal variable
is then bound to a value at the same time point, then the static variable gets this
same value. For example, evaluating

*s := Z, Z = 1

causes 1 to be stored in *s. However, an attempt to store a $t-list in a static vari-
able results in only the first element of the $t-list being stored. For example, eval-
uating

Draft Only — Do Not Distribute ©C copyright 1988 University of Minnesota

63

Z = 1, @ Z = 2, *s := Z

results in 1 being stored in *s, even though the value Z is $t(1, $t(2, _)).
Thus, with respect to temporal variables, ’:=’ behaves like ’=’ in that the unifica-
tion is at the current time only, not (as when a goal matches the head of a clause)
over all time. If we later evaluate

S = *s, #write(S)

the value 1 will be output for the current and all subsequent times. The operator
’:=’ is unlike ’=’, however, in that static variables cannot be made to share. For
example, if

*s := [X, 2, 3]

is evaluated, and then, in a different clause,

[X, 2, 3] = *s, X = 1

is evaluated, the first element in the list stored in *s remains uninstantiated.

6.4 Static-Variable Assignment and Backtracking

Unlike assert and retract, the effects of instantaeous and temporal assign-
ments are undone by backtracking, whether the backtracking is done in current
time or into the past. Consider, for example:

t:- *s := 1, fail.

t:- S = *s, write(S).

When t is evaluated, the first clause is chosen, so *s is assigned a 1. The fail
causes the first clause to fail, so the second clause is chosen, and the value of *s is
bound to S and output. Since backtracking over the *s = 1 subgoal (which can-
not be resatisfied) undoes its effct, an unbound variable value is output. Next
consider:

t :- length(2),
{ *s <= 1,
&& skip
&& S = *s, write(S), fail

}.
t :- length(2), #{S = *s, write(S)}.

When t as thus defined is evaluated, the first clause is chosen. At t0, the *s <=
1 subgoal is evaluated. This is done in the interval < t0 t1 >. Thus at t2, when

S = *s, write(S), fail

is evaluated, *s has the value 1, which is output. But the fail is encountered,
which forces the system to backtrack into the past. At t2 and t1, no resatisfiable
goals are found. So the system returns to t0. Since *s <= 1 cannot be resatisfied,
the second clause is chosen. Evaluation then proceeds forward in time through t0,
t1 and t2. At each point, the value of *s is output. Since backtracking undoes
the effect of <=, at each point, including t2, an unbound variable value is output.

Draft Only — Do Not Distribute ©C copyright 1988 University of Minnesota

64

6.5 Static Variables as Arrays

Static variables may have arguments, and hence act like arrays. For example,
suppose t is defined by

t :- init && out.

init :- *g(1,1) := 1, *g(1,2) := 2,
*g(2,1) := 3, *g(2,2) := 4.

out :- G11 = *g(1,1), G12 = *g(1,2),
G21 = *g(2,1), G22 = *g(2,2),
write((G11,G12,G21,G22)).

When t is evaluated, at t1 Tokio will output

1,2,3,4

Here *g acts like a two-by-two array.

We may thus write programs that loop over the elements of arrays of several
dimensions. For example, consider:

t(Rs, Cs) :-
*cols := Cs, init(1, 1, Rs, Cs), nl,
out(1, 1, Rs, Cs).

init(I, J1, In, Jn) :-
I =< In, !,
init1(I, J1, Jn), I1 = I + 1,
init(I1, J1, In, Jn).

init(_,_,_,_).

init1(I, J1, Jn) :-
J <= Jn, !,
*g(I, J) := (I - 1) * *cols + J,
J1 = J + 1,
init1(I, J1, Jn).

init1(_,_,_).

out(I, J, In, Jn) :-
I <= In, !,
out1(I, J1, Jn), nl, I1 = I +1,
out(I1, J1, In, Jn).

out(_,_,_,_).

out1(I, J, Jn) :-
J <= Jn, !,
K = *g(I,J), tab(3), write(k),
J1 = J + 1,
out1(I, J1, Jn).

out1(_,_,_).

Draft Only — Do Not Distribute ©C copyright 1988 University of Minnesota

65

The program produces the following output (which we have prettied slightly to
align coulmns), when t(4,6) is evaluated:

t0:
1 2 3 4 5 6
7 8 9 10 11 12
13 14 15 16 17 18
19 20 21 22 23 24

t1:

t(Rs, Cs) computes in row-major form the integers from 1 to Rs*Cs and stores
these values in the Rs-by-Cs array *g(I, J). The first Cs positive integers are
stored in row 1, the second Cs are stored in row 2, etc. It then outputs the con-
tents of *g(I, J), one row per output line. Predicate t first evaluates *cols := Cs
so that the number of columns is later available as the value of *cols. It then
evaluates init(1, 1, Rs, Cs), which stores values in array *g(I, J). Predicate
init loops over rows and evaluates init1(I, J1, Jn) for each row I, 1 ≤ I ≤

Rs. Predicate init1, for a given row I, loops over the columns J, 1 ≤ J ≤ Cs. For
each column J, it computes the value of *g(I, J) as

*g(I, J) := (I - 1) * *cols + J

The last thing t does is evaluate out(1, 1, Rs, Cs), which outputs the contents
of the array. Structually, out is like init, looping over rows and evaluating out1
(and analogous to init1) to loop over columns. The sequence of subgoals in out1
responsible for output is

K = *g(I, J), tab(3), write(K)

It is difficult to make t as defined above more general. The best we can do is
write a predicate to compute array values, say

f1(I, J, Res) :- Res = (I - 1) * *cols + J.

Then, to compute array elements differently, one redefines f1. One is tempted to
add another argument to t, init, and init1, say Func, to be bound to the func-
tor of the predicate computing array values. The intent would be to use univ to
construct the subgoal computing the array element:

Goal =.. [Func, I, J, K], call(Goal), *g(I, J) := K

The problem with this is that Goal is constructed at run-time and the predicate
whose functor, say f1, is bound to Func is compiled, and so is in a form different
from the f1 predicate originally written. For the same reason, it is not possible to
add an argument, say Array, and construct an array-assignment goal such as

Goal1 =.. [Array, I, J], Goal2 =.. [’:=’, Goal1, K],
call(Goal2)

Thus we must be satisfied with predetermined array name predicates for comput-
ing element values. However, this does allow us to keep several distinct global
memories.

A static variable may be used with different numbers of indices. For example,
we could have

*s(1) := 1, *s(1, 1) = 2

An alternative to using array notation is to store a list (possibly of lists) in a
scalar static variable. Thus, instead of

Draft Only — Do Not Distribute ©C copyright 1988 University of Minnesota

66

*s(1, 1) := 1, *s(1, 2) := 2, *s(2, 1) := 3, *s(2, 2) := 4,
*s(3, 1) := 5, *s(3, 2) := 6

we could use

*s := [[1, 2], [3, 4], [5, 6]]

To output, for example, the element in the second row, first column, we would use

[_, [X, _], _] = *s, write(X)

The structure used to implement arrays need not be lists. For example, we could
use

*s := ((1, 2), (3, 4), (5, 6))

and then

(_, (X, _), _) = *s, write(X)

Hybrids between array and structure notation are possible. Thus, for what is con-
ceptually a three-dimensional array, we could have

*g(1, 2) := [a, b, c]

and output one element with

[_, X, _] = *g(1, 2), write(X)

The indices themselves may be structures, thus allowing a sort of associative
memory. Thus we could store distances, both by air and by car, between cities
with

*distance(air(detroit, miami)) := 1100,
*distance(car(detroit, miami)) := 1300,
*distance(air(detroit, boston)) := 700,
*distance(car(detroit, boston)) := 900

To output the distance by car between Detroit and Miami, we would use

D = *distance(car(detroit, miami)), write(D)

Lists may be used as indices. Suppose, for example, we are simulating a very sim-
ple computer with four-bit memory addresses and eight-bit memory words; we
represent a binary number by a list of 0’s and 1’s. Then, to store the value 2 at
address 2, we would use

*mem([0,0,1,0]) := [0,0,0,0,0,0,1,0]

An index can even be another static variable. For example, to store the contents
of the data buffer register (DBR) at the address in memory stored in the memory
address register (MAR), we could use

*mem(*mar) := *dbr

When an assignment is made, an index may be a variable. This has the effect
of assigning the same value to an entire family of array cells. For example, evalua-
tion of

*mem(0,_,1) := foo

followed by evaluation of

M1 = *mem(0,1,1), M10 = *mem(0,10,1), M = *mem(0,_,1),
write((M1, M10, M))

Draft Only — Do Not Distribute ©C copyright 1988 University of Minnesota

67

results in the output

foo, foo, foo

The reverse technique, however, is not useful. That is, suppose values are
assigned to array elements whose indices are fully specified, for example,

*s(1) := 11, *s(2) := 12

Then an array reference *s(X) will retrieve the last value assigned to an array
element of the form *s(_). For example,

W = *s(X)

binds W to 12, and

11 = *s(X)

fails since it attempts to unify 11 and 12.

However, a related technique is useful. Suppose a partially instantiated struc-
ture is assigned to a family of array cells by virtue of the fact that a variable
index is used, for example

*s(1,_) := (a,_)

The structure may be retrieved, uninstantiated parts may be instantiated in vari-
ous ways, and the results may be stored in members of the family of array cells
that originally contained the partially instantiated structure. Given the above
assignment, we may fill out the structure (a, _) differently for elements *s(1,1)
and *s(1,2):

(X,_) = *s(1,1), *s(1,1) := (X, b)

and

(X,_) = *s(1,2), *s(1,2) := (X, c)

This technique allows for progressive differentiation of array elements and their
contents.

6.6 Summary

CHAPTER 7

Macros

Tokio has a macro facility that allows functions and relations to be defined
so that uses of these functions and relations are expanded in line in the clauses in
which they appear. We here first discuss functions, and then turn to relations
defined as macros.

Draft Only — Do Not Distribute ©C copyright 1988 University of Minnesota

68

7.1 Defining and Applying Functions: $function

A function definition is introduced by the keyword $function and is termi-
nated with a full stop. It has the form

$function <expression in X1, ..., Xn> = <return value, Z>
:-

<goal sequence in X1, ..., Xn
determining Z>.

Here the variables X1, ..., Xn are variables that may be thought of as the formal
parameters of the function. The variable Z gets bound to the function value. Nor-
mally, the expression to the left of the ’=’ is the function name with the formal
parameters as arguments, so the head of the defining clause has the form

<function name> (X1, ..., Xn) = Z

7.1.1 Function Applications that Return Values One way in which a
function may be applied within a clause is as one term in an equality expression:

.... :- ..., <expression in a1, ..., an> = Z,...

Here a1, ..., a2 may be variables or constants. The most common form for the
expression to take is

<function name> (a1, ..., an)

For example, the following function increments its argument by one:

$function incr(I) = I1 :- I1 = I + 1.

Suppose incr is applied in the definition of t:

t(X) :- incr(X) = W, write(W).

(Note that the order of incr(X) and W is immaterial.) Then the compiler
replaces incr(X) = W with its definition to give what would have resulted if t
had been defined by

t(X) :- W = X + 1, write(W).

As a second example, suppose function foo is defined by

$function foo(I,J) = I1 :- g(I,X), h(J,Y), I1 = X + Y.

We assume g and h are defined by their own clauses, say

g(1,1).

g(2,2).

h(1,2).

h(2,1).

Now suppose foo is used in

t :- X = foo(1,2), write(X).

Then the compiler uses the definition of foo to expand X = foo(1,3), in effect
giving

Draft Only — Do Not Distribute ©C copyright 1988 University of Minnesota

69

t :- g(1,X1), h(2,Y), X = X1 + Y, write(X).

Functions may also appear in arithmetical expressions, for example,

3 + foo(1,1) * foo(2,2) > incr(2)

Given the above definitions of incr and foo, this is expanded to

g(1,X1), h(1,Y1), I1 = X1 + Y1,

g(2,X2), h(2,Y2), I2 = X2 + Y2,

I3 = 2 + 1,

I4 = 3 + I1 * I2,

I4 > I3

Again, a function expression may occur as the argument of a predicate or even as
the argument of another function. For example,

write(incr(foo(2,1)))

is expanded to

g(2,X), h(1,Y), I1 = X + Y, I2 = I1 + 1, write(I2)

It is sometimes beneficial to declare an operator that is then given a meaning
in one or more function definitions. Consider, for example, the following

:- op(100, xfy, ’::’).

$function X::first = U :- X = (U,V,W).

$function X::second = V :- X = (U,V,W).

$function X::third = W :- X = (U,V,W).

Here three zero-ary functions, first, second, and third, are defined. They occur
as the right operands of the infix operator :: ; these function definitions may thus
be viewed as defining the meaning of :: . Note that the left operand of :: is
expected to be a structure of the form (U,V,W). If the left operand is not of this
form, then an attempt to evaluate one of the functions first, second, or third
results in failure. Function first simply returns the first element in a structure
of the form (U,V,W); second and third return the second and third elements,
respectively.

Now consider the clause

t :- A = (2,4,6), W = 2 * A::first + 3 * A::second -
A::third, write(W).

The Tokio compiler is smart enough to rewrite this (in light of the definitions of
first, second, and third) as

t :- W = 2 * 2 + 3 * 4 - 6, write(W).

Predefined operators can also be exploited. Consider, for example,

$function (if Cond then Yes else No) = Reply :-

if Cond then Yes = Reply else No =
Reply.

Draft Only — Do Not Distribute ©C copyright 1988 University of Minnesota

70

Suppose this functional expression is used in

t :- g(1,X), g(2,Y), write(if Y>X then 1 else 0).

(We assume that g is defined as above.) The compiler expands this to:

t :- g(1,X), g(2,Y),
{if Y > X then 1 = Reply else 0 = Reply},
write(Reply).

7.1.2 Function Definitions as Conditional Equalities We have thus far
thought of functions largely in terms of expressions that are evaluated to produce
return values. It should be kept in mind, however, that the function facility in
Tokio is a macro facility that expands expressions in accordance with what may
be viewed as conditional equations. For a function definition

$function LHS = RHS :- condition

states that the left hand side (LHS) of the equation may be replaced by the right
hand side (RHS) if the goal condition succeeds. Bindings made to LHS are in
force when condition is evaluated, and bindings established by this evaluation
are in force when RHS replaces LHS. Alternatively, if the function is applied as
part of an equation, it is possible for RHS and LHS both to have bindings, since
the head of the function definition (i.e. the entire equality) then matches the
equality constituting the function application. Further bindings may then be
imposed on either LHS or RHS as a result of evaluating condition.

As an example, suppose we have a relation nth(N,List,Element), whose
logical reading is : Element is the Nth element in list List (where the head of
List is considered the zeroth element). This may be defined by

nth(0, [H|T], H) :- !.

nth(N, [H|T], H1) :- N1 = N - 1, nth(N1,T,H1).

Now, in general, if we have a relation f in n variables and, for each tuple of values
for the first n-1 variables, there is at most one value for the nth variable, then we
may regard f as a function in the first n-1 variables whose function value is the
value of the nth variable. The relation nth meets these requirements, so it makes
sense to define

$function nth(N,L) = E :- nth(N,L,E).

Now notice that, in the definition of the relation nth, arithmetic is performed on
the first argument, so this argument must be an input argument. Also, the sec-
ond argument is most naturally used as an input argument, leaving the third as
the only natural output argument. Thus a typical use of the function nth would
be, for example,

nth(2,L) = E

where L is bound to a list and E is unbound. This would be translated into

nth(2,L,E1), E1 = E

and, when evaluated, would bind E to the value of the second element in list L.
But suppose the second element in L is an unbound variable and E is bound to
some value. Then the above would bind the second element of L for this value. In

Draft Only — Do Not Distribute ©C copyright 1988 University of Minnesota

71

this case,

nth(2,L) = E

would not fit the paradigm of a function expression that evaluates to a value, to
which E is then bound. Rather, it would conform to the more general paradigm of
unifying the two sides of an equation.

7.1.3 Function Applications and Temporal Operators Finally, functions
may be used together with temporal operators. As an example, consider again the
function nth discussed in the last paragraph, and suppose we have

@nth(2,L) = E

This is expanded to

nth(2,L,E1), @E1 = E

Suppose again that the second element of list L is an unbound variable and that E
is bound to a value. Then the effect of the above is to make the value of the sec-
ond element in L at the next time point equal to the current value of E.

7.2 Defining and Invoking Macro Relations: $define and $clause

Definitions of relation macros are introduced by the keyword $define. Rela-
tion macros may be used to save the expense of extra calls (as macros are used in
LISP). They are also convenient in that relation macros, unlike normal relations
or predicates, may take static variables as arguments. We illustrate this latter
point after discussing how relation macros are defined and used in general.

7.2.1 Simple Form: $define without $clause In its simplest form, a rela-
tion macro definition consists of a single clause introduced by $define, for exam-
ple,

$define sum(I1, I2, Out) :- Out = I1 + I2.

Suppose this is used in the clause

t1(X, Y) :- sum(X, Y, Res), write(Res).

Then the goal sum(X, Y, Res) is expanded inline according to the definition of
sum to give

t1(X,Y) :- Res = X + Y, write(Res).

Again, if sum is used in

t2 :- sum(1, 2, R), write(R).

then the goal sum(1, 2, R) is expanded inline to give

t2 :- R = 1 + 2, write(R).

Note that the Tokio compiler recognizes constants and does not introduce inter-
mediate variables to accommodate them.

Draft Only — Do Not Distribute ©C copyright 1988 University of Minnesota

72

7.2.2 Special Relations Subsidiary to Macro Relations: $clause Only
single-clause macro definitions are allowed with $define, as one would expect
since the definition supplies the code for inline expansions. But suppose, for
example, we wish sum to be written so that it signals whether or not I1 > I2;
suppose it writes a 1 if I1 > I2, and writes a 0 otherwise. As a normal relation,
then sum would be defined as

sum(I1, I2, Out) :- I1 > I2, !, write(1), nl, Out = I1 +
I2.

sum(I1, I2, Out) :- write(0), Out = I1 + I2.

We may write this as a macro by first of all factoring out what is common to
these two clauses; this gives the sum clause following $define:

$define sum(I1, I2, Out) :- H, Out = I1 + I2.

The H occupies the position where the code for the two clauses differ. We define
this code using the $clause keyword:

$clause (H :- I1 > I2, !, write(1))

$clause (H :- write(0)).

In fact, the two $clause clauses are part of the $define definition. When
$clause is used, the clause following $define must be enclosed in parentheses.
Note that each clause introduced by a $clause is also enclosed in parentheses.
Any variable (beginning with a capital letter or a ’_’) name would do in place of
H. Finally, only one ’.’ should appear in the macro definition, and this at the very
end, after the last £clause clause. Thus the new definition of the macro sum
should be:

$define (sum(I1, I2, Out) :- H, Out = I1 + I2)

$clause (H :- I1 > I2, !, write(1))

$clause (H :- write(0)).

Suppose this newly defined sum is used in

t1(X, Y) :- sum(X, Y, Res), write(Res).

Then sum is expanded inline in t1 to include a call to a relation corresponding to
H, but with a (peculiar) name, say $0t, selected by the macro-expansion facility:

t1(X, Y) :- $0t(X, Y), Res = X + Y, write(Res).

The procedure $0t is defined to cover the H clauses for this use of sum:

$0t(U, V) :- U > V, !, write(1).

$0t(U, V) :- write(0).

Suppose, on the other hand, sum is used with constant inputs in:

t2 :- sum(1, 2, R), write(R).

Then the macro-expansion facility defines a different procedure, say $1t, to cover
the H clauses for this use of sum, and produces:

Draft Only — Do Not Distribute ©C copyright 1988 University of Minnesota

73

t2 :- $1t, R = 1 + 2, write(R).

$1t :- 1 > 2, !, write(1).

$1t :- write(0).

Note that the constants 1 and 2 are hard-coded into the definition of $1t. Also
note that two $1t clauses, corresponding to the two H clauses, are produced, even
though the two together are equivalent (because ’1 > 2’ is always false) to the
last clause alone. In general, for every occurence of sum in a normal Tokio pro-
gram clause, the macro-expansion facility defines a new procedure with a unique
name to cover the clauses introduced by $clause.

7.2.3 Scope of Variables in Macro Relation Definitions Notice that, in
the example above, the compiler was able to identify the variables I1 and I2 in
the first H clause with the variables I1 and I2 in the definition of sum. When sum
was used in t1 and t2, the compiler was also able to distinguish between the case
in which the actual arguments of I1 and I2 were variables (i.e. in t1) and the
case in which they were constants (i.e. in t2). In the former case, to cover the H
clauses, it defined a procedure $0t with two arguments corresponding to the two
actual arguments. In the latter case, it defined a zero-ary procedure $1t that had
the constant actual arguments written into it. In either case, the compiler had to
identify I1 and I2 in the first H clause with the I1 and I2 in the definition of
sum. In general, the compiler remembers the variable names in the head of a
$define clause. The same variable names occurring in a $clause clause of the
same definition are required to be bound to the same values. In the present case,
the variables in the head of the $define clause are I1, I2, and Out. Of these,
only I1 and I2 appear in a $clause clause (specifically, the first). When the pro-
gram clause t1 is compiled, I1 and I2 are associated with the variables X and Y,
respectively. Since X and Y are variables, the procedure covering the H clauses in
this case, that is, $0t, must have two variable arguments if it is to have access to
the values associated with I1(X) and I2(Y). On the other hand, when the pro-
gram clause t2 is compiled, I1 and I2 are associated with the constants 1 and 2,
respectively. Then the procedure covering the H clauses in this case, that is, $1t,
need have no arguments since 1 and 2 can be written into it at the appropriate
places.

It is important to keep in mind that only the variables in the head of the
clause following $define are recognized in the clauses introduced by $clause. For
example, suppose we define

$define (sum(I1, I2, Out) :- I3 = I1 + 1, H, Out = I1 + I2)

$clause (H :- I1 > I2, !, write(1), write(I3))

$clause (H :- write(0)).

Given the program clause

t :- sum(2, 1, R), write(R).

macro expansion produces

t :- I3 = 1 + 2, $0t, R = 2 + 1, write(R).

Draft Only — Do Not Distribute ©C copyright 1988 University of Minnesota

74

$0t :- 2 > 1, write(1), write(X).

$0t :- write(0).

The first $0t clause contains a variable (called X here - any other variable name
would do) that does not occur as an argument and is not bound in the clause.
This variable is the image of the I3 in the first H clause and was not recognized as
anything special because I3 does not occur in the head of sum.

7.2.4 Constants in the Heads of Macro Clauses The head of the clause
introduced by the $define may contain one or more constants, for example

$define sum(1, I1, I2, Out) :- Out = I1 + I2.

Given the program clause

t :- sum(X, 1, 2, R), write(S), write(R).

Macro expansion produces

t :- R = 1 + 2, write(1), write(R).

A single macro relation may contain any number of special relations defined
using $clause. The $clause clauses all follow the $define clause, and a ’.’
appears only once, after the last $clause clause. For example, we could define

$define (sum(I1, I2, Out) :- H, Out = I1 + I2, G)

$clause (H :- I1 > I2, !, write(1))

$clause (H :- write(0))

$clause (G :- I1 > 0, !, write(a))

$clause (G :- write(b)).

Given the program clause

t :- sum(1, 2, R), write(R).

macro expansion produces

t :- $0t0, R = 1 + 2, $0t1.

$0t0 :- 1 > 2, !, write(1).

$0t0 :- write(0).

$0t1 :- 1 > 0, !, write(a).

$0t1 :- write(b).

As is evident from this example, no special provision is needed to handle multiple
special relations defined by $clause.

7.2.5 Recursive Special Relations A special relation defined with $clause

Draft Only — Do Not Distribute ©C copyright 1988 University of Minnesota

75

may be recursive, for example

$define (foo :- write(start), nl, H)
$clause (H :- write(’enter number’), read(N),

if N < 5 then (true && H)
).

Given the program clause

t :- foo, fin(nl, write(end)).

macro expansion produces

t :- write(start), nl, $0t, fin(nl, write(end)).

$0t :- write(’enter number’), read(N),

if N < 5 then (true && $0t).

As long as the members entered are less than 5, $0t will chop the current interval
and call itself at the next time point.

7.2.6 Variable vs. Constant Names as Special Relation Names Notice
that, when the name of a special relation defined with $clause begins with an
uppercase letter or underscore (and so is a valid variable name), and as long as
the special relation needs access to the values of only the variables in the head of
the macro relation, then there is no need for such a special relation to have argu-
ments. In fact, an attempt to define such a special relation with arguments is con-
sidered a syntax error. However, there are times when we would like values of
non-head variables to be communicated to special relations defined with $clause.
In that case, the name of the special relation must begin with a lowercase letter
(like a normal program relation or predicate name) and, as long as the names of
the variables in the head of the macro relation do not occur in the special rela-
tion, all communication is through the arguments (just as with a normal program
relation). For example, consider

$define (sum(I1, I2, Out) :- I3 = I1 + 1, h(I1, I2, I3),
Out = I1 + I2)

$clause (h(X, Y, Z) :- X > Y, !, write(1), write(Z))

$clause (h(_, _, _) :- write(0)).

Then the program clause

t1 :- sum(2, 3, R), write(R).

is expanded to

t1 :- I3 = 2 + 1, h(2, 3, I3), R = 2 + 3, write(R).

h(X, Y, Z) :- X > Y, !, write(1), write(Z).

h(_, _, _) :- write(0).

Draft Only — Do Not Distribute ©C copyright 1988 University of Minnesota

76

Notice that the definition of h is unchanged by the macro expansion and that the
constants in the definition of t1 have been written into the h(2,3,R) goal. In
fact, there is no difference between defining h as a special relation in the defini-
tion of the macro relation sum and defining h as a normal program clause. In
either case, an h goal is included in the expansion of sum(2, 3, R), and (perhaps
surprisingly) the h relation is available to any clause in the program.

However, if the a variable occurring in the head of the macro relation also
occurs in the body of a lowercase special relation, then the appropriate value is
written in place of the occurrence of the variable when the macro is expanded.
For example, consider

$define (sum(I1, I2, Out) :- I3 = I1 + 1, h(I3), Out = I1 +
I2)

$clause (h(Z) :- I1 > I2, !, write(1), write(Z))

$clause (h(_) :- write(0)).

Then the program clause

t1 :- sum(2, 3, R), write(R).

is expanded to

t1 :- I3 = 2 + 1, h(I3), R = 2 + 3, write(R).

h(Z) :- 2 > 3, !, write(1), write(Z).

h(_) :- write(0).

Here we may think of the scope of I3 (or any variable in the head of the macro
relation) as the entire macro definition, including the $clause clauses.

The extended scope of a variable in a macro relation’s head causes problems
if the same variable name is used for a variable in the head of a special relation
clause. For the occurrences of this variable in the body of the special relation
clause are treated as occurrences of the variable in the head, not of the special
relation clause, but of the macro relation. Suppose, for example, we intend to
write a macro relation to compute the factorial of a natural number, and we
define:

$define (fact(N) :- fact(N, F), write(F))

$clause (fact(N, F) :- N =< 0, !, F = 1)

$clause (fact(N, F) :- N1 = M - 1, fact(N1, F1), F = N *
F1).

Then the program clause

t :- fact(3).

is expanded to

t :- fact(3, F), write(F).

fact(N, F) :- 3 =< 0, !, F = 1.

Draft Only — Do Not Distribute ©C copyright 1988 University of Minnesota

77

fact(N, F) :- N1 = 3 - 1, fact(N1, F1), F = 3 * F1.

Notice that all occurrences of N in the bodies of the special relation clauses have
been replaced by 3. If t is evaluated, a non-terminating recursion will result since
the first special clause always fails. This problem is avoided if N in the special
relation clauses is renamed, say to M. Note, however, that none of the variables in
the clause defining the 2-ary fact relation is intended to have a scope extending
beyond the clause in which it occurs. Thus the safest and best thing to do in this
case and all similar cases is define fact as a normal program relation.

Another problem with a lowercase special relation is that its definition is
written into the database everytime the associated macro relation is expanded.
This results in redundant definitions. Although correct behavior is not jeopar-
dized, this result is obviously undesirable.

A final problem with a lowercase special relation is that, once the associated
macro relation is expanded, its definition is indistinguishable from, and may clash
with, the definition of a normal program relation. Consider, for example,

$define (foo :- write(1), foo1)

$clause (foo1 :- write(2)).

foo1 :- write(3).

t :- foo, foo1.

When the foo macro is expanded, this program becomes

t :- write(1), foo1.

foo1 :- write(3).

foo1 :- write(2).

Obviously the foo1 clause derived from the special relation can never be exe-
cuted. In such cases, where the special relation needs no argument, it is best to
use an uppercase special relation. Then, when the macro relation is expanded, a
weird name (such as $0t) is used for the special relation, thus nearly (as long as
the programmer does not use the same weird names) eliminating the possibility of
name clashes.

There are thus three choices for special relations: use an uppercase special
relation, use a lowercase special relation, or use a normal program relation instead
of a special relation. An uppercase special relation should be used when variables
whose scope is the entire macro definition — that is, variables appearing in the
macro relation’s head — are used and the values of variables in the body of the
macro relation are not needed — so no arguments are needed for the special rela-
tion. A normal, not special, relation should be used when no variable has a scope
beyond the clause in which it occurs. And a lowercase special relation should be
used when some variables in the relation clauses have normal and some have
extended scope.

7.2.7 Macro Relation Goals with Static Variable Arguments The most

Draft Only — Do Not Distribute ©C copyright 1988 University of Minnesota

78

important use of macro relations is to allow for goals in which static variables
occur. Recall that a static variable may not appear as an argument in a goal
whose functor is a system-defined relation or a normal user-defined relation. For
example, evaluating write(*u) would cause *u itself, not the value of *u, to be
output. To produce concise, readable code, however, we could define

$define Output(X) :- Y = X, write(Y).

Suppose our program also includes

t :- *u := 2, output(*u).

Then, after macro expansion, our program is

t :- *u := 2, Y = *u, write(Y).

It is generally good practice to define macro relations to manipulate the values of
static variables.

7.3 Summary

Draft Only — Do Not Distribute ©C copyright 1988 University of Minnesota

-1-

Table of Contents

CHAPTER 1 Introduction ... 1

1.1 Theoretical Background ... 1

CHAPTER 2 Temporal Variables ... 1

2.1 Bindings of Temporal Variables: $t-lists .. 2

2.2 One-Time Unification vs. Unification Over All Time 4

2.3 Summary .. 8

CHAPTER 3 Temporal Predicates and Operators 8

3.1 Some Useful Temporal Predicates and Operators 9

3.1.1 Always (#) and Sometimes (<>) ... 9
3.1.2 Next: @ (function) and @ (operator) 9
3.1.3 Weak Next: next ... 10
3.1.4 Interval Termination: empty and notEmpty 10

3.2 Reduction Along the Current- and Future-Time Axes 12

3.2.1 # and <> Revisited ... 13
3.2.2 Interval Length: length and skip ... 13

3.3 Interval Diagrams: Graphical Representation of Goals and Vari-
able Values .. 14

3.4 More on Interval Lengths and Interval Diagrams 18

3.4.1 And: , (parallel), && (sequential -- chop), and & (neutral)
.. 18
3.4.2 Discussion of Interval Lengths ... 22
3.4.3 Interval Diagrams and User-Defined Predicates 24

3.5 Other Temporal Predicates and Operators 24

3.5.1 Enforcing a Constraint Throughout an Interval: <-- 24
3.5.2 Evaluating a Goal Until, or Only At, the End of an
Interval: keep and fin ... 25
3.5.3 Dependence of Interval Termination on a Goal: halt 26
3.5.4 Repeated Assignment: gets ... 27
3.5.5 Holding a Variable’s Value Constant: stable 28
3.5.6 Temporal Assignment: <- .. 29

3.6 Summary .. 29

CHAPTER 4 Backtracking into the Past .. 29

4.1 Backtracking into the Past: Simple Cases .. 30

4.2 Backtracking into the Past: Cases Involving && 34

4.3 Summary .. 46

CHAPTER 5 Conditionals and Iteration .. 46

Draft Only — Do Not Distribute ©C copyright 1988 University of Minnesota

-2-

5.1 Conditionals ... 47

5.1.1 Nested Conditionals ... 48
5.1.2 Conditionals and Backtracking .. 49
5.1.3 Composite if Goals ... 51

5.2 Iteration Across Time .. 53

5.2.1 Recursion with Temporal Operators 53
5.2.2 while ... 56
5.2.3 while and Backtracking .. 57
5.2.4 Nested while’s and if’s .. 57

5.3 Summary .. 58

CHAPTER 6 Static Variables .. 58

6.1 Assigning and Referencing Values .. 59

6.2 Instantaneous vs. Temporal Assignment: := and <= 60

6.3 Relation between Static and Logical Variables 62

6.4 Static-Variable Assignment and Backtracking 63

6.5 Static Variables as Arrays .. 64

6.6 Summary .. 67

CHAPTER 7 Macros ... 67

7.1 Defining and Applying Functions: $function 68

7.1.1 Function Applications that Return Values 68
7.1.2 Function Definitions as Conditional Equalities 70
7.1.3 Function Applications and Temporal Operators 71

7.2 Defining and Invoking Macro Relations: $define and $clause
... 71

7.2.1 Simple Form: $define without $clause 71
7.2.2 Special Relations Subsidiary to Macro Relations:
$clause ... 72
7.2.3 Scope of Variables in Macro Relation Definitions 73
7.2.4 Constants in the Heads of Macro Clauses 74
7.2.5 Recursive Special Relations ... 74
7.2.6 Variable vs. Constant Names as Special Relation Names
.. 75
7.2.7 Macro Relation Goals with Static Variable Arguments 77

7.3 Summary .. 78

Draft Only — Do Not Distribute ©C copyright 1988 University of Minnesota

