"Python Machine Learning" 12 assignments: from chapter 1 to 6.

Table of Contents

	Preface	vii
	Chapter 1: Giving Computers the Ability to Learn from Data	1
	Building intelligent machines to transform data into knowledge	2
	The three different types of machine learning	2
	Making predictions about the future with supervised learning	3
	Classification for predicting class labels Regression for predicting continuous outcomes	3 4
	Solving interactive problems with reinforcement learning	4 6
	Discovering hidden structures with unsupervised learning	6
assign 1	Finding subgroups with clustering	7
	Dimensionality reduction for data compression	7
	An introduction to the basic terminology and notations	8
	A roadmap for building machine learning systems	10
	Preprocessing – getting data into shape	11
	Training and selecting a predictive model	12
	Evaluating models and predicting unseen data instances	13
	Using Python for machine learning	13
	Installing Python packages	13
L	Summary	15
S. S	Chapter 2: Training Machine Learning Algorithms	47
	for Classification	<u> </u>
assign 2	Artificial neurons – a brief glimpse into the early history	40
	of machine learning	18
	Implementing a perceptron learning algorithm in Python Training a perceptron model on the Iris dataset	24 27
Ĺ	Adaptive linear neurons and the convergence of learning	33
	Minimizing cost functions with gradient descent	34
		Ŭ.
assign 3		
	(cont. to next page)	
	[']	

assign 3	Table of Contents	
0001011 0	Implementing an Adaptive Linear Neuron in Python	36
	Large scale machine learning and stochastic gradient descent	42
	Summary	47
	Chapter 3: A Tour of Machine Learning Classifiers Using	
	Scikit-learn	49
assign 4	Choosing a classification algorithm	49
	First steps with scikit-learn	50
	Training a perceptron via scikit-learn	50
	Modeling class probabilities via logistic regression	56
	Logistic regression intuition and conditional probabilities	56
	Learning the weights of the logistic cost function	59
	Training a logistic regression model with scikit-learn	62
	Tackling overfitting via regularization	65
	Maximum margin classification with support vector machines	69
	Maximum margin intuition	70
assign 5	Dealing with the nonlinearly separable case using slack variables	71
USSIGIT U	Alternative implementations in scikit-learn	74
	Solving nonlinear problems using a kernel SVM	75
	Using the kernel trick to find separating hyperplanes in higher	
	dimensional space	77
	Decision tree learning	80
	Maximizing information gain – getting the most bang for the buck	82
assign 6	Building a decision tree	88
ussign U	Combining weak to strong learners via random forests	90
	K-nearest neighbors – a lazy learning algorithm	92
	Summary	96
	Chapter 4: Building Good Training Sets – Data Preprocessing	99
	Dealing with missing data	99
assign 7	Eliminating samples or features with missing values	101
~~~~·	Imputing missing values	102
	Understanding the scikit-learn estimator API	102
	Handling categorical data	104
	Mapping ordinal features	104
	Encoding class labels	105
	Performing one-hot encoding on nominal features	106
	Partitioning a dataset in training and test sets	108
	Bringing features onto the same scale	110
agion 8	Selecting meaningful features	112
assign 8	Sparse solutions with L1 regularization	112
	(cont. to next page)	
	[ii]	
	1	

assign 8	Table of Contents		
	Sequential feature selection algorithms	118	
	Assessing feature importance with random forests Summary	124 126	
	Chapter 5: Compressing Data via Dimensionality Reduction	127	
	Unsupervised dimensionality reduction via principal		
assign 9	component analysis Total and explained variance	<b>128</b> 129	
	Feature transformation	129	
	Principal component analysis in scikit-learn	135	
	Supervised data compression via linear discriminant analysis	138	
	Computing the scatter matrices	140	
	Selecting linear discriminants for the new feature subspace	143	
	Projecting samples onto the new feature space LDA via scikit-learn	145 146	
	Using kernel principal component analysis for nonlinear mappings	140	
	Kernel functions and the kernel trick	148	
assign 10	Implementing a kernel principal component analysis in Python	154	
assign 10	Example 1 – separating half-moon shapes Example 2 – separating concentric circles	155 159	
	Projecting new data points	162	
	Kernel principal component analysis in scikit-learn	166	
	Summary	167	
	Chapter 6: Learning Best Practices for Model Evaluation		
	and Hyperparameter Tuning	169	
assign 11	Streamlining workflows with pipelines	169	
	Loading the Breast Cancer Wisconsin dataset	170 171	
	Combining transformers and estimators in a pipeline Using k-fold cross-validation to assess model performance	171	
	The holdout method	173	
	K-fold cross-validation	175	
	Debugging algorithms with learning and validation curves	179	
	Diagnosing bias and variance problems with learning curves	180	
	Addressing overfitting and underfitting with validation curves Fine-tuning machine learning models via grid search	183 <b>185</b>	
	Tuning hyperparameters via grid search	186	
aggion 12	Algorithm selection with nested cross-validation	187	
assign 12	Looking at different performance evaluation metrics	189	
	Reading a confusion matrix	190	
	Optimizing the precision and recall of a classification model	191	
	(cont. to next page)		
	[iii]		

7

assign 12	Table of Contents	
	Plotting a receiver operating characteristic	193
	The scoring metrics for multiclass classification	197
	Summary	198
	Chapter 7: Combining Different Models for Ensemble Learning	199
	Learning with ensembles	199
	Implementing a simple majority vote classifier	203
	Combining different algorithms for classification with majority vote	210
	Evaluating and tuning the ensemble classifier	213
	Bagging – building an ensemble of classifiers from	
	bootstrap samples	219
	Leveraging weak learners via adaptive boosting	224
	Summary	232
	Chapter 8: Applying Machine Learning to Sentiment Analysis	233
	Obtaining the IMDb movie review dataset	233
	Introducing the bag-of-words model	236
	Transforming words into feature vectors	236
	Assessing word relevancy via term frequency-inverse	
	document frequency	238
	Cleaning text data	240
	Processing documents into tokens	242
	Training a logistic regression model for document classification	244
	Working with bigger data – online algorithms and out-of-core learning	246
	Summary	240 250
	-	230
	Chapter 9: Embedding a Machine Learning Model into	054
	a Web Application	251
	Serializing fitted scikit-learn estimators	252
	Setting up a SQLite database for data storage	255
	Developing a web application with Flask	<b>257</b>
	Our first Flask web application	258 259
	Form validation and rendering Turning the movie classifier into a web application	269 264
	Deploying the web application to a public server	204 272
	Updating the movie review classifier	274
	Summary	274