<u>情報工学実験4:データマイニング班</u> (week 2) 機械学習概観

実験ページ: http://ie.u-ryukyu.ac.jp/~tnal/2018/info4/dm/

Definition of Machine Learning

- Arthur Samuel (1959)
 - Field of study that gives computers the ability to learn without being explicitly programmed.
- Tom Mitchell (1998)
 - A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E.

Terminology

- ML types
 - supervised, unsupervised, semi-supervised
 - (reinforcement learning, genetic algorithm,,,)
- Task types
 - classification, regression, clustering
- sample
- features, attributes
 - numerical value
 - categorical value
 - true or false
- supervisory signal, teacher, class, label, target variable

- input, output
- Input types
 - training data / training set
 - test (for evaluation)
 - validation (for hyper params)
- model
- parameters
 - hyper parameters
 - weights, parameters
- learn, fit
- predict, estimate
- evaluation
 - open or close test
 - cross validation

Types of Machine Learning Algorithms

Scikit-learn algorithm cheat-sheet

Example: Iris flower data set

http://en.wikipedia.org/wiki/Iris_flower_data_set

Classification

(1) What is experience E?(2) What is task T?(3) How to measure the performance P?

- In Classification, the samples belong to two or more classes and we want to learn from already labeled data how to predict the class of unlabeled data.
- E.g., distinguishes the species from each other.
- Dataset = samples vs. features and classes
- Teach datasupervisory signal
- output data, Y

- target

- Input data, X
- 4 features or attributes Fisher's Iris Data

- 1 class in 3 classes

	Sepal length +	Sepal width 🗢	Petal length +	Petal width 🕈	Species +
	5.1	3.5	1.4	0.2	I. setosa
	4.9	3.0	1.4	0.2	I. setosa
	4.7	3.2	1.3	0.2	I. setosa
1 sample	4.6	3.1	1.5	0.2	I. setosa
	50	った 2010十次・旧刊		<u>ר אי</u> ר פ	Leotoca

Example: boston house prices dataset

http://archive.ics.uci.edu/ml/datasets/Housing

Regression

(1) What is experience E?(2) What is task T?

(3) How to measure the performance P?

- If the desired output consists of one or more continuous variables, then the task is called *regression*.
- E.g., concerns housing values in suburbs of Boston.
- Dataset = samples vs. features and continuous variables

13 features

Continuous variable

	CRIM	ZN	INDUS	(中略)	LSTAT	MEDV
	6.32E-03	1.80E+01	2.31E+00		4.98E+00	24.00
	2.73E-02	0.00E+00	7.07E+00		9.14E+00	21.60
sample	2.73E-02	0.00E+00	7.07E+00		4.03E+00	34.70

Example: Iris flower data set WITHOUT classes

http://en.wikipedia.org/wiki/Iris_flower_data_set

• Clustering

(1) What is experience E?(2) What is task T?(3) How to measure the performance P?

- Clustering is the task of grouping a set of objects in such a way that objects in the same group (called a **cluster**) are more similar (in some sense or another) to each other than to those in other groups (clusters).
- Training data consists of a set of input vectors x without any corresponding target values.

Exercises

- Make a group of 2~4 students.
 - Choose one kind of problem settings on machine learning.
 - Try to design an example under the problem setting.
 - Input? Features? Output?
 - What is experience E?
 - What is task T?
 - How to measure the performance P?

Machine Leaning: the problem setting

http://scikit-learn.org/stable/tutorial/basic/tutorial.html

 In general, a learning problem considers a set of n samples of data and then tries to predict properties of unknown data. If each sample is more than a single number and, for instance, a multi-dimensional entry (aka multivariate data), is it said to have several attributes or features.

Types of Machine Learning

- Targets of this class
 - Supervised Learning
 - Classification
 - Regression
 - Unsupervised Learning
 - Clustering
 - (Semi-supervised Learning)

• Others

- Principal component analysis
- Reinforcement Learning
- Artificial Neural Networks
- Genetic Algorithm
- Recommender System
- Decision Trees

Quick Start

http://scikit-

learn.org/stable/tutorial/basic/tutorial.html

- Google: scikit-learn
 - Documentation
 - Quick start