Yoneda Rennma

Menu Menu

top : Agda による圏論入門
equalizer.agda
Equalizer は、圏の射の積みたいなものですね。二つの射 f,g から定義されて、それを e(f,g) とすると、

         e(f,g)             f
     c ----------> a -------------> b
                     ------------->
                            g
     ef = eg となる e があって、
     f h = g h なら、f e k = g e k かつ  h = e k  となる k  がただ一つある

みたいな定義です。一意対応とか上への写像とかと関係するらしいです。積も同じような感じで定義されます。

     f : a → q , g : b → q があると、f = e1 k, g = e2 k となる k : (p,q) → q がただ一つある
           f                g   
     a -----------> q <-------------  b
     |              ^                 |
     |              |k                |
     v     e1       |       e2        v
     +----------> (p,q) <-------------+

みたいな感じ。任意の対象について必ず積がある圏もあります。

Equalizer はf,g と任意の対象 cからa の射 e に付いて存在します。


Monic

最初に Equalizer の性質を示します。f i = f j ならば i = j の時に f を Monic と言います。Equalizer が Monic であることが示せます。

    -------------------------------
    -- 
    -- Every equalizer is monic
    --
    --     e i = e j → i = j
    --
    monoic : { c a b d : Obj A } {f g : Hom A a b } → {e : Hom A c a } ( eqa : Equalizer A e f g) 
          →  { i j : Hom A d c }
          →  A [ A [ equalizer eqa o i ]  ≈  A [ equalizer eqa o j ] ] →  A [ i  ≈ j  ]
    monoic {c} {a} {b} {d} {f} {g} {e} eqa {i} {j} ei=ej = let open ≈-Reasoning (A) in begin
                     i
                  ≈↑⟨ uniqueness eqa ( begin
                       equalizer eqa  o i
                  ≈⟨ ei=ej ⟩
                       equalizer eqa  o j
                  ∎ )⟩
                     k eqa (equalizer eqa o j) ( f1=gh (fe=ge eqa ) )
                  ≈⟨ uniqueness eqa ( begin
                       equalizer eqa o j
                  ≈⟨⟩
                       equalizer eqa o j
                  ∎ )⟩
                     j
                  ∎


Equalzier の条件

Equalizer には、条件 fe=ge と、入力となる射 h に対して fh=gh の条件が必要です。fe=ge から自明に導出されるいくつかをここで定義しておきます。

    --
    -- Some obvious conditions for k  (fe = ge) → ( fh = gh )
    --
    f1=g1 : { a b c : Obj A } {f g : Hom A a b } → (eq : A [ f ≈ g ] ) → (h : Hom A c a) →  A [ A [ f o h ] ≈ A [ g o h ]  ]
    f1=g1 eq h = let open ≈-Reasoning (A) in (resp refl-hom eq )
    f1=f1 : { a b : Obj A } (f : Hom A a b ) →  A [ A [ f o (id1 A a)  ] ≈ A [ f o (id1 A a)  ]  ]
    f1=f1  f = let open ≈-Reasoning (A) in refl-hom
    f1=gh : { a b c d : Obj A } {f g : Hom A a b } → { e : Hom A c a } → { h : Hom A d c } →
           (eq : A [ A [ f  o e ] ≈ A [ g  o e ] ] ) → A [ A [ f o A [ e o h ] ] ≈ A [ g o A [ e  o h ]  ] ]
    f1=gh {a} {b} {c} {d} {f} {g} {e} {h} eq = let open ≈-Reasoning (A) in
                 begin
                      f o ( e  o h )
                 ≈⟨ assoc  ⟩
                      (f o  e ) o h
                 ≈⟨ car eq  ⟩
                      (g o  e ) o h
                 ≈↑⟨ assoc  ⟩
                      g o ( e  o h )
                 ∎


up to iso

Equalizer の c は、複数あったとしても、up to iso で等しいことが示せます。 up to iso とは、

            A [ A [ h o h-1 ]  ≈ id1 A c' ] 
            A  [ A [ h-1  o h ]  ≈ id1 A c ] 

とう射の組がある、つまり、c と c' が isomorphic な射で繋がっていることです。

c 上の Equalizer から、 この二つの射から、c' 上の Equalizer を作ります。

    --------------------------------
    --
    --
    --   An isomorphic arrow c' to c makes another equalizer
    --
    --           e eqa f g        f
    --         c ----------> a ------->b
    --        |^
    --        ||
    --    h   || h-1
    --        v|
    --         c'
    equalizer+iso : {a b c c' : Obj A } {f g : Hom A a b } {e : Hom A c a } 
                    (h-1 : Hom A c' c ) → (h : Hom A c c' ) →
                    A [ A [ h o h-1 ]  ≈ id1 A c' ] → A [ A [ h-1  o h ]  ≈ id1 A c ] →
                     ( fe=ge' : A [ A [ f o A [ e o h-1 ] ] ≈ A [ g o A [  e  o h-1 ] ] ] )
                    ( eqa : Equalizer A e f g ) 
               → Equalizer A (A [ e  o h-1  ] ) f g
    equalizer+iso  {a} {b} {c} {c'} {f} {g} {e} h-1 h  hh-1=1 h-1h=1  fe=ge' eqa =  record {
          fe=ge = fe=ge1 ;
          k = λ j eq → A [ h o k eqa j eq ] ;
          ek=h = ek=h1 ;
          uniqueness = uniqueness1
      } where
          fe=ge1 :  A [ A [ f o  A [ e  o h-1  ]  ]  ≈ A [ g o  A [ e  o h-1  ]  ] ]
          fe=ge1 = fe=ge'
          ek=h1 :   {d : Obj A} {j : Hom A d a} {eq : A [ A [ f o j ] ≈ A [ g o j ] ]} →
                    A [ A [  A [ e  o h-1  ]  o A [ h o k eqa j eq ] ] ≈ j ]
          ek=h1 {d} {j} {eq} =  let open ≈-Reasoning (A) in
                 begin
                       ( e  o h-1 )  o ( h o k eqa j eq )
                 ≈↑⟨ assoc ⟩
                        e o ( h-1  o ( h  o k eqa j eq  ) )
                 ≈⟨ cdr assoc ⟩
                        e o (( h-1  o  h)  o k eqa j eq  ) 
                 ≈⟨ cdr (car h-1h=1 )  ⟩
                        e o (id c  o k eqa j eq  ) 
                 ≈⟨ cdr idL  ⟩
                        e o  k eqa j eq  
                 ≈⟨ ek=h eqa ⟩
                       j
                 ∎
          uniqueness1 : {d : Obj A} {h' : Hom A d a} {eq : A [ A [ f o h' ] ≈ A [ g o h' ] ]} {j : Hom A d c'} →
                    A [ A [  A [ e  o h-1 ]  o j ] ≈ h' ] →
                    A [ A [ h o k eqa h' eq ] ≈ j ]
          uniqueness1 {d} {h'} {eq} {j} ej=h  =  let open ≈-Reasoning (A) in
                 begin
                       h o k eqa h' eq
                 ≈⟨ cdr (uniqueness eqa ( begin
                        e o ( h-1 o j  )
                     ≈⟨ assoc ⟩
                       (e o  h-1 ) o j  
                     ≈⟨ ej=h ⟩
                        h'
                 ∎ )) ⟩
                       h o  ( h-1 o j )
                 ≈⟨ assoc  ⟩
                       (h o   h-1 ) o j 
                 ≈⟨ car hh-1=1  ⟩
                       id c' o j 
                 ≈⟨ idL ⟩
                       j
                 ∎

割と簡単です。次に、二つの Equalizer から、これに相当する射の組を作ります。

    --------------------------------
    --
    -- If we have two equalizers on c and c', there are isomorphic pair h, h'
    --
    --     h : c → c'  h' : c' → c
    --     e' = h   o e
    --     e  = h'  o e'
    --         we assume equalizer on fe,ge and fe',ge'
    c-iso-l : { c c' a b : Obj A } {f g : Hom A a b } →  {e : Hom A c a } { e' : Hom A c' a }
           ( eqa : Equalizer A e f g) → ( eqa' :  Equalizer A e' f g )
          → Hom A c c'         
    c-iso-l  {c} {c'} eqa eqa' = k eqa' (equalizer eqa) ( fe=ge eqa )
    c-iso-r : { c c' a b : Obj A } {f g : Hom A a b } →  {e : Hom A c a } { e' : Hom A c' a }
           ( eqa : Equalizer A e f g) → ( eqa' :  Equalizer A e' f g )
          → Hom A c' c         
    c-iso-r  {c} {c'} eqa eqa' = k eqa (equalizer eqa') ( fe=ge eqa' )

この二つは、isomorphic になっていることを示します。

    c-iso-lr : { c c' a b : Obj A } {f g : Hom A a b } →  {e : Hom A c a } { e' : Hom A c' a }
           ( eqa : Equalizer A e f g) → ( eqa' :  Equalizer A e' f g ) →
      A [ A [ c-iso-l eqa eqa' o c-iso-r eqa eqa' ]  ≈ id1 A c' ]
    c-iso-lr  {c} {c'} {a} {b} {f} {g} {e} {e'} eqa eqa' =  let open ≈-Reasoning (A) in begin
                      c-iso-l eqa eqa' o c-iso-r eqa eqa'
                  ≈⟨⟩
                      k eqa' (equalizer eqa) ( fe=ge eqa )  o  k eqa (equalizer eqa') ( fe=ge eqa' )
                  ≈↑⟨ uniqueness eqa' ( begin
                      e' o ( k eqa' (equalizer eqa) (fe=ge eqa) o k eqa (equalizer eqa') (fe=ge eqa') )
                  ≈⟨ assoc  ⟩
                      ( e' o  k eqa' (equalizer eqa) (fe=ge eqa) ) o k eqa (equalizer eqa') (fe=ge eqa') 
                  ≈⟨ car (ek=h eqa') ⟩
                      e o k eqa (equalizer eqa') (fe=ge eqa') 
                  ≈⟨ ek=h eqa ⟩
                      e'
                  ∎ )⟩
                     k eqa' e' ( fe=ge eqa' )
                  ≈⟨ uniqueness eqa' ( begin
                       e' o id c'
                  ≈⟨ idR ⟩
                       e'
                  ∎ )⟩
                     id c'
                  ∎

逆順の合成は、対称的に証明することができます。


Equalizer の二つの定義

    record Equalizer { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ )  {c a b : Obj A} (e : Hom A c a) (f g : Hom A a b)  : Set  (ℓ ⊔ (c₁ ⊔ c₂)) where
       field
          fe=ge : A [ A [ f o e ] ≈ A [ g o e ] ]
          k : {d : Obj A}  (h : Hom A d a) → A [ A [ f  o  h ] ≈ A [ g  o h ] ] → Hom A d c
          ek=h : {d : Obj A}  → ∀ {h : Hom A d a} →  {eq : A [ A [ f  o  h ] ≈ A [ g  o h ] ] } →  A [ A [ e  o k {d} h eq ] ≈ h ]
          uniqueness : {d : Obj A} →  ∀ {h : Hom A d a} →  {eq : A [ A [ f  o  h ] ≈ A [ g  o h ] ] } →  {k' : Hom A d c } →
                  A [ A [ e  o k' ] ≈ h ] → A [ k {d} h eq  ≈ k' ]
       equalizer : Hom A c a
       equalizer = e

uniquness は、他に h = e o k となる k' があれば、それは Equalizer の解 k と等しいと定義します。

Equalizer は複数あっても up to iso で同じです。つまり、c と c' の間に h o h' = id, h' o h = id となる射が存在します。逆に、そういう射があれば、c' に Equalizer を作ることができます。

Equalizer の定義は、ならば(→)を使わない等式の集合から作ることもできます。この二つの定義が等しいことを示すのが、ここでの目標です。Burroni equations と言います。

    --
    -- Burroni's Flat Equational Definition of Equalizer
    --
    record Burroni { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ )  {c a b : Obj A} (f g : Hom A a b) (e : Hom A c a) : Set  (ℓ ⊔ (c₁ ⊔ c₂)) where
       field
          α : {a b c : Obj A } → (f : Hom A a b) → (g : Hom A a b ) →  (e : Hom A c a ) → Hom A c a
          γ : {a b c d : Obj A } → (f : Hom A a b) → (g : Hom A a b ) → (h : Hom A d a ) →  Hom A d c
          δ : {a b c : Obj A } → (e : Hom A c a ) → (f : Hom A a b) → Hom A a c
          cong-α : {a b c :  Obj A } → { e : Hom A c a }
              → {f g g' : Hom A a b } →  A [ g ≈ g' ] → A [ α f g e ≈ α f g' e ] 
          cong-γ : {a _ c d : Obj A } → {f g : Hom A a b} {h h' : Hom A d a } →  A [ h ≈ h' ] 
             → A [ γ {a} {b} {c} {d} f g h ≈ γ f g h' ] 
          cong-δ : {a b c : Obj A } → {e : Hom A c a} → {f f' : Hom A a b} → A [ f ≈ f' ] →  A [ δ e f ≈ δ e f' ] 
          b1 : A [ A [ f  o α {a} {b} {c}  f g e ] ≈ A [ g  o α {a} {b} {c} f g e ] ]
          b2 :  {d : Obj A } → {h : Hom A d a } → A [ A [ ( α {a} {b} {c} f g e ) o (γ {a} {b} {c} f g h) ] ≈ A [ h  o α (A [ f o h ]) (A [ g o h ]) (id1 A d) ] ]
          b3 : {a b d : Obj A} → (f : Hom A a b ) → {h : Hom A d a } → A [ A [ α {a} {b} {d} f f h o δ {a} {b} {d} h f ] ≈ id1 A a ]
          -- b4 :  {c d : Obj A } {k : Hom A c a} → A [ β f g ( A [ α f g o  k ] ) ≈ k ]
          b4 :  {d : Obj A } {k : Hom A d c} → 
               A [ A [ γ {a} {b} {c} {d} f g ( A [ α {a} {b} {c} f g e o k ] ) o ( δ {d} {b} {d} (id1 A d) (A [ f o A [ α {a} {b} {c} f g e o  k ] ] )  )] ≈ k ]
       --  A [ α f g o β f g h ] ≈ h
       β : { d a b : Obj A}  → (f : Hom A a b) → (g : Hom A a b ) →  (h : Hom A d a ) → Hom A d c
       β {d} {a} {b} f g h =  A [ γ {a} {b} {c} f g h o δ {d} {b} {d} (id1 A d) (A [ f o h ]) ]

α が Equalizer に相当します。equalizer の解kに相当するβは、γ,δ の二つから構成します。これらは、b1からb4の4つの等式を満たします。


Equalizer が Burroni equations を満たすこと

いよいよ、二つの Equalizer の定義が一致することを示します。

まず、Equalizer の定義が Burroni equations を満たすことを示します。

    --------------------------------
    ----
    --
    -- An equalizer satisfies Burroni equations
    --
    ----
    lemma-equ1 : {a b c : Obj A} (f g : Hom A a b)  → (e : Hom A c a ) →
             ( eqa : {a b c : Obj A} → (f g : Hom A a b)  → {e : Hom A c a }  → Equalizer A e f g ) 
                  → Burroni A {c} {a} {b} f g e
    lemma-equ1  {a} {b} {c} f g e eqa  = record {
          α = λ {a} {b} {c}  f g e  →  equalizer (eqa {a} {b} {c} f g {e} ) ; -- Hom A c a
          γ = λ {a} {b} {c} {d} f g h → k (eqa f g ) {d} ( A [ h  o (equalizer ( eqa (A [ f  o  h ] ) (A [ g o h ] ))) ] ) 
                                (lemma-equ4 {a} {b} {c} {d} f g h ) ;  -- Hom A c d
          δ =  λ {a} {b} {c} e f → k (eqa {a} {b} {c} f f {e} ) (id1 A a)  (f1=f1 f); -- Hom A a c
          cong-α = λ {a b c e f g g'} eq → cong-α1 {a} {b} {c} {e} {f} {g} {g'} eq ;
          cong-γ = λ {a} {_} {c} {d} {f} {g} {h} {h'} eq → cong-γ1 {a}  {c} {d} {f} {g} {h} {h'} eq  ;
          cong-δ = λ {a b c e f f'} f=f' → cong-δ1 {a} {b} {c} {e} {f} {f'} f=f'  ;
          b1 = fe=ge (eqa {a} {b} {c} f g {e}) ;
          b2 = lemma-b2 ;
          b3 = lemma-b3 ;
          b4 = lemma-b4
     } where
         --
         --           e eqa f g        f
         --         c ----------> a ------->b
         --         ^                  g
         --         |
         --         |k₁  = e eqa (f o (e (eqa f g))) (g o (e (eqa f g))))
         --         |
         --         d
         --
         --
         --               e  o id1 ≈  e  →   k e  ≈ id
         lemma-b3 : {a b d : Obj A} (f : Hom A a b ) { h : Hom A d a } → A [ A [ equalizer (eqa f f ) o k (eqa f f) (id1 A a) (f1=f1 f) ] ≈ id1 A a  ]
         lemma-b3 {a} {b} {d} f {h} = let open ≈-Reasoning (A) in
                 begin
                      equalizer (eqa f f) o k (eqa f f) (id a) (f1=f1 f)
                 ≈⟨ ek=h (eqa f f )  ⟩
                      id a
                 ∎
         lemma-equ4 :  {a b c d : Obj A}  → (f : Hom A a b) → (g : Hom A a b ) → (h : Hom A d a ) →
                          A [ A [ f o A [ h o equalizer (eqa (A [ f o h ]) (A [ g o h ])) ] ] ≈ A [ g o A [ h o equalizer (eqa (A [ f o h ]) (A [ g o h ])) ] ] ]
         lemma-equ4 {a} {b} {c} {d} f g h  = let open ≈-Reasoning (A) in
                 begin
                       f o ( h o equalizer (eqa (f o h) ( g o h )))
                 ≈⟨ assoc ⟩
                       (f o h) o equalizer (eqa (f o h) ( g o h ))
                 ≈⟨ fe=ge (eqa (A [ f o h ]) (A [ g o h ])) ⟩
                       (g o h) o equalizer (eqa (f o h) ( g o h ))
                 ≈↑⟨ assoc ⟩
                       g o ( h o equalizer (eqa (f o h) ( g o h )))
                 ∎
         cong-α1 : {a b c :  Obj A } → { e : Hom A c a }
              → {f g g' : Hom A a b } →  A [ g ≈ g' ] → A [ equalizer (eqa {a} {b} {c} f g {e} )≈ equalizer (eqa {a} {b} {c} f g' {e} ) ] 
         cong-α1 {a} {b} {c} {e} {f} {g} {g'} eq = let open ≈-Reasoning (A) in refl-hom 
         cong-γ1 :  {a c d : Obj A } → {f g : Hom A a b} {h h' : Hom A d a } →  A [ h ≈ h' ] →  { e : Hom A c a} →
                         A [  k (eqa f g {e} ) {d} ( A [ h  o (equalizer ( eqa (A [ f  o  h  ] ) (A [ g o h  ] ) {id1 A d} )) ] ) (lemma-equ4 {a} {b} {c} {d} f g h ) 
                           ≈  k (eqa f g {e} ) {d} ( A [ h' o (equalizer ( eqa (A [ f  o  h' ] ) (A [ g o h' ] ) {id1 A d} )) ] ) (lemma-equ4 {a} {b} {c} {d} f g h' )  ]
         cong-γ1 {a} {c} {d} {f} {g} {h} {h'} h=h' {e} = let open ≈-Reasoning (A) in begin
                     k (eqa f g ) {d} ( A [ h  o (equalizer ( eqa (A [ f  o  h  ] ) (A [ g o h  ] ))) ] ) (lemma-equ4 {a} {b} {c} {d} f g h )
                 ≈⟨ uniqueness (eqa f g) ( begin
                     e o k (eqa f g ) {d} ( A [ h' o (equalizer ( eqa (A [ f  o  h' ] ) (A [ g o h' ] ))) ] ) (lemma-equ4 {a} {b} {c} {d} f g h' )
                 ≈⟨ ek=h (eqa f g ) ⟩
                     h' o (equalizer ( eqa (A [ f  o  h' ] ) (A [ g o h' ] )))
                 ≈↑⟨ car h=h'  ⟩
                     h o (equalizer ( eqa (A [ f  o  h' ] ) (A [ g o h' ] )))
                 ∎ )⟩    
                     k (eqa f g ) {d} ( A [ h' o (equalizer ( eqa (A [ f  o  h' ] ) (A [ g o h' ] ))) ] ) (lemma-equ4 {a} {b} {c} {d} f g h' )
                 ∎
         cong-δ1 : {a b c : Obj A} {e : Hom A c a } {f f' : Hom A a b} → A [ f ≈ f' ] →  A [ k (eqa {a} {b} {c} f f {e} ) (id1 A a)  (f1=f1 f)  ≈ 
                                                                                k (eqa {a} {b} {c} f' f' {e} ) (id1 A a)  (f1=f1 f') ]
         cong-δ1 {a} {b} {c} {e} {f} {f'} f=f' =  let open ≈-Reasoning (A) in
                 begin
                     k (eqa {a} {b} {c} f  f  {e} ) (id a)  (f1=f1 f) 
                 ≈⟨  uniqueness (eqa f f) ( begin
                     e o k (eqa {a} {b} {c} f' f' {e} ) (id a)  (f1=f1 f') 
                 ≈⟨ ek=h (eqa {a} {b} {c} f' f' {e} ) ⟩
                     id a
                 ∎ )⟩
                     k (eqa {a} {b} {c} f' f' {e} ) (id a)  (f1=f1 f') 
                 ∎
         lemma-b2 :  {d : Obj A} {h : Hom A d a} → A [
                          A [ equalizer (eqa f g) o k (eqa f g) (A [ h o equalizer (eqa (A [ f o h ]) (A [ g o h ])) ]) (lemma-equ4 {a} {b} {c} f g h) ]
                        ≈ A [ h o equalizer (eqa (A [ f o h ]) (A [ g o h ])) ] ]
         lemma-b2 {d} {h} = let open ≈-Reasoning (A) in
                 begin
                        equalizer (eqa f g) o k (eqa f g) (h o equalizer (eqa (f o h) (g o h))) (lemma-equ4 {a} {b} {c} f g h)
                 ≈⟨ ek=h (eqa f g)  ⟩
                        h o equalizer (eqa (f o h ) ( g o h ))
                 ∎
         lemma-b4 : {d : Obj A} {j : Hom A d c} → A [
                  A [ k (eqa f g) (A [ A [ equalizer (eqa f g) o j ] o 
                     equalizer (eqa (A [ f o A [ equalizer (eqa f g {e}) o j ] ]) (A [ g o A [ equalizer (eqa f g {e} ) o j ] ])) ])
                         (lemma-equ4 {a} {b} {c} f g (A [ equalizer (eqa f g) o j ])) o
                  k (eqa (A [ f o A [ equalizer (eqa f g) o j ] ]) (A [ f o A [ equalizer (eqa f g) o j ] ])) (id1 A d) (f1=f1 (A [ f o A [ equalizer (eqa f g) o j ] ])) ]
                  ≈ j ]
         lemma-b4 {d} {j} = let open ≈-Reasoning (A) in
                 begin
                    ( k (eqa f g) (( ( equalizer (eqa f g) o j ) o equalizer (eqa (( f o ( equalizer (eqa f g {e}) o j ) )) (( g o ( equalizer (eqa f g {e}) o j ) ))) ))
                                (lemma-equ4 {a} {b} {c} f g (( equalizer (eqa f g) o j ))) o
                       k (eqa (( f o ( equalizer (eqa f g) o j ) )) (( f o ( equalizer (eqa f g) o j ) ))) (id1 A d) (f1=f1 (( f o ( equalizer (eqa f g) o j ) ))) )
                 ≈⟨ car ((uniqueness (eqa f g) ( begin
                             equalizer (eqa f g) o j 
                    ≈↑⟨ idR  ⟩
                             (equalizer (eqa f g) o j )  o id d
                    ≈⟨⟩         -- here we decide e (fej) (gej)' is id d
                            ((equalizer (eqa f g) o j) o equalizer (eqa (f o equalizer (eqa f g {e}) o j) (g o equalizer (eqa f g {e}) o j)))
                 ∎ ))) ⟩
                        j o k (eqa (( f o ( equalizer (eqa f g) o j ) )) (( f o ( equalizer (eqa f g) o j ) ))) (id1 A d) (f1=f1 (( f o ( equalizer (eqa f g) o j ) ))) 
                 ≈⟨ cdr ((uniqueness (eqa (( f o ( equalizer (eqa f g) o j ) )) (( f o ( equalizer (eqa f g) o j ) ))) ( begin
                         equalizer (eqa (f o equalizer (eqa f g {e} ) o j) (f o equalizer (eqa f g {e}) o j))  o id d
                    ≈⟨ idR ⟩
                         equalizer (eqa (f o equalizer (eqa f g {e}) o j) (f o equalizer (eqa f g {e}) o j))  
                    ≈⟨⟩         -- here we decide e (fej) (fej)' is id d
                        id d
                 ∎ ))) ⟩
                        j o id d
                    ≈⟨ idR ⟩
                        j
                 ∎ 

そして逆を証明して終わりです。

    --------------------------------
    --
    -- Bourroni equations gives an Equalizer
    --
    lemma-equ2 : {a b c : Obj A} (f g : Hom A a b)  (e : Hom A c a )
             → ( bur : Burroni A {c} {a} {b} f g e ) → Equalizer A {c} {a} {b} (α bur f g e) f g 
    lemma-equ2 {a} {b} {c} f g e bur = record {
          fe=ge = fe=ge1 ;  
          k = k1 ;
          ek=h = λ {d} {h} {eq} → ek=h1 {d} {h} {eq} ;
          uniqueness  = λ {d} {h} {eq} {k'} ek=h → uniqueness1  {d} {h} {eq} {k'} ek=h
       } where
          k1 :  {d : Obj A} (h : Hom A d a) → A [ A [ f o h ] ≈ A [ g o h ] ] → Hom A d c
          k1 {d} h fh=gh = β bur {d} {a} {b} f g h
          fe=ge1 : A [ A [ f o (α bur f g e) ] ≈ A [ g o (α bur f g e) ] ]
          fe=ge1 = b1 bur
          ek=h1 : {d : Obj A}  → ∀ {h : Hom A d a} →  {eq : A [ A [ f  o  h ] ≈ A [ g  o h ] ] } →  A [ A [ (α bur f g e)  o k1 {d} h eq ] ≈ h ]
          ek=h1 {d} {h} {eq} =  let open ≈-Reasoning (A) in
                 begin
                     α bur f g e o k1 h eq 
                 ≈⟨⟩
                     α bur f g e o ( γ bur {a} {b} {c} f g h o δ bur {d} {b} {d} (id d) (f o h) )
                 ≈⟨ assoc ⟩
                     ( α bur f g e o  γ bur {a} {b} {c} f g h ) o δ bur {d} {b} {d} (id d) (f o h) 
                 ≈⟨ car (b2 bur) ⟩
                      ( h o ( α bur ( f o h ) ( g o h ) (id d))) o δ bur {d} {b} {d} (id d) (f o h) 
                 ≈↑⟨ assoc ⟩
                       h o ((( α bur ( f o h ) ( g o h ) (id d) )) o δ bur {d} {b} {d} (id d) (f o h)  )
                 ≈↑⟨ cdr ( car ( cong-α bur eq)) ⟩
                       h o ((( α bur ( f o h ) ( f o h ) (id d)))o δ bur {d} {b} {d} (id d) (f o h)  )
                 ≈⟨ cdr (b3 bur {d} {b} {d} (f  o h) {id d} ) ⟩
                       h o id d
                 ≈⟨ idR ⟩
                     h 
                 ∎
          uniqueness1 : {d : Obj A} →  ∀ {h : Hom A d a} →  {eq : A [ A [ f  o  h ] ≈ A [ g  o h ] ] } →  {k' : Hom A d c } →
                  A [ A [ (α bur f g e) o k' ] ≈ h ] → A [ k1 {d} h eq  ≈ k' ]
          uniqueness1 {d} {h} {eq} {k'} ek=h =   let open ≈-Reasoning (A) in
                 begin
                    k1 {d} h eq
                 ≈⟨⟩
                    γ bur {a} {b} {c} f g h o δ bur {d} {b} {d} (id d) (f o h)
                 ≈↑⟨ car (cong-γ bur {a} {b} {c} {d} ek=h ) ⟩
                    γ bur f g (A [ α bur f g e o k' ]) o δ bur {d} {b} {d} (id d) (f o h)
                 ≈↑⟨ cdr (cong-δ bur (resp ek=h refl-hom )) ⟩
                    γ bur f g (A [ α bur f g e o k' ]) o δ bur {d} {b} {d} (id d) ( f o ( α bur f g e o k') ) 
                 ≈⟨ b4 bur ⟩
                     k'
                 ∎
    -- end

Next : Product, Pullback and Limit

top : Agda による圏論入門


Shinji KONO / Sat Jun 28 15:37:28 2014