先週は、Makefileの使い方について簡単な勉強をした。その後、simple compiler の変更方法について考察した。いったん compiler を作ってしまえば、その 変更はたやすい。これは先々週の宿題の解答例でもある。
その後、register を使った compiler の作成方法を 勉強した。最適化を考えなければ、コード生成自身はstack versionと ほとんど変わらない。これは、registerの番号の上にstackのコードを 部分計算することに相当する。先週解いた問題は、このような方法で どのようなコードが生成されるかを問うものだった。もちろん、これよりも、 賢いコード生成をおこなうことは簡単だが、それを問題の答えとするならば、 同時にコード生成のアルゴリズムを示さなければ完結した解答とはいえない。
あと、Micro-C の全体構成について関数の呼出表を見ながら簡単に考察した。 全体構成をつかみ、Cの文法を思い出しながら、個々の関数を読んでいくことに より、実際的なcompilerの詳細を理解して欲しい。自分で、すべてを理解 しなくては、どんなプログラムでも完成させることはできない。 あてずっぽうにコードを書いても、それは絶対に動くことはないし、それは、 他のコードに影響を与え、正しい部分まで汚染してしまう。バグは避けられない ものではあるが、自分で書いたコードを完全に理解していれば、どのような バグにも対処できる。
複雑なプログラムになると、プログラムを一つのファイルにまとめる こともできなくなる。また、そうしなければ、複数の人間でプログラムを 書くということもできない。そこで、プログラムを分割してcompileする ということが必要になる。
分割した時に、分割した部分のどこを外に見せて、どこを隠すかという のが問題になる。この場合の単位は module と呼ばれる。 すべてを見せてしまっては、分割した意味がないとも いえる。しかし、見る方が悪いのであって、すべてはdefaultで見えている 方が良いという考え方も存在する。実際には、見せるためには、分割した もの同士の情報のやり取りが必要なので、import, export や 、public, privateなどのkeywordで情報のやり取りを制御するように することが多い。Cでは、extern と static がそれに相当する。C++では、 publicとprivateを使う。
このような情報の制御と、ファイルの分割は本来は独立な問題である。 しかし、Cではファイルの分割でしか module を定義できない。C++の 場合には class がその役割を果たしている。
Tokenizerでは、記号の切り出しとkeywordの切り出しをおこなう。同時に、 名前の登録をおこなう必要がある。実際、Tokenizerが、普通の名前、 (例えば英字で始まる英数字の列などだが)に出会ったとしよう。それは、 名前(name)、つまり、予約語(reserved word)か、変数名か関数名である。 Micor-C では、getsym() という関数がTokenizerである。
これらは compiler 内部の 表に登録されなければならない。この表を Symbol Tableという。Interpreter の場合でもSymbol Tableは必要である。Compilerが出力したコードでは、 Symbol Tableは不要である。しかし、分割compile (Separate compilation) の場合は、相互のSymbol Tableを接続する必要があるので、Symbol Table そのものも出力しなくてはならない。この問題は、異なるcomputer上で 分散計算を行う場合にも出て来る。
名前には様々な属性がある。例えば、ある名前はlocalであり、ある関数や、 関数の一部でしか有効でない。ある名前で指し示される(実体/objectゥ)ものは、名前で 呼ばれなくなった後も存在し続ける場合がある。あるいは、そのような ものを別な名前で呼びたい時もある。このような属性には以下のようなものが ある。
名前は{}の中で有効であり、その外では使えない。object も、その外では 消滅してしまうのでアクセスしてはならない。{}は入れ子(nest)することが できるので、名前の有効範囲もnestする必要がある。しかし、C では実際には、 nest は処理されずに、local 変数は、手続の中で一意な名前でなければならない。 自動的にobjectが作られ、自動的に消滅するので、 自動変数(auto)とも呼ばれる。Cではこちらの呼び方の方が正式である。 local variableのobjectは通常はstack上に取られる。したがって、 特に、pointer を使って local 変数を手続き呼び出しから返してはならない。Cでは、local変数の 初期化を行うことができる。Cにはlocalな手続き名は存在しない。
名前とobjectは、プログラム全体で有効であり、存在する。C++では、 この名前の有効範囲を class 単位にすることができる。分割 compile する場合は、この名前はコード中に出力する必要がある。分割 compile 後、さらに、link された完全なコードには symbol table は必要ない。 しかし、debug のためにわざと情報を残すこともある。(-g flag in cc)。 最近のOSでは、kernel levelで library の dynamic loadingを行う。 場合もあり、この場合もlinkのための情報を残す必要がある。 別なファイルのglobalを参照したい時には、externを使う。
objectは、プログラム全体で有効であり、存在する。しかし、名前は ファイル内部でしか有効ではない。localなstaticという名前もあり、 この場合は、名前の有効範囲は関数または{}の内部ということになる。
マクロ(macro)名は、通常compilerが処理する前に変換されてしまう。 したがって、compilerからも見えない名前である。しかし、Micor-C ではマクロも1 pathで処理するために、マクロ名も自分で管理する。 この名前の有効範囲は分割compile単位である。マクロには引数が あることがあるので、その処理も必要だが、Micro-C自身には、その 機能はない。しかし、付加することはそれほど難しくはない。
名前には、その名前が指すもの(object)の型がある。一つの名前には 一つの型がある言語(Cはそうだ)もあるが、一つの名前を複数の型に 使うことができるもの(Perlなど)もある。前者の場合は、名前を検索することに より型が分かる。しかし、後者の場合には、型は名前とは別に指定する 必要がある。後者の方がどちらかといえば優れているようである。Cには 以下のような型がある。
基本的な型。アセンブラでのword,2byte,1byteに 相当する。
符号が付くかどうか。引き算などで2の補数として 扱うかどうかに相当する。Micro-Cには、signed char, unsinged char などは 存在しない。
Micro-Cにはない。
Cを特徴づける型。直接にobjectを指すのではなく、object のaddressを表す型である。単なるaddressではなく、足し算が定義されている。 1を加えることにより、指し示すobjectの大きさの分だけaddressが加算される。 大きさは、sizeof()という内蔵関数で取り出すことができる。 sizeof(char) == 1であるけれど、sizeof(int)==sizeof(int *) であるとは保証されない、ということを覚えておこう。pointerのpointerという 型もある。これを理解しているかどうかでCを理解したかどうかが決まる重要な 部分である。
配列。pointerを使ってアクセス されることが多い。2次元配列と、pointerの配列の違いを理解しよう。
ユーザ定義可能な型。レコード型などと呼ばれることもある。 複数の型を合わせて一つのobjectとして扱うことができる。
Symbloc Table(記号表)の実装は、さまざまな方法があるが、hash tableと、 stack を組み合わせるのが容易である。
localな名前は、stack上に作られる。入れ子(nest)になったものを実現する 場合には常にstackを使う。localな名前が作れる度に名前はstackにつまれる。 そして、compileが、そのscope(手続き、または{}(statement))から抜ける と、必要な所までstackを開放する。検索を、localな名前を格納したstack そして、大域名を格納したhash tableという順番に探すことにより、Cの 変数の有効範囲を実現することができる。
名前にはreserved word(予約語)が取ら れることがある。例えば、if, for, continue などは Cの予約語である。これらの語を字句解析のレベルで切り分ける手もあるが、 ユーザの定義よりも先に表に登録してしまうという手もある。すると、 reserved wordかどうかは、一種の名前の型となる。
さて、Micro-CではSymbol tableは以下のように定義されている。
168 typedef struct nametable { 169 char nm[9]; 170 int sc,ty,dsp; } NMTBL; 171 172 NMTBL ntable[GSYMS+LSYMS],*nptr,*gnptr,*decl0(),*decl1(),*lsearch(),*gse arch();9文字しか変数名は見ないらしい。逆に言えば、iという変数に対しても9文字分の データが取られている。実用的にはこんなものかも知れない。GSYMS,LSYMSは、 global, local の記号の最大値である。定数は、このように大文字のマクロで 書くのが C 流である。sc は、たぶん、symbol class の意味で、以下のどれか である。これと ty との値で型が決まる。ty には、struct, unioon を表す 木構造(tree)か INT が入る。
なんだか分からないもの
予約語
手続名
local variable
型名
struct, unicon のfieldの定義
struct, unicon のfieldの参照
label (未定義=forward label)
macro で定義された名前
さて、getsym()を見てみよう。
2520 getsym() 2521 {NMTBL *nptr0,*nptr1; 2522 int i; 2523 char c; 2524 if (alpha(skipspc())) 2525 { i = hash = 0; 2526 while (alpha(ch) || digit(ch)) 2527 { if (i <= 7) hash=7*(hash+(name[i++]=ch)); 2528 getch(); 2529 } 2530 name[i] = '\0'; 2531 nptr0 = gsearch(); 2532 if (nptr0->sc == RESERVE) return sym = nptr0->dsp;ここでは、 hash table という技術を使っている。名前によって決まったrandamな値により、 表を引く。このようにすることにより、randamな値が重ならなければ一度だけで 記号に対応する値を取りだすことができる。2527ではhashを計算するだけで、 実際の検索は、gsearch(),lsearch() でおこなう。
2661 NMTBL *gsearch() 2662 {NMTBL *nptr,*iptr; 2663 iptr=nptr= &ntable[hash % GSYMS]; 2664 while(nptr->sc!=EMPTY && neqname(nptr->nm)) 2665 { if (++nptr== &ntable[GSYMS]) nptr=ntable; 2666 if (nptr==iptr) error(GSERR); 2667 } 2668 if (nptr->sc == EMPTY) copy(nptr->nm); 2669 return nptr; 2670 } 2671 NMTBL *lsearch() 2672 {NMTBL *nptr,*iptr; 2673 iptr=nptr= &ntable[hash%LSYMS+GSYMS]; 2674 while(nptr->sc!=EMPTY && neqname(nptr->nm)) 2675 { if (++nptr== &ntable[LSYMS+GSYMS]) nptr= &ntable[GSYMS]; 2676 if (nptr==iptr) error(LSERR); 2677 } 2678 if (nptr->sc == EMPTY) copy(nptr->nm); 2679 return nptr; 2680 }このsearchは、もし表になかった場合には登録も行う。これは標準的な実装である。 lsearch()とgsearch()の差はどこにあるか考えてみよう。
2532 if (nptr0->sc == RESERVE) return sym = nptr0->dsp; 2533 if (nptr0->sc == MACRO && !mflag) 2534 { mflag++; 2535 chsave = ch; 2536 chptrsave = chptr; 2537 chptr = (char *)nptr0->dsp; 2538 getch(); 2539 return getsym(); 2540 } 2541 sym = IDENT; 2542 gnptr=nptr=nptr0; 2543 if (mode==GDECL || mode==GSDECL || mode==GUDECL || 2544 mode==GTDECL || mode==TOP) 2545 return sym; 2546 nptr1=lsearch(); 2547 if (mode==STAT) 2548 if (nptr1->sc == EMPTY) return sym; 2549 else { nptr=nptr1; return sym;} 2550 nptr=nptr1; 2551 return sym; 2552 }検索が修了すると、その後で予約語とマクロの処理を行う。どちらでもなければ globalかlocalかどちらかである。この後、その記号のscとtyが決まることに なる。これらは、構文解析の途中で決定するので、そこで代入される。mode により、記号の扱いが変わることに注意しよう。