Product, Pullback and Limit
Menu Menutop : Agda による圏論入門 pullback.agda
Product
Product は、直積に相当する概念ですが、ここでは二つの射π1とπ2に対して定義します。c f | g |f×g v a <-------- ab ---------→ b π1 π2与えるのは a,b,ab という三つの対象と、π1 : ab → a, π2 : ab → b という射です。 cat-utility.agda
record IsProduct { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) (a b ab : Obj A) ( π1 : Hom A ab a ) ( π2 : Hom A ab b ) : Set (ℓ ⊔ (c₁ ⊔ c₂)) where field _×_ : {c : Obj A} ( f : Hom A c a ) → ( g : Hom A c b ) → Hom A c ab π1fxg=f : {c : Obj A} { f : Hom A c a } → { g : Hom A c b } → A [ A [ π1 o ( f × g ) ] ≈ f ] π2fxg=g : {c : Obj A} { f : Hom A c a } → { g : Hom A c b } → A [ A [ π2 o ( f × g ) ] ≈ g ] uniqueness : {c : Obj A} { h : Hom A c ab } → A [ ( A [ π1 o h ] ) × ( A [ π2 o h ] ) ≈ h ] ×-cong : {c : Obj A} { f f' : Hom A c a } → { g g' : Hom A c b } → A [ f ≈ f' ] → A [ g ≈ g' ] → A [ f × g ≈ f' × g' ] record Product { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) ( a b : Obj A ) : Set (ℓ ⊔ (c₁ ⊔ c₂)) where field product : Obj A π1 : Hom A product a π2 : Hom A product b isProduct : IsProduct A a b product π1 π2Prodcut は二つの射 f: c → a, g : c → b から f × g という射を作ることができます。a と b への射の組(f,g)でできることは、一つの射 f × g で代表できるみたいなものだと思います。c から a, b への二つの射があれば、f×g という射がただ一つ定まるという言い方になります。
f, g は、π1fxg=f と π2fxg=g の二つの等式で再現できます。これが射影になります。
任意の ab への射 h に対して、射影の直積が h になるというように uniquness を表しています。
直積の個々の要素が等しければ、直積も等しいというのが ×-cong です。
別な形の uniquness : π1 × π2 ≈ id1 A ab を示すこともできます。
lemma-p0 : (a b ab : Obj A) ( π1 : Hom A ab a ) ( π2 : Hom A ab b ) ( prod : Product A a b ab π1 π2 ) → A [ _×_ prod π1 π2 ≈ id1 A ab ] lemma-p0 a b ab π1 π2 prod = let open ≈-Reasoning (A) in begin _×_ prod π1 π2 ≈↑⟨ ×-cong prod idR idR ⟩ _×_ prod (A [ π1 o id1 A ab ]) (A [ π2 o id1 A ab ]) ≈⟨ Product.uniqueness prod ⟩ id1 A ab ∎
Pullback and Limit
Pullback は、
f a ------→ c ^ ^ π1 | |g | | ab ------→ b ^ π2 | dEqualizer と Product を合わせたものになっていて、実際、Equalizer と Product が存在すれば、それらを組み合わせて構築することができます。定義は以下のようにしました。
a,b,c,ab という4つの対象と4つの射があります。ここで、a, b への任意の射に対して、ab への射がただ一つ定まり、可換図が成立するというわけです。
record IsPullback { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) {a b c ab : Obj A} ( f : Hom A a c ) ( g : Hom A b c ) ( π1 : Hom A ab a ) ( π2 : Hom A ab b ) : Set (ℓ ⊔ (c₁ ⊔ c₂)) where field commute : A [ A [ f o π1 ] ≈ A [ g o π2 ] ] pullback : { d : Obj A } → { π1' : Hom A d a } { π2' : Hom A d b } → A [ A [ f o π1' ] ≈ A [ g o π2' ] ] → Hom A d ab π1p=π1 : { d : Obj A } → { π1' : Hom A d a } { π2' : Hom A d b } → { eq : A [ A [ f o π1' ] ≈ A [ g o π2' ] ] } → A [ A [ π1 o pullback eq ] ≈ π1' ] π2p=π2 : { d : Obj A } → { π1' : Hom A d a } { π2' : Hom A d b } → { eq : A [ A [ f o π1' ] ≈ A [ g o π2' ] ] } → A [ A [ π2 o pullback eq ] ≈ π2' ] uniqueness : { d : Obj A } → ( p' : Hom A d ab ) → { π1' : Hom A d a } { π2' : Hom A d b } → { eq : A [ A [ f o π1' ] ≈ A [ g o π2' ] ] } → { π1p=π1' : A [ A [ π1 o p' ] ≈ π1' ] } → { π2p=π2' : A [ A [ π2 o p' ] ≈ π2' ] } → A [ pullback eq ≈ p' ] record Pullback { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) {a b c : Obj A} ( f : Hom A a c ) ( g : Hom A b c ) : Set (ℓ ⊔ (c₁ ⊔ c₂)) where field ab : Obj A π1 : Hom A ab a π2 : Hom A ab b isPullback : IsPullback A f g π1 π2p が ab への射を提供する写像です。可換性は、π1p=π1 と π2p=π2 です。uniquness は Product とは異なり、ab への射p' に対する可換図が成立すれば、それはp と 等しいとう風に書いています。
可換性は、もともと f,g, π1, π2 に成立する commute と、与えられたπ1'とπ2' と Pullback p に対して成立するπ1p=π1 と π2p=π2 の二つです。
Equalizer と同じように、ab は前もって与えています。
Pullback を Prodcut とEqualizerから作る
f a ------→ c ^ ^ π1 | |g | | ab ------→ b ^ π2 | | e = equalizer (f π1) (g π1) | d <------------------ d' k (π1' × π2' )Pullback は Equalizer と Prodocut をつなぎあわせたような形をしているので、Pullback 射を、Equalizer と Product から作ることができます。
pullback-from : {a b c : Obj A} ( f : Hom A a c ) ( g : Hom A b c ) ( eqa : {a b : Obj A} → (f g : Hom A a b) → Equalizer A f g ) ( prod : ( a b : Obj A ) → Product A a b ) → Pullback A f g pullback-from {a} {b} {c} f g eqa prod0 = record { ab = d ; π1 = A [ π1 o e ] ; π2 = A [ π2 o e ] ; isPullback = record { commute = commute1 ; pullback = p1 ; π1p=π1 = λ {d} {π1'} {π2'} {eq} → π1p=π11 {d} {π1'} {π2'} {eq} ; π2p=π2 = λ {d} {π1'} {π2'} {eq} → π2p=π21 {d} {π1'} {π2'} {eq} ; uniqueness = uniqueness1 } } where axb : Obj A axb = Product.product (prod0 a b) π1 : Hom A axb a π1 = Product.π1 (prod0 a b ) π2 : Hom A axb b π2 = Product.π2 (prod0 a b ) d : Obj A d = equalizer-c (eqa (A [ f o π1 ]) (A [ g o π2 ])) commute1 : A [ A [ f o A [ π1 o ? ] ] ≈ A [ g o A [ π2 o ? ] ] ] commute1 = ?前もって、答えがわからないと証明も書きようがないので、pullback の e を見つけるのが問題になります。
Pullback 自体は record を作れば良いわけなので、e は取り敢えず ? にして置いて、要求される式を書いていきます。
commute1 : A [ A [ f o A [ π1 o ? ] ] ≈ A [ g o A [ π2 o ? ] ] ]ということになります。これは、equalizer の
fe=ge : A [ A [ f o e ] ≈ A [ g o e ] ]に似ているので、? は、おそらく equalizer でしょう。だとすれば、d'からd への射 p1 は、equalizer の解 k でしょう。k には、条件があるので、それも示す必要があります。それは、とりあえず、lemma1 とでもしておいて。
lemma1 : {d' : Obj A} {π1' : Hom A d' a} {π2' : Hom A d' b} → A [ A [ f o π1' ] ≈ A [ g o π2' ] ] → A [ A [ A [ f o π1 ] o (prod × π1') π2' ] ≈ A [ A [ g o π2 ] o (prod × π1') π2' ] ] lemma1 {d'} { π1' } { π2' } eq = ? p1 {d'} { π1' } { π2' } eq = let open ≈-Reasoning (A) in k (isEqualizer (eqa ( A [ f o π1 ] ) ( A [ g o π2 ] ))) (_×_ prod π1' π2' ) ( lemma1 eq )としてみます。eqa は Equalizer を与える写像で、prod は Product を与える写像で、どちらも定理の仮定です。
( eqa : {a b : Obj A} → (f g : Hom A a b) → Equalizer A f g ) ( prod : ( a b : Obj A ) → Product A a b ) → Pullback A f gあとは頑張って証明すればよいだけです。
Pullback の元の可換性は、Equalizer の fe=ge から導出できます。
commute1 : A [ A [ f o A [ π1 o equalizer (eqa (A [ f o π1 ]) (A [ g o π2 ])) ] ] ≈ A [ g o A [ π2 o equalizer (eqa (A [ f o π1 ]) (A [ g o π2 ])) ] ] ] commute1 = let open ≈-Reasoning (A) in begin f o ( π1 o equalizer (eqa ( f o π1 ) ( g o π2 )) ) ≈⟨ assoc ⟩ ( f o π1 ) o equalizer (eqa ( f o π1 ) ( g o π2 )) ≈⟨ fe=ge (eqa (A [ f o π1 ]) (A [ g o π2 ])) ⟩ ( g o π2 ) o equalizer (eqa ( f o π1 ) ( g o π2 )) ≈↑⟨ assoc ⟩ g o ( π2 o equalizer (eqa ( f o π1 ) ( g o π2 )) ) ∎p1 の仮定 lemma1 、つまり Equalizer の filed ek=f は、
p1 {d'} { π1' } { π2' } eq = let open ≈-Reasoning (A) in k ( eqa ( A [ f o π1 ] ) ( A [ g o π2 ] ) {e} ) (_×_ prod π1' π2' ) ?とすれば、
?0 : (A Category.≈ A [ A [ f o π1 ] o (prod × π1') π2' ]) (A [ A [ g o π2 ] o (prod × π1') π2' ])だと Agda が教えてくれます。これをそのまま使って、使える仮定 (p1 の引数全部 ) を付け加えます。
lemma1 : {d' : Obj A} {π1' : Hom A d' a} {π2' : Hom A d' b} → A [ A [ f o π1' ] ≈ A [ g o π2' ] ] → A [ A [ A [ f o π1 ] o (prod × π1') π2' ] ≈ A [ A [ g o π2 ] o (prod × π1') π2' ] ]これが意味するところを理解しなくても、証明すれば良いわけです。(prod × π1') π2' は、infix operator がおかしなことになっていますが、π1'× π2' ということです。これは Agda の構文の良くないところ。
lemma1 : {d' : Obj A} {π1' : Hom A d' a} {π2' : Hom A d' b} → A [ A [ f o π1' ] ≈ A [ g o π2' ] ] → A [ A [ A [ f o π1 ] o (prod × π1') π2' ] ≈ A [ A [ g o π2 ] o (prod × π1') π2' ] ] lemma1 {d'} { π1' } { π2' } eq = let open ≈-Reasoning (A) in begin ( f o π1 ) o (prod × π1') π2' ≈↑⟨ assoc ⟩ f o ( π1 o (prod × π1') π2' ) ≈⟨ cdr (π1fxg=f prod) ⟩ f o π1' ≈⟨ eq ⟩ g o π2' ≈↑⟨ cdr (π2fxg=g prod) ⟩ g o ( π2 o (prod × π1') π2' ) ≈⟨ assoc ⟩ ( g o π2 ) o (prod × π1') π2' ∎π1fxg=f とかは、Product を作った時に、そんな変な名前にしてしまったのでした。こちらでは Equalizer の性質は使わずに、Product の射影だけを使っています。eq は、lemma の仮定
f o π1' ≈ g o π2'です。これが成立する π1' , π2' の組に対して、pullback を作っていたのでした。
これで、pullback p1 が定義できました。あとは、要求される性質を証明していけばよいだけです。equalizer (eqa (A [ f o π1 ]) (A [ g o π2 ]) {e} ) は、 e のことなので、一直線に証明できます。
π1p=π11 : {d₁ : Obj A} {π1' : Hom A d₁ a} {π2' : Hom A d₁ b} {eq : A [ A [ f o π1' ] ≈ A [ g o π2' ] ]} → A [ A [ A [ π1 o equalizer (eqa (A [ f o π1 ]) (A [ g o π2 ]) {e} ) ] o p1 eq ] ≈ π1' ] π1p=π11 {d'} {π1'} {π2'} {eq} = let open ≈-Reasoning (A) in begin ( π1 o equalizer (eqa (A [ f o π1 ]) (A [ g o π2 ]) {e} ) ) o p1 eq ≈⟨⟩ ( π1 o e) o k ( eqa ( A [ f o π1 ] ) ( A [ g o π2 ] ) {e} ) (_×_ prod π1' π2' ) (lemma1 eq) ≈↑⟨ assoc ⟩ π1 o ( e o k ( eqa ( A [ f o π1 ] ) ( A [ g o π2 ] ) {e} ) (_×_ prod π1' π2' ) (lemma1 eq) ) ≈⟨ cdr ( ek=h ( eqa ( A [ f o π1 ] ) ( A [ g o π2 ] ) {e} )) ⟩ π1 o (_×_ prod π1' π2' ) ≈⟨ π1fxg=f prod ⟩ π1' ∎ π2p=π21 : {d₁ : Obj A} {π1' : Hom A d₁ a} {π2' : Hom A d₁ b} {eq : A [ A [ f o π1' ] ≈ A [ g o π2' ] ]} → A [ A [ A [ π2 o equalizer (eqa (A [ f o π1 ]) (A [ g o π2 ]) {e} ) ] o p1 eq ] ≈ π2' ] π2p=π21 {d'} {π1'} {π2'} {eq} = let open ≈-Reasoning (A) in begin ( π2 o equalizer (eqa (A [ f o π1 ]) (A [ g o π2 ]) {e} ) ) o p1 eq ≈⟨⟩ ( π2 o e) o k ( eqa ( A [ f o π1 ] ) ( A [ g o π2 ] ) {e} ) (_×_ prod π1' π2' ) (lemma1 eq) ≈↑⟨ assoc ⟩ π2 o ( e o k ( eqa ( A [ f o π1 ] ) ( A [ g o π2 ] ) {e} ) (_×_ prod π1' π2' ) (lemma1 eq) ) ≈⟨ cdr ( ek=h ( eqa ( A [ f o π1 ] ) ( A [ g o π2 ] ) {e} )) ⟩ π2 o (_×_ prod π1' π2' ) ≈⟨ π2fxg=g prod ⟩ π2' ∎そして、uniquness を証明します。
uniqueness1 : {d₁ : Obj A} (p' : Hom A d₁ d) {π1' : Hom A d₁ a} {π2' : Hom A d₁ b} {eq : A [ A [ f o π1' ] ≈ A [ g o π2' ] ]} → {eq1 : A [ A [ A [ π1 o equalizer (eqa (A [ f o π1 ]) (A [ g o π2 ])) ] o p' ] ≈ π1' ]} → {eq2 : A [ A [ A [ π2 o equalizer (eqa (A [ f o π1 ]) (A [ g o π2 ])) ] o p' ] ≈ π2' ]} → A [ p1 eq ≈ p' ] uniqueness1 {d'} p' {π1'} {π2'} {eq} {eq1} {eq2} = let open ≈-Reasoning (A) in begin p1 eq ≈⟨⟩ k ( eqa ( A [ f o π1 ] ) ( A [ g o π2 ] ) {e} ) (_×_ prod π1' π2' ) (lemma1 eq) ≈⟨ Equalizer.uniqueness (eqa ( A [ f o π1 ] ) ( A [ g o π2 ] ) {e}) ( begin e o p' ≈⟨⟩ equalizer (eqa (A [ f o π1 ]) (A [ g o π2 ])) o p' ≈↑⟨ Product.uniqueness prod ⟩ (prod × ( π1 o equalizer (eqa (A [ f o π1 ]) (A [ g o π2 ])) o p') ) ( π2 o (equalizer (eqa (A [ f o π1 ]) (A [ g o π2 ])) o p')) ≈⟨ ×-cong prod (assoc) (assoc) ⟩ (prod × (A [ A [ π1 o equalizer (eqa (A [ f o π1 ]) (A [ g o π2 ])) ] o p' ])) (A [ A [ π2 o equalizer (eqa (A [ f o π1 ]) (A [ g o π2 ])) ] o p' ]) ≈⟨ ×-cong prod eq1 eq2 ⟩ ((prod × π1') π2') ∎ ) ⟩ p' ∎そのまま、Equalizer と Product の uniquness に対応しています。
Product
ここで作った Product はπ1とπ2の二つの積でした。これを任意個の射の積に拡張したいと思います。引数に相当する集合 I を考えて、A の対象 Obj A への射を作ります。
ai : I → Obj Aそして、Product の対象 p から、ai i への射を引数 I からの射で指し示します。
pi : (i : I ) → Hom A p ( ai i )I が何かは規定してないので、要素二個だったり無限個だったり、あるいは可算個だったりします。
Product の行き先 p と ai, pi の写像を与えると、任意のAの対象 q に対して、
product : {q : Obj A} → ( qi : (i : I) → Hom A q (ai i) ) → Hom A q pq から p への射があって、さらに q から ai i への射の集合に対して、
qi : (i : I) → Hom A q (ai i)以下の等式が成立します。
pif=q : {q : Obj A} → ( qi : (i : I) → Hom A q (ai i) ) → ∀ { i : I } → A [ A [ ( pi i ) o ( product qi ) ] ≈ (qi i) ]qi i を必ず Product 経由にできるみたいな感じです。
そして、そういうものがあったとすると、それは唯一に決まります。
ip-uniqueness1 : {q : Obj A} → ( qi : (i : I) → Hom A q (ai i) ) → ( product' : Hom A q p ) → ( ∀ { i : I } → A [ A [ ( pi i ) o product' ] ≈ (qi i) ] ) → A [ product' ≈ product qi ]これを直接要求せずに、要素二個に対する Product の uniquness
(π1 p ) × ( π2 p) = pに相当する、
ip-uniqueness : {q : Obj A} { h : Hom A q p } → A [ product ( λ (i : I) → A [ (pi i) o h ] ) ≈ h ]こちらを要求します。これを使って、 ip-uniqueness1 を証明することができます。
ip-uniqueness1 {a} qi product' eq = let open ≈-Reasoning (A) in begin product' ≈↑⟨ ip-uniqueness ⟩ product (λ i₁ → A [ pi i₁ o product' ]) ≈⟨ ip-cong ( λ i → begin pi i o product' ≈⟨ eq {i} ⟩ qi i ∎ ) ⟩ product qi ∎あと、いつものように congを定義します。まとめると、
----- -- -- product on arbitrary index -- record IProduct { c c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) ( I : Set c) ( p : Obj A ) -- product ( ai : I → Obj A ) -- families ( pi : (i : I ) → Hom A p ( ai i ) ) -- projections : Set (c ⊔ ℓ ⊔ (c₁ ⊔ c₂)) where field product : {q : Obj A} → ( qi : (i : I) → Hom A q (ai i) ) → Hom A q p pif=q : {q : Obj A} → ( qi : (i : I) → Hom A q (ai i) ) → ∀ { i : I } → A [ A [ ( pi i ) o ( product qi ) ] ≈ (qi i) ] ip-uniqueness : {q : Obj A} { h : Hom A q p } → A [ product ( λ (i : I) → A [ (pi i) o h ] ) ≈ h ] ip-cong : {q : Obj A} → { qi : (i : I) → Hom A q (ai i) } → { qi' : (i : I) → Hom A q (ai i) } → ( ∀ (i : I ) → A [ qi i ≈ qi' i ] ) → A [ product qi ≈ product qi' ] -- another form of uniquness ip-uniqueness1 : {q : Obj A} → ( qi : (i : I) → Hom A q (ai i) ) → ( product' : Hom A q p ) → ( ∀ { i : I } → A [ A [ ( pi i ) o product' ] ≈ (qi i) ] ) → A [ product' ≈ product qi ] ip-uniqueness1 {a} qi product' eq = let open ≈-Reasoning (A) in begin product' ≈↑⟨ ip-uniqueness ⟩ product (λ i₁ → A [ pi i₁ o product' ]) ≈⟨ ip-cong ( λ i → begin pi i o product' ≈⟨ eq {i} ⟩ qi i ∎ ) ⟩ product qi ∎となります。
Limit
圏のLimit は、Equalizer や Product を汎用にしたものです。任意個の Product を作る時には写像を使いましたが、Equalizer とかの可換図を任意の有向グラフにします。有向グラフとは、
対象があり、それを結ぶ射があるわけなので、これは圏そのものです。つまり、引数になる圏Iから、圏Aへの関手を定義すると、それはAの中のグラフを定義することになります。この関手を
Γ : Functor I Aとします。このグラフに対して 任意のAの対象 a から Limit である対象 a0 への射 limit が存在します。
Equalizer, Product などの条件になる可換性は、自然変換の可換性として定義します。Γは関手ですが、そこに自然変換 t を定義しますが、自然変換は関手から関手なので相手(Functor I A)を定義する必要があります。ただ一つの対象a と a 上の id だけを返す定数関手を使います。
-- Constancy Functor K : { c₁' c₂' ℓ' : Level} (A : Category c₁' c₂' ℓ') { c₁'' c₂'' ℓ'' : Level} ( I : Category c₁'' c₂'' ℓ'' ) → ( a : Obj A ) → Functor I A K A I a = record { FObj = λ i → a ; FMap = λ f → id1 A a ; isFunctor = let open ≈-Reasoning (A) in record { ≈-cong = λ f=g → refl-hom ; identity = refl-hom ; distr = sym idL } }これが関手なのは自明です。この K からΓへの自然変換があると、
t0 : NTrans I A ( K A I a0 ) Γこのt0 の可換性 は i j : Obj I の射 f : Hom I i j に対して、
FMap Γ f o TMap t0 i ≈ TMap t0 j o FMap (K A I lim) fつまり、
FMap Γ f o TMap t0 i ≈ TMap t0 jになります。要素二つのProductだったら、
π1 o ( f × g ) ≈ fに相当します。任意の個数のProductだったら、
pi i o product qi ≈ qi iでした。圏I、Functor Γ、自然変換 t0 を工夫することにより、様々な Product や Equliazer に相当するものを作れることがわかります。
Limit が存在すると、こういう性質を満たす射と対象、つまり自然変換 t : K → Γ に対して、
t0f=t : { a : Obj A } → { t : NTrans I A ( K A I a ) Γ } → ∀ { i : Obj I } → A [ A [ TMap t0 i o limit a t ] ≈ TMap t i ]となります。まとめると、
record Limit { c₁' c₂' ℓ' : Level} { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) ( I : Category c₁' c₂' ℓ' ) ( Γ : Functor I A ) ( a0 : Obj A ) ( t0 : NTrans I A ( K A I a0 ) Γ ) : Set (suc (c₁' ⊔ c₂' ⊔ ℓ' ⊔ c₁ ⊔ c₂ ⊔ ℓ )) where field limit : ( a : Obj A ) → ( t : NTrans I A ( K A I a ) Γ ) → Hom A a a0 t0f=t : { a : Obj A } → { t : NTrans I A ( K A I a ) Γ } → ∀ { i : Obj I } → A [ A [ TMap t0 i o limit a t ] ≈ TMap t i ] limit-uniqueness : { a : Obj A } → { t : NTrans I A ( K A I a ) Γ } → { f : Hom A a a0 } → ( ∀ { i : Obj I } → A [ A [ TMap t0 i o f ] ≈ TMap t i ] ) → A [ limit a t ≈ f ]となります。
Limit が存在すれば、up to iso に unique になります。つまり、iso-l, iso-r の二つの射があり、組み合わせると id になります。
iso-l : { c₁' c₂' ℓ' : Level} ( I : Category c₁' c₂' ℓ' ) ( Γ : Functor I A ) ( a0 a0' : Obj A ) ( t0 : NTrans I A ( K A I a0 ) Γ ) ( t0' : NTrans I A ( K A I a0' ) Γ ) ( lim : Limit A I Γ a0 t0 ) → ( lim' : Limit A I Γ a0' t0' ) → Hom A a0 a0' iso-l I Γ a0 a0' t0 t0' lim lim' = limit lim' a0 t0 iso-r : { c₁' c₂' ℓ' : Level} ( I : Category c₁' c₂' ℓ' ) ( Γ : Functor I A ) ( a0 a0' : Obj A ) ( t0 : NTrans I A ( K A I a0 ) Γ ) ( t0' : NTrans I A ( K A I a0' ) Γ ) ( lim : Limit A I Γ a0 t0 ) → ( lim' : Limit A I Γ a0' t0' ) → Hom A a0' a0 iso-r I Γ a0 a0' t0 t0' lim lim' = limit lim a0' t0' iso-lr : { c₁' c₂' ℓ' : Level} ( I : Category c₁' c₂' ℓ' ) ( Γ : Functor I A ) ( a0 a0' : Obj A ) ( t0 : NTrans I A ( K A I a0 ) Γ ) ( t0' : NTrans I A ( K A I a0' ) Γ ) ( lim : Limit A I Γ a0 t0 ) → ( lim' : Limit A I Γ a0' t0' ) → ∀{ i : Obj I } → A [ A [ iso-l I Γ a0 a0' t0 t0' lim lim' o iso-r I Γ a0 a0' t0 t0' lim lim' ] ≈ id1 A a0' ] iso-lr I Γ a0 a0' t0 t0' lim lim' {i} = let open ≈-Reasoning (A) in begin limit lim' a0 t0 o limit lim a0' t0' ≈↑⟨ limit-uniqueness lim' ( λ {i} → ( begin TMap t0' i o ( limit lim' a0 t0 o limit lim a0' t0' ) ≈⟨ assoc ⟩ ( TMap t0' i o limit lim' a0 t0 ) o limit lim a0' t0' ≈⟨ car ( t0f=t lim' ) ⟩ TMap t0 i o limit lim a0' t0' ≈⟨ t0f=t lim ⟩ TMap t0' i ∎) ) ⟩ limit lim' a0' t0' ≈⟨ limit-uniqueness lim' idR ⟩ id a0' ∎Limit を随伴関手として定義することもできます。K を A から A^I への関手 KI に拡張します。
KI : A → A^Iが右随伴関手を持てば、Limit が存在します。
A^I は、I から A への関手圏ですから、射は自然変換です。
open import CatExponetial open Functor -------------------------------- -- -- Contancy Functor KI : { c₁' c₂' ℓ' : Level} ( I : Category c₁' c₂' ℓ' ) → Functor A ( A ^ I ) KI { c₁'} {c₂'} {ℓ'} I = record { FObj = λ a → K A I a ; FMap = λ f → record { -- NTrans I A (K A I a) (K A I b) TMap = λ a → f ; isNTrans = record { commute = λ {a b f₁} → commute1 {a} {b} {f₁} f } } ; isFunctor = let open ≈-Reasoning (A) in record { ≈-cong = λ f=g {x} → f=g ; identity = refl-hom ; distr = refl-hom } } where commute1 : {a b : Obj I} {f₁ : Hom I a b} → {a' b' : Obj A} → (f : Hom A a' b' ) → A [ A [ FMap (K A I b') f₁ o f ] ≈ A [ f o FMap (K A I a') f₁ ] ] commute1 {a} {b} {f₁} {a'} {b'} f = let open ≈-Reasoning (A) in begin FMap (K A I b') f₁ o f ≈⟨ idL ⟩ f ≈↑⟨ idR ⟩ f o FMap (K A I a') f₁ ∎A^Iの対象は関手なのでK A I a で良いのですが、射は自然変換を作らないといけません。でも、対象はa と id を返す K なので、KI の射の写像 FMap KI は f そのもので構いません。
まず Limit があれば、A → A^I の KI に対する co Universal Mapping の解があることを示します。
-- limit gives co universal mapping ( i.e. adjunction ) -- -- F = KI I : Functor A (A ^ I) -- U = λ b → A0 (lim b {a0 b} {t0 b} -- ε = λ b → T0 ( lim b {a0 b} {t0 b} ) -- -- a0 : Obj A and t0 : NTrans K Γ come from the limit limit2couniv : ( lim : ( Γ : Functor I A ) → Limit I A Γ ) → coUniversalMapping A ( A ^ I ) (KI I) limit2couniv lim = record { U = λ b → a0 ( lim b) ; ε = λ b → t0 (lim b) ; _*' = λ {b} {a} k → limit (isLimit (lim b )) a k ; iscoUniversalMapping = record { couniversalMapping = λ{ b a f} → couniversalMapping1 {b} {a} {f} ; couniquness = couniquness2 } } where couniversalMapping1 : {b : Obj (A ^ I)} {a : Obj A} {f : Hom (A ^ I) (FObj (KI I) a) b} → A ^ I [ A ^ I [ t0 (lim b) o FMap (KI I) (limit (isLimit (lim b)) a f) ] ≈ f ] couniversalMapping1 {b} {a} {f} {i} = let open ≈-Reasoning (A) in begin TMap (t0 (lim b )) i o TMap ( FMap (KI I) (limit (isLimit (lim b )) a f) ) i ≈⟨⟩ TMap (t0 (lim b)) i o (limit (isLimit (lim b)) a f) ≈⟨ t0f=t (isLimit (lim b)) ⟩ TMap f i -- i comes from ∀{i} → B [ TMap f i ≈ TMap g i ] ∎ couniquness2 : {b : Obj (A ^ I)} {a : Obj A} {f : Hom (A ^ I) (FObj (KI I) a) b} {g : Hom A a (a0 (lim b ))} → ( ∀ { i : Obj I } → A [ A [ TMap (t0 (lim b )) i o TMap ( FMap (KI I) g) i ] ≈ TMap f i ] ) → A [ limit (isLimit (lim b )) a f ≈ g ] couniquness2 {b} {a} {f} {g} lim-g=f = let open ≈-Reasoning (A) in begin limit (isLimit (lim b )) a f ≈⟨ limit-uniqueness (isLimit ( lim b )) lim-g=f ⟩ g ∎問題を書き下してみると、
TMap (t0 b) i o (limit (lim b) a f) ≈ TMap f iが、そのまま解の条件になっていることがわかります。
逆に Universal mapping があれば、それから Limit を作ることができます。
univ2limit : ( univ : coUniversalMapping A (A ^ I) (KI I) ) → ( Γ : Functor I A ) → Limit I A Γ univ2limit univ Γ = record { a0 = (coUniversalMapping.U univ ) Γ ; t0 = (coUniversalMapping.ε univ ) Γ ; isLimit = record { limit = λ a t → limit1 a t ; t0f=t = λ {a t i } → t0f=t1 {a} {t} {i} ; limit-uniqueness = λ {a} {t} {f} t=f → limit-uniqueness1 {a} {t} {f} t=f } } where U : Obj (A ^ I) → Obj A U b = coUniversalMapping.U univ b ε : ( b : Obj (A ^ I ) ) → NTrans I A (FObj (KI I) (U b)) b ε b = coUniversalMapping.ε univ b limit1 : (a : Obj A) → NTrans I A (FObj (KI I) a) Γ → Hom A a (U Γ) limit1 a t = coUniversalMapping._*' univ {_} {a} t t0f=t1 : {a : Obj A} {t : NTrans I A (K I A a) Γ} {i : Obj I} → A [ A [ TMap (ε Γ) i o limit1 a t ] ≈ TMap t i ] t0f=t1 {a} {t} {i} = let open ≈-Reasoning (A) in begin TMap (ε Γ) i o limit1 a t ≈⟨⟩ TMap (ε Γ) i o coUniversalMapping._*' univ t ≈⟨ coIsUniversalMapping.couniversalMapping ( coUniversalMapping.iscoUniversalMapping univ) {Γ} {a} {t} ⟩ TMap t i ∎ limit-uniqueness1 : { a : Obj A } → { t : NTrans I A ( K I A a ) Γ } → { f : Hom A a (U Γ)} → ( ∀ { i : Obj I } → A [ A [ TMap (ε Γ) i o f ] ≈ TMap t i ] ) → A [ limit1 a t ≈ f ] limit-uniqueness1 {a} {t} {f} εf=t = let open ≈-Reasoning (A) in begin coUniversalMapping._*' univ t ≈⟨ ( coIsUniversalMapping.couniquness ( coUniversalMapping.iscoUniversalMapping univ) ) εf=t ⟩ f ∎直接、随伴関手を作るのは、可能ではありますが、煩雑ですし、普遍問題の解から随伴関手を作るのをなぞることになります。
limit from equalizer and product
Limit は pullback と同じように Equalizer と IProduct から作ることができます。IProduct は任意個の積を表します。
-- -- limit from equalizer and product -- -- Γu -- → Γj → Γk ← -- / ↑ ↑ \ -- proj j / | | \ proj k -- / μu| |μu \ Equalizer have to be independent from j and k -- | | | | so we need products of Obj I and Hom I -- |product of Hom I | -- | ↑ ↑ | K u = id lim -- | f(id)} | | -- | | |g(Γ) | lim = K j -----------→ K k = lim -- | | | | | u | -- \ | | / proj j o e = ε j | | ε k = proj k o e -- product of Obj I μ u o g o e | | μ u o f o e -- ↑ | | -- | e = equalizer f g | | -- | ↓ ↓ -- lim ←---------------- d' Γ j ----------→ Γ k -- k ( product pi ) Γ u -- Γ u o ε j = ε k --Limit に出てくるたくさんの可換性を Equalize と IProductの可換性に帰着させる必要があります。
Limit のIndex圏の対象全部の積を作ります。
p0 : Obj A p0 = iprod (prod (FObj Γ))少しインチキなんですが、Index圏の射全体を record で積として表してしまいます。本当は IProduct で作る必要があります。
-- homprod should be written by IProduct -- If I is locally small, this is iso to a set record homprod {c : Level } : Set (suc c₁' ⊔ suc c₂' ) where field hom-j : Obj I hom-k : Obj I hom : Hom I hom-j hom-k open homprod Homprod : {j k : Obj I} (u : Hom I j k) → homprod {c₁} Homprod {j} {k} u = record {hom-j = j ; hom-k = k ; hom = u}Homprod がLimitのindex圏の射全体の積つまり、全体の代表です。Fcod は射を与えると Index凾手で射影された射のcodomain を取ってくる写像です。
Fcod : homprod {c₁} → Obj A Fcod = λ u → FObj Γ ( hom-k u )これで、Index圏から関手F通じて示された対象と射を一度に扱うことができるわけです。
limit-from : ( prod : {c : Level} { I : Set c } → ( ai : I → Obj A ) → IProduct I A ai ) ( eqa : {a b : Obj A} → (f g : Hom A a b) → Equalizer A f g ) → Limit I A Γ limit-from prod eqa = record { a0 = d ; t0 = cone-ε ; isLimit = record { limit = λ a t → cone1 a t ; t0f=t = λ {a t i } → t0f=t1 {a} {t} {i} ; limit-uniqueness = λ {a} {t} {f} t=f → limit-uniqueness1 {a} {t} {f} t=f } } where p0 : Obj A p0 = iprod (prod (FObj Γ)) Fcod : homprod {c₁} → Obj A Fcod = λ u → FObj Γ ( hom-k u ) f : Hom A p0 (iprod (prod Fcod)) f = iproduct (isIProduct (prod Fcod)) (λ u → pi (prod (FObj Γ)) (hom-k u )) g : Hom A p0 (iprod (prod Fcod)) g = iproduct (isIProduct (prod Fcod)) (λ u → A [ FMap Γ (hom u) o pi (prod (FObj Γ)) (hom-j u ) ] ) equ-ε : Equalizer A g f equ-ε = eqa g f d : Obj A d = equalizer-c equ-ε e : Hom A d p0 e = equalizer equ-ε equ = isEqualizer equ-ε -- projection of the product of Obj I proj : (i : Obj I) → Hom A p0 (FObj Γ i) proj = pi ( prod (FObj Γ) ) prodΓ = isIProduct ( prod (FObj Γ) ) -- projection of the product of Hom I μ : {j k : Obj I} → (u : Hom I j k ) → Hom A (iprod (prod Fcod)) (Fcod (Homprod u)) μ u = pi (prod Fcod ) (Homprod u)f と g が equlizer を構成する二つの射です。
この equalizerを使って、 Γに対応する自然変換(cone)を作ります。これは Limit の可換性の条件をすべて含んでいる自然変換になります。
-- projection of the product of Obj I proj : (i : Obj I) → Hom A p0 (FObj Γ i) proj = pi ( prod (FObj Γ) ) prodΓ = isIProduct ( prod (FObj Γ) ) -- projection of the product of Hom I μ : {j k : Obj I} → (u : Hom I j k ) → Hom A (iprod (prod Fcod)) (Fcod (Homprod u)) μ u = pi (prod Fcod ) (Homprod u) cone-ε : NTrans I A (K I A (equalizer-c equ-ε ) ) Γ cone-ε = record { TMap = λ i → tmap i ; isNTrans = record { commute = commute1 } } where tmap : (i : Obj I) → Hom A (FObj (K I A d) i) (FObj Γ i) tmap i = A [ proj i o e ] commute1 : {j k : Obj I} {u : Hom I j k} → A [ A [ FMap Γ u o tmap j ] ≈ A [ tmap k o FMap (K I A d) u ] ] commute1 {j} {k} {u} = let open ≈-Reasoning (A) in begin FMap Γ u o tmap j ≈⟨⟩ FMap Γ u o ( proj j o e ) ≈⟨ assoc ⟩ ( FMap Γ u o pi (prod (FObj Γ)) j ) o e ≈↑⟨ car ( pif=q (isIProduct (prod Fcod )) ) ⟩ ( μ u o g ) o e ≈↑⟨ assoc ⟩ μ u o (g o e ) ≈⟨ cdr ( fe=ge (isEqualizer equ-ε )) ⟩ μ u o (f o e ) ≈⟨ assoc ⟩ (μ u o f ) o e ≈⟨ car ( pif=q (isIProduct (prod Fcod ))) ⟩ pi (prod (FObj Γ)) k o e ≈⟨⟩ proj k o e ≈↑⟨ idR ⟩ (proj k o e ) o id1 A d ≈⟨⟩ tmap k o FMap (K I A d) u ∎作成する Limit の対象は d で、cone-ε がその自然変換です。
もし、Limit と同じ可換性を持つ対象aと自然変換tがあれば、それへんの unique な射と自然変換があるというのが Limit要請です。
-- an arrow to our product of Obj I ( is an equalizer because of commutativity of t ) h : {a : Obj A} → (t : NTrans I A (K I A a) Γ ) → Hom A a p0 h t = iproduct prodΓ (TMap t) fh=gh : (a : Obj A) → (t : NTrans I A (K I A a) Γ ) → A [ A [ g o h t ] ≈ A [ f o h t ] ] fh=gh a t = ? cone1 : (a : Obj A) → NTrans I A (K I A a) Γ → Hom A a d cone1 a t = k equ (h t) ( fh=gh a t )それは積と equalizer から作ることになります。そのためには equlizer の条件である二つの射の可換性を示す必要があります。これは、cone を作った時の計算を逆にたどるような感じで証明できます。
fh=gh : (a : Obj A) → (t : NTrans I A (K I A a) Γ ) → A [ A [ g o h t ] ≈ A [ f o h t ] ] fh=gh a t = let open ≈-Reasoning (A) in begin g o h t ≈↑⟨ ip-uniqueness (isIProduct (prod Fcod)) ⟩ iproduct (isIProduct (prod Fcod)) (λ u → pi (prod Fcod) u o ( g o h t )) ≈⟨ ip-cong (isIProduct (prod Fcod)) ( λ u → begin pi (prod Fcod) u o ( g o h t ) ≈⟨ assoc ⟩ ( pi (prod Fcod) u o g ) o h t ≈⟨ car (pif=q (isIProduct (prod Fcod ))) ⟩ (FMap Γ (hom u) o pi (prod (FObj Γ)) (hom-j u) ) o h t ≈↑⟨ assoc ⟩ FMap Γ (hom u) o (pi (prod (FObj Γ)) (hom-j u) o h t ) ≈⟨ cdr ( pif=q prodΓ ) ⟩ FMap Γ (hom u) o TMap t (hom-j u) ≈⟨ IsNTrans.commute (isNTrans t) ⟩ TMap t (hom-k u) o id1 A a ≈⟨ idR ⟩ TMap t (hom-k u) ≈↑⟨ pif=q prodΓ ⟩ pi (prod (FObj Γ)) (hom-k u) o h t ≈↑⟨ car (pif=q (isIProduct (prod Fcod ))) ⟩ (pi (prod Fcod) u o f ) o h t ≈↑⟨ assoc ⟩ pi (prod Fcod) u o ( f o h t ) ∎ ) ⟩ iproduct (isIProduct (prod Fcod)) (λ u → pi (prod Fcod) u o ( f o h t )) ≈⟨ ip-uniqueness (isIProduct (prod Fcod)) ⟩ f o h t ∎
Adjoint functor preserves limits
随伴関手の重要な性質として Limit が保存されるというのがあります。Limit が存在する B から、随伴関手を使って、A のLimit を作ります。
Γは、向こう側(A)では U ○ Γ になります。
adjoint-preseve-limit : { c₁' c₂' ℓ' : Level} (B : Category c₁' c₂' ℓ') ( Γ : Functor I B ) ( limitb : Limit I B Γ ) → ( adj : Adjunction A B ) → Limit I A (Adjunction.U adj ○ Γ) adjoint-preseve-limit B Γ limitb adj = record { a0 = FObj U lim ; t0 = ta1 B Γ lim tb U ; isLimit = ? }Limit は U で対応するに決まっているので、 問題は、自然変換 ta1 の構成です。
ta1 : { c₁' c₂' ℓ' : Level} (B : Category c₁' c₂' ℓ') ( Γ : Functor I B ) ( lim : Obj B ) ( tb : NTrans I B ( K I B lim ) Γ ) → ( U : Functor B A) → NTrans I A ( K I A (FObj U lim) ) (U ○ Γ) ta1 B Γ lim tb U = record { TMap = TMap (Functor*Nat I A U tb) ; isNTrans = record { commute = λ {a} {b} {f} → let open ≈-Reasoning (A) in begin FMap (U ○ Γ) f o TMap (Functor*Nat I A U tb) a ≈⟨ nat ( Functor*Nat I A U tb ) ⟩ TMap (Functor*Nat I A U tb) b o FMap (U ○ K I B lim) f ≈⟨ cdr (IsFunctor.identity (isFunctor U) ) ⟩ TMap (Functor*Nat I A U tb) b o FMap (K I A (FObj U lim)) f ∎ } }随伴関手には様々な関手と自然変換があるので、便利ですが、ここでは、tb の可換性のみで証明できます。
実際の証明は複雑で長いわけですが、証明自体は一直線に終わります。
adjoint-preseve-limit : { c₁' c₂' ℓ' : Level} (B : Category c₁' c₂' ℓ') ( Γ : Functor I B ) ( limitb : Limit I B Γ ) → ( adj : Adjunction A B ) → Limit I A (Adjunction.U adj ○ Γ) adjoint-preseve-limit B Γ limitb adj = record { a0 = FObj U lim ; t0 = ta1 B Γ lim tb U ; isLimit = record { limit = λ a t → limit1 a t ; t0f=t = λ {a t i } → t0f=t1 {a} {t} {i} ; limit-uniqueness = λ {a} {t} {f} t=f → limit-uniqueness1 {a} {t} {f} t=f } } where U : Functor B A U = Adjunction.U adj F : Functor A B F = Adjunction.F adj η : NTrans A A identityFunctor ( U ○ F ) η = Adjunction.η adj ε : NTrans B B ( F ○ U ) identityFunctor ε = Adjunction.ε adj ta = ta1 B Γ (a0 limitb) (t0 limitb) U tb = t0 limitb lim = a0 limitb tfmap : (a : Obj A) → NTrans I A (K I A a) (U ○ Γ) → (i : Obj I) → Hom B (FObj (K I B (FObj F a)) i) (FObj Γ i) tfmap a t i = B [ TMap ε (FObj Γ i) o FMap F (TMap t i) ] tF : (a : Obj A) → NTrans I A (K I A a) (U ○ Γ) → NTrans I B (K I B (FObj F a)) Γ tF a t = record { TMap = tfmap a t ; isNTrans = record { commute = λ {a'} {b} {f} → let open ≈-Reasoning (B) in begin FMap Γ f o tfmap a t a' ≈⟨⟩ FMap Γ f o ( TMap ε (FObj Γ a') o FMap F (TMap t a')) ≈⟨ assoc ⟩ (FMap Γ f o TMap ε (FObj Γ a') ) o FMap F (TMap t a') ≈⟨ car (nat ε) ⟩ (TMap ε (FObj Γ b) o FMap (F ○ U) (FMap Γ f) ) o FMap F (TMap t a') ≈↑⟨ assoc ⟩ TMap ε (FObj Γ b) o ( FMap (F ○ U) (FMap Γ f) o FMap F (TMap t a') ) ≈↑⟨ cdr ( distr F ) ⟩ TMap ε (FObj Γ b) o ( FMap F (A [ FMap U (FMap Γ f) o TMap t a' ] ) ) ≈⟨ cdr ( fcong F (nat t) ) ⟩ TMap ε (FObj Γ b) o FMap F (A [ TMap t b o FMap (K I A a) f ]) ≈⟨⟩ TMap ε (FObj Γ b) o FMap F (A [ TMap t b o id1 A (FObj (K I A a) b) ]) ≈⟨ cdr ( fcong F (idR1 A)) ⟩ TMap ε (FObj Γ b) o FMap F (TMap t b ) ≈↑⟨ idR ⟩ ( TMap ε (FObj Γ b) o FMap F (TMap t b)) o id1 B (FObj F (FObj (K I A a) b)) ≈⟨⟩ tfmap a t b o FMap (K I B (FObj F a)) f ∎ } } limit1 : (a : Obj A) → NTrans I A (K I A a) (U ○ Γ) → Hom A a (FObj U (a0 limitb) ) limit1 a t = A [ FMap U (limit (isLimit limitb) (FObj F a) (tF a t )) o TMap η a ] t0f=t1 : {a : Obj A} {t : NTrans I A (K I A a) (U ○ Γ)} {i : Obj I} → A [ A [ TMap ta i o limit1 a t ] ≈ TMap t i ] t0f=t1 {a} {t} {i} = let open ≈-Reasoning (A) in begin TMap ta i o limit1 a t ≈⟨⟩ FMap U ( TMap tb i ) o ( FMap U (limit (isLimit limitb) (FObj F a) (tF a t )) o TMap η a ) ≈⟨ assoc ⟩ ( FMap U ( TMap tb i ) o FMap U (limit (isLimit limitb) (FObj F a) (tF a t ))) o TMap η a ≈↑⟨ car ( distr U ) ⟩ FMap U ( B [ TMap tb i o limit (isLimit limitb) (FObj F a) (tF a t ) ] ) o TMap η a ≈⟨ car ( fcong U ( t0f=t (isLimit limitb) ) ) ⟩ FMap U (TMap (tF a t) i) o TMap η a ≈⟨⟩ FMap U ( B [ TMap ε (FObj Γ i) o FMap F (TMap t i) ] ) o TMap η a ≈⟨ car ( distr U ) ⟩ ( FMap U ( TMap ε (FObj Γ i)) o FMap U ( FMap F (TMap t i) )) o TMap η a ≈↑⟨ assoc ⟩ FMap U ( TMap ε (FObj Γ i) ) o ( FMap U ( FMap F (TMap t i) ) o TMap η a ) ≈⟨ cdr ( nat η ) ⟩ FMap U (TMap ε (FObj Γ i)) o ( TMap η (FObj U (FObj Γ i)) o FMap (identityFunctor {_} {_} {_} {A}) (TMap t i) ) ≈⟨ assoc ⟩ ( FMap U (TMap ε (FObj Γ i)) o TMap η (FObj U (FObj Γ i))) o TMap t i ≈⟨ car ( IsAdjunction.adjoint1 ( Adjunction.isAdjunction adj ) ) ⟩ id1 A (FObj (U ○ Γ) i) o TMap t i ≈⟨ idL ⟩ TMap t i ∎ -- ta = TMap (Functor*Nat I A U tb) , FMap U ( TMap tb i ) o f ≈ TMap t i limit-uniqueness1 : {a : Obj A} {t : NTrans I A (K I A a) (U ○ Γ)} {f : Hom A a (FObj U lim)} → ({i : Obj I} → A [ A [ TMap ta i o f ] ≈ TMap t i ]) → A [ limit1 a t ≈ f ] limit-uniqueness1 {a} {t} {f} lim=t = let open ≈-Reasoning (A) in begin limit1 a t ≈⟨⟩ FMap U (limit (isLimit limitb) (FObj F a) (tF a t )) o TMap η a ≈⟨ car ( fcong U (limit-uniqueness (isLimit limitb) ( λ {i} → lemma1 i) )) ⟩ FMap U ( B [ TMap ε lim o FMap F f ] ) o TMap η a -- Universal mapping ≈⟨ car (distr U ) ⟩ ( (FMap U (TMap ε lim)) o (FMap U ( FMap F f )) ) o TMap η a ≈⟨ sym assoc ⟩ (FMap U (TMap ε lim)) o ((FMap U ( FMap F f )) o TMap η a ) ≈⟨ cdr (nat η) ⟩ (FMap U (TMap ε lim)) o ((TMap η (FObj U lim )) o f ) ≈⟨ assoc ⟩ ((FMap U (TMap ε lim)) o (TMap η (FObj U lim))) o f ≈⟨ car ( IsAdjunction.adjoint1 ( Adjunction.isAdjunction adj)) ⟩ id (FObj U lim) o f ≈⟨ idL ⟩ f ∎ where lemma1 : (i : Obj I) → B [ B [ TMap tb i o B [ TMap ε lim o FMap F f ] ] ≈ TMap (tF a t) i ] lemma0 i = let open ≈-Reasoning (B) in begin TMap tb i o (TMap ε lim o FMap F f) ≈⟨ assoc ⟩ ( TMap tb i o TMap ε lim ) o FMap F f ≈⟨ car ( nat ε ) ⟩ ( TMap ε (FObj Γ i) o FMap F ( FMap U ( TMap tb i ))) o FMap F f ≈↑⟨ assoc ⟩ TMap ε (FObj Γ i) o ( FMap F ( FMap U ( TMap tb i )) o FMap F f ) ≈↑⟨ cdr ( distr F ) ⟩ TMap ε (FObj Γ i) o FMap F ( A [ FMap U ( TMap tb i ) o f ] ) ≈⟨ cdr ( fcong F (lim=t {i}) ) ⟩ TMap ε (FObj Γ i) o FMap F (TMap t i) ≈⟨⟩ TMap (tF a t) i ∎Next : system T