情報工学実験4: データマイニング班
(week 2) 機械学習概観

1. 機械学習の定義
2. 専門用語
3. 問題設定例（分類, 回帰, クラスタリング）
4. 検討課題
5. 問題設定サマリ
6. 機械学習の種別
7. クイックスタート（scikit-learn）

実験ページ: http://ie.u-ryukyu.ac.jp/~tnal/2015/info4/dm/
Definition of Machine Learning

• Arthur Samuel (1959)
 – Field of study that gives computers the ability to learn without being explicitly programmed.

• Tom Mitchell (1998)
 – A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E.

2015年度:情報工学実験4:データマイニング班
Terminology

- supervised, unsupervised learning
- classification, regression, clustering
- sample
- features, attributes
 - numerical value
 - categorical value
 - true or false
- supervisory signal, teacher, class, label, output data, target variable

|• input, output |
| training data / training set |
| test data / test set |
| - open test |
| - close test |
| model |
| parameters |
| learn, fit |
| predict, estimate |
| evaluation |
Example: *Iris* flower data set

- **Classification**
 - In Classification, the samples belong to two or more classes and we want to learn from already labeled data how to predict the class of unlabeled data.
 - E.g., distinguishes the species from each other.
 - Dataset = samples vs. features and classes

- Input data, X
- 4 features or attributes
- Teach data
- supervisory signal
- output data, Y
- target
- 1 class in 3 classes

(1) What is experience E?
(2) What is task T?
(3) How to measure the performance P?

Fisher’s Iris Data

<table>
<thead>
<tr>
<th>Sepal length</th>
<th>Sepal width</th>
<th>Petal length</th>
<th>Petal width</th>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>3.5</td>
<td>1.4</td>
<td>0.2</td>
<td>l. setosa</td>
</tr>
<tr>
<td>4.9</td>
<td>3.0</td>
<td>1.4</td>
<td>0.2</td>
<td>l. setosa</td>
</tr>
<tr>
<td>4.7</td>
<td>3.2</td>
<td>1.3</td>
<td>0.2</td>
<td>l. setosa</td>
</tr>
<tr>
<td>4.6</td>
<td>3.1</td>
<td>1.5</td>
<td>0.2</td>
<td>l. setosa</td>
</tr>
<tr>
<td>5.0</td>
<td>3.6</td>
<td>1.4</td>
<td>0.2</td>
<td>l. setosa</td>
</tr>
</tbody>
</table>
Example: boston house prices dataset

http://archive.ics.uci.edu/ml/datasets/Housing

• Regression
 – If the desired output consists of one or more continuous variables, then the task is called regression.
 – E.g., concerns housing values in suburbs of Boston.
 – Dataset = samples vs. features and continuous variables

(1) What is experience E?
(2) What is task T?
(3) How to measure the performance P?

<table>
<thead>
<tr>
<th>CRIM</th>
<th>ZN</th>
<th>INDUS</th>
<th>LSTAT</th>
<th>MEDV</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.32E-03</td>
<td>1.80E+01</td>
<td>2.31E+00</td>
<td>4.98E+00</td>
<td>24.00</td>
</tr>
<tr>
<td>2.73E-02</td>
<td>0.00E+00</td>
<td>7.07E+00</td>
<td>9.14E+00</td>
<td>21.60</td>
</tr>
<tr>
<td>2.73E-02</td>
<td>0.00E+00</td>
<td>7.07E+00</td>
<td>4.03E+00</td>
<td>34.70</td>
</tr>
</tbody>
</table>
Example: *Iris* flower data set **WITHOUT classes**

- **Clustering**
 - Clustering is the task of grouping a set of objects in such a way that objects in the same group (called a **cluster**) are more similar (in some sense or another) to each other than to those in other groups (clusters).
 - Training data consists of a set of input vectors x **without any corresponding target values**.
 - Dataset = **samples vs. features**

![Fisher's Iris Data Table]

(1) What is experience E?
(2) What is task T?
(3) How to measure the performance P?

Don’t use at learning
Exercises

• Make a group of 2~4 students.
 – Choose one kind of problem settings on machine learning.
 – Try to design an example under the problem setting.
 • Input? Features? Output?
 • What is experience E?
 • What is task T?
 • How to measure the performance P?
Machine Learning: the problem setting

• In general, a learning problem considers a set of n samples of data and then tries to predict properties of unknown data. If each sample is more than a single number and, for instance, a multi-dimensional entry (aka multivariate data), is it said to have several attributes or features.
Types of Machine Learning

- **Targets of this class**
 - Supervised Learning
 - Classification
 - Regression
 - Unsupervised Learning
 - Clustering
 - (Semi-supervised Learning)

- **Others**
 - Principal component analysis
 - Reinforcement Learning
 - Artificial Neural Networks
 - Genetic Algorithm
 - Recommender System
 - Decision Trees
 - ...
Quick Start

- [http://scikit-learn.org/stable/tutorial/basic/tutorial.html][1]
 - Google: scikit-learn
 - Documentation
 - Quick start