"Python Machine Learning" 12 assignments: from chapter 1 to 6.

Table of Contents

	Preface	vii
	Chapter 1: Giving Computers the Ability to Learn from Data	1
	Building intelligent machines to transform data into knowledge	2
	The three different types of machine learning	2
	Making predictions about the future with supervised learning	3 3
	Classification for predicting class labels	
	Regression for predicting continuous outcomes	4 6
	Solving interactive problems with reinforcement learning Discovering hidden structures with unsupervised learning	6
assign 1	Finding subgroups with clustering	7
	Dimensionality reduction for data compression	7
	An introduction to the basic terminology and notations	8
	A roadmap for building machine learning systems	10
	Preprocessing – getting data into shape	11
	Training and selecting a predictive model	12
	Evaluating models and predicting unseen data instances	13
	Using Python for machine learning	13
	Installing Python packages	13
	Summary	15
	Chapter 2: Training Machine Learning Algorithms	
	for Classification	17
assign 2	Artificial neurons – a brief glimpse into the early history	
	of machine learning	18
	Implementing a perceptron learning algorithm in Python	24
	Training a perceptron model on the Iris dataset	27
	Adaptive linear neurons and the convergence of learning	33
	Minimizing cost functions with gradient descent	34
assign 3		
	(cont. to next page)	
	[i]	

	Table of Contents	
assign 3	Implementing an Adaptive Linear Neuron in Python	36
	Large scale machine learning and stochastic gradient descent	42
	Summary	47
	Chapter 3: A Tour of Machine Learning Classifiers Using	
	Scikit-learn	49
assign 4	Choosing a classification algorithm	49
assign 4	First steps with scikit-learn	50
	Training a perceptron via scikit-learn	50
	Modeling class probabilities via logistic regression	56
	Logistic regression intuition and conditional probabilities	56
	Learning the weights of the logistic cost function	59
	Training a logistic regression model with scikit-learn	62
	Tackling overfitting via regularization	65
	Maximum margin classification with support vector machines	69
	Maximum margin intuition	70
assign 5	Dealing with the nonlinearly separable case using slack variables	71
4001011 0	Alternative implementations in scikit-learn	74
	Solving nonlinear problems using a kernel SVM	75
	Using the kernel trick to find separating hyperplanes in higher	
	dimensional space	77 80
	Decision tree learning Maximizing information gain – getting the most bang for the buck	80 82
• •	Building a decision tree	88
assign 6	Combining weak to strong learners via random forests	90
	K-nearest neighbors – a lazy learning algorithm	92
	Summary	96
	Chapter 4: Building Good Training Sets – Data Preprocessing	99
	Dealing with missing data	99
assign 7	Eliminating samples or features with missing values	101
ussign i	Imputing missing values	102
	Understanding the scikit-learn estimator API	102
	Handling categorical data	104
	Mapping ordinal features	104
	Encoding class labels	105
	Performing one-hot encoding on nominal features	106
	Partitioning a dataset in training and test sets	108
	Bringing features onto the same scale	110
assign 8	Selecting meaningful features	112
	Sparse solutions with L1 regularization	112
	(cont to port page)	
	(cont. to next page)	
	L	

assign 8	Table of	Contents
	Sequential feature selection algorithms	118
	Assessing feature importance with random forests	124
	Summary	126
	Chapter 5: Compressing Data via Dimensionality Reduction	127
	Unsupervised dimensionality reduction via principal	
assign 9	component analysis	128
uppign 0	Total and explained variance	129
	Feature transformation	133
	Principal component analysis in scikit-learn	135
	Supervised data compression via linear discriminant analysis	138
	Computing the scatter matrices	140
	Selecting linear discriminants for the new feature subspace	143
	Projecting samples onto the new feature space	145
	LDA via scikit-learn	146
	Using kernel principal component analysis for nonlinear mappings	148
	Kernel functions and the kernel trick	148
assign 10	Implementing a kernel principal component analysis in Python	154
ubbigii 10	Example 1 – separating half-moon shapes Example 2 – separating concentric circles	155 159
	Projecting new data points	162
	Kernel principal component analysis in scikit-learn	166
	Summary	167
	Chapter 6: Learning Best Practices for Model Evaluation	
	and Hyperparameter Tuning	169
assign 11	Streamlining workflows with pipelines	169
abbignin	Loading the Breast Cancer Wisconsin dataset	170
	Combining transformers and estimators in a pipeline	171
	Using k-fold cross-validation to assess model performance	173
	The holdout method	173
	K-fold cross-validation	175
	Debugging algorithms with learning and validation curves	179
	Diagnosing bias and variance problems with learning curves	180
	Addressing overfitting and underfitting with validation curves	183
	Fine-tuning machine learning models via grid search	185
	Tuning hyperparameters via grid search	186
assign 12	Algorithm selection with nested cross-validation	187
ussign 12	Looking at different performance evaluation metrics	189
	Reading a confusion matrix	190
	Optimizing the precision and recall of a classification model	191
	(cont. to next page)	
	[iii]	

r

assign	12	Table of Con

2	Table of Contents	
	Plotting a receiver operating characteristic	193
	The scoring metrics for multiclass classification	197
	Summary	198
	Chapter 7: Combining Different Models for Ensemble Learning	199
	Learning with ensembles	199
	Implementing a simple majority vote classifier	203
	Combining different algorithms for classification with majority vote	210
	Evaluating and tuning the ensemble classifier	213
	Bagging – building an ensemble of classifiers from	
	bootstrap samples	219
	Leveraging weak learners via adaptive boosting Summary	224 232
	•	
	Chapter 8: Applying Machine Learning to Sentiment Analysis	233
	Obtaining the IMDb movie review dataset	233 236
	Introducing the bag-of-words model Transforming words into feature vectors	236
	Assessing word relevancy via term frequency-inverse	230
	document frequency	238
	Cleaning text data	240
	Processing documents into tokens	242
	Training a logistic regression model for document classification	244
	Working with bigger data – online algorithms and	
	out-of-core learning	246
	Summary	250
	Chapter 9: Embedding a Machine Learning Model into	
	a Web Application	251
	Serializing fitted scikit-learn estimators	252
	Setting up a SQLite database for data storage	255
	Developing a web application with Flask	257
	Our first Flask web application	258
	Form validation and rendering	259
	Turning the movie classifier into a web application	264
	Deploying the web application to a public server	272
	Updating the movie review classifier Summary	274 276
	Summary	210

— [iv] —